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ABSTRACT Recently, various intelligent technological innovations are being applied to smart factories.
As manipulators are widely used in smart factories, the manipulator and the workspace of humans overlap,
and interest in cooperative robots and human safety has increased. In relation to this, a collision-avoidance
control algorithm applicable in three dimensions (3D) and that also meets existing safety standards for
humans and robots is required. In this paper, we propose a 3D potential field-based manipulator collision
avoidance algorithm that meets the requirements of the ISO 15066 standard. This algorithm applies Speed
and Separation Monitoring(SSM) according to the distance between the manipulator and the obstacle and
controls the speed of the manipulator slowly as the risk is higher. This allows us to overcome the limitations
that existing studies have not been conducted on 3D potential field-based obstacle avoidance and that it is
difficult to apply to the field without considering ISO 15066. The proposed system was verified through
simulation and experiments, and through comparison with the existing algorithm, we verified that SSM was
well applied to the proposed system.

INDEX TERMS Manipulator, obstacle avoidance, artificial potential field, ISO 15066.

I. INTRODUCTION
The combination of manufacturing and Internet Technology
(IT) that creates competitiveness accelerates, it is focusing
on a digital revolution of robotics, artificial intelligence, nan-
otechnology, quantum programming, biotechnology, and the
internet-of-things (IoT), among other facets. In relation to
this, new technological innovations are emerging in a smart
factory. This typically consist of a control layer, cloud& intel-
ligence layer, data layer, and physical layer [1], [2]. Manip-
ulators are widely used in the physical layer, i.e., the space
where robots and humans work. As a result, the manipulator
and the human workspace overlap, and interest in cooperative
robots and human safety increases. Starting with the enact-
ment of ISO 10218-1/2 [3], [4], various safety requirements
for collaborative robots have been established, and multiple
studies are also in progress. Moreover, safety standards stip-
ulated by ISO 15066 [5] are applied at actual industrial sites.
Each ISO standard is shown in Fig. 1. ISO 10218-1 is a green
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FIGURE 1. Areas covered by ISO 10218-1/2 and ISO 15066 in cooperative
robot systems.

area for safety design and protection dialects of industrial
robots and safety requirements for information in use. ISO
10218-2 is a blue area for safety requirements as a robot
system when installed and combined with industrial robot
production line peripherals. Finally, ISO 15066 is a standard
for cooperative robot driving in the yellow area that specifies
different safety standards by dividing a zone into several areas
according to the distance between a robot and a person. It is
largely composed of four safety components: safety-rated
monitored stop(SMS), hand guiding(HG), speed and separa-
tion monitoring(SSM), and power and force limiting (PFL).
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Research on safety assurance as this concept pertains to
cooperative robots can be divided mainly into studies that
focus on passive safety assurancemethods and those on active
safety assurance methods. Passive safety assurance methods
are those that reduce the degree of influence through hard-
ware designs of the manipulators used [6] and those that do
so through a shock absorption operation [7], [8], [9]. Another
approach controls the robot when an collision is detected
between a manipulator based on an impact sensor and a
person [10], [11], [12], [13]. However, these methods have
the drawback of requiring robot-human contact.

Active safety assurance methods are based on an obstacle
detection sensor and have the advantage of being safer as
they do not necessarily require human contact. As safety
barrier function [14] or reinforcement learning [15], [16],
various obstacle avoidance algorithms are used to allow
the manipulator to work in different environments. Conven-
tionally, inverse kinematics-based obstacle avoidance algo-
rithms were widely used for manipulator control. Using
closed form inverse kinematics, there is a study that opti-
mizes the positioning of mobile manipulators with 7 degrees
of freedom [17]. Zhao, L proposed algorithm uses inverse
mechanics to avoid obstacles while considering the restric-
tion of the manipulator’s joint when multiple manipulators
avoid complex obstacles in the workspace [18]. In addition,
Zhong,J used deep reinforcement learning and inverse kine-
matics to control the welding manifold to avoid obstacles
and move accurately at the same time [19]. Another study
presented an algorithm to avoid obstacles in dynamic situa-
tions by considering the speed between obstacle-manipulator
and inverse kinematics [20]. However, a disadvantage of the
inverse kinematics-based obstacle avoidance algorithms are
that numerous errors occur and require a lot of computing
power during the control process.

To compensate for this, obstacle avoidance control is con-
ducted using a potential field. Tian, Y reduced computa-
tional complexity and solved the local minima problem with
improved artificial potential field (APF) [21] Zhang, H also
established collision distance thresholds and Jacobian-based
speed control with a distance between two manipulators in
APF to prevent double robotic arm collisions [22], and studies
used potential fields and angle limit functions to reduce errors
and improve computational speed [23]. However, research is
now focused on moving paths in two dimensions (2D).

To overcome this limitation, Wang, C propose a strat-
egy that avoids obstacles that non-holonomic robots move
in three dimensions (3D) [24], inspired by sliding mode
control [25]. In addition, research has been conducted to
reconstruct obstacles based on machine learning to avoid 3D
obstacles in the manipulator [26] or programming languages
that efficiently generate sample environments composed of
complex relationships between three-dimensional objects by
combining probabilistic programming techniques and convex
computational geometry [27]. Makita, S proposed a system
that implements the position of the manipulator and obstacles
in augmented reality [28] and virtual reality to guide them to

avoid obstacles in 3D, and B established a 3D-collision-force
map to study algorithms in which the manipulator avoids
obstacles [29]. Regardless, there is a limitation in that it is
difficult to apply to a manipulator system that must be path-
independent or that the location of obstacles must be accu-
rately known in advance.. Furthermore, it is difficult to avoid
when obstacles are located in blind spots where manipulators
cover the detection area of sensors or cameras, and they
are not consider existing cooperative robot safety standards.
To overcome these limitations, we need APF-based obstacle
avoidance algorithms built in 3D without blind spots and
satisfies the ISO 15066 criterion for application to industrial
sites simultaneously.

We propose the method of obstacle avoidance control of
the manipulator using a 3D potential field without a lack
of perception that meets the ISO 15066 standard. The first
contribution point of our system is to integrate the 2D APF
generated with each sensor into 3DAPF by placing eight sen-
sors at 45-degree intervals on the surface of the manipulator
link. Based on this, the system creates an obstacle avoidance
path for the manipulator without a blind spot. Conventional
research related to APF-based obstacle avoidance mainly
focused on minimizing the local minima of the manipulator
obstacle avoidance path created by placing one sensor or
camera outside the manipulator. In the field of collaborative
robots, if an APF is generated through a small number of
sensors used outside the robot, there is a limitation that a
robot, a person, or an obstacle cannot avoid a collision in a
blind spot that occurs covering the sensor detection area. Our
first novelty can overcome this limitation. The second con-
tribution point is to satisfy the 15066, SSM, for application
to cooperative robot systems when controlling manipulator
obstacle avoidance. Current research on APF obstacle avoid-
ance pathways has focused on obstacle avoidance with fast
and optimal paths, but no consideration has been made for
manipulators working with humans. Therefore, we set up a
risk zone according to human stride and applied manipulator
controls that apply different speed limits for each area.

Fig. 2 shows a flowchart of the system proposed in this
paper. The system calculates the obstacle’s position with
the sensor’s data and creates a 2D potential field for each
sensor. Moreover, it integrates this to generate a 3D potential
field and speed control the manipulator according to SSM
criteria determined by the distance between the obstacle and
the manipulator. Through such a system, the sensor detec-
tion range in the cooperative robot is not obscured by the
manipulator, and obstacles can be avoided. When avoiding
an object in space while satisfying the ISO standard, the
trajectory of the end effector can pass by avoiding the object.
As a result, in this paper, only the position of the end effector
was controlled. Accordingly, to reduce the calculation speed,
control was performed by simulating with a simplified three-
axis manipulator, except for the three axes mainly used for
orientation control of the manipulator.

The contents of the paper are organized as follows.
Section 2 presents the overall composition of the control
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FIGURE 2. Flowchart of a 3D potential field-based manipulator obstacle
avoidance system.

FIGURE 3. Structure of the 3D potential field-based obstacle avoidance
system.

TABLE 1. D-H parameters of three-axis rotary manipulators.

system, the dynamic modeling used in each controller, the
sensor algorithm constituting the obstacle avoidance control
system, and the 3D potential field algorithm. In Chapter 3,
the proposed control system is applied to the manipulator to
perform simulation, and the existing and proposed algorithms
are compared and validated. Section 4 covers the conclusions
and presents ideas for future work.

II. PROPOSED OBSTACLE AVOIDANCE SYSTEM
Fig. 3 shows the structure of the 3D potential field-based
obstacle avoidance system proposed in this paper. First, the
distance between the manipulator and the obstacle is mea-
sured with eight far infrared (FIR) sensors, and the obstacle
detection system is used in a high-level collision controller
(HLCAC) to determine how far away the manipulator and
the obstacle are and where they are located. Using these
results, the low-level collision avoidance controller (LLCAC)
determines the current danger level according to ISO 15066,
and according to this outcome, speed control and 3D potential
field control are performed to allow the manipulator to avoid
obstacles.

A. HLCAC
1) KINEMATIC CONFIGURATION
Kinematic modeling of the manipulator is required to obtain
the exact location of the obstacle using distance data mea-
sured by the FIR sensor in the HLCAC. The three-axis rotary
manipulator used in this study involved the locking of the
fourth, fifth, and sixth axis of a six-axis manipulator (UR3,
Universal Robots) [30], as shown in Fig. 4. The numbers in
the figure refer to the numbers of joints.

The three-axis manipulator’s Denavit-Hartenberg(D-H)
parameters and coordinates are shown in Fig. 5. In addition,
specific D-H parameters are presented in Table 1.

FIGURE 4. Set to three-axis manipulator by fixing fourth, fifth, and sixth
joint of six-axis manipulator UR3.

FIGURE 5. DH parameters and coordinate systems of the manipulator.

Based on the above DH parameters, the relationship
between the two adjacent links i− 1 and i may be expressed
as (1). For simplicity, c = cos and s = sin.

i−1
i T =


cθi −sθi

sθ icαi−1 cθ icαi−1
0 ai−1

−sαi−1 −sαi−1Li
sθ isαi−1 cθ isαi−1

0 0
cαi−1 cαi−1Li
0 1


(1)

It allows the global coordinate system from the base to the
end effector of the robot to display the transformation matrix
as shown in (2).

B
ET =

B
1T

1
2T

2
ET (2)

2) OBSTACLE DETECTION
According to ISO 15066, it is necessary to determine
the exact distance and position between the manipulator
and the person in order to ascertain the hazardous stage area
of the operator. To do this, an obstacle detection sensor must
be used to calculate the exact relative position vector between
the manipulator and the obstacle. In the system proposed
here, eight FIR sensors are attached to the middle of third link
of the three-axis rotary manipulator at 45◦ intervals, as shown
in Fig. 6 (a), measuring the distance of the obstacle to obtain
the exact position of the obstacle in HLCAC. It shows the
sensor attached to the manipulator to meet the conditions
set earlier in Gazebo [31], a simulation program by robot
operating system (ROS) [32]. Objects marked in yellow refer
to the FIR sensors attached to the manipulator link, and the
area marked in yellow indicates the detection range of each
sensor. The coordinate system of each sensor attached to the
third link can be expressed as Fig. 6 (b). The lower part of the
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FIGURE 6. Position of the sensors attached to the manipulator
(a) Position and detection range of the sensor identified in Gazebo
(b) Coordinate system of sensors.

link is the second joint, the upper part is the third joint, and
the yellow boxes are the sensors. The z-axis of each sensor
is the same direction as the z-axis of third link, and the x-axis
is the sensing direction. In order to calculate the exact position
of the obstacle detected by each sensor, the transformation
matrix from the base joint of the manipulator to each sensor
Si can be expressed as (3) and (4).

S
E
i T =


c(
π

4
∗ (i− 1)) −s(

π

4
∗ (i− 1))

s(
π

4
∗ (i− 1)) c(

π

4
∗ (i− 1))

0 0
0 0

0 0
0 0

1 −
L3
2

0 1


(3)

B
SiT =

B
ET

E
SiT (4)

In this multi-sensor system, a situation in which an obstacle
is detected by two sensors is shown in Fig. 7. The meanings
of the variables are shown in Table 2.

In this manner, the distance dobs and angle θobs between the
manipulator and the obstacle can be obtained via (5) and (6),
respectively.

θobs = arccos
d21 + (2−

√
2)r2 − d22

2d1(
√
2−
√
2r)

(5)

dobs =
√
r2 + d21 − 2d1r cos θobs − r (6)

FIGURE 7. One obstacle detected by two FIR sensors.

TABLE 2. Meaning of variables.

B. LLCAC
1) ISO 15066 BASED SAFETY ZONE DEFINITION
The proposed system applied SSM in ISO 15066 based on
the distance between persons and obstacles calculated by
HLCAC. We set three zones according to the preset unit
distance d from the robot’s location and each zone’s risk
levels, as shown in Fig. 8. The unit distance d is 0.1775 m,
10% of the average stride length of people aged 22–30, in [33]
who surveyed gait parameters for 164 people aged 5–30.
When the robot position was configured as the origin, the
area r 5 d with a radius r was marked in red as the area
with a high-risk level. In this area, the joint speed limit of
the UR3 manipulator was initialized to±0.18rad/s, which is
10% of vmaxUR . Next, the area where d < r 5 2d is where
the risk level is intermediate and marked in yellow. In this
area, we set the joint speed limit to ±0.24 rad/s, which is
15% of vmaxUR . Finally, the area 2d < r is set as a safe area
that can ignore the risk level and is colored in green. In this
zone, the manipulator can move without speed limit. We used
Universal Robots ROS driver provided by Universal Robots
to control the joint motor of the UR3, where the speed scaling
parameters that control the manipulator’s joint speed among
input parameters were set to 1, 0.5 and 0.25 from the low-risk
order.

2) JACOBIAN MATRIX
To control the speed of a three-axis rotary manipulator in
LLCAC, the speed of the manipulator’s joint, q̇, must be cal-
culated using a jacobian matrix. To find the jacobian matrix,
we refer to the coordinate system in Fig. 5 and the D-H
parameter in Table 1 to find the regular kinematics of the
manipulator by means of (7)-(9).

Px = c1[L3(c2c3 + s2s3)+ L2c2] (7)

126596 VOLUME 10, 2022



Y. Kang et al.: Manipulator Collision Avoidance System Based on a 3D Potential Field With ISO 15066

FIGURE 8. Establishment of risk levels according to a distance for
human-robot collaboration according to SSM of ISO 15066.

Py = s1[L3(c2c3 + s2s3)+ L2c2] (8)

Pz = L1 + L2s2 + L3(s2c3 − c2s3) (9)

Through differentiation, the velocity on the x, y, and z
axis of each joint can be obtained using the jacobian matrix
obtained from (10).

Ẋ =

ṖxṖy
Ṗz

 =


∂Px
∂θ1

∂Px
∂θ2

∂Px
∂θ3

∂Py
∂θ1

∂Py
∂θ2

∂Py
∂θ3

∂Pz
∂θ1

∂Pz
∂θ2

∂Pz
∂θ3


θ̇1θ̇2
θ̇3

 (10)

3) 3-D POTENTIAL FIELD
The basic 2D potential field refers to a robot’s obstacle avoid-
ance method derived from the movement of electric charges.
This method assumes that the robot is charged with a positive
charge on a 2D plane, the obstacle is charged with a positive
charge identical to that of the robot, and the destination is a
point charged with a negative charge opposite to the robot.
This is how the robot finds the route to its destination.

When the coordinate of the robot is q(x, y), the potential
energy U(q) acting on the robot as the robot moves to the
destination is divided into two components, as shown in (11).
Uatt (q) is the attraction force of the robot to move to the goal,
and Urep(q) is the repulsive force of the robot to move away
from the obstacle.

U (q) = Uatt (q)+ Urep(q) (11)

The force, F(q), that moves the robot using the above
potential energy is expressed as the sum of the gradient
vectors of the potential energy. Additionally, q is the current
position of the robot, ρgoal(q) is the distance from the current
position q to the destination point as determined by (12), and
ρ(q) is the shortest distance from the current position to the
obstacle. Also, qgoal is the location of the destination point,
qobs is the location of the outer point of the obstacle closest
to the current location, and ρo is a distance constant related to
the extent to which the repulsive force potential extends from

the obstacle.

ρgoal(q) = |q− qgoal | (12)

Uatt can be expressed as (13). Here, ξ is a coefficient that
determines the size of Uatt and is directly proportional to the
size of Uatt . The force Fatt that Uatt applies to the robot is
determined by (14).

Uatt (q) =
1
2
ξρ2goal(q) (13)

Fatt (q) = −∇Uatt (q)

= −ξρgoal(q)∇ρgoal(q) (14)

Next, Urep can be expressed as (15). At this time, η is a
coefficient that determines the size of Urep and is directly
proportional to the size of Urep. The force Frep that Urep
applies to the robot is expressed as (16).

Urep(q) =


1
2
η(

1
ρ(q)
−

1
ρo

)2 if ρ ≤ ρo

0 if ρ > ρo

(15)

Frep(q) =

η(
1
ρ(q)
−

1
ρo

)
1

ρ2(q)
q− qobs
ρ(q)

if ρ ≤ ρo

0 if ρ > ρo

(16)

This potential field-based obstacle avoidance algorithm
has a limitation in that it can be applied only in a 2D space.
This obviously makes it challenging to apply it as it is to
a manipulator operating in a 3D space. To overcome this
limitation, the potential energy Uxyz(q) in the 3D space is
divided into Usi (q) to regenerate the potential energy on each
2D plane of ith sensor’s coordinate. On the existing path of the
manipulator accordingly, by combining these potential fields,
an obstacle avoidance path in 3D is created. This algorithm
is summarized in Algorithm 1.

Algorithm 1 3-D Potential Field System
Require initial state(Qs), goal state(Qg), and distance from
obstacle(dobs)

0:
−→
Fsi = ∅ {Set of a potential field at each 2D cartesian(xz)
about ith sensor}

0: Qj = ∅ {Set of a jth manipulator joint angles}
0: for j = 0, 1, . . . do
0: if j = 0 then
0: Qj = Qs
0: else
0: while Qj = Qg do
0:

−→
Fsi (Qj) = LLCAC(Qj)

0: Qj+1 = Qj +
∑8

i=1(S
B
i T × δi(x,z)

−→
Fxz(Qj)

||
−→
Fxz(Qi)||

)

0: end while
0: end if
0: j = j+ 1
0: end for
return Qj = 0
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III. EXPERIMENT AND RESULT
A. SIMULATION
To verify the proposed 3D APF-based obstacle avoidance
algorithm in this paper, we conduct experiments to test the
ability and time of the manipulator to reach its destination in
barrier-free and barrier-free environments. This experiment
confirms that the proposed system can construct 3DAPFwell
without blind spots and apply it to obstacle avoidance even if
the detection area of the sensor changes as the manipulator
moves. To this end, after implementing the UR3 manipulator
in the ROS-based Gazebo simulator, eight FIR sensors were
attached to the third link of the manipulator at 45◦ inter-
vals. The FIR sensor used in the experiment is the Terabee
Teraranger multiflex type, and the detection range of the
sensor is set to fit the sensor’s viewing angle of 20◦. Fig. 9 (a)
shows the simulation environment for the experiment without
obstacles. The area marked in yellow is the detection range
of the FIR sensor, and the area marked in red is the end-
effector of the three-axis rotary manipulator. The goals set
in consideration of the working radius of the manipulator are
indicated by the red cube.

Fig. 9 (b) shows the generated trajectory when controlling
the manipulator’s end-effector to move to the goal when there
is no obstacle, along with the end-effector’s path at four
second intervals. In the upper right corner of each scene,
the number of seconds is displayed. During this process,
the change of each joint angle and the results of analyz-
ing the path of the end-effector as a graph are shown in
Fig. 9 (c) and (d), respectively. In Fig. 9 (d), a round marker
displays the manipulator at approximately 4-second intervals
from where it starts to move to the destination. As a result of
the simulation, when there is no obstacle, a time of 8.04swas
required for the end-effector of the manipulator to reach the
goal, and it could be confirmed that the manipulator moves
along the shortest path without a path change.

Next, a simulation with obstacles was conducted.
Fig. 10 (a) shows the simulation environment in Gazebo in
this case. The obstacle was set as a sphere with a radius of
0.05m, and the green sphere in the figure is the obstacle.
In the presence of an obstacle, the result of controlling the
manipulator’s end-effector to move toward the goal is shown
at three second intervals, as shown in Fig. 10 (b). For each
scene, the location and path of the end-effector are marked.

As a result of the simulation, it took 16.40s for the manip-
ulator’s end-effector to reach the goal in the presence of an
obstacle. In addition, it can be confirmed that the manipulator
feasibly controls the speed by detecting the obstacle and
calculating the danger level through the joint velocity with
risk levels of Fig. 10 (c) and the trajectory of the end-effector
in Fig. 10 (d). The gray sphere on the graph represents an
obstacles. In Fig. 10 (c), we marked the manipulator joint
angle over time with a solid line and the joint speed with
a dashed line. In the graph, the time when the obstacle is
detected and the time when the risk level changes accord-
ing to the distance from the obstacle are indicated by the

FIGURE 9. Simulation without an obstacle (a) Gazebo simulation
environment (b) Generated manipulator trajectory (c) The amount of
change in each joint angle (d) The trajectory of the end-effector.

pink dashed line, and the risk levels are indicated in green,
yellow, and red in the same order as the color in Fig. 8. In
addition, Fig. 10 (d) shows the moment the sensor detects an
obstacle using a star-shaped marker, and the round marker is
used to mark approximately 4-second intervals from where
the manipulator starts to move to the destination. It can be
confirmed that a new 3D path is regenerated and then utilized
by calculating a potential field to avoid an obstacle.

B. EXPERIMENT
An experiment was conducted to demonstrate the system by
applying the 3D potential field-based obstacle avoidance sys-
tem to an actual manipulator. To do this, the environment used
in the simulation was also used here, as shown in Fig. 11 (a).
The third axis of the UR3, indicated by the red circle, was
set as the end-effector, and eight FIR sensors were attached
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FIGURE 10. Simulation with an obstacle (a) Gazebo simulation
environment (b) Generated manipulator trajectory (c) The amount of
change in each joint angle and velocity (d) The trajectory of the
end-effector.

to the center of the third link at 45◦ intervals. In addition, the
destination is marked with a white cube.

Fig. 11 (b) shows the result of the manipulator’s end-
effector motion toward the goal in the absence of an obstacle,
along with the end-effector’s path at four second intervals.
In the upper right corner of each scene, the number of seconds
is displayed. At this time, the result of analyzing the path of
the end-effector as a graph and the change of each joint angle
are shown in Fig. 11 (c) and (d), respectively. In Fig. 11 (d),

FIGURE 11. Experiment without an obstacle (a) Experiment environment
(b) Generated manipulator trajectory (c) The amount of change in each
joint angle (d) The trajectory of the end-effector.

a round marker displays the manipulator at approximately
4-second intervals from where it starts to move to the destina-
tion. In the actual experiment, in the absence of an obstacle,
it took 7.96s for the end-effector of the manipulator to reach
the goal. It was also confirmed that it moved along in the
shortest path.

Next, the experiment was conducted without obstacles.
The experimental environment was configured as shown in
Fig. 12 (a), where the obstacle is indicated by the black
sphere, and the radius is set to 0.05m with the same approach
used in the simulation.

Fig. 12 (b) shows the result of controlling themanipulator’s
end-effector to move toward the goal in the presence of an
obstacle at three second intervals. In each scene, the location
and path of the end-effector are marked. In this experiment,
it took 16.8s for the end-effector of the manipulator to reach
the goal when there was no obstacle. During this process,
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FIGURE 12. Experiment with an obstacle (a) Experiment environment
(b) Generated manipulator trajectory (c) The amount of change in each
joint angle and velocity (d) The trajectory of the end-effector.

it could be confirmed that the manipulator speed was con-
trolled through the calculation of the risk level through the
joint velocity with risk levels of Fig. 12 (c). We found that
it regenerates and moves a new 3D path to avoid obstacles,
as shown in Fig. 12 (d). The gray sphere on the graph repre-
sents an obstacles. In Fig. 12 (c), we marked the manipulator
joint angle over time with a solid line and the joint speed
with a dashed line. In the graph, the time when the obstacle is
detected and the time when the risk level changes according

FIGURE 13. Comparison of simulation and experiment results (a) Path
when there is no obstacle (b) Path when there is an obstacle.

to the distance from the obstacle are indicated by the pink
washed line, and the risk levels are indicated in green, yellow,
and red in the same order as the color in Fig. 8. In addition,
Fig. 12 (d) shows the moment the sensor detects an obstacle
using a star-shaped marker, and the round marker is used
to mark approximately 4-second intervals from where the
manipulator starts to move to the destination. The difference
in time required between the simulation and experiment was
0.98% in the case without an obstacle and 2.38% with an
obstacle. Additionally, the error of the generated path was
measured at the point with the most considerable path differ-
ence, as shown in Fig. 13 (a) without obstacle and (b) with
an obstacle. The gray spheres represent obstacles in these
figures. The corresponding errors between the simulation and
experiment are 0.011m and 0.027m. The path difference was
calculated by the Levenberg-Marquardt method [34].

C. COMPARISON WITH EXISTING WORK
Simulations were conducted to compare the conventional
potential field-based obstacle avoidance algorithm with the
proposed algorithm. The simulation environment is the same
as the obstacle avoidance simulation conducted above, and
parameters ξ and η, which determine the attraction and
repulsion of the potential field, are set the same as both the
conventional and proposed algorithms.

When obstacle avoidance was performed, the avoidance
path was generated at 0.01 s intervals using Linear Segment
Parabolic Blends (LSPB) [35], and the velocity of all joints
of the manipulator was measured at each step. Next, the
absolute value of the measured joint velocity was classified
and compared according to the distance between the obstacle
and the manipulator set in LLCAC as shown in Fig. 14.
We performed the same obstacle avoidance and obtained the
results that the potential field parameters of the conventional
means and the proposed means were the same, but the joint
speed of the manipulator was different. The reason is that
configuring the potential field is different and is affected by
sensor noise. The conventional algorithm was marked in blue
box, the proposed algorithm was marked in red box, and
the point where the manipulator was located was assumed
to be the origin O, and the area with high risk according
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FIGURE 14. Comparison of average manipulator joint speed by distance
between obstacle and manipulator while avoiding an obstacle.

to the distance r 5 d , the area d < r 5 2d , and the
area where the risk could be ignored. As a result, existing
algorithms moved without joint speed limitations in all zones
and did not meet the ISO 15066 SSM criteria. On the other
hand, it was verified that the proposed algorithm increases
the joint operation speed as the distance between the obstacle
and the manipulator increases according to the speed limit
preset for each zone. In addition, the time taken to reach
the destination while avoiding obstacles was 13.47 s for the
existing algorithm, which had no joint speed limit, 17.86%
faster than the proposed algorithm’s time of 16.40 s.

IV. CONCLUSION AND FUTURE WORK
In this paper, we proposed a 3-D potential field-based obsta-
cle avoidance control system that meets the requirements of
ISO 15066 to ensure the safety of workers when people and
manipulators exist in the same work space. To confirm the
capabilities of the proposed system, simulations and exper-
iments were conducted by applying it to a three-axis rotary
manipulator. As a result, in the absence of an obstacle, con-
ventional inverse kinematics-based control was performed.
Furthermore, if there is an obstacle, it detects it and generates
a three-dimensional potential field accordingly. Based on this,
the end effector avoided obstacles along the generated three-
axis manipulator obstacle avoidance path while controlling
the position. Through this, it was verified that the proposed
algorithm successfully avoids obstacles. Next, as a result of
comparison with traditional algorithms through simulation,
it was affirmed that the proposed algorithm, unlike the exist-
ing algorithm, is controlled under a preset joint speed limit
according to the distance to the obstacle according to the
ISO 15066 SSM criterion.

However, because this system uses a potential field, there
is a limitation in that the local-minima may fall when the
number of obstacles increases. In addition, as the joint speed
limit is applied, the longer work time has increased, which
means that there is a limitation of poor work efficiency. In the
future, we will solve the problem that potential field based
algorithms may fall into local minima when avoiding several
obstacles and research how to improve work efficiency while
satisfying ISO 15066 SSM criteria.
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