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ABSTRACT Learning user attributes is essential for providing users with a service. In particular, for
e-commerce portals which deal in variety of goods ranging from clothes to foods to home electronics, it is
especially important to learn ‘‘domain-independent’’ attributes such as age, gender, and personality that
affect people’s behavior across various domains of daily life (e.g., clothing, eating and housing) because
these attributes can be used for personalization in diverse domains their service covers. Thus far, researchers
have proposed approaches to learn user representation (UR) from user-item interactions, trying to embed
rich information about user attributes in UR. However, very few can learn URs that are domain-independent
without confounding them with domain-specific attributes (e.g., food preferences). This could consequently
undermine the former’s utility for personalizing services in other domains from which the URs are not
learned. To address this, we propose an approach to learn URs that exclusively reflect domain-independent
attributes. Our approach introduces a novel multi-layer RNN with two types of layers: Domain Specific
Layers (DSLs) for modeling behavior in individual domains and a Domain Independent Layer (DIL) for
modeling attributes that affect behavior across multiple domains. By exchanging hidden states between
these layers, the RNNs implement the process of domain-independent attributes affecting domain-specific
behavior and makes the DIL learn URs that capture domain-independence. Our evaluation results confirmed
that the URs learned by our approach have greater utility in predicting behavior in the other domains from
which these URs were not learned thereby demonstrating adaptability to various domains.

INDEX TERMS Big Five, e-commerce, personality, RNN, user modeling, user representation learning.

I. INTRODUCTION
For thosewho provide online services, learning user attributes
is an essential part of their business. It serves as a basis for
personalizing the service for individual users and thus is a
key to building a good relationship with users. Among such
services are e-commerce portals, e.g., Amazon and Alibaba,
which deal in variety of goods and services ranging from
clothes to foods to home electronics and from music and
movie streaming to photo storage, covering a diversity of
domains important in daily life. The number of service users
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surpassed a billion in 2014 1 and the pace of growth has been
further accelerated due to the global spread of COVID-19 [1].

Among various user attributes, it is especially beneficial for
the e-commerce portals to learn attributes such as age, gender,
and personality that have the following two characteristics.
The first is domain-independence, meaning that the attributes
with this characteristic affect people’s behavior across var-
ious domains of daily life. For example, in general, young
and old and male and female lead different lifestyles and
thus have different needs and preferences for food, clothes,
music, and movies, which affect their purchasing behavior.

1https://www.statista.com/statistics/251666/number-of-digital-buyers-
worldwide/
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Similarly, existing studies have confirmed that people’s per-
sonalities also affect their preferences for food [2], brands [3],
[4], music [5] and movies [6]. Therefore, these domain-
independent attributes can be used for personalizing a service
in the diverse domains that the portals cover. Once they
are learned, they can be used for recommending items in a
domain even if a user has not browsed or purchased items
in this domain previously. Such domain adaptability is a
key difference from domain-specific attributes which affect
purchasing behavior only in a specific domain. The second is
stability meaning that the attributes do not change markedly
and are long-term and thus can be used for personalizing the
service over an extended period of time.

Thus far, researchers have studied many approaches for
learning a representation of user attributes (user represen-
tation; UR) [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18]. These approaches learn user attributes from
user-item interactions (e.g., browsing, purchasing, or review-
ing items by users) without using ground truth and embed
learned attributes into high-dimensional vector representa-
tions. Compared to users’ manual registration (e.g., ask-
ing users to register their attributes when they sign up for
the service), in which only a limited amount of informa-
tion is collected so as not to overburden users and some
users intentionally/unintentionally register false information,
the approaches can enable service providers including the
e-commerce portals to learn richer and more reliable infor-
mation about user attributes.

Of the aforementioned two key characteristics, domain-
independence and stability, learning URs with the latter
characteristic has attracted considerable research attention.
Approaches that leverage sequential interaction data (e.g.,
Recurrent Neural Network (RNN)-based approaches) [10],
[12], [13], [14], [15], [16], [17], [18] can distinguish short-
and long-term user attributes and thus can learn URs for long-
term attributes. On the other hand, domain independence
has received little attention despite its importance in offering
personalized services in various domains. The URs either
reflect only user attributes specific to domains from which
the URs are learned, or reflect jointly the domain-specific
and domain-independent attributes but plausibly not without
confounding each other, which could erode the utility of the
URs to personalize services in the other domains from which
the URs are not learned.

In light of the above, we propose an approach to learn URs
from user-item interaction with both domain-independent
and long-term attributes. As in the existing UR learning
approaches, our approach learns the URs from sequen-
tial interaction data in an unsupervised manner. It distin-
guishes user attributes along two axes: long- or short-term
and domain-specific or domain-independent, and learns four
types of user attributes that are distinct from each other.
By adopting an RNN, our approach separately models long-
and short-term attributes.What is novel in our approach is that
tomodel domain-specific and domain-independent attributes,
we introduce a multi-layered RNN that consists of two types

of layers: 1) multiple Domain Specific Layers (DSLs) that
model user behavior in individual domains; and 2) a sin-
gle Domain Independent Layer (DIL) that learns domain-
independent attributes. The RNN takes sequences of items
that the user interactedwith inmultiple domains as input (e.g.,
purchased clothes, foods and home electronics). Each DSL
takes items in its corresponding domain (e.g., DSL1 takes
clothes, DSL2 takes foods, DSL3 takes home electronics) and
reflects the user’s intention for the next item in its hidden
state. When updating the hidden state, the DSL uses not only
its own hidden state but also the DIL’s hidden state. Since this
is done in all the DSLs, it makes the DIL’s hidden state affect
user intention in all the domains that the DSLs correspond to.
In effect, therefore, this enables theDIL to learn attributes that
affect user behavior across multiple domains, i.e., domain-
independent attributes.

Using publicly available datasets, Amazon [19] and Retail-
Rocket [20], that contain real-world data collected from
e-commerce portals, we learned URs and evaluated their
degree of domain-independence. We posit that if the URs
are domain-independent, then: 1) URs of the same user are
similar regardless of domains where the URs are learned, and
2) the URs have utility for predicting behavior in the other
domains from which these URs are not learned. Based on
1) and 2), we conducted evaluations to answer the following
questions:

Q1 How similar are the URs of the same user when they are
learned in different domains?

Q2 Howmuch utility do the URs have for predicting behav-
ior in the other domains from which they were not
learned?

In addition to the questions for the UR’s degree of domain-
independence, we set another question which focuses on one
of concrete domain-independent attributes and examined the
extent to which the URs reflect this attribute.

Q3 To what degree do the URs have relevance to user per-
sonalities?

Although the datasets did not contain information that
directly indicate any domain-independent attributes, one of
the datasets contained item review texts written by users.
Existing research confirmed that features extracted from user
written texts have significant correlations with the user’s
personality [21], [22], [23]. Therefore, we considered that
we would be able to examine the URs’ degree of relevance
to personalities by evaluating how accurately the URs can
predict the text features that are significantly correlated with
personalities.

Our contributions are as follows. 1) We propose a
multi-layer RNN that separates the RNN layers to learn
domain-independent user attributes from the other lay-
ers designated to model domain-specific behavior. This
enables our approach to learn URs that exclusively reflect
domain-independent attributes, which existing research has
not focused on. 2) Using real user-item interaction data,
we demonstrate our approach can learn URs that reflect
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domain-independent attributes and are adaptable to various
domains from which the URs are not learned. We also con-
firmed the possibility that our URs reflect user personalities,
one of the domain-independent attributes, to a greater extent
than existing approaches do.

II. RELATED WORK
Existing approaches for UR learning can be categorized into
non-sequential and sequential approaches [7]. Matrix Factor-
ization (MF) [8], as one of the representative non-sequential
approaches [7], learns URs from a user-item interaction
matrix by factorizing it into user and itemmatrices.WhileMF
can use only ID information of users and items, Factorization
Machine (FM) [9] can additionally use side information about
users and items (e.g., user’s device type, movie genre). Sev-
eral approaches have been proposed to extend FM thatmodels
only pairwise interactions between user and item features so
that higher order interactions can be incorporated [11], [24],
[25], [26], [27]. Among them, xDeepFM [11] differs from
others in that it introduces Compressed Interaction Network
(CIN) to explicitly model such interactions, which had been
modeled implicitly by just inputting the features into a vanilla
deep neural network (DNN) in [24], [25], [26], and [27].
While these approaches have been widely deployed in many
commercial systems for their simplicity and effectiveness,
they are unable to distinguish long- and short-term attributes.

On the other hand, sequential approaches can learn URs
that explicitly reflect either long- or short-term attributes
from a sequence of items a user has interacted with. Several
approaches in this category use an RNN [10], [12], [13], [18].
Our approach also falls into this category, specifically, the
Sequential User-based RNN (SURNN) [10] in this category
is the one our approach is based on. In contrast to our multi-
layered structure, SURNN consists only of a single layer
RNN in which URs are stored in a user matrix that an RNN
cell has. When an item data (e.g., watched movie ID, pur-
chased clothes ID) is input to the RNN cell, it retrieves the
UR from the user matrix and uses it together with the input
item data to update the hidden state. While the hidden state
is updated sequentially with the input item, the user matrix
(i.e., the UR) stays the same. This makes it possible for the
long-term attributes to be reflected in the URs and short-term
attributes in the hidden states.

Another thread of sequential approaches that has attracted
research attention recently is universal UR learning [14], [16],
[17], [28], [29], [30]. They apply the ‘‘pretrain-finetune’’
concept to user representation learning. Using a large amount
of sequential interaction data, they pretrain URs for var-
ious purposes (e.g., item recommendation, user profiling)
and finetune them for downstream tasks, which contrasts
to the existing approaches (e.g., SURNN) that learn URs
for a specific task. Self-supervised User Modeling Network
(SUMN) [17] uses interaction data represented by text (e.g.,
names of items a user purchased, search logs of users),
from which it extracts a UR by an attention mechanism.
It compares a UR extracted from past actions and pattern of

actions in the future and trains the model to minimize the loss
between them so that it can obtain the representations of long-
term attributes. For the same purpose, U-BERT [16] uses
review texts and AutoEncoder-coupled Transformer Network
(AETN) [14] uses application (un)installation logs of mobile
phones.

While the sequential approaches can distinguish long-/
short-term attributes, to the best of our knowledge, none of
them can distinguish attributes that are domain-independent
and domain-specific. Although all the above approaches can
take the interaction data across multiple domains as input, the
URs learned from the data are highly likely to reflect not only
domain-independent but also domain-specific attributes (i.e.,
they are jointly represented by the same URs). The domain-
specific attributes have little utility for predicting behavior
in the other domains where the URs are not learned and thus
lessens the effectiveness in performing the task if the URs are
used in such domains.

III. PROPOSED APPROACH
Fig. 1 outlines our proposed approach. The left figure exem-
plifies our multi-layer RNN and the right figure shows how
the four types of user attributes are mapped to the variables
of our RNN. In our RNN, the DSLs correspond to individual
domains. For example, if the input data contain items in
two domains, then there will be two corresponding DSLs
as shown in the left figure. Each DSL takes a sequence of
user-item interactions in the corresponding domain, each of
which is represented by a pair of one-hot vectors of user ID
and item ID. Using the input, the DSL’s RNN cell (DSL cell)
retrieves a UR and an item representation from the user and
item matrices, respectively, and uses these retrieved repre-
sentations to update the hidden state. Following SURNN,
while the hidden state is updated sequentially with input
items, the user matrix (i.e., set of URs) stays the same. This
enables the DSL to represent the short-term attribute in its
hidden state and the long-term attribute in the UR. In addition,
since it learns these attributes only from user actions in the
corresponding domain, the attributes are domain-specific as
shown in quadrants I and II of the right figure.

While the above flow follows SURNN, the DSL differs
from SURNN in that it uses not only its own hidden state
but also the DIL hidden state to update its hidden state as
shown in link (A) in the left figure. The updated hidden
state is used to predict the next item in the corresponding
domain, thus can be regarded as representing user intention
for the next action while it also represents action history in
the domain. Updating such DSL hidden states using the DIL
hidden states means that the DIL hidden states affect user
actions in individual domains. Because all the DSLs update
their hidden states in this way, the DIL learns user attributes
that affect user actions across multiple domains, i.e., domain-
independent attributes (quadrants III and IV). As in the DSL,
theDIL also represents short-term attributes in its hidden state
and long-term attributes in the UR, but the difference being
the DIL would contain domain-independent attributes.
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FIGURE 1. Example of our multi-layered RNN and relationship between the four types of user attributes and the RNN variables.

TABLE 1. List of notations.

In addition to link (A), we also added link (B), i.e., the DIL
also updates its hidden state using the DSL hidden state. Our
motivation is to reflect in our RNN the process in which user
actions affect domain-independent attributes, especially the
short-term attributes (quadrant III), among which is a mental
state (e.g., emotion and stress), as it changes dynamically
and affects future actions across various domains. While a
mental state affects what people will do next, which link
(A) corresponds to, a mental state is also affected by what
they did before, which is reflected by link (B).

Another motivation for link (B) is to abstract in our RNN
themoderating effect of domain-independent attributes, espe-
cially that of personality, on the relationship between actions
and a mental state. For example, watching a horror movie is
likely to induce anxiety and fear for those high in Neuroti-
cism, which is one of the Big Five personality traits [31] and
is known to indicate the response level to negative stimuli
(e.g., threat) [32]. In contrast, those low in Neuroticism are
more likely to just enjoy the movie with little anxiety and
fear. As such, the same action induces different mental states

depending on the personality of the individual. We reflect
such moderating effect in our RNN via the DIL updating its
hidden states, using its UR that represents personality, and the
DSL hidden states.

We detail next the hidden state updating and model train-
ing. Refer to Table 1 for the notations and descriptions.

A. UPDATING THE HIDDEN STATES
Input to our RNN is formatted as

dataa = [xa,1, xa,2, . . . , xa,t , . . . , xa,T ], (1)

where xa,t = (iu, inv,t) denotes user a’s t-th action. Once xa,t
is input to a corresponding DSL (i.e., DSL n), the DSL first
retrieves a UR and item representation from the user and item
matrices, i.e., enu = Wn

u iu and env,t = Wn
v i
n
v,t , respectively.

It then updates its hidden state hnt using enu, e
n
v,t , its previous

hidden state hnt′ (t
′ is the timing when the previous action was

taken in domain n) and the DIL hidden state hIt−1, which is
received via link (A). The update in the DSL is formulated as
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follows:

hnt = f nRNN( h
n
t′ +W

n
I h

I
t−1, e

n
v,t , e

n
u ), (2)

where function f nRNN is used to update the hidden states, which
can be implemented using Gated Recurrent Unit (GRU) [33]
or Long Short-Term Memory (LSTM) [34]. As formulated
in (2), hIt−1 is added to hnt′ after the linear transformation via

Wn
I ∈ Rdnh×d

I
h . This is done for two reasons. One is to make

the number of dimensions of hIt−1 conform to that of hnt′ . The
other is to adjust the effect of hIt−1 on the individual domains.
As described, we regard hIt−1 as reflecting a mental state.
A mental state affects a user’s intentions for the next actions
to varying extents depending on the individual domains in
which the next action is to be taken.

After updating a hidden state, the DSL sends it to the DIL
via link (B), which is done every time the DSL updates its
hidden state.When theDIL receives hnt , it retrieves aUR from
its user matrix (eIu = W I

u iu) and updates its hidden state hIt
using hnt , e

I
u, and its previous hidden state (h

I
t−1). The update

in the DIL is formulated as follows:

hIt = f IRNN( h
I
t−1 +W

I
nh

n
t , e

I
u ), (3)

where f IRNN is a function to update hidden states and can
be implemented using GRU/LSTM. As in the DSL, the DIL
also applies linear transformation (W I

n ∈ Rd Ih×d
n
h ) to hnt .

Because how a previous action affects a mental state may
differ depending on the domain where this action was taken,
we constructedW I

n for each DSL.
We describe in Appendix VII how we implemented f nRNN

and f IRNN in the experiment.

B. MODEL TRAINING
To train our RNN, we first divide dataa into overlap-
ping sliding windows with window size w and slide size
s, e.g., win1 = [xa,t , xa,t+1, . . . , xa,t+w−1], win2 =

[xa,t+s, xa,t+s+1, . . . , xa,t+s+w−1],. . ., and feed them to the
RNN. When the window is fed, the RNN predicts the next
item for each sequence in thewindow, e.g., if the input iswin1,
the output is [x̂a,t+1, x̂a,t+2, . . . , x̂a,t+w]. The predicted items
are compared with the actual items to calculate the loss that is
used to learn the parameters of the DSL and DIL cells (e.g.,
gates’ weights and biases), the user and item matrices (Wn

u ,
W I
u , andW

n
v ), and the transformation matrices (Wn

I andW I
n).

As shown in Fig. 2, we have two options to calculate
the loss, Loss1 and Loss2 (indicated by thick grey arrows).
Loss1 is based on our design notion that the DSL hidden
state represents user intention for the next action in the cor-
responding domain, and the DSL predicts the next item in
the domain using its hidden state. In Fig. 2, for example,
DSL1 predicts the item of Action3@Domain1 using h1t from
Action1@Domain1. However, if the user takes an action
in another domain, Action2@Domain2, which is before the
target action Action3@Domain1, such an action taken can-
not be considered in the prediction at Action3@Domain1.
Action2@Domain2, however, would actually affect the user’s

FIGURE 2. Two options for loss calculation, Loss1 and Loss2.

mental state, consequently, what he will do in Domain1, but is
not considered in Loss1. In addition, before reaching the DIL
user matrix (W I

u), Loss1 needs to be used through two RNN
cells, inside each of which are functions that cause vanishing
gradient (i.e., sigmoid, tanh).

Given the above issues, we designed Loss2 that is calcu-
lated by the DIL. It uses its hidden state hIt+1 that is updated
immediately before the target action. The DIL hidden state
is input to f In , which is a non-linear function (e.g., multi-
layer perceptron with ReLu activation) constructed for each
domain, and the DIL predicts the target action from the output
f In (h

I
t+1). Loss2 is calculated taking all the past actions into

account. In addition, Loss2 goes through only one RNN cell
to reach the DIL user matrix. These resolve all issues with
Loss1.
Similar to Loss1, we constructed Loss2 based on our notion

that the RNN reflects the process in which a mental state
affects actions in individual domains. For Loss1, this is
achieved with link(A). On the other hand, for Loss2, it is
f In (h

I
t ) that is used for the next item prediction, and thus, user

intentions for the next actions are now represented by f In (h
I
t ).

For Loss2, therefore, it is f In that reflects the process instead
of link(A). Note that the other aspects of our original design
concept is not modified, i.e., the role of link (B) and how our
RNN reflects the moderating effect of personality remain the
same. We also left link (A) in the modified design because
it enables the DSL to reflect not only action history but also
context of past actions (‘‘in what mental state a user took past
actions’’) to its hidden state.
Loss Calculation: In both Loss1 and Loss2, the next item is

predicted as follows:

ŷt = Wn
v

Th+ bv. (4)

ŷt ∈ RN n
v is a vector which has the same number of dimen-

sions as the number of items in Domain n (N n
v ) and contains a

prediction score of each item in a corresponding dimension. h
takes different forms in Loss1 and Loss2: h = hnt′ in Loss1 and
h = f In (h

I
t−1) in Loss2. bv denotes a bias vector.
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Using ŷt , a DIL/DSL cell calculates WARP (Weighted
Approximate Rank Pairwise) loss [35]. To calculate the loss,
it randomly samples items in ŷt until it finds a negative sam-
ple with higher score than the positive sample (e.g., a movie
ID that a user actually watched in t-th action). WARP loss is
formulated as follows:

LossWARP = ln(
N n
v − 1
N

)(r− − r+), (5)

where N is the number of items the RNN cell randomly
sampled until it finds the first negative sample with higher
score than the positive sample, i.e., the more it draws random
samples, the less the loss is, which means the prediction
is more accurate. r− and r+ denote the scores of the first
negative sample and that of the positive sample, respectively.

IV. EXPERIMENT
We first learned the URs using our approach (Loss1 and
Loss2) and the different baselines we selected, and then
evaluated them to answer Q1∼Q3. The scripts used in the
experiments will be made available at https://osf.io/tyv78/.

A. DATASET
We used two open datasets in our experiments: ‘‘Amazon
Review Dataset (2018)’’ (Am) [19] and ‘‘RetailRocket’’
(RR) [20], both contain user-item interaction logs collected
in real e-commerce portals. These datasets cover various
kinds of items, e.g., items in Am range from clothing to
grocery, electronics to outdoor goods. There are also various
datasets publicly available today that contain user behavior
including movie rating [36], music listening [37], and news
reading [38]. However, they are ‘‘domain-specific’’ datasets,
covering behavior only in limited domains of daily life and
only domain-specific attributes can be learned from them
(e.g., movie/music preference). In contrast, Am and RR
provide hints for how users behave in various domains of
daily life. For example, logs for clothing items indicate what
kind of clothes they usually wear; grocery item logs indicate
their eating habits; and electronics item logs reflect how they
use IT. We posit that this would offer us more opportunity to
learn domain-independent attributes than the domain-specific
datasets.

Table 2 summarizes data used in the experiment. Am con-
tains sequences of item review actions. Each log consists
of user ID, item name, category, and genre, and review
text. Out of 17 product genres in the original dataset,
we selected six genres shown in the table based on the num-
ber of logs and regarded each genre as a domain. We then
selected users who have more than 14 logs for each of
the following four domains: ‘C’, ‘E’, ‘H’, and ‘T’ (we
did not include ‘G’ and ‘S’ because doing so drastically
decreased the number of users). In each domain, there are
hundreds to thousands of item categories, which are rep-
resented by concatenation of several category labels (e.g.,
‘Men’+‘Shoes’+‘Athletic’, ‘Girls’+‘Clothing’+‘Dresses’).
We assigned IDs to item categories (not to category labels)

and used these category IDs to represent users’ review actions
rather than item IDs to suppress data sparsity.

RR contains sequences of item browsing and purchasing
actions. Each log consists of user ID, item ID, category and
genre, and action type (browse/purchase). There are 258 item
genres, each of which has several dozen categories. Each
genre has only a small number of logs, hence we merged the
genres into four groups and regarded them as domains (i.e.,
G1∼G4). In the original dataset, the genres are represented
by random numbers (e.g., 213, 169) so we could not merge
them based on their relations but could only merge them so
that the number of logs is balanced between the domains.
Therefore, in RR, irrelevant item genres might have been
merged into the same domain. Nevertheless, we used RR to
examine how our approach performs in such a case assuming
situations where logs are not labelled with domains properly.
We selected users who had more than nine browse logs in
each of the six combinations of two domains (C4

2 ). As in Am,
we used item category IDs to represent user actions in RR.

B. BASELINE
As baselines, we selected the approaches that satisfy the
following two conditions because of their diversity in terms of
domains for UR learning: (1) can learn URs from user actions
represented by ID and (2) can learn URs without conducting
special tasks that are only doable in limited domains. Based
on these conditions, we excluded approaches for universal
UR learning because they need user actions to be represented
by texts (purchased/reviewed item names [17], [28], [29],
item review texts [16]) or multiple special tasks such as
‘‘shop/price preference prediction’’ need to conduct [30].

From the sequential approaches, we selected SURNN [10]
to validate the effectiveness of our multi-layer structure
to learn domain-independent attributes. From the non-
sequential approaches, we selected MF [8] and FM [9] for
their simplicity and popularity and xDeepFM [11] for its
superior performance in the category.

C. USER REPRESENTATION LEARNING
We first made combinations of multiple domains for learning
URs. We expected that URs learned by our approach (DIL
URs) would explicitly reflect domain-independent attributes
that affect behavior in all the domains in a combina-
tion, whereas the baselines would jointly represent domain-
independent and domain-specific attributes in the same URs.
In Am, combinations of two, three, four, and five domains
were made, i.e., C6

2 , C
6
3 , C

6
4 , and C

6
5 combinations (e.g., ‘CE’

for two domains, ‘CEH’ for three domains,. . . ; 55 combi-
nations in total2). In RR, we made C4

2 combinations (e.g.,
‘G1G2’; six combinations in total). Then we learned the URs
in each of all these domain combinations. The motivation
was to 1) examine how our URs’ performance is dependent
on the domains in which they are learned, and 2) how their

2We did not make ‘GS’ for UR learning because their logs were insuffi-
cient, so we had C6

2 − 1 = 14 combinations for two domains.
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TABLE 2. Summary of the data used in the experiments.

performance changes as we increase the number of domains.
For each domain combination, 80% of the logs were used
for training and 20% for validation. Note that we represented
item genres and categories by their IDs and did not use their
text information for learning URs. In RR, only browse logs
were used (purchase logs were not used for UR learning).

For our approach and SURNN (sequential approaches),
we implemented their RNN cells via LSTM and trained
the models by predicting item category ID to be reviewed
(in Am)/browsed (in RR). For our approach, we used DIL
URs for the subsequent evaluations. On the other hand, for
MF, FM and xDeepFM (non-sequential approaches), we let
them conduct prediction for each pair of a user ID and item
category ID, i.e., predict whether the user reviews products
in the category in Am and predict how many times the user
browses the products in the category in RR. In the experiment,
all the approaches learned URs whose number of dimensions
was 32, 16, and 8. For other details of UR learning, refer to
Appendix A.

D. EVALUATION OF USER REPRESENTATIONS
1) USER REPRESENTATION SIMILARITY (Q1)
We made pairs of the domain combinations and, for each
pair, evaluated the similarity between URs of the same user.
For example, when the pair is [‘CE’,‘HT’], we compared
URiCE and URiHT, which denote user i’s URs learned in ‘CE’
and ‘HT’, respectively. Because the URs learned in different
domain combinations are in different latent spaces (e.g., the
first dimension of URCE and URHT have different character-
istics), we did not compare them directly but compared them
after projection between the spaces. That is, we evaluated the
similarity between Wprj

CE→HTUR
i
CE and URiHT and between

Wprj
HT→CEUR

i
HT and URiCE, where W

prj
CS→CT ∈ Rdue×due

is the projection matrix from a source domain combination
(CS ) to a target domain combination (CT ). This enabled us to
compare the URs in the same space.

In the evaluation, we excluded the pairs that have
domain(s) in common (e.g., [‘CE’, ‘CH’]) because user
attributes specific to the common domain would make
the URs similar regardless of their domain independence.
After excluding such pairs, we examined all the possible
pairs exhaustively including those in which the number of
domains of CS and CT are different (e.g., [‘CE’,‘HTS’],
[‘CE’,‘HTGS’]).

We first randomly divided the users into five groups and
used four of them to train W prj

CS→CT and the remaining group
for testing. We repeated this five times by changing the test
group (i.e., five-fold cross validation).

As the similarity metric, we used the mean reciprocal
rank(MRR) based on Euclidean distance (MRREUC):

MRREUC(CS ,CT ) =
1
N

N∑
i=1

1
ranki

, (6)

where MRREUC(CS ,CT ) denotes MRREUC when project-
ing URCS to URCT . We examined distances between
W prj
CS→CTUR

i
CS and all the URs learned in CT and arranged

the distances in ascending order. ranki denotes the rank of
the distance betweenW prj

CS→CTUR
i
CS and UR

i
CT (i.e., distance

between user i’s URs) in the test group.N denotes the number
of users in the test group. The closer the same user’s URs are,
the higher ranki is, which makesMRREUC higher (better).
We used this metric instead of raw Euclidean distance

so that we can compare the results between different pairs.
Suppose we have a pair of two domains, pair A (e.g.,
[‘CE’,‘HT’]), and that of three domains, pair B (e.g.,
[‘CEG’,‘HTS’]). Distances between the URs in A and those
in B are calculated in different spaces, and thus it is impossi-
ble to compare their distances. MRREUC enables us to make
a comparison between A and B. If B’sMRREUC is better than
A, it means the URs in B have a higher degree of domain
independence than A.

2) BEHAVIOR PREDICTION (Q2)
Typically, to predict user action, user features are extracted
from logs in the same domain where the prediction is to be
conducted (e.g., predict a song the user will listen to by using
his music preference that is extracted from his listening his-
tory). In such a scenario, we posit that, if the URs learned in
different domains reflect domain-independent attributes, they
will improve prediction accuracy when used in addition to
user features extracted from the target domain (we term such
user features as domain-specific features, DFs). To examine
this, we predicted user actions in a target domain using DFs
and the URs learned in different domains and evaluated the
prediction accuracy. Specifically, we predicted whether a user
reviewed items with a specific category label in Am and
whether a user purchased items of a specific genres in RR.
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Note that we did not predict only from the URs because
such prediction would not determine the URs’ degree of
domain-independence. For example, if we learn URs in
‘‘Video games(V)’’ and ‘‘Software(W)’’ and predict actions
in ‘‘Electronics(E)’’, URVW might have high utility for pre-
dicting actions in ‘E’ even if URVW only reflects domain-
specific attributes because of the relation between the three
domains.URVW would reflect how users use IT, which would
contribute to prediction in ‘E’. Using DFs learned in ‘E’
in addition to URVW makes such domain-specific attributes
(i.e., how users use IT) in URVW redundant because of the
intersection betweenURVW and the DFs in ‘E.’ This prevents
predictions using the URs that are not domain-independent
from resulting in high accuracy.

At first, using SURNN, we learned the URs in the target
domain and used them as DFs (number of DF dimensions
was 16). Then, for each category label (Am) / item genre
(RR) in the target domain that satisfies the criterion for the
number of positive samples,3 we built a prediction model by
logistic regression (σ ). For example, when the target domain
is ‘E’ in Am, we used URC\E, where C \ E denotes any one
of domain combinations that do not include ‘E,’ e.g., ‘CH’,
‘CHT’. We performed the prediction as follows:

ŷlabel=1 = σ (b0 + b1DFE + b2URC\E), (7)

where ŷlabel=1 denotes the probability that a user reviews
items with category label 1. b0 is an intercept and b1 and b2
are vectors of partial coefficients. We conducted evaluation
for all the domain combinations ofC\E.We trained and tested
this logistic regression model by five-fold cross validation
and evaluated the models by ROC-AUC. We also evaluated
the model that used only the DFs, ŷlabel=1 = σ (b0+b1DFE),
and compared it with the above models to determine how the
URs improved prediction.

3) TEXT FEATURES PREDICTION (Q3)
Lastly, we evaluated the URs’ degree of relevance to person-
alities. From item review texts, we first extracted features that
are correlated with personality scores determined by the Big
Five personality trait model [31], which is currently the most
widely accepted personality model in scientific community.
We then evaluated the accuracy of predicting the text features
from the URs. This evaluation was conducted only in Am
since item review texts are available only in Am.

Many researchers have reported personality affects the way
people write texts (e.g., word usage in essays and tweets).
Among such studies, we referred to literature that reported
correlations between the specific text features and the Big
Five scores [21], [22], [23], and extracted all the features that
are significantly correlated with the Big Five (40 features in
total) from all the review texts across 17 domains. To extract
the features, we used LIWC [39], the text feature extraction
tool that was used in [21], [22], and [23]. The features include

30.05Nu ≤ n ≤ 0.5Nu; n is the number of positive samples (the number
of users who actually reviewed/purchased the items).

general information about the text (e.g., word count) as well
as frequency of word categories used in the text such as cate-
gories about psychological constructs (e.g., negative/positive
affect), personal concern categories (e.g., work, home), and
word class categories (e.g., articles, auxiliary verbs). Then
we averaged the features per user and vectorized them, P ∈
R40. Before predicting this, we reduced its dimensionality by
principal component analysis because it was relatively large
for the dataset size. Specifically, we made vectors consisting
of the first ∼ k-th primary component scores of P (P′ ∈
Rk ). We regulated k by changing the threshold (Th) in the
following equation: argmink

∑k
i=1 loadingi ≥ Th, where

loadingi denotes i-th primary component’s loading (we used
k = 21 and 15 by setting Th = 0.9 and 0.8, respectively).
We then predicted P′ from the URs by conducting linear
transformation, i.e., P̂ ′ = WPUR (WP

∈ Rk×due ).We trained
WP and evaluated prediction accuracy by five-fold cross
validation. We used Euclidean distance between P̂ ′ and P′

as the accuracy metric.

V. RESULTS
In this section, we describe the results for URswith 16 dimen-
sions, in which our URs performed best. For the results of
the URs with 8 and 32 dimensions that we also tested, refer
to Appendix B. Appendix C details how we tested statistical
significance for the results in this section.

A. USER REPRESENTATION SIMILARITY (Q1)
Fig. 3 shows the results.4 InAm,URs learned by our approach
(Loss2) resulted in the highestMRREUC average in all the con-
ditions. As shown in 3) in the figure, the difference from the
baselines are statistically significant in all the conditions in
Am. These results confirm that URs of the same user are most
similar when learned by our approach and suggest that our
URs would have the highest degree of domain-independence
among all the evaluated approaches.

The results also indicate our approach learns URs with the
highest degree of domain independence inmost of the domain
combinations. As shown in 1) in the figure, out of 238 pairs
in total, our URs (Loss2) performed the best in 212 pairs, out
of which the differences from the baselines are significant in
193 pairs as shown in 2). Comparing Loss1 and Loss2, the
latter, which we designed to resolve the issues of the former,
outperformed the former as we expected.

Another notable result in Am is the relations between
MRREUC average and the number of domains in source and
target domain combinations (CS and CT ). In conditions 1∼3
in the graph (two domains were used in CS ),MRREUC of ours
(Loss2) increases as the number of domains in CT increases.
Results of conditions 1, 4, and 6 (two domains were used in
CT ) also show that it increases as the number of domains
in CS increases. These results suggest that the more we

4We show in the graph the averaged results for readability. For the full set
of raw results, refer to https://osf.io/tyv78/
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FIGURE 3. Q1 - UR similarity test results (the higher, the better). Each group of bars shows MRREUC average in the same condition (e.g.,
bars in condition 1 shows the average of 78MRREUC values). In the table, 1) shows # of pairs for which MRREUC of ours (Loss2) was the
highest of all the approaches; 2) shows # of such pairs for which MRREUC of ours (Loss2) was significantly higher than all the baselines
(p < .05). 3) shows whether MRREUC average across all the pairs is significantly better in ours (Loss2) compared to all the baselines
(*** p < .01).

add domains, the more our approach learns about domain-
independent attributes.

In contrast to the results in Am, our approach did not
outperform SURNN in RR. We consider this is because we
mergedmultiple item genres into a group without considering
their relations and put them together into the same DSL.
In such cases, the DSL cannot learn domain-specific user
attributes, which makes it impossible for our approach to dis-
tinguish between domain-specific and domain-independent
user attributes.

B. BEHAVIOR PREDICTION (Q2)
Fig. 4 shows the results4. In Am, ROC-AUC of our approach
(Loss2) improves as the number of domains increases.
As the graphs shows, when using more than two domains to
learn URs, our URs (Loss2) resulted to the highest average
ROC-AUC among all the approaches including prediction
solely from the domain features (DFs) without using the
URs (shown by the dashed lines). As shown in 1) in the
figure, our URs (Loss2) performed best for all the domain
combinations whose number of domains are more than two
except for two combinations in condition 6. Furthermore,
as shown in 2) in the table, when the number of domains is
more than three, their superiority is statistically significant
for all the domain combinations except for one combination
in condition 7. These results are in line with the observations
that we made in the results for Q1. That is, our URs have
a higher degree of domain-independence than the baseline
URs and increasing the domains for UR learning enables our
approach to learn more about domain-independent attributes;
and our approach learned the best URs from most of the
domain combinations whose number of domains is more
than two. Loss2 also outperformed Loss1 as in the results
for Q1.

However, it should also be noted that while ours (Loss2)
improves as the number of domains increases, the degree of
improvement decreases. We discuss the implications of this
finding in the next section.
Looking at the baseline URs, their ROC-AUC are sig-

nificantly lower than the predictions by DFs or almost the
same as the predictions by DFs (except for SURNN’s URs
in conditions 3, 4, and 12). This supports our speculation
described in Section II that domain-specific attributes in their
URs have little utility for predicting behavior in the other
domains where the URs are not learned and thus undermine
the task performance in such domains.
In RR, our approach (both Loss1 and Loss2) did not out-

perform the baselines as in Q1.

C. TEXT FEATURES PREDICTION (Q3)
Fig. 5 shows the result4. For both k = 21 and 15, when the
number of domains was less than five, the URs learned by
our approach (Loss2) achieved significantly shorter average
distance, i.e., higher accuracy of predicting the text features
that are significantly correlated with the Big Five, than all
the baselines as shown in 3) in the figure. Out of 49 domain
combinations whose number of domains is less than five, our
URs (Loss2) performed best in 43 and 39 combinations when
k = 21 and 15, respectively, as shown in 1). The results
indicate it is highly likely that our URs have a higher degree
of relevance to the Big Five personality traits than the baseline
URs.
However, while the prediction accuracy improves as the

number of domains increases, the degree of improvement
decreases as we observed in the results for Q2.When learning
the URs in five domains, the superiority of our approach
(Loss2) to SURNN diminishes. As in the results for Q1 and
Q2, Loss2 outperformed Loss1 in this evaluation as well.
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FIGURE 4. Q2 - Behavior prediction results (the higher, the better). Each point/bar shows the average of # of category labels (Am) / # of item
genres (RR) × # of domain combinations results (e.g., each point in condition 1 shows the average of 376× 9 = 3, 384 results of ROC-AUC).
Dashed lines show the results of predictions only by the domain features (DFs). In the table, 1) shows # of domain combinations in which ours
(Loss2) learned the best URs in terms of average ROC-AUC; 2) shows # of such combinations for which we confirmed statistical significance
(p < .05); and 3) shows whether overall ROC-AUC average across all the domain combinations is significantly higher in ours (Loss2) compared to
all the baselines (** p < .05, *** p < .01).

FIGURE 5. Q3 - Text features prediction results (the lower, the better). Each point shows the average Euclidean distance between the text
feature vectors (P′) and predicted vectors (WPUR), e.g., each point of condition 1 shows the average of 14× 691 (691 is # of users)
Euclidean distances. In the bottom table, 1) shows # of domain combinations for which our URs (Loss2) resulted in the shortest average
distance; 2) shows the number of ‘‘best combinations’’ for which the average distance of ours (Loss2) is significantly shorter than all the
baselines (p < .05); and 3) shows whether overall average of Euclidean distances across all the domain combinations is significantly
shorter in ours (Loss2) compared to all the baselines (** p < .05, *** p < .01).

VI. DISCUSSION
The evaluation results for Q1 and Q2 in Am confirmed that
compared to the baselines, our approach can learn URs with
a higher degree of domain-independence. As shown in the
evaluation for Q2, using our URs improves task performance
in domains where the URs are not learned. This is espe-
cially beneficial for e-commerce portals, in which a user
has not necessarily interacted with items of target domains
before performing the tasks or only a limited number of
logs are available for a user in the target domains since the
portals deals in goods across a diverse range of domains.
The portals can improve the task performance in such a
domain by using our URs that are already learned in other
domains

In the evaluation for Q3, the results indicate our URs
also have a higher degree of relevance to personality, which
is one of domain-independent attributes that has attracted
much research attention as a basis for personalizing services
including e-commerce services [40], [41], [42], [43]. If our
URs actually contain personality information (though further
study is necessary to confirm this as discussed later), it would
potentially address two key issues of existing methods to
determine personality: (1) the limited amount of information
and (2) compromised reliability, which are described in more
detail in the following.

It has been a common practice to determine human per-
sonality based on ‘‘trait theory’’ in psychology. It regards
personality as consisting of several traits (e.g., Extraversion,
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Neuroticism, Agreeableness, Conscientiousness, and Open-
ness in the Big Five traits model [31]) and measures the score
of each trait by responding to a questionnaire. While the mea-
surement results are highly interpretable, they only provide
a limited amount of information due to low dimensionality,
i.e., personality is represented by a small number of traits,
and coarse score granularity, i.e., scores are discrete rather
than continuous because they are calculated by summing
up answers to an X-point Likert or binary scale. In addi-
tion, people sometimes provide answers to questionnaires
that are biased or not well thought out, which compromises
the reliability of the measurements. While there have been
many studies that automatically determine personality from
daily behavior (e.g., [44], [45]), all of them employ super-
vised approaches, i.e., they still use questionnaire measure-
ments as ground truths and therefore still subject themselves
to (1) and (2).

In contrast to these methods, our approach can learn high
dimensional representation of user attributes from sequences
of user-item interactions without using questionnaires. There-
fore, we deem it has potential to be a solution for (1) and (2)
and the present study has made a significant step to achieving
such a solution.
Limitation and Future Direction: There are several limi-

tations in our approach that should be addressed by future
research. One is about constructing the inputs to the DSLs.
As indicated by the results in RR, where our approach
underperformed the baselines, our approach cannot work as
expected if the data are not properly labelled with domains.
It is costly and not always feasible to label the data by human
annotators. A functionality to automatically label data should
be studied in the future.

Another limitation is that the degree of performance
improvement of our URs decreases as the number of domains
increases. We speculate this could have been caused by the
overlap between the domain-independent attributes learned
from a group of domains and those that can be learned by
adding a new domain to the group. As the number of domains
increases, domain-independent attributes are increasingly
reflected in the URs, which we observed in the evaluations
for Q1 and Q2. If much has already been learned, little could
be learned further by adding a new domain. At the same time,
adding a domain increases the number of parameters since it
necessitates adding a DSL, which equates to learning more
RNN cell weights and biases. In such manner, the benefit-
cost balance deteriorates as the number of domains increases.
One solution for this might be to put knowledge on multiple
‘‘related’’ domains into a single DSL. The challenge is how to
automatically determine the relation between domains. This
should be investigated in future.

Lastly, in future, our URs need to be compared with ground
truths of long-term and domain-independent attributes to
determine what specific attributes are reflected to what
degree. This is important because our URs would reflect
multiple attributes, some of which might be provided by the
users themselves (e.g., when a user signs up for a service).

In such cases, it is redundant to have such information in the
URs and it is enough just to use the information provided
by the users instead of the URs. Therefore, it is necessary
to determine attributes reflected in the URs and then our
approach needs to be extended so as to learn distinctive URs
for each of the specific attributes. This would also improve
the URs’ interpretability and transparency in how they work
for personalizing services.

VII. CONCLUSION
In this paper, we proposed an approach to learn URs that
account for long-term and domain-independent attributes
from sequences of user actions without using ground truths of
the attributes. Using actual item review and browse logs in e-
commerce portals, we confirmed that the URs learned by our
approach have a higher degree of domain-independence than
existing approaches, demonstrating adaptability to various
domains. We also confirmed the possibility that our URs
reflect the Big Five personality traits to a greater extent.

APPENDIX A IMPLEMENTATION OF USER
REPRESENTATION LEARNING
In this section, we describe how we implemented the pro-
posed and baseline approaches and learned the user rep-
resentations (URs). We learned the URs whose number of
dimensions (d∗ue) was 32, 16, and 8.

A. SEQUENTIAL APPROACHES
For our approach and SURNN, we formatted the input
action data as (iu, iv,t), where iv,t was a one-hot vector of
item category ID that a user reviewed (in Am)/browsed
(in RR), and let their models predict the item category to
be reviewed/browsed. In the description, we use the same
notations in the main manuscript unless otherwise noted.

We set the size (w) and slide interval (s) of sliding windows
to 15 and five, respectively. We optimized the loss function
by the Adam optimizer with a learning rate of 0.005 and
a batch size of 96 and stopped the training when the loss
converges on the validation data. The dimension of the item
representation and hidden state of the DSL, DIL and SRUNN
was set to the same size as the UR (i.e., d∗ve, d

∗
h = d∗ue).

f In of our approach (Loss2) was implemented as a two-layer
perceptron with ReLU as the activation function in which the
first and second layers had 2 × d Ih and 2 × dnve perceptrons,
respectively.

We implemented RNN cells of DSL (f nRNN), DIL (f IRNN),
and SURNN via LSTM, in which the hidden state (ht) is
updated by the input, forget, and output gates (It ,Ft ,Ot ∈

Rdh ) and candidate and present memories (C̃ t ,Ct ,∈ Rdh ).
They are formulated as follows:

It = σ (Weie+Whih+ bi), (8)

Ft = σ (Wef e+Whf h+ bf ), (9)

Ot = σ (Weoe+Whoh+ bo), (10)

C̃t = tanh(Wece+Whch+ bc), (11)
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TABLE 3. Input to an RNN cell of DSL, DIL, and SURNN (notations in
parentheses denote the number of dimensions).

Ct = Ft � Ct−1 + It � C̃t , (12)

ht = Ot � tanh(Ct). (13)

σ and � denote sigmoid function and element-wise product,
respectively. e ∈ Rde and h ∈ Rdh are input to an RNN cell
and We∗ ∈ Rdh×de , Wh∗ ∈ Rdh×dh , and b∗ ∈ Rdh are its
learnable parameters. While the above formulae are common
to the DSL, DIL, and SURNN, e and h take different forms
between them as shown in Table 3.
As for SURNN, eSu ∈ RdSue and eSv,t ∈ RdSve are a UR

and item representation in SURNN and are retrieved from its
user matrix WS

u ∈ RdSue×Nu and item matrix WS
v ∈ RdSve×Nv

(Nv denotes the total number of item categories across all the
domains), respectively, i.e., eSu = WS

u iu and eSv,t = WS
v iv,t .

In the following, we describe how we trained the model in
SURNN. For the proposed approach, refer to III-B in themain
manuscript.
Model Training in SURNN: As in the proposed approach,

the model predicted as follows:

ŷt = WS
v
>
hSt−1 + bv, (14)

where ŷt ∈ RNv contains a prediction score of each item
category in a corresponding dimension. The loss was also
calculated in the same way as in the proposed approach by
WARP loss.

We retrieved WS
u and used it as the URs in the UR

evaluations.

B. NON-SEQUENTIAL APPROACHES
For Matrix Factorization (MF), Factorization Machine (FM)
and xDeepFM, we let them conduct prediction for each
pair of a user ID and item category. In the following,
we use ŷa,b to denote a prediction result for user a and
category b. In Am, the models predicted whether the user
reviews the item category (i.e., ˆya,b ∈ [0 . . . 1]) because a
user reviews the item category only once in almost all the
cases in our data. On the other hand, in RR, they predicted
how many times a user browses the category (i.e., ˆya,b ∈ R)
because most users review the same category multiple
times.

In all the approaches, we used the Binary Cross Entropy in
Am and the Root Mean Square Error in RR as loss functions
because they are widely used in binary classification and
regression tasks, respectively.

1) MATRIX FACTORIZATION (MF)
In Am, we used Logistic MF [46] and predicted as follows:

ŷa,b = σ (eu>ev + bu + bv), (15)

where eu ∈ Rdue , ev ∈ Rdve , bu and bv denote a UR,
item representation, and user and item biases, respectively
(due = dve).

In RR, we used normal MF [8] and predicted as follows:

Ŷ = Wu
>Wv, (16)

where Ŷ ∈ RNu×Nv contains ŷa,b at a-th row and b-th column.
Wu ∈ Rdue×Nu and Wv ∈ Rdve×Nv are matrices whose
columns correspond to eu and ev, respectively.

2) FACTORIZATION MACHINE (FM)
The model took x ∈ Rd as input, which is a concatenation of
one-hot vectors of a user ID, item category, and domain (i.e.,
d = Nu+Nv+Ng, whereNg denotes the number of domains).
The prediction is formulated as follows:

in Am, ŷa,b = σ (fFM(x)) and, (17)

in RR, ŷa,b = fFM(x), where (18)

fFM(x) = w0 +

d∑
i=1

w1xi +
d∑
i=1

d∑
j=i+1

gi>gjxixj. (19)

xi is the i-th element of x. w0, w1 and gi ∈ Rdue are learnable
parameters. We used gi that corresponds to a one-hot vector
of a user ID as a UR.

3) xDeepFM
As in FM, the model took x ∈ Rd as input and predicted as
follows:

in Am, ŷa,b = σ (fxDFM(x)) and, (20)

in RR, ŷa,b = fxDFM(x), where (21)

fxDFM(x) = Wlinearx+WDNNfDNN(eu, ev, eg)

+WCINfCIN(eu, ev, eg)+ b. (22)

eu, ev, and eg ∈ Rdge are a UR and item and domain
representations, respectively (dve, dge = due). They were
extracted in the embedding layer of xDeepFM from their one
hot vectors. We used eu as a UR. W∗ and b are learnable
parameters and fDNN and fCIN represent calculation in the
plain deep neural network (DNN) and compressed interaction
network (CIN), respectively. For detail of fDNN and fCIN,
we refer to [11]. We set the batch size, the number of DNN
hidden units and CIN layer size to 128, (256, 128, 64), and
(128, 128), respectively.

APPENDIX B RESULTS IN DIFFERENT due SETTINGS
In this section, we describe the evaluation results of URs
whose number of dimensions (d∗ue) is 32 and 8. We con-
ducted this evaluation only in Am because we confirmed our
approach did not work as expected in RR as described in
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FIGURE 6. Q1 - UR similarity test results (the higher, the better). Each group of bars shows MRREUC average in the same
condition (e.g., bars in condition 101 shows the average of 78MRREUC values). In the table, ‘‘best pair’’ means a pair for
which MRREUC of ours (Loss2) was the highest of all the approaches.

the main manuscript. Also note that we did not evaluate MF
because its performance was significantly inferior to other
approaches when d∗ue = 16.We also omitted evaluation of our
approach (Loss1) because its performance was consistently
inferior to Loss2 when d∗ue = 16. Evaluation results for
Q1∼Q3 are shown in Figs. 6∼8, respectively.

APPENDIX C STATISTICAL TEST
In this section, we describe how we tested statistical signif-
icance of differences between our approach (Loss2) and the
baselines.

A. USER REPRESENTATION SIMILARITY TEST
We tested statistical significance from two perspectives:
A) for each pair of the domain combinations and B) for each
condition (we had conditions 1∼7 as shown in Fig. 3 in the
main manuscript).

A) We compared ranki values between our approach
and a baseline in the same pair of domain combi-

nations (e.g., [‘CE’, ‘HT’]). For each of Nu users,
we had a pair of ranki values; one is a result of
our approach and the other is a result of the base-
line. In total, there were Nu pairs. For these pairs,
we conducted the Wilcoxon signed-rank (WSR)
test, which is a test for paired-samples of nonpara-
metric data. It examines whether distribution of two
groups (in our case, ranki values of our approach
and those of the baseline) are significantly different.
We concluded that MRREUC is significantly better
than the baseline if distribution of ranki in our
approach is significantly higher than the baseline
(p < .05). We conducted this comparison with all
the baselines and, if the results were p < .05 for
all of them, we concluded that MRREUC of our
approach was significantly better than all the base-
lines for this pair of domain combinations. ‘‘2) # of
significant best pairs’’ in Fig. 3 shows the number
of such pairs of domain combinations.
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FIGURE 7. Q2 - Behavior prediction results (the higher, the better). Each point/bar shows the average of # of
category labels (Am) / # of product genres (RR) × # of domain combinations results (e.g., each point in condition
1 shows the average of 376× 9 = 3, 384 results of ROC-AUC). Dashed lines show the results of predictions only by
the domain features. In the table, ‘‘best combination’’ means a domain combination in which ours (Loss2) learned
the best URs in terms of average ROC-AUC.

B) We compared MRREUC values within the same
condition. For example, in condition 1 in Fig. 3,
we had 78 MRREUC values for each approach
(i.e., 78 pairs when we compare our approach and
a baseline). We conducted the WSR test for these
pairs. As in A), this comparison was conducted
with all the baselines and we examined whether the
MRREUC values of our approach (Loss2) were sig-
nificantly higher than all the baselines. ‘‘3) Overall
significance’’ in Fig. 3 shows the maximum p value
of the WSR tests.

B. BEHAVIOR PREDICTION
We examined statistical significance for A) each domain
combination and B) each condition.

A) For example, in condition 1 in Fig. 4, we had
376 results of ROC-AUC (376 is the number of
category labels in ‘C’) per approach for each
domain combinations. We conducted the WSR test
for these results. If the distribution of ROC-AUC
was significantly higher in our approach (Loss2)
than all the baselines (p < .05), we concluded that

our approach learned the best URs in this domain
combination. ‘‘2) # of significant best combina-
tions’’ in Fig. 4 shows the number of such domain
combinations.

B) We examined the significance for all the results
in the condition. For example, in condition 1 in
Fig. 4, we obtained 376 × 9 results of ROC-AUC
for each approach. We conducted the WSR test for
these results to see if the distribution of ROC-AUC
of our approach is significantly higher than the
baselines. ‘‘3) Overall significance’’ in Fig. 4 shows
the maximum p value of the WSR test results. Note
that, we used raw ROC-AUC values rather than the
averages within the same domain combination.

C. TEXT FEATURE PREDICTION
As we did in VII-B, we examined statistical significance for
A) each domain combination and B) each condition.

A) We had Nu Euclidean distances per approach for
each domain combination. We conducted the WSR
test for Nu pairs of Euclidean distances between our
approach and each baseline. This comparison was
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FIGURE 8. Q3 - Text features prediction results (the lower, the better). Each point shows the average Euclidean distance between the
personality vectors (P′) and predicted vectors (WPUR), e.g., each point of condition 1 shows the average of 14× 691 (691 is # of users)
Euclidean distances. In the bottom table, ‘‘best combinations’’ means a domain combination for which URs learned by ours (Loss2) resulted
in the shortest average distance.

conducted by the WSR test for all the baselines,
‘‘2) # of best combinations’’ in Fig. 5 shows the
domain combinations for which the Euclidean dis-
tances of our approach are significantly shorter than
all the baselines (p < .05).

B) We first averaged Euclidean distances within the
same domain combination for each approach. For
example, in condition 1 in Fig. 5, there were
14 domain combinations. Hence, we had 14 aver-
ages of Euclidean distances for each approach.
We conducted the WSR test for pairs of these aver-
aged distances between our approach (Loss2) and
each baseline. ‘‘3) Overall significance’’ in Fig. 5
shows themaximum p value of theWSR test results.
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