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ABSTRACT The channel model is by far the most computing intensive part of the link level simulations of
multiple-input and multiple-output (MIMO) fifth-generation new radio (5GNR) communication systems.
Simulation effort further increases when using more realistic geometry-based channel models, such as
the three-dimensional spatial channel model (3DSCM). Channel emulation is used for functional and
performance verification of such models in the network planning phase. These models use multiple finite
impulse response (FIR) filters and have a very high degree of parallelism which can be exploited for
accelerated execution on Field Programmable Gate Array (FPGA) and Graphics Processing Unit (GPU)
platforms. This paper proposes an efficient re-configurable implementation of the 3rd generation partnership
project (3GPP) 3DSCM on FPGAs using a design flow based on high-level synthesis (HLS). It studies the
effect of various HLS optimization techniques on the total latency and hardware resource utilization on
XilinxAlveoU280 and Intel Arria 10GX 1150 high-performance FPGAs, using in both cases the commercial
HLS tools of the producer. The channel model accuracy is preserved using double precision floating point
arithmetic. This work analyzes in detail the effort to target the FPGA platforms using HLS tools, both in
terms of common parallelization effort (shared by both FPGAs), and in terms of platform-specific effort,
different for Xilinx and Intel FPGAs. Compared to the baseline general-purpose central processing unit
(CPU) implementation, the achieved speedups are 65X and 95X using the Xilinx UltraScale+ and Intel Arria
FPGA platform respectively, when using a Double Data Rate (DDR) memory interface. The FPGA-based
designs also achieved ∼3X better performance compared to a similar technology node NVIDIA GeForce
GTX 1070 GPU, while consuming ∼4X less energy. The FPGA implementation speedup improves up to
173X over the CPU baseline when using the Xilinx UltraRAM (URAM) and High-Bandwidth Memory
(HBM) resources, also achieving 6X lower latency and 12X lower energy consumption than the GPU
implementation.

INDEX TERMS Channel emulator, FPGA, fifth-generation new radio, hardware acceleration, high-level
synthesis.

I. INTRODUCTION
Channel model simulation has become an essential part
of mobile network planning. Every new cellular technol-
ogy undergoes a critical simulation phase both before and
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during the physical deployment phase. It is thus essential to
model the channel accurately for the design and evaluation
of fifth-generation new radio (5GNR) and beyond wireless
networks [1]. To obtain a realistic representation of the prop-
agation effects, thousands of radio frequency parameters need
to be adjusted. Parameter recalculation is needed even after
the deployment, whenever the network configuration changes
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(i.e., the number or position of antennas change). geometry-
based stochastic model (GBSM) is a popular method for
accurately characterizing channels in simulation environ-
ments [2]. Several channel models have been developed by
different groups, such as 3GPP [3], Wireless World Initiative
New Radio II (WINNER II) [4], European Cooperation
in Science and Technology (COST) 2100 [5], Mobile and
wireless communications Enablers for the Twenty-twenty
Information Society (METIS) [6], International Telecommu-
nications Union Radio-communication Sector (ITU-R) [7],
Millimeter-Wave Evolution for Backhaul and Access
(MiWEBA) [8] and NYU WIRELESS (NYUSIM) [10].
These channel models share many similarities and can be
grouped into two main categories: 1) 3GPP/ITU based chan-
nel models for frequencies below 6GHz, with modifications
to accommodate up to 100GHz, and 2) NYUSIM [1] based
channel models for frequencies ranging from 0.5GHz to
100GHz and provide new features and enhancements, such as
spatial consistency, mobility, and spherical wave propagation.

The 3GPP channel model [3] that we chose in this work
supports channel bandwidth up to 2GHz and frequencies
ranging from 0.5GHz to 100GHz. It provides accurate
simulation at the cost of higher complexity than alterna-
tives, and can also model additional components, such as
oxygen absorption, blockage, large antenna arrays, and spa-
tial consistency.

COST 2100 [5] is a GBSM for frequency bands
below 6GHz. Cluster power, delays and angles in the
COST 2100 model are drawn from fixed geometry loca-
tions. This model suffers from limited frequency range and
lack of support for scenarios requiring dual mobility, such
as device-to-device (D2D) and vehicular-to-vehicular (V2V)
communication.

METIS [6] fulfills most of the requirements for fifth-
generation (5G) channel modeling, such as blocking, specular
reflection, diffraction and spherical wave propagation. It also
adds support of spatial consistency with dual mobility. This
model is based on ray-tracing and provides high accuracy at
the cost of very high computational complexity.

Network simulators are used to model the routing protocol
performance, traffic flows and evaluate the efficiency of the
communication system using real-life parameters in a vir-
tual environment [9]. Several channel simulators have been
developed previously in the literature [10], [11], [12], [13],
[14], [15], [16], [17]. NYUSIM [10], [11] is a geometry-
based channel simulator for the physical and link layers of
5G communication systems for frequencies from 0.5GHz
to 100GHz. In [12] is proposed a geometry-based channel
model for millimeter wave (mmWave) frequencies consider-
ing the effect of the ground reflection. A three-dimensional
(3D) multi-cell channel model is reported [13] for predicting
performance of an urban macro-cell setup with enhanced
features such as 3D antenna patterns, 3D propagation time
evolution, variable terminal speeds, and scenario transitions.
A channel simulator for machine-to-machine (M2M) com-
munication in indoor environments is presented in [14].

In [15] is presented a tutorial on an end-to-end simulation
system for mmWave module in 5G communication systems.
K-Simulator [16] is an open-source standard-compliant mod-
ular tool based on 3GPP roadmap for 5G. A stochastic chan-
nel model is proposed [17], which adds support for dual
mobility and spatial correlation.

Accurate 5G channel model simulations require very high
computational effort and incur very long execution time on
general purpose processors. Hardware acceleration of such
functions is an option to speed up the execution, hence
to reduce the simulation time. Hardware accelerators based
on FPGAs improve the runtime performance and system
energy efficiency of computationally intensive accurate chan-
nel simulators with respect to both CPUs and GPUs [18].
FPGAs can achieve better fine-grained parallelism by cus-
tomizing the computing engines and memory hierarchy. E.g.,
an FPGAs implementing a distributed unit (DU) receiver
can improve the performance even under varying computa-
tional load conditions, with optimized power consumption
and less area [19]. Civerchia et al. [20] studied the opti-
mization of Open Computing Language (OPENCL) designs
implementing orthogonal frequency division multiplexing
(OFDM) module in the 5G stack on FPGA platforms.
Alimohammad et al. [21] proposed an implementation on
FPGA of infinite impulse response (IIR) models for Rayleigh
fading channels. Xiao et al. [22] studied the use of FPGAs in
5G combined with the neural network optimizations.

Several GBSM emulators have been reported in the liter-
ature [23], [24], each with one or more application-specific
target scenarios. Hofer et al. [23] proposed a parameterized
GBSM emulator for FPGAs. It splits the channel into sev-
eral stationary regions with fixed Doppler frequencies, hence
it is not suitable for fast time-varying models like those
used in vehicular mobility scenarios. Another emulator for
3D GBSM for fixed-to-mobile channels is presented in [24].
The channel emulator presented in [25] considers a linearly
changing Doppler frequency in the stationary regions, but
it has non-continuous output fading and hence suffers from
accuracy loss. A ray-tracing based channel emulator is pro-
posed in [26] with support for dual mobility. The proposed
technique relies on pre-computed ray coefficients, hence it
introduces errors in the ray amplitudes. [27] proposed a
technique to accelerate the 3GPP channel model by reducing
its computational complexity. It considers a single sub-path,
which lowers the accuracy limiting its applicability to real
propagation environments. As discussed, most techniques
proposed in the literature have some limitations in terms of
either accuracy or potential areas of application.

This work started from application requirements of the
Innovation Department of TIM, a major Italian telecommu-
nication provider. Their goal is to exploit the accuracy and
generality of the 3GPP GBSM [3] to study the evolution
of the radio standard and to maximize the planning qual-
ity of mobile networks by means of fast simulation tools,
leveraging advanced methods and optimizations for accel-
eration on FPGA platforms. The channel model, initially
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developed for execution on a general-purpose CPU,
is adapted for the target Xilinx and Intel FPGA accel-
eration platforms, followed by the application of differ-
ent FPGA optimization techniques. Hence, we analyze the
effort required to use the different synthesis tools for these
platforms. While the main goal of this effort is performance
optimization compared to a channel model targeted for
general-purpose CPUs, reduction of the energy per compu-
tation is also analyzed compared to implementations on CPU
and GPU platforms. The results of in this paper indicate that
the proposed techniques allow the creation of fast, efficient
and accurate communication channel models.

In this article, we investigate the use of efficient high-
performance FPGAs for accelerating the channel model in
radio link simulators by means of various multi-objective
optimizations. On the one hand, we focus on improving the
code structure as well as the memory architecture of
the 5GNR channel model on FPGA platforms to maxi-
mize the exposed parallelism and match memory access and
computational capabilities by leveraging the analysis and
synthesis capabilities of HLS design environments. On the
other hand, we analyze the performance of different HLS
tools while following fairly similar optimization flows. The
accelerated channel model is then integrated within a
MATLAB-based simulation system (developed by the Inno-
vation department of TIM S.p.A.) via a socket-based clien-
t/server architecture, in order to make it easier to use by
several groups of researchers in a shared fashion. To analyze
and compare the achievable performance on GPU platforms,
the CPU implementation is ported to the Compute Unified
Device Architecture (CUDA) framework and optimized for
GPU targets. The performance achieved is reported for the
NVIDIA GeForce GTX 1070 GPU platform, which is imple-
mented using a similar technology node to the FPGAs that we
used. Finally, we analyze the effort required when targeting
the FPGA platforms using HLS tools.

The rest of the article is organized as follows. Section II
introduces the 5G cellular technology and channel model
used at the system and link levels. Section III discusses the
flow and technologies used for hardware acceleration and
the key benefits associated with them. Section IV explains
the different optimization methodologies and techniques
being adapted to make efficient use of FPGA-based accel-
eration platforms. Section V describes the overall channel
emulation setup adopted in this work and the way different
optimization are applied to the channel model. In Section VI,
we discuss and evaluate the experimental results for the
FPGA acceleration platforms and present a comparative anal-
ysis of the performance achieved for CPU, FPGA and GPU
platforms. Section VII concludes the work performed in this
research.

II. FIFTH-GENERATION MOBILE NETWORK
5G mobile networks promise important communication fea-
tures, such as very low latency, very high data rates, and
support for high density of devices and base stations (BS).

The new cellular network technology is expected to have a
substantial impact and aid several sectors, including corporate
networks, public networks and infrastructure. Transmission
techniques using multi-antenna configurations and MIMO
channels are crucial for enhancing the reliability and spec-
tral efficiency of a radio link. For assessing standardized
technologies operating with a BS equipped with horizontally
arranged antennas, 3GPP has used two-dimensional spatial
channel model (2DSCM) on the horizontal cross-section of
wireless channels [28]. These models capture poorly the
characteristics of a real channel as they consider a two-
dimensional (2D) plane and the transmission techniques for
multiple-input and multiple-output (MIMO) systems (spatial
multiplexing, beamforming and precoding, etc.) are limited
to the azimuth dimension. A 3D channel model is required to
evaluate communication techniques such as vertical sector-
ization. A narrow elevation beam is tailored to each vertical
sector or user equipment (UE) specific elevation to effi-
ciently adapt both the transmission elevation and azimuth for
the UE [28].

A. THREE-DIMENSIONAL CHANNEL MODEL
A system-level simulation with many detailed scenarios,
a large number of parameters, and sophisticated evalua-
tion metrics requires both significant on-chip data stor-
age and high computational power. Interference calculation
becomes even more sophisticated with the inclusion of more
complex scenarios. Thus, the requirements for system-level
simulators must evolve in different directions, such as prop-
agation channel modeling, interference modeling, and clus-
tering. The propagation effect of a wireless channel can
be modeled by combining a large scale propagation model
with a small scale fading model of the channel. The former
predicts the characteristics of the wireless channel model
that change slowly, such as shadowing and path losses.
The small scale fading model predicts instead the effect of
changes due to the Doppler or multipath effects on a wireless
channel.

To model the correlation between the different antenna
elements, researchers use spatial channel model (SCM).
Unlike other traditional models, SCM incorporates a random
power delay profile and an angular profile and defines the
large-scale parameters (LSPs) and the small-scale parame-
ters (SSPs) of the channel model separately. Although the
BS antenna arrays generate 3D radio beams, it is some-
times modeled in 2D to simplify the calculations by ignoring
the elevation angles [29]. 3GPP developed a 3D generic
channel model for frequencies ranging from 0.5GHz to
100GHz for link-layer and the system-level simulations [3].
The proposed model is a GBSM that extends the ITU/WIN-
NERII 2D channel models. It is also influenced by the
WINNERII/WINNER+ expansion from the 2D channel
model to the 3D channel model [4] and takes into account the
elevation angles and the azimuth angle to model small-scale
fading effects and correlation among the antenna elements.
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FIGURE 1. Two-dimensional spatial channel model to three-dimensional.

FIGURE 2. Cluster scattering in 3GPP channel model. (source [1]).

Fig. 1a and Fig. 1b show the different angles used in 2D
and 3D SCM.

In 3GPP GBSM, a cluster is composed of several rays that
originate from same scatterers having similar characteristics
such as arrival and departure angles. These clusters con-
sist of multipath components having common propagation
direction. Fig. 2 illustrates scattering of different sub-paths
in GBSM. Several usage scenarios are defined in the 3GPP
specification. For elevation beamforming, the urban micro
street canyon and open area, 3D urban macro (3DUMA)
with outdoor next generation NodeBs (gNBs), Backhaul,
device-to-device (D2D), vehicle-to-vehicle (V2V), and out-
door to indoor (O2I) are examples of some common usage
scenarios. For each of these propagation scenarios, different
parameters are defined to calculate path losses, microscopic

TABLE 1. Notations in the global coordinate system (GCS).

FIGURE 3. Channel coefficient generation in 3GPP 3D channel model.

and macroscopic fading. LSPs are generated for each UE
according to the propagation conditions at its location and
geographical position. Delay spread, shadow fading, zenith,
angle of arrival (AOA), angle of departure (AOD), azimuth
angle of arrival (ZOA), and azimuth angle of departure (ZOD)
are considered as LSPs, while cluster powers, delays, ZOA,
ZOD, and elevation direction are considered as SSPs, which
change frequently. The parameters listed in Table 1 are used
for the realization of the radio channel using the step-by-
step method shown in Fig. 3. The first step of the channel
modeling is the identification of the application environment.
A simulation scenario is first chosen, then the corresponding
network layout (number of BS and UE), and the antenna
parameters are specified. The final step for setting LSPs is
the calculation of path losses for the assigned propagation
conditions.
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B. FAST FADING CHANNEL MODEL
Fast fading coefficients model the fluctuating behaviour of
the wireless channel due to changes in the UE movement
or due to multipath [30]. The fast fading channel model
calculates LSPs to generate the channel coefficients. A down-
link connection is assumed here for the notations, hence the
arrival angles are defined at the UE side and the departure
angles at the gNB side. For the up-link, the departure and the
arrival parameters have to be swapped to obtain the respec-
tive realizations. At this stage, the azimuth spread angle of
departure (ASA) and azimuth spread angle of arrival (ASD)
and the AOA and AOD are generated, in addition to the zenith
spread angle of departure (ZSA) and zenith spread angle of
arrival (ZSD), and the ZOA and ZOD. Random coupling
among the arrival and departure angles is performed for
different multiple path components of the composite channel.
Finally, taking into account these parameters, the channel
coefficients are generated. Considering N cluster scatterers
with M resolvable paths each, the channel impulse response
(CIR) for ray m in cluster n, UE antenna element u, and BS
antenna element s is

Hu,s,n,m(t) =

√
Pn
M

[
Frx,u,θ

(
θn,m,ZOA, φn,m,AOA

)
Frx,u,φ

(
θn,m,ZOA, φn,m,AOA

) ]T
×

[
ej8

θθ
n,m

√
κn,m−1ej8

θφ
n,m√

κn,m−1ej8
φθ
n,m ej8

φφ
n,m

]

×

[
Ftx,s,θ

(
θn,m,ZOD, φn,m,AOD

)
Ftx,s,φ

(
θn,m,ZOD, φn,m,AOD

) ]
× e

j2π
r̂Trx,n,m .d̄rx,u

λ0 × e
j2π

r̂Ttx,n,m .d̄tx,s
λ0

× e
j2π

r̂Trx,n,m .v̄
λ0

t (1)

where r̂rx,n,m is the spherical unit vector with elevation arrival
angle θn,m,ZOA and azimuth arrival angle ϕn,m,AOA. For clus-
ter n and ray m within cluster n, the spherical unit vector is
given by

r̂rx,n,m =

sin θn,m,ZOA cosφn,m,AOA
sin θn,m,ZOA sinφn,m,AOA

cos θn,m,ZOA

 (2)

Similarly, r̂tx,n,m is the spherical unit vector with eleva-
tion departure angle θn,m,ZOD and azimuth departure angle
φn,m,AOD. For cluster n and ray m within cluster n it is

r̂tx,n,m =

sin θn,m,ZOD cosφn,m,AOD
sin θn,m,ZOD sinφn,m,AOD

cos θn,m,ZOD

 (3)

The Doppler frequency component depends on the UE speed
vwith velocity vector v̄, AOA, ZOA, travel elevation angle θv
and azimuth angle φv

vn,m =
r̂Trx,n,mv̄

λ0
(4)

where

v̄ = v.[sin θv cosφv sin θv sinφv cos θv]T (5)

In the conventional approach of beamforming, the array fac-
tor is applied to the field pattern of a single antenna element
in a uniform array. In the 3D GBSMmodel, the array factor is
applied to the coefficients of each channel, for each antenna
element. Considering the delays and ray mappings listed in
[3, Table 7.5-5], the final CIR Hu,s(τ, t) are calculated by
combining the partial coefficients for each transmitting and
receiving antenna element in each cluster and scatter [31].

Hu,s(τ, t) =
2∑

n=1

3∑
i=1

∑
m∈Ri

Hu,s,n,m(t)δ(τ − τn,i)

+

∑
m=3

HN
u,s,n(t)δ(τ − τn) (6)

The channel can be either represented as a tapped delay
line (TDL) or a cluster delay line (CDL). For simplified
evaluation, the TDLmodel is defined as an impulse response,
in which a radio channel is characterized by several delay
taps while the CDL model is characterized by the arrival
and departure directions in the 3D space which allows better
beamforming representation. The TDL model defines the
correlation between the antenna elements through a static
correlation matrix, whereas the CDL model depends on the
geometry of the antenna elements and how the channel prop-
agates. To obtain a TDL model, a brick wall window is
applied to the delay-scaled CDL model followed by power
normalization. The pseudo-code in Algorithm 1 shows the
procedure for the channel coefficient generation. The chan-
nel coefficients in the GBSM are dependent on the location
of the UE in the 3D space, hence they must be calculated
dynamically. For nTx transmitting antennas, nRx receiving
antennas, nClust number of clusters, NSPS oversampling
factor, sampling frequency f and transmission time interval
length TTI the number of partial coefficients calculated is

nCoeff =nRx×nTx × nClust × NSPS × f × TTI × 1000

(7)

Thus, considering simulation parameters nTx = 32, nRx=2,
nClust = 23, NSPS = 4, f = 122.88MHz and
TTI = 0.25ms, a total of 180 879 360 partial coefficients are
generated.

III. FPGA ACCELERATION USING OPENCL AND HLS
Several HLS tools have been introduced for rapid prototyping
and hardware development using large FPGAs. These tools
take as input programs written in C, C++, OPENCL [32],
[33], [34], [35], [36], [37], and other high-level languages
[38], [39], [40], [41], [42] alongside some design constraints
and pragmas, and translate them into lower level description
such as register transfer level (RTL) or hardware description
language (HDL) with equivalent functionality. This transla-
tion from high-level description into HDL is done by HLS
toolchains. The translated design is then transformed into a
gate-level description by the synthesis toolchain, and mapped
onto the hardware resources of the target device. This cir-
cuit description is then mapped to the actual locations on
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Algorithm 1 Implementation of the channel impulse
response Generation in 3GPP Channel Model
Input: Input symbols
Output: CIR
1: for u = 0 to nRxAntenna do
2: for s = 0 to nTxAntenna do
3: for n = 0 to nCluster do
4: for m = 0 to nCDL do
5: calculate for r̂rx,n,m as in (2)
6: calculate for r̂tx,n,m as in (3)
7: end for
8: end for
9: for l = 0 to nSymbol do

10: for n = 0 to nCluster do
11: Hu,s,n,m(t) as in (6)
12: end for
13: end for
14: end for
15: end for

the target device to reduce the length of the critical paths.
The final stage is encoding the circuit description into a
binary format (bitstream), which is then used to configure
the FPGA on-chip resources and define the initial on-chip
static RAM (SRAM) contents. OPENCL is a parallel pro-
gramming language for multi-core and heterogeneous com-
puting platforms [43]. OPENCL is developed as an open
standard by the Khronos group, thus it has an edge over a
similar framework, the CUDA, fully controlled by NVIDIA
and only available for its devices. OPENCL is designed so
that an application can be adapted across different computing
platforms. Although OPENCL provides functional portabil-
ity, platform-specific optimizations are necessary to exploit
most of the target platform computational power. This allows
software programmers to exploit the architectural features of
the underlying platforms, such as the distinction between the
local on-chip memory, the global memory, and registers, just
like they can do for GPUs [44]. An OPENCL application is
comprised of one or more device or kernel functions, and host
code. Device code is the part of the code which is highly data
parallel and computationally intensive, and will be executed
on the accelerator. Host code is the part which sets up the
environment and controls data movement to and from the
accelerator device and is executed on a general-purpose CPU.

OPENCL devices include one or more compute units
(CUs) and each may contain one ore more processing ele-
ments (PEs), depending on the platform and the designer
implementation choices. OPENCL splits the computations in
parallel threads called work-items (WIs) which are then com-
bined together in work-groups (WGs). This approach adds
support for data-parallel computations and thus some ‘‘doall’’
loop iterations without inter-iteration dependencies (in par-
ticular those over WGs), can be mapped to kernel instances
that execute in parallel. Not all applications, though, expose

FIGURE 4. Open Computing Language (OPENCL) based hardware
acceleration flow.

high ‘‘doall’’ parallelism at the top of the kernel level. More-
over, FPGA architectures permit finer-grained control over
the implementation parallelism, e.g., between tasks within a
kernel or iterations of an inner loop. For this reason, OPENCL
also offers an execution model, more suitable for CPUs and
FPGAs than for GPUs, that executes repeatedly a single
instance of the kernel and is called single work-item kernel.
In this approach, the available parallelism must be defined
at a finer grain, using FPGA specific pragmas. A similar
approach can also be used to synthesize C or C++ code into a
concurrent FPGA implementation, as discussed below. Fig. 4
shows the main elements of an OPENCL design. It relies on
a single instruction multiple data (SIMD) paradigm similar to
GPUs to better exploit the hardware platforms. It enables the
developers to generate efficient code that fits the architecture
of target device by providing an abstract but non-uniform
memory hierarchy.

OPENCL divides memory into different spaces namely
global, local, private, and constant memory. Global and con-
stant memories are shared among all the CUs in a device
and with the host CPU, reside in external dynamic RAM
(DRAM), and hence have the highest latency. Local memory
is shared among WIs in a WG, has lower latency than global
memory and is often mapped to on-chip SRAM. Each WI
finally has its private memory space, which is mapped to the
register file and has the lowest latency.

IV. IMPLEMENTATION AND OPTIMIZATION FOR FPGAs
The usage of a high-level implementation-independent model
written in OPENCL, C, or C++ brings dual benefits to the
FPGAs. On one side, it enables the designers to generate an
application-specific hardware architecture instead of using
the fixed datapath of a CPU or GPU. On the other side,
it brings high-level programming capabilities to hardware
design. In order to use the FPGA device efficiently for accel-
erating an application, the computation bottlenecks have to
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FIGURE 5. Loop pipelining.

be identified and then offloaded on the accelerator device,
specifying them as kernels. CalculatingHu,s,n,m(τ, t) with (6)
for different combinations of the input parameter (u, s, n,m)
requires extensive computations. This will increase the sim-
ulation time significantly and will limit the number of input
parameter combinations that can be explored, while still using
a reasonable amount of execution time. However, (6) offers a
very high level of parallelism that can be exploited to signif-
icantly speed up the computation using a GPU or FPGA.

A. LOOP BASED OPTIMIZATIONS
Since the channel model considers multiple antennas and
scatterers, and hence multiple paths, the implementation is
organized as a set of nested loops, oftenwithout inter-iteration
dependencies (also known as ‘‘doall’’ loops). To exploit the
available parallelism, however, the designer has to provide
explicit optimization directives and often restructure the orig-
inal CPU-oriented code, because the out-of-the box optimiza-
tion of the HLS tools is insufficient, as discussed below. In the
following we briefly discuss the main loop-based optimiza-
tion techniques.

1) LOOP PIPELINING
When a loop is sequentially executed, the next input data
are accepted after the previous computation has been fully
completed. Some of the resources however can be used much
more efficiently by organizing the computation in stages.
Pipelining is a form of computation parallelism that splits a
sequential operation chain into several stages and introduces
storage elements (SRAM or flip-flops) to store the inter-
mediate results. Pipelines are characterized by two primary
attributes namely latency and initiation interval (II). Latency
is the total number of clock cycles elapsed for an input data
to reach the exit point. II or gap is the number of clock
cycles that must elapse before the loop can accept new input
data. For a pipeline with initiation interval II and latency L
that executes N iterations, the total execution time T when

operating at frequency f can be described as in [45]

T =
L + II · (N − 1)

f
. (8)

If a design includes two or more chained pipelines, also
known as task-level pipelining, the overall II is determined
by the slowest one. To achieve maximum performance for a
large number of iterationsN , it is typically desirable to reduce
the II and implement deep pipelines with many stages, hence
reducing the overall execution time. Fig. 5 shows execution
of code in Listing 1 in sequential and pipelined manner.

Listing 1. Loop pipelning example.

Loop pipelining can be specified in OPENCL kernels with
__attribute__((xcl_pipeline_loop(N))), for
C/C++ kernels in Xilinx Vitis [46] with #pragma
HLS pipeline II=<N>, or for Intel FPGA SDK for
OPENCL [47] with #pragma II = <N>. Pipelining may
slightly increase the resource usage due to insertion of extra
control logic and intermediate storage elements, but it gener-
ally increases the overall design throughput by decoupling it
from iteration latency.

2) LOOP UNROLLING
If there are no data dependencies among the iterations of the
loop, the loop execution performance can be improved by
executing multiple iteration in parallel. For such a ‘‘doall’’
loop with trip count N , a theoretical speedup of N times,

FIGURE 6. Loop unrolling/vectorization.
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with an increase of resources also by a factor of N , can be
achieved by dispatching all the iterations in parallel. If an
increase by N of the overall resources is not acceptable, often
unrolling is applied partially by creating X copies of the
unrolled loop body, where X < N . A loop can be fully or
partially unrolled depending upon the performance require-
ments and resource or data availability. Loops can be unrolled
by using the #pragma HLS unroll factor=N in Vitis
HLS or #pragma unroll N in Intel HLS, where N is
the required number of iterations to be executed in parallel.
Fig. 6 shows the execution of code in Listing 2 in rolled, par-
tially unrolled and fully unrolled fashion. Note that unrolling
increases the data access parallelism of the loop aswell, hence
it requires memory architecture restructuring, as discussed
below, to achieve the best performance.

Listing 2. Loop unrolling example.

3) LOOP TILING
FPGAs have limited on-chip storage resources, which are
often insufficient to store all the inputs and intermediate
results required by a given algorithm. In that case, if each
iteration of a given loop uses different input, intermediate,
and output data, it is possible to split the loop into two nested
loops, where the innermost requires a manageable amount of
on-chip storage, and transferring only the required data on-
chip at each iteration of the outer tiled loop [48]. For a bet-
ter understanding of the tiling based optimization, Listing 3
shows an example of nested loops with a large tripcount and
hence larger memory footprint.

Listing 3. Nested loops example.

Loop tiling is applied as shown in Listing 4, resulting in
a smaller memory footprint. This optimization can be used
to add support for larger designs on platforms with limited
memory resources.

4) LOOP FLATTENING/COALESCING
Nested loops can be coalesced into a single loop to improve
performance by reducing the overhead of nested loop control.
However, in both HLS tools that we consider this can only be

Listing 4. Tiled loops example.

done automatically for loops where there is no logic specified
between the loop statements, only the innermost has a body
and all loop bounds are constant except for the outermost
loop bound, which can be variable. Listing 5 shows the
coalesced structure of nested loops in Listing 3. In Vitis HLS
the #pragma HLS loop_flatten must be specified
inside each coalesced loop, while on the Intel platform the
loops can be coalesced using #pragma loop_coalesce
<loop_nesting_level> on the outermost loop.

Listing 5. Coalesced loops.

B. MEMORY OPTIMIZATIONS
Off-chip DRAM is required to store most input and output
data for the channel model and to communicate with the host.
However, DRAM accesses are much slower than the on-chip
SRAM accesses (SRAM is also called block RAM (BRAM)
on FPGAs). Hence, to compute the CIR with sufficient per-
formance, the input parameters are read from external DRAM
to on-chip memory and then accessed repeatedly on-chip by
the unrolled pipelined loop bodies. The computation results
are written back using the same strategy.

To support the loop optimizations discussed above, the
memory hierarchy and off-chip memory interfaces must be
optimized. These optimizations include array partitioning,
reshaping, banking, and resource allocation:
Data reuse. Exploitable parallelism on FPGAs inmost cases

is limited by the number of off-chip memory ports.
If there are multiple accesses to the same data, data reuse
can be exploited by storing them into on-chip buffers,
which have low latency and thus reduce total access
time [49].

Memory access separation. If the innermost loop accesses
slow external DRAM frequently, it will have low
performance due to off-chip latency and bandwidth
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limitations, as mentioned above. By separating these
memory transfers from computations, they can be both
optimized separately to achieve maximum throughput.

Buffering. If memory is accessed deep inside the code,
it may use the bandwidth inefficiently and degrade the
timing and energy performance. To reduce these penal-
ties, access to global memory can be made ahead of the
actual kernel computation usage. These accesses read
memory in bursts into deep buffers using wider DRAM
interfaces than the actual model data type (double-
precision floating-point) to fully exploit the parallelism
offered by the on-chip DRAM controllers. Performance
can also be improved by clocking such memories at
higher frequencies (pumping) than the PE.

Memory banking/striping. Modern memory interfaces
provide access through multiple banks with dedicated
access channels, e.g., HBM lanes or DDR channels.
Hence, access bandwidth of an array can be increased
by striping it across the different memory interfaces
(banks) available on the board. The same considerations
apply to on-chip BRAM banks to increase the on-
chip memory bandwidth to match the requirements of
the data computations. In HLS, this kind of on-chip
memory striping must be performed explicitly by insert-
ing modules to manage data from multiple interfaces.
To split data across N banks, on the Intel platform
is used the __attribute__((numbanks(N))
directive on the local memories. In the Xilinx Vitis
platform, a memory can be either partitioned com-
pletely (into registers) or in a cyclic or block
manner using #pragma HLS array_partition
variable=<name> type=<type> factor=
<int> dim=<int>. For off-chip DRAM, on the
other hand, a single arraymust be broken by the designer
explicitly into multiple sub-arrays mapped to different
HBM or DDR channels, because currently there is no
support for HLS automated or aided off-chip memory
striping.

Regular memory accesses. Irregular and unaligned access
to memory subsystems, in particular to DRAM, leads to
severe performance penalties. Hence, memory accesses
must be kept carefully aligned, so that they can be com-
bined (memory coalesced) by packing the transactions
into a single request andmaking efficient use of theDDR
and HBM bandwidths.

V. EXPERIMENTAL SETUP
We used the setup shown in Fig. 7 for this experiment to
enable access to remote accelerators for multiple MATLAB
clients. The design environments and tools used are:

Baseline CPU Platform. Uses an Intel Xeon E5-2660 v4
@2.00GHz running MATLAB R2021a [50]. The setup
consists of a co-simulation environment where the chan-
nel model is implemented in C++ and executed in

TABLE 2. Field Programmable Gate Array (FPGA) acceleration platforms
and their main resources.

MEX [51], while the rest of the application is being
executed in MATLAB.

FPGA Platform 1. Uses the Xilinx Alveo U280 data center
accelerator card from Xilinx UltraScale+ family [52]
and consists of three chiplets, also called super logic
regions (SLRs), in a single package. This platform con-
tains 30MB of on-chip URAM, 4.5MB of on-chip
BRAM, 8GB of HBM and 32GB of DDR memory.
For fairness of comparison with the other single-chiplet
platforms, all reported results use only one SLR out of
three. Xilinx Vitis Unified Software Platform version
2020.1 is used for development of the host and kernel
code. We will refer to this platform as US+ hereafter.

FPGA Platform 2. Uses the Intel programmable accelera-
tion card (PAC) Arria 10GX 1150 [53]. This platform
contains 8.2MB on-chip embedded memory and 8GB
of DDR memory. Intel FPGA SDK for OpenCL version
19.4 is used alongside Intel Quartus Prime Pro 19.2 for
the development of the host and kernel code [47], [54].
We will refer to this platform as Arria hereafter.

GPU Platform. Uses an NVIDIA GeForce GTX 1070 GPU
which has 15 Streaming Multiprocessors (SMs), 1920
CUDA Cores, 1.4MB of on-chip shared memory, core
graphic clock of 1506MHz, 8GB of GDDR5 memory,
and is implemented in a technology node similar to the
FPGAs. The GPU platform is not a main focus of this
work and is only used as another reference point to
compare the results achieved via the FPGA acceleration
of the channel model.

Both the FPGA Platform 1 and the GPU Platform used for
this research are implemented in 16 nm whereas the FPGA
Platform 2 is implemented in 20 nm.

Table 2 lists the main resources available on these plat-
forms. The final accelerated channel emulator is deployed on
these platforms to be used inside the 5G simulation stack.

When targeting FPGAs using HLS tools, the baseline
implementation is often a version of the code that has
been developed for CPUs using C/C++ or OPENCL code
parallelized for GPU. In our case, the channel model was
developed in C++ and executed in the MEX co-simulation
environment, with the remaining of the 5G stack being exe-
cuted inside MATLAB. The design is then ported to the
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FIGURE 7. Emulation system setup.

Xilinx Vitis development and Intel FPGA SDK for OpenCL
environments. The accelerated function (kernel) can be either
defined in OPENCL or in C/C++. These kernel modeling
styles differ mainly in the way of defining the kernel input
parameters and optimization pragmas. OPENCL defines the
interfaces to the external DRAM automatically, based on the
__global memory attribute, whereas in case of C/C++
these are configured via pragmas. Another difference is how
optimizations, such as memory partitioning, loop pipelining
and unrolling are specified, and the locationwhere these prag-
mas should be placed. Finally, OPENCL could in principle
allow explicit modeling of data parallelism viaWGs andWIs.
However, in this project we did not exploit this opportunity
because we wanted to exercise finer control over the loop
pipelining and unrolling, which is possible only with a single-
WI modeling style.

Fig. 7 describes the overall socket-based acceleration
architecture used for validation and evaluation in this
research. The use of sockets to connect the MATLAB client
to the acceleration servers enables to serve multiple remote
clients avoiding to have physical card mounted into the actual
physical machine running the instances of MATLAB.

The baseline implementation of the channel model is co-
simulated with MATLAB using MEX and used for valida-
tion. To accelerate the channel functions using an FPGA
which supports complex simulations with higher numbers of
antenna elements and more UE speeds, the design is split
into two major parts: host and kernel code. The host code
performs tasks related to control and data movement such
as allocating space on the device memory, receiving data via
the socket from a client, launching the kernel and copying
results back to the client via another socket. The design is
ported to the respective development environments for target
FPGA.A new validation step is used to check that the splitting
between client code, server host code, and server kernel code
was performed correctly. This out-of-the-box (OOB) imple-
mentation is very inefficient since all the data resides in global
DRAM and hence limits the scope of automatic or manual
optimizations.

The optimizations adopted in this work are described more
in detail in Section IV and can be grouped in the following
categories:

Generic HLS optimization. These optimizations are generic
for any HLS flow and can be adopted on any of the
target platforms.These optimizations are further divided
into two categories here, highlighting their impact on
performance and resource utilization respectively.
On-chip buffers. Access to global memory, i.e. off-

chip DRAM, is costly in terms of both time and
energy. To overcome the memory bottleneck, the data
used by the kernel must be copied into low latency
on-chip SRAM buffers at the beginning of the kernel
execution, and back to DRAM at the end. This brings
dual benefits, firstly by issuing wider DRAM access
requests than the single words used in the model
computation, thus utilizing its full bandwidth, and
secondly by reducing the number of such requests
by exploiting data reuse. Loop-based optimizations
are then applied to make efficient use of on-chip
resources. These optimizations include pipelining,
unrolling, tiling, and loop coalescing.

Multi-port. Parallel access to on-chip buffers by
unrolled loop bodies is still limited by the number of
available ports. To prevent stalling of the computa-
tions, these buffers should be partitioned to allowmul-
tiple accesses through an adequate number of ports.
For example, the FIR coefficients are the result of
intermediate computations (6). These partial results
are kept in SRAM buffers with low latency, thus
enabling to compute coefficients for all clusters in
SIMD fashion, hence reducing the total latency.

Application-specific optimizations (ASO). This type of
optimizations are specific to the channel model appli-
cation and may require modifications of the original
CPUoriented algorithm to achieve the best performance.
For example, off-chip memory accesses are not aligned
initially and hence result in poor bandwidth utiliza-
tion because of memory stalls. Another optimization is
exploiting the algorithm structure to reduce the number
of arithmetic operations. In our case, we replaced the
iterative computation of an arithmetic sequence with its
closed form, which required only multiplication by a
constant, and thus reduced both floating point operations
and on-chip memory accesses. This also removed false
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inter-iteration dependencies and enabled unrolling to
parallelize computations.
1) Regular access pattern. To improve performance

using the optimization mechanisms provided by HLS
tools such as loop pipelining, unrolling and loop-
flattening, it is essential to enable the tools to under-
stand the access pattern of the underlying design.
Random or irregular memory accesses can result in
poor bandwidth utilization, limiting the achievable
speedup. In Algorithm 1, line 11 performs mem-
ory access to random memory locations depend-
ing on the position of cluster scatterers, which
is determined at runtime. This is a bottleneck to
the achievable parallelism. To solve this, memory
accesses are separated into different banks for each
cluster.

2) Closed-form computation. To reduce the num-
ber of arithmetic operations, and hence the memory
accesses, the algorithm structure can be exploited.
In our case, the iterative computation of an arithmetic
sequence was replaced with its closed form, which
requires only multiplication by a constant, thus reduc-
ing both the floating point operations and the on-chip
memory accesses.

3) False dependence removal. Memory dependencies
occur when a single memory location is both read and
written, or written multiple times, within a section of
code (typically a loop body). While the true depen-
dencies must be preserved to hold the correctness
of computations, false dependencies are the result
of conservative estimations performed by an HLS
tool when it cannot exactly analyze access sequences.
These dependencies can never occur during actual
execution of the code and can be resolved after a care-
ful manual analysis of the access patterns in the code.
False dependence removal pragmas for HLS tools are
used to identify such dependencies and improve the
effectiveness of loop transformations.

Platform-specific optimizations (PSO). Some FPGA plat-
forms may offer some extra resources, such as off-chip
HBM and on-chip URAM on the Xilinx Alveo U280,
which can be used to further increase the maximum
achievable performance. HBM can be used by specify-
ing a separate interface for each global memory array
and can help reducing memory contention and bank
conflicts. URAM is a special kind of memory that is
wider and deeper than the BRAM and can be used to
store large data structures. Since in OPENCL currently
it is not possible to control these features, we ported
the kernel to C++, which allows more control over
these optimizations, while losing some of the portability
between different FPGA vendors that is afforded by
OPENCL. This version of the kernel achieves a much
more balanced resource utilization and hence would
allow the creation of multiple instances of the kernel on

TABLE 3. Summary of channel model emulator parameters.

the target FPGA, to simulate multiple channel models
concurrently and independently.

VI. RESULTS AND ANALYSIS
We analyze here the performance of the accelerators before
and after optimizations for the two target platforms. We used
the reference parameter values from the 3GPP specifi-
cation [3] for this phase. Table 3 lists some of these
parameters and the chosen propagation condition for the
channel emulator. To measure the efficiency of the acceler-
ated designs, performance metrics based on resource utiliza-
tion, latency, and energy consumption are used. The OOB
implementation of the channel model on the FPGA platforms
is purely a synthesizable version of the original code targeted
for CPU execution. Although it is functionally correct, it is
very inefficient in terms of computation and memory access.
Data reside in the global DRAM and even though the data
access is mostly sequential, none of the HLS tools was able
to optimize the performance of the memory accesses and
exploit the abundant opportunities for data reuse. To reduce
frequent accesses to global memory, the data are copied to
on-chip buffers before starting the computation core of the
kernel, and copied back to the global memory at the end of
the execution. To achieve computation parallelism, the data
should be accessible in parallel. This is limited by the number
of access ports available on the requested memory. Memory
partitioning allows multiple accesses in parallel at the cost of
increased resource utilization. The final implementation com-
bines all these optimizations with algorithm modifications to
improve the regularity of the memory accesses and thus to
simplify the addressing logic.

A. LATENCY
Since the primary task of this research is the accelera-
tion of the channel model, the main focus is the reduc-
tion of the overall latency of the kernel execution. Table 4
lists the latency of the kernel on the baseline CPU and on
the various acceleration platforms, using a single SLR for
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TABLE 4. Kernel latency and speed up achieved compared to
out-of-the-box (OOB) and general-purpose central processing unit (CPU)
implementation, with application-specific optimizations (ASO),
platform-specific optimizations (PSO), High-Bandwidth Memory (HBM),
and UltraRAM (URAM).

the US+. For comparative analysis, we also report here the
speedups achieved after the application of each optimization.
In the baseline implementation, the CPU cache provides very
good DRAM access bandwidth without any programming
effort, but the maximum achievable performance is limited
by the number of available computational resources. Hence,
the OOB implementation on the two FPGA platforms have
lower performance than on the CPU, mainly because of
time-consuming memory access requests, since all the data
reside in off-chip DRAM. This cost is significantly reduced
by copying the data into on-chip buffers before the channel
model computation starts. Parallel access to these buffers
is still limited by the availability of access ports and hence
prevents many HLS optimizations, such as pipelining and
unrolling. To overcome this, partitioning on-chip memory,
which effectively means using several separate banks, is used
to increase the number of access ports on these buffers and
thus enable the HLS tools to schedule more access requests
in parallel. Memory bandwidth utilization, however, is still
poor due to the unaligned access patterns, which require a
significant amount of multiplexing. To overcome this, ASO
are applied (see Section V), yielding overall 95X and 65X
speedups on the US+ and Arria platforms respectively com-
pared to the baseline CPU implementation. The FPGA-based
designs also achieved ∼3X better performance compared to
that achieved on GPU platform. At this stage, the maximum
achievable performance is limited by the number of available
FPGA on-chip resources.

In addition, the Xilinx US+ platform offers high capacity
URAMs and HBM with a number of interfaces that are
exploited next, through PSO (see Section V). To increase
the number of global memory access ports, separate HBM
interfaces are used to reduce bus and memory controller
contention on interfaces and improve bandwidth utilization.
The complex input and output data structures of the channel
model were split into real and imaginary parts and were

FIGURE 8. Average latency (log scale).

assigned each to a separate HBM channel. A total of 12
HBMchannels were used to avoid the interface stalling and to
fully pipeline the loops in the implementation. This leads to a
speedup of 151X. Performance is further improved by using
URAM resources for some of the data structures, to better
balance the resource utilization of the design and yield an
overall 173X and 6X speedup compared to the baseline CPU
and GPU based implementation respectively. Fig. 8 shows
the latency of the design after various optimizations. As this
study follows a step-by-step procedure, the new optimiza-
tions are added on the top of the ones applied in earlier
steps.

B. RESOURCE UTILIZATION
Optimization pragmas affect the resources used by the accel-
erated function. Since in the OOB implementation all data
reside in off-chip DRAM, resource utilization is very low for
the US+ platform. The HLS tool for the Arria platform on
the other hand tries to optimize automatically the memory
accesses, but fails due to the unaligned access patterns and
inter-iteration dependencies. Table 5 lists the resource usage
for the various designs. The total available on-chip resources
are listed in Table 2. The next step in the optimization flow,
making the on-chip buffers multi-port, creates an architecture
that is best suited for both HLS tools. This also increases
the resource utilization, but it does not yet achieve the best
implementation performance due to the unaligned memory
accesses and inter-iteration dependencies, which are tack-
led only by ASO. Resource usage for Intel is reported in
Fig. 9. HBM and URAM resources on US+ platform are
then used by platform-specific optimization, to balance the
resource utilization and increase even further the achievable
performance. Fig. 10 shows the percentage utilization of
resources on US+. Since all designs tile the on-chip buffer-
ing of the DRAM arrays to support large problem sizes,
resource usage is not affected by increases in the number
of total channel coefficients, which affects only the total
latency.
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TABLE 5. Resource utilization.

FIGURE 9. Resource utilization on Arria.

FIGURE 10. Single SLR resource utilization on US+.

C. POWER AND ENERGY
Improving the energy efficiency is one of the key advantages
of offloading an application function to specialized hardware.
General-purpose processors focus on flexibility and hence are
not optimized for maximum efficiency for each application.

TABLE 6. Power and energy utilization of baseline and accelerated
designs.

FIGURE 11. Energy utilization on target platforms (log scale).

Offloading functions to FPGA hardware accelerators can
enhance energy efficiency not only by reducing the execution
time, but also by using only the required hardware to execute
the task. Table 6 reports the energy consumption of the design
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at various optimization levels. The CPU implementation has
the highest energy consumption due its higher thermal design
profile (TDP). The energy consumption is highest for OOB
designs because of their higher latency and power-expensive
accesses to memory since all the data reside in DRAM. The
optimizations applied help reducing the total latency and
making efficient use of the available resources, which also
reduce the energy consumption. Fig. 11 shows the energy
consumption of implemented design at different optimization
stages. The GPU platform implementation consumes more
energy since the GPU that we used has less on-chip memory
than the FPGAs.

FPGA platforms consume much less power than CPUs
and GPUs with respect to their computational capabilities.
Moreover, optimizations for resources also save power and
those for latency also reduce energy consumption.

VII. CONCLUSION
The simulation of the 3GPP 3DSCM channel model can be
significantly accelerated using FPGA platforms from differ-
ent vendors (we report for Xilinx and Intel) by applying a
range of optimization techniques. The achievable speedup is
limited by the memory, as the bandwidth limit is reached
before the computing resource limit. A nominally portable
OPENCL implementation allows to design for FPGAs using
HLS tools. However, straightforward porting of the original
C++ code targeted for a CPU to OPENCL does not reach
good out-of-the-box results. A comprehensive set of memory
and loop-based optimization techniques are needed to tackle
this challenge, and can improve the performance by many
orders of magnitude. While the initial implementation was
much slower than CPU execution, with optimizations its
execution is two orders of magnitude faster.

Using the accelerated channel model, a higher number of
parameters can be simulated compared to the model running
in MATLAB environment or C++ code on a CPU in a
comparable amount of time. Hence, the accelerated model
supports simulation of a wider speed range for UE, and more
antenna elements can be considered.

To the best of our knowledge, this work is the first
implementation of 3GPP 3DSCM on both Xilinx and Intel
FPGA platforms, with a detailed comparison of the achiev-
able results on both. An impressive 95X and 65X speedup
was achieved on the US+ and Arria platforms compared
to the baseline CPU implementation through a combination
of generic optimizations alongside application specific opti-
mizations. The performance on the Xilinx US+ platform
improved even further, to 173X, by exploiting the on-chip
URAMs and HBM. Since the data types were kept the same
as those in the baseline CPU implementation, i.e. double pre-
cision floating point, there was no change in accuracy for the
FPGA implementations. This was particularly challenging,
because the FPGAs considered in this study, despite being
both aimed at data center applications, lack optimized support
for double-precision floating-point adders or multipliers.

To compare our results with those achievable on another
highly parallel acceleration platform, namely GPUs, the
channel model was re-implemented and optimized using the
Compute Unified Device Architecture (CUDA) framework
and language for an NVIDIA GPU implemented on a com-
parable technology node to our FPGAs. One of the FPGA
platforms exhibits both better performance, between 3X and
6X, and energy consumption, between 4X and 12X, than the
GPU. This is thanks to the better memory access achievable
for the memory-intensive channel model on the FPGAs, since
they have a larger on-chip memory but comparably less com-
putational resources than the GPU.

Over the timeline of this research work, 20% of the
time was spent porting the CPU-based application to FPGA
platforms, to make it synthesizable. At this stage, reports
from HLS tools helped in analyzing bottlenecks of the
design. 10% of the development time was spent for each one
of the on-chip and multi-port memory optimizations. The
application-specific optimizations required in-depth analysis
of access pattern, computational flow and memory depen-
dence, and took around 30% of the total development time.
Platform-specific optimizations for HBM took about 20%
of the total time and included memory access analysis and
partitioning into separate HBM channels. Finally, exploiting
URAM resources to balance the BRAM utilization required
the final 10% of the development time.

TheHLS tool for one of the FPGAs provides a user friendly
graphical interface for rapid development and debugging,
while there is no such Integrated Development Environment
for the other FPGAs. However, both tool sets provide detailed
design reports that enable micro-architectural optimizations.
OOB implementation of code not specifically written for
FPGAs is obviously sub-optimal, due to the lack of an effi-
cient on-chip memory architecture that is comparable to the
cache in a CPU.

The HLS tool for one of the FPGAs tries to automati-
cally create an optimized memory architecture, but since the
algorithm memory access pattern, albeit regular, was hard
to analyze, the tool worsens the performance and increases
the resource usage. This highlights the need for experienced
hardware designers, familiar with HLS tools, who can par-
tially rewrite the top application andmanually optimizemem-
ory access. Lastly, the C++ based kernels for one of the
FPGAs offer more control over the optimizations, such as the
parameters of the DRAM interfaces or the choice of some
specific computational resources, than in the nominally more
portable OPENCL flow. Although HLS still has some short-
comings compared to hand-crafted RTL implementations,
it enables rapid design space exploration and thus ultimately
can achieve respectable quality of results with a reasonable
design optimization time.
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