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ABSTRACT Many recent approaches for automated driving (AD) functions currently include components
relying on deep neural networks (DNNs). One approach in order to test AD functions is the scenario-based
approach. This work formalizes and evaluates the parameter discretization process required in order to
yield concrete scenarios for which an AD function can be tested. Using a common perception algorithm
for camera images, a simulation case study is conducted for a simple static scenario containing one other
vehicle. The results are analyzed with methods akin to those applied in the domain of computational fluid
dynamics (CFD). The performance of the perception algorithm shows strong fluctuations even for small input
changes and displays unpredictable outliers even at very small discretization steps. The convergence criteria
as known fromCFD fail, meaning that no parametrization is found which is sufficient for the validation of the
perception component. Indeed, the results do not indicate consistent improvement with a finer discretization.
These results agree well with theoretical attributes known for existing neural networks. However, the impact
appears to be large even for the most basic scenario without malicious input. This indicates the necessity of
directing more attention towards the parameter discretization process of the scenario-based testing approach
to enable the safety argumentation of AD functions.

INDEX TERMS Artificial intelligence, autonomous vehicles, concrete scenarios, deep learning, error
testing, intelligent vehicles, logical scenarios, machine learning, neural networks, software testing.

I. INTRODUCTION
Scenario-based testing has become indispensable for the
release of AD functions, as the real, necessary kilometers
driven exceed any financial budget [1]. For this reason,
attempts are being made to use simulations and thus reduce
costs. There are already some frameworks and simulation
environments that are able to simulate different scenarios
with their variety of parameter combinations [2], [3], [4].
A predominant classification represents the subdivision of the
scenarios into functional, logical and concrete scenarios [5].
The degree of abstraction decreases from the functional to
the concrete scenarios and the level of detail of the scenario
description increases. In logical scenarios, parameters are
defined that can take up a certain range between two specified
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limit values. For the concrete scenarios, this continuous space
is discretized for each parameter and different parameter
combinations are tested to make statements for previously
defined metrics such as the criticality of a scenario. In the
scenario-based testing community two different approaches
exist. The first approach tries to identify for each parame-
ter valid probability distributions with density functions to
identify critical parameter combinations [6]. The disadvan-
tage here is that the parameter distribution has to be known
and therefore a lot of real traffic data has to be accessible.
The other approach is to sample the parameter space within
range [7]. The advantage is that no prior knowledge regarding
the distribution is necessary to perform a discretization of the
parameter space. However, there is a lack of methods to argue
sufficient coverage over the validation space [8].

Another important part of enabling AD functions are
DNNs which are applied to an increasing number of tasks [9].
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The tasks include perception, prediction and planning where
DNN have shown large progress in the last years [10].
Especially for perception, DNN methods lead benchmark
datasets [11] and outperform traditional methods by large
margins [12]. Despite the performance of these methods,
concerns remain regarding their use in safety-critical systems
[9], [13] resulting in new standardization projects to relate
safety and artificial intelligence [14].

Therefore, this paper addresses the sampling of the param-
eter space within range for the scenario-based testing of
AD function as described by [7], specifically with respect
to achieving sufficient coverage of the parameter space for
testing of a DNNs.

II. RELATED WORKS IN LITERATURE
This work addresses the discretization of parameter spaces
for the testing of AD functions. First, existing approaches to
perform this discretization are discussed. In order to argue
safety of the function for all parameters in the parameter
range beyond the tested values it is also necessary to consider
interpolation. This is followed by the general properties of
DNN which affect the interpolation errors. Finally, the basics
from the domain of CFD are introduced in order to later adapt
them to estimate the discretization error introduced in the
scenario-based testing of AD functions.

A. DISCRETIZATION
A number of works attempt to generate concrete scenarios by
discretizing parameter ranges. Most of these works focus on
assistance systems such as lane keep assistance (LKA) [15] or
active cruise control (ACC) [16]. However, these works typi-
cally provide no argumentation for the discretization which is
chosen [8], [15], [16], [17]. Similar observations are made for
other works specifically considering perception systems with
DNN [18], [19]. Another work does not consider discretiza-
tion explicitly, instead defining it implicitly by specifying
the number of scenarios to generate [20]. Overall, parameter
discretization for the development of concrete scenarios still
lacks a safety argumentation.

B. INTERPOLATION
Practical effort of test execution limit the number of concrete
scenarios which can be tested. However, other parameter
values lying between the tested values may be encountered
in the real world. The validation procedure should there-
fore consider interpolation within the validation domain to
guarantee the safety requirements are also met for parameter
values which could not be tested [21], [22]. Therefore, this
work attempts to explicitly quantify the errors induced dur-
ing the interpolation procedure. For interpolation of results,
the mathematical properties are well understood. Bounding
the error of an interpolation requires bounded derivatives
of the underlying function. Given such a smooth function,
the interpolation error is proportional to hn+1 for a given
discretization step h and an interpolation of order n [23]. The
same is true for a piece wise linear interpolation [24]. This

formal order of the interpolation is required in order to apply
convergence criteria from the domain of CFD.

C. DEEP NEURAL NETWORKS
Current DNN are used to approximate arbitrary functions.
The feedforward network typically uses an activation func-
tion such as a rectified linear unit (ReLU) for the internal
processing [25]. The activation function is applied by each
neuron within a typical feedforward network [26]. While the
ReLU activation function is frequently applied [27], many
different activation functions have been proposed [28]. The
mathematical properties differ between different activation
functions. While the ReLU function is not, other activation
functions such as Mish and Swish are smooth [28].

In convolutional networks, multiple convolutions and acti-
vation functions are sequentially applied [29]. For non
smooth activation functions, no bounding for the error is
possible. However, even for smooth activation functions it is
not clear if a bounding of the error is achieved for the overall
network. DNN generally display a lack of robustness towards
adversarial pertubations which may even occur for highly
trained networks [26]. While there are various hypotheses
on the existance of adversarial examples, their existence for
various architectures has been empirically shown [30]. How-
ever, the lack of robustness observed for adversarial examples
relates to malicious input. This work attempts to quantify the
error for a practical scenario discretization and interpolation
of the results.

D. ERROR ESTIMATION IN COMPUTATIONAL FLUID
DYNAMICS
This section details the methods developed and applied in
this work based on concepts in the domain of CFD. This
work attempts to leverage existing knowledge from CFD
regarding discretization and verification of simulation results.
The content in this section is taken from [21] unless noted
otherwise.

While CFD also includes other error sources such as the
computation of a discrete solution, the general problem state-
ment of discretizing a grid and interpolating results is similar
to scenario discretization. In order to estimate errors, the grid
is required to be in the asymptotic range where errors show
convergence. To ensure asymptotic range, the solutions fi are
calculated on three successively refined grids. For a constant
grid refinement factor r it is possible to calculate the observed
order of accuracy p as:

p =
ln ( f3−f2f2−f1

)

ln r
(1)

This observed order of accuracy represents the behavior of the
numerical solution which is compared with the formal order.
The formal order is a mathematical property of the numerical
scheme which can be examined with a Taylor expansion.
Only if the formal order and the observed order match, the
discretization error estimates can be expected to be accurate.
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If the asymptotic range is achieved, the error can be esti-
mated using methods such as Roache’s grid convergence
index (GCI):

GCI =
Fs
rp−1

·

∣∣∣∣ fh − frhfh

∣∣∣∣ (2)

The GCI considers a safety factor Fs, the grid refinement
factor r and the normalized error between two grids. The
GCI provides an estimate of the upper bound of the error
of the solution obtained on the respective grid. Similarly, the
objective in the scenario domain is to obtain and upper bound
of the error regarding the safety for the respective parameter
discretization.

III. METHODS
This section details the methods used in this work to assess
the discretization of scenarios relying on the results from
literature stated above.

In order to do so, an exemplary system under test (SuT)
and logical scenario are chosen for evaluation. The concrete
scenarios yielded by a discretization of the parameter space
are then executed in a suitable simulation environment. This
simulation result is then evaluated regarding safety by com-
puting a safety score. These results are then compared with
the methods for error estimation adapted from CFD. Each
component is chosen as a minimum working example to
illustrate the basic structure of the discretization process.

An overview of the method is provided in Fig. 1 and each
of the steps is discussed in the following subsections.

FIGURE 1. Overview of the applied analysis method.

A. SYSTEM UNDER TEST
The SuT is chosen to offer a simple implementation while
including attributes generally also found in more complex
systems. AD systems generally include DNN components
which are by nature black box systems. This work chooses
a perception algorithm since this allows treating the system
as open loop. A simple case is a camera based 2D object
detection algorithm which relies on a DNN. The objective
of the algorithm is to predict the object category as well
as the location with a bounding box [12], more specifi-
cally a 2D bounding box in image coordinates. A pretrained
YOLOv5 [31] is used as a common object detector for simple

implementation. It is worth noting that YOLOv5 uses the
SiLU activation function which is smooth [32].

B. SCENARIO SIMULATION
For simplicity, the scenario is kept entirely static. This means
that each scenario can be characterized by a single perception
output and a single corresponding safety score. A single vehi-
cle in front of the ego vehicle with a very basic background
is a very simple scenario and the resulting image is depicted
in Fig. 2. For this scenario a single parameter, namely the
distance between the vehicle and the ego vehicle, is varied.
The implementation is performed in CarMaker and the image
is exported and passed to the perception system which is the
SuT.

FIGURE 2. Image of simple example scenario.

C. SAFETY SCORE
For the evaluation of the output from the SuT, this work
defines a safety score. This safety score is a metric which acts
as a proxy to quantify safety. It is chosen to reflect the quality
of the perception which implicitly assumes a correlation for
the safety for the downstream driving task. This correlation
has already been established in literature on macro level [33].
The most common object detection metric is average pre-
cision (AP) [34], [35] which was introduced by the Pascal
visual object classes (VOC) challenge [36]. It has since been
applied in different variants across various detection bench-
marks in the context of driving [37], [38], [39]. Pascal VOC
relies on ranking detections by their confidence and assigning
true positives and false negatives based on intersection over
union (IoU) [36]. This assignment of ground truth and pre-
dictions is generally required for perception evaluation with
IoU being a commonly applied metric [40], [41].

As noted in previous sections, the interpolation accuracy
depends on the smoothness of the underlying function. One
option is to apply the AP across multiple images as performed
in [18]. However, any such grouping of multiple images
introduces a hyperparameter. Additionally, it does not fully
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address the issue that the confidence score thresholds intro-
duce discontinuities in the final score. Therefore, the safety
score is modified from existing perception metrics in this
work while maintaining the common practice of considering
both confidence scores and IoU for the evaluation. More
specifically, this work relies on the safety score s obtained
by multiplying the confidence score c and IoU. It should
be noted that similar ideas are applied for loss functions
by [42] and [43].

s = c · IoU (3)

This score is maximized across detections for the association
procedure to suppress low quality detections. The detection
with the highest score is associated and the same value is used
as the final value of the safety score. While this procedure
does not account for false positives, this is inconsequential
for the given scenario where a vehicle is always present.

D. GRID REFINEMENT AND ERROR ESTIMATION
The methods explained in section II-D are detailed or modi-
fied as follows.

For simplicity, a uniform grid defined by the grid size h is
used. The grid refinement is always undertaken with a grid
refinement factor of r = 2. All calculations are based on the
results of the finest grid. Any points missing on the coarser
grid are obtained by a simple linear interpolation with second
order accuracy p = 2. The observed order of accuracy is
evaluated for all points individually as shown in section IV.

As the results show, the GCI cannot be used due to insta-
bilities in the observed order p. In addition, the empirical
safety factor Fs is unknown while normalization is unnec-
essary since the safety score is already normalized between
0 and 1. Therefore, the difference between the fine grid and
the coarse grid defined as1s is directly observed instead. The
grid refinement is terminated according to the availability of
computation power.

IV. RESULTS
This section presents the safety score results over an input
parameter range, the convergence of the error and the error
itself.

A. SAFETY SCORE RESULTS
Fig. 3 depicts the general results for parameter values
between 10-200 m with a spatial resolution of 1 cm. Gener-
ally, the results display an unpredictable fluctuation. In addi-
tion, some values show outliers which seemingly occur at
random.

Fig. 4 shows detailed results at higher spatial resolution for
a limited parameter range. The range was arbitrarily chosen
to be 50-51 m, but qualitatively similar results are obtained
for other value ranges. The same general trend of unpre-
dictable fluctuations for the safety score is observed. For
distance changes of 1 mm the deviations are approximately
3%. Notably, the fluctuation is high even in regions where
the performance in terms of safety score is high.

FIGURE 3. Safety score results at 1 cm resolution for 10-200 m show
fluctuations.

FIGURE 4. Safety score result fluctuations persist at 1 mm resolution
between 50-51 m.

B. ERROR CONVERGENCE
As discussed in the section II-D, the approach is to consider
the development of the error across multiple grids. Fig. 5
shows the cumulative density function (CDF) of the observed
order of convergence calculated for each grid point. The
number of the grid in the legend corresponds to the grid
iteration, eachwith a refinement factor of two. Only a selected
number of grids is displayed in the image for brevity, but
similar results are obtained for the other grids.

The values are always calculated by comparing the inter-
polation on the coarse grid with the results from the finer
grid. Since the theoretical order of the linear interpolation is
second order, convergence would be achieved if the observed
order matches the theoretical order. However, the spread of
the CDF shows that no convergence is achieved. Notably,
the mean is closer to zero than to the expected theoretical
order of two. While it is theoretically possible that even finer
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FIGURE 5. The CDF of the observed order p for the error does not
converge.

grids may lead to different results, no such simulations are
conducted, because the advantage of the simulation-based
testing approach is lost.

C. ERROR VALUES
This section will now directly show the errors that can be
observed for different grids as shown in Fig. 6 Each curve
represents a CDF of the safety score error between a given
interpolation and the refined grid for all points of the finer
grid.

FIGURE 6. The CDF of the safety score error 1s shows improved average
error with finer grids but outliers remain.

The first observation is that the finer grids have a steeper
gradient in the middle. Basically, this means that the average
error for all points does indeed decrease with a finer dis-
cretization. However, the graph still shows significant outliers
which do not improve reliably as the grid is refined. The
outliers show errors of approximately 10% even for the finest

grid. This aligns with the results showing the lack of error
convergence.

V. DISCUSSION
This section will first consider the reasons for the fluctua-
tions and outliers observed in section IV-A. One explana-
tion is randomness in the components used in the toolchain.
To rule out this possibility, verification experiments are con-
ducted for both the simulation environment and the per-
ception component. While the detector shows deterministic
behavior, the simulation results output as image by Car-
Maker are not entirely deterministic. However, the effect
of the non-deterministic changes in the input image on the
perception safety score is around 10−4 and thus insuffi-
cient to explain the large variation observed in Fig. 3. Since
the detector is pretrained on real data a performance drop
induced by the domain gap between the training data and the
simulated evaluation data is likely [13], [44]. Nevertheless,
an overall drop in performance does not explain the local
fluctuation observed for the quality of the perception output.
Additionally, the fluctuations are observed across the whole
parameter range including regions where the performance
is high. Therefore, the large variation in output for small
changes in input indicates a volatile behavior of the percep-
tion component.

The metric chosen in this work explicitly includes the
confidence score output by the detector. It is possible to
argue that a metric which does not include the confidence
score may show more stable behavior. However, the detec-
tion task fundamentally aims at predicting the class-specific
likelihood, thus distinguishing the target objects from the
background [12], [45]. Moreover, common metrics such as
AP [34], postprocessing operations such as filtering detec-
tions and non-maximum supression [46] or tracking [47] all
rely on the confidence score. We argue that this widespread
use of the confidence score as well as the very definition of
the detection task being the estimation of a likelihood justify
the use as performed in this work. In addition, the use of AP
appears to yield similar fluctuations [18].

It is theoretically possible that a finer discretization may
achieve different results. However, the current results were
already obtained at mm scale with increasing computational
requirements for each refinement step. It is noteworthy that
these fluctuations occur at scales which are one order of
magnitude smaller than the positional accuracy which is ver-
ifiable in practical validation experiments [48]. Therefore,
even if a validation were theoretically possible with finer
discretizations it may not be possible to apply this method
in practice with existing experimental setups.

Overall, the results indicate that the observed behavior is
indeed due to the inherent attributes of the SuT rather than due
to artifacts in the toolchain or the metric. Most importantly,
no convergence of the error is observed with fluctuations
and outliers persisting even for fine discretizations. Prelim-
inary verification experiments indicate that this fundamental
behavior remains the same even for other scenario parameters
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even though the magnitude of the error and its fluctuations
differ. This severe lack of robustness is observed even for the
simplest of scenarios. However, these results also show that
the presented method of observing the error convergence can
identify lack of robustness in a given SuT.

A remaining question is whether this result is restricted to
the model used as SuT in this work. Since only one pretrained
detector is studied in this work, no definitive conclusion
regarding transfer to other model architectures can be drawn.
However, it is possible to consider observations from litera-
ture regarding robustness of DNN in general. In the context of
adversarial examples, good transfer between different archi-
tectures has already been demonstrated empirically [9], [30].
More generally, the lack of robustness to either targeted or
common perturbations across architectures is acknowledged
in [13]. Additionally, one other work obtains similar results
to this work with considerable fluctuation of the perception
performance [18]. The results there are obtained with the
detectorMask-RCNN [49], which differs in architecture from
the detector used in this work. This indicates that the results
obtained in this work are not unique to the specific detection
architecture. When combined, these findings suggest that the
results from this work may also transfer to other tasks and
architectures.

Notably, while the ResNet [50] backbone used by
Mask-RCNN relies on the ReLU function, the YOLOv5
network [31] applied in this work uses the smooth SiLU
function. This means that a smooth activation function is
insufficient to produce bounded output errors.

VI. CONCLUSION
This work studies the effect of parameter discretization as
part of the scenario-based testing approach for AD functions.
Using a common perception algorithm for camera images,
a simulation case study is conducted for a simple scenario.
The results show strong fluctuations and outliers of the SuT
which persist across grid discretizations. Notably, the error
does not converge, meaning that no parametrization was
found which could be shown to be sufficient for the validation
of the perception component. This alsomeans that themethod
presented in this work is suitable to identify any lack of
robustness in the SuT.

Evidence from literature suggests results from this work
may transfer to other perception tasks and architectures.
However, further investigation is required to obtain conclu-
sive empirical evidence.

Nevertheless, the results of this work cast doubt on the cur-
rent scenario-based validation process when sampling from
a parameter range. Since discretization and interpolation are
always part of this approach, it is unclear if applying it to
the safety validation of existing DNN components is possi-
ble. One possibly complimentary approach may be optimiza-
tion based approaches or sampling from a distribution [6].
However, it is currently unclear if any combination of these
methods is feasible. We hope that this paper motivates further

research on this aspect of scenario discretization which has so
far mostly been neglected in literature.
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