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ABSTRACT A gas outburst prediction model based on multiple strategy fusion and improved snake
optimization algorithm (MFISO) and temporal convolutional network (TCN) is proposed to address the
problems of low accuracy of deep learning prediction models for gas outburst in underground mines.
By adopting the phase space reconstruction method, the time series of multiple complex influencing factors
related to gas outburst were reconstructed and used as model inputs. Sine chaos mapping, spiral search
strategy and snake dynamic adaptive weight are introduced to improve the snake optimization algorithm
(SO), which enhances the local optimal escape capability and global search capability of the algorithm.
The tangent-based rectified linear unit (ThLU) was used to improve the rectified linear unit (ReLU) of the
standard TCN to strengthen the generalization capability of the model. The MFISO algorithm was used to
optimize the relevant hyperparameters of the improved TCN model to optimize the accuracy of gas outburst
prediction. The TCN, GRU, LSTM, SO-TCN, WOA-TCN, and PSO-TCN prediction models were selected
to compare the prediction performance with the MFISO-TCN gas outburst prediction model, and the results
showed that the mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square
error (RMSE) of the MFISO-TCN model were 3.11%, 0.47% and 3.31% are lower than those of other
models, which verifies that the method of this paper effectively intensifies the performance of gas outburst
prediction model in underground mines.

INDEX TERMS Gas outburst, phase space reconstruction method, multiple strategy fusion, snake optimiza-
tion algorithm, tangent-based rectified linear unit, temporal convolutional network.

I. INTRODUCTION
A gas outburst prediction model is structured by multiple
influencing factors related to gas outburst can effectively
prevent gas outburst disasters in underground mines [1].
Numerous prediction methods combining deep learning
and machine learning have been proposed by domestic
and foreign scholars to address the outburst problem of
gas. Rong Liang proposed a gas concentration forecasting
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model with a bidirectional gated recurrent unit neural net-
work (Adamax-BiGRU) using an adaptive moment esti-
mation maximum (Adamax) optimization algorithm [2].
To solve the problem of low prediction accuracy of gas
concentration regression prediction algorithms, Yonghui
Xu proposesd a gas concentration prediction algorithm
based on a stacking model [3]. Ningke Xu proposed an
IWOA-LSTM-CEEMDAN model based on an improved
whale optimization algorithm (IWOA) and the complete
ensemble empirical model decomposition with adaptive
noise (CEEMDAN) method is used for gas concentration
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prediction [4]. Yaoyong Xu proposed an improved gravita-
tional search algorithm (IGSA) to train a model that optimizes
the initial weights and thresholds of BP neural networks [5].
Pengtao Jia proposed a gas concentration prediction model
based on convolutional neural network (CNN) optimized by
particle swarm algorithm and bi-directional gated unit neural
network (aBiGRU) optimized by adaptive moment estimation
maximum [6]. Qingwei Xu proposed a new accident pre-
vention technique using a novel safety assessment method
based on fault tree basic event importance, grey relational
analysis and the bow tie model [7]. Yadong Cai classifies
gas concentration data into warning and non-warning classes
based on concentration thresholds, and proposes a probability
density machine (PDM) algorithm with good adaptability to
unbalanced data distributions [8].

Due to the serious nonlinearity in the complex and variable
influencing factors related to gas outburst, we propose a gas
outburst prediction model is structured by multiple strategy
fusion improved snake optimization algorithm (MFISO) opti-
mizes temporal convolutional network (TCN). Selected phase
space reconstruction technique to reconstruct the multiple
time series of influence factors related to gas outburst. Then
combined Sine chaos mapping, spiral search strategy and
snake dynamic adaptive weights to improve the snake opti-
mization algorithm. The tangent-based rectified linear unit
was used to improve the standard TCN, and the MFISO-TCN
gas outburst prediction model was established. Finally, the
real gas outburst data from a coal mine in Shanxi was selected
for experimental analysis and comparison, which verified that
the method of this paper can effectively improve the accuracy
of gas outburst prediction.

Il. PHASE SPACE RECONSTRUCT TIME SERIES

The influencing factors related to gas protrusion are coal seam
thickness, coal seam spacing, advancement speed, etc. The
factors often present complex non-linear relationships, which
will directly lead to a decrease in the precision of the gas
outburst prediction model. The phase space reconstruction
method [9] is used to reconstruct the characteristic time series
of multiple influencing factors related to gas outburst, each
time series is mapped into a higher dimensional space by the
delay time and expanding dimensionality to remove invalid
data features and restore the underlying principles of the
original time series related to gas outburst in the chaotic state.

Set a single time series of gas outburst [Z1, Z3, - - - , Z,], the
specific equation is as (1).
Zi(n) = [Zi, Zisz, -+ Znsim—1)r
21 2+t T+(m—D)T
22 2+1 * " W24+(m—1)T
= . . . . (1)

Zn In+t Zn+(m—1)‘[
In (1), Z;(n) is the phase space of the ith feature variable, T
represents the delay time, m is the embedding dimension, z,

denotes the phase point in the phase space.
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A. DETERMINING DELAY TIME
The delay time 7 and the embedding dimension m determine
the extension and randomness of each influencing factor
related to gas outburst in the high-dimensional space [10], and
the interactive information method was chosen to determine
the parameter t.

Assume that there are two time series of influencing factors
related to gas outburst [q1, g2, - - - , gm], [S1, 82, - - - , Snl-

n
F(S)= =) Hs (si)logy Hs (s:) )
i=1
In (2), F(Q) and F(S) are the entropies of the two time
series, respectively. Hp(g;) and Hg(s;) are the probability of
the two time series of gas outburst, respectively.

F(Q,8) = —)_Y Hos(qi s)log, Hos(gi,s) (3)
i=1 j=1

1(Q,8) = F(Q)+ F(S) - F(Q,S) “4)

In (3) and (4), Hg,s(gi, s;j) is the probability of the joint

distribution of Hp(g;) and Hs(s;). 1(Q, S) is a correlation
function with respect to the delay time 7.

B. DETERMINING EMBEDDING DIMENSION
The Cao method was chosen to determine the parameter d.

n—drt
E(m)=(n—mt)™" - " a(i,m) )
i=1
E*(m) = (n—mt)""- Z |x( + mt) — x(n(i, m) + mt)|

i=1

(6)
El(m) = E(m + 1)/E(m) 7
E2(m) = E*(m + 1)/E*(m) ®)

In (5), (6), (7), and (8), E(m) is the evaluation criterion for
reconstructing the time series based on known t and unknown
m. E*(m) is the correlation evaluation criterion for the two
sets of time series of the influencing factors. The value of
the embedding dimension m is determined by E 1(m). E2(m)
evaluates the randomness of the time series of influencing
factors related to gas outburst, which works best when it is
constant equal to 1.

lll. SO ALGORITHM

The standard snake optimization algorithm [11] achieves the
optimization of model hyperparameters by simulating various
behaviors of snakes in the mating process. The snake opti-
mization algorithm consists of several stages and modes, and
the initialization process of the population in the early stage
is relatively simple resulting in poor population stochastic-
ity. As the number of iterations increases, the global search
capability of the algorithm in the development stage gradually
decreases, and the local optimal escape capability of the algo-
rithm decreases largely. The population convergence speed is
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significantly improved in the later stage, but the population
individuals are prone to aggregation phenomenon resulting
in the degradation of the optimal search performance of algo-
rithm. The population position update equations of the snake
optimization algorithm during the development phase are as
follows.

Xij(t + 1) = Xpooa £ c2 - Temp - 1 - (Xfpoad — Xi j(1)),
Q0 € (0.25, 1] and Temp € (0.6, 1] O]

-7
=7 (10)

0 = c1 - exp(
t
Temp = exp(—?) (11)

In (9), (10), and (11), X; j(t + 1) represents the optimal
position of the snake in ¢ + 1 iterations. Xf,,4 is the optimal
position of the target food. ¢; and ¢ are constants. r is
a random number within [0, 1]. X;; represents the current
individual position of the snake. 7 is the number of current
iterations. 7 is the maximum number of iterations.

The equations for updating the population position in the
mating mode of the snake optimization algorithm during the
development phase are as follows.

Xi,m(t + 1)
=Xim@®)+c2-Ap-1-(Q-Xip(t) — Xim@)),
0 € (0.25, 1] and Temp € (0, 0.6) (12)
4, = exp<_]ffi) (13)
Xift+1)
= Xiy®) +ca-Ap -1 - (Q - Xim() — Xi (1)),
0 € (0.25, 1] and Temp € (0, 0.6) (14)
A = exp(-Lom) (15)
fir

In (12), (13), (14), and (15), Xi m(t + 1) and X; ,,(t + 1)
represent the new generation of individual positions of the ith
male and female snakes, respectively. r is a random number
within [0, 1]. X; ¢ (¢) and X; ,, (¢) are the current positions of
the ith male and female snakes, respectively. A, and Ay are
the mating ability of the male and female snakes, respectively.
fim and f;  represent the fitness values of the positions of the
ith male and female snakes, respectively.

A. MFISO ALGORITHM

To solve the problems of the above SO algorithm, Sine chaos
mapping, spiral search strategy and snake dynamic adaptive
weight are used to improve the SO algorithm and boost
optimal performance of algorithm.

1) SINE CHAOS MAPPING INITIALIZES SNAKE POPULATIONS
The traditional SO algorithm generates the population indi-
viduals between [0, 1] irregularly, which is prone to the prob-
lems of low quality of population individuals and uneven
distribution of population, resulting in the degradation of

VOLUME 10, 2022

0.8

0.67

0.47

0.27

0 n n
0 1 2 3 4
a

FIGURE 1. Population sequence distribution under different bifurcation
parameters.

the algorithm itself in terms of the performance of the opti-
mization search. Sine chaos mapping [12] is introduced to
initialize the snake population, improve the overall quality
of the population, make the population distribution uniform
and diverse, and led to an improvement in the convergence
speed and accuracy of the algorithm. The specific equation is
as follows.

Xit1 = % X sin(7wxy) (16)

In (16), k represents the number of iterations of the
algorithm. « is the bifurcation parameter. « € (0, 4] and
x € (0,1).

Set the initial value xg, the distribution of the Sine chaotic
sequence x as « varies is shown in Fig. 1.

As shown in Fig. 1, when @ € (0, 3.436], the sequence
x presents a finite distribution, and the sequence x gradually
presents a quasi-divergence state as « increases. When « €
(3.436, 4], the values of x diverge to 0 and 1, and chaos
appears. When o = 4, the sequence x has the best distribution
and the highest randomness of the population. Therefore,
the Sine chaotic sequence at « = 4 is selected to initialize
the population, and the spatial distribution of the Sine chaos
mapping in Fig. 2 is obtained by iterating 300 times.

(16) is used to map the values of the variables generated
after Sine chaos mapping to individual snakes to achieve the
initialization of the snake population. The specific equation
is as (17).

Xi = Xmin + Xk+1 * Xmax — Xmin) (17

In (17), X; is the position of the ith snake after mapping.
Xmax and Xy are the upper and lower bounds of each snake
and each dimension.

2) SPIRAL SEARCH STRATEGY IMPROVES SO ALGORITHM
Snake population of the standard SO algorithm is prone to a
narrow global search range when updating its position in the
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FIGURE 2. Spatial distribution of Sine chaos mapping.

development phase. Although algorithm can achieve conver-
gence quickly, the population diversity plummets, resulting in
a significant reduction in the global search capability of algo-
rithm and ability to jump away from the local optimal solution
[13]. The Whale Optimization Algorithm [14] (WOA) has
excellent local optimal escape ability and performs well in
accomplishing the global search task, in which the spiral
search strategy of the whale in the hunting phase is that the
whale swims in a spiral shape toward the prey and shrinks
the encirclement. This not only ensures the convergence
of the algorithm, but also expands the search range of the
population, which is a good balance between global search
ability and local optimal escape ability. The position update
equations of the spiral search strategy are as follows.

X*(t)— A - D. if p<0.5
X@t+1)= {X*(t) +D' - cos@rl), if p=0.5
(18)
D =|C-X*(t) — X(1)| )
D' = [X*(1) = X(1)| 0

In (18), (19), (20), A takes a random between [—1, 1],
D’ denotes the distance of the ith whale from its prey,
b is a logarithmic spiral constant, / is a random number
between [—1, 1].

The spiral search strategy was introduced into the snake
location update process in the development phase of the snake
optimization algorithm to make full use of the spiral search
mechanism to obtain population location information and
probabilistic changes. The improved equations of updating
the snake position in the development phase are as follows.

X;jt+1)
| Xpoa(y —A - D, ifp<05
| Xpooa(t) + D' - 5 - - cos2rl), if p>0.5
(21)
| = (Temp — 1) x rand + 1 (22)
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FIGURE 3. Curve of snake dynamic adaptive weight.

t
Temp = exp(—?) (23)
D' = |Xppoa — Xij(1)| (24)

In (21), (22), (23), and (24), the logarithmic spiral constant
b is taken as 1, c3 is a constant taken as 2, D’ is the distance
between the current location of the individual snake and the
best location of the target food.

3) SNAKE DYNAMIC ADAPTIVE WEIGHTS

Since the mating population of the SO algorithm aggregates
faster, leading to the algorithm prone to local optimal stag-
nation. Snake dynamic adaptive weight is used to diversify
the optimal positions of the snake population and enhance
the ability to reproduce optimal next generation individu-
als. After combining the snake dynamic adaptive weight,
the snake position update equations in mating mode are as
follows.

Xim(t +1)

= Xim®) +o-Apy-1-(Q-Xif(t) — Xim@) (25)
Xif(t+1)

=Xif®)+w-Ar-r-(Q-Xim(t) — Xiyp(t))  (26)

where the snake dynamic adaptive weight is formulated
as (27).

B
et

10T

In (27), t denotes the current iteration of the algorithm,
T is the maximum number of iterations of the algorithm.
B is the adaptive range coefficient, which determines the
location update range of the snake population, 8 € [0.1, 0.2],
B is taken as 0.17. y is the adaptive density coefficient,
which determines the individual update density of the snake
population, y € [0.015, 0.035], y is taken as 0.025.

Fig. 3 shows the curve of the adaptation value of 300
iterations of the snake dynamic adaptive weight. As can be
seen from the figure, with the increase of iterations, the trend
of the adaptive curve presents an expansive spiral state, and

w=1+

LT @7
- COS(—— —
yT 2
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FIGURE 4. Testing function f, (x).

FIGURE 5. Testing function £, (x).

the global search ability of the algorithm steadily increases.
The high-density curve makes the population diversification
ability greatly improved, thus strengthening the local search
capability of the algorithm.

B. MFISO ALGORITHM TESTING

In order to confirm the optimization validity and stability
of the MFISO algorithm, the Schwefel2.26 function and the
Shekel function were selected for the function optimization
comparison experiments and compared with the standard SO
algorithm, the Particle Swarm Optimization (PSO) algorithm
[15] and the WOA algorithm for the analysis, and the number
of iterations of all algorithms was 300 times. Fig. 4 and
Fig. 5 are the testing function diagrams, and the specific
equations are as follows.

n

file) = =) —xisin(y/Ixl) (28)
=1
fo(x) = — cos(x1) cos(x2) exp(— (x| — 7)* — (x2 — 7)%)
(29)
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TABLE 1. Test results of f; (x) for four optimization algorithms.

MFISO SO WOA PSO
Optimum 4109 8780 41822076  -4179.5349  -2274.8226
value
Average 41393068 41265823 -3992.0641  -2075.1941
value
Standard 232.3281 2513214 198.4602 504.1946
deviation

TABLE 2. Test results of f,(x) for four optimization algorithms.

MFISO SO WOA PSO
Optimum -10.5464 -10.1286 -5.1285 -5.1757
value
Average -10.2962 -9.9259 51112 -5.0663
value
Standard 0.5065 0.7551 0.6323 0.3218
deviation

From Table 1, for the testing function f(x), both the SO
algorithm and the MFISO algorithm can find their theoretical
optimal value, and the results are better than those of the
WOA algorithm and the PSO algorithm, but the SO algorithm
is worse than the MFISO algorithm in the calculation of the
mean value and standard deviation.

From Table 2, for the testing function f>(x), only the
MFISO algorithm finds the optimal solution, which is a sig-
nificant improvement over the SO algorithm in terms of the
accuracy of the search for the optimal value.

Regardless of which testing function evaluation index, the
MEFISO algorithm performs better than the other three algo-
rithms, indicating that the MFISO algorithm is significantly
better than the other algorithms in terms of stability and
accuracy of the optimization search. The improved snake
optimization algorithm through multiple strategy fusion is
able to have both strong global search capability and local
optimal escape capability when searching for optimal solu-
tions sufficiently and efficiently.

From Fig. 6 and Fig. 7, it is concluded that for the testing
function f1 (x), the MFISO algorithm reaches the convergence
state in 24 iterations, which is faster than the other three
algorithms and the optimal fitness value of the search is
better than the other three algorithms. For the testing function
f>(x), the convergence speed of the four algorithms is not
much different, but the optimal fitness value of the MFISO
algorithm is better than the other three algorithms in all
cases.

The iterative search performance test of the four algo-
rithms by testing functions fi(x) and f>(x) illustrates the
comprehensive strength of the improved snake optimization
algorithm is stronger than the other three algorithms in the
three aspects of convergence speed, search accuracy and local
escape capability.
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FIGURE 7. Comparison of the optimization search for f, (x) for each
optimization algorithm.

IV. TCN

TCN is a new network structure for processing long time
series obtained by improving, combining and optimizing on
the basis of traditional convolutional neural network and
recurrent neural network [16]. Due to the complexity and
large time span of time series of gas outburst, TCN is used to
accurately capture more historical data and accurately predict
future data.

A. BUILDING THE TCN NETWORK MODEL

1) CAUSAL CONVOLUTIONS AND DILATED CONVOLUTIONS
Causal convolution ensures that the output of a complex
gas prominence time series at moment ¢ is only correlated
with the constituents at moment (¢ — 1) in the previous
layer of the network, and the length of the gas prominence
sequence is guaranteed to be the same in the preceding and
following network layers by the method of complementary
zeros [17]. Compared with the conventional convolution, the
introduction of the dilation factor in the dilated convolu-
tion greatly enhances the perceptual field of the convolution
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FIGURE 8. The structure diagram of causal convolution and dilated
convolution of TCN. Comparison of activation functions.

kernel and ensures that input sequences of arbitrary length
can be captured [18].

Fig. 8 shows the structure of causal convolution and dilated
convolution of TCN. It is assumed that there are L convo-
lutional layers, where the equation of dilated convolution
equation is as (30).

k—1
F(s) = (xxdf)(s) = Y _f()Xe—a. (30)
i=0
In (30), the number of convolution layers L determines
the dilation factor size, and the dilation factor d =
[1, 2l .., 2L7. The convolution kernel size k, also called the
model filter coefficient.

2) RESIDUAL CONNECTIONS

TCN uses residual connections to deepen the network depth
and overcome a series of problems such as gradient disap-
pearance and gradient explosion of the network, which is a
good solution to the problem of slow convergence speed and
neuron degradation of deep neural networks.

Fig. 9 shows the structure of residual connections of TCN,
which encapsulates causal convolutions, dilated convolu-
tions, and residual connections. Dropout will stop the neuron
work with certain probability, thus enhancing generalization
ability of the model. ReLU is the rectified linear unit, which
acts as the activation function; WeightNorm can normalize
the weight values.

3) IMPROVEMENT OF TCN NETWORK

The standard TCN uses the rectified linear units (ReLU) as
the activation function, and although it performs better in
accelerating the convergence of the model, the negative half-
axis of the ReLU function is all zero, which is prone to
problems such as necrosis of some neurons during the model
training [19]. The rectified linear units based on tanh function
(ThLU) [20] was selected instead of the ReLLU activation
function to overcome the problems of TCN model in the net-
work training process such as the decrease of the prediction

VOLUME 10, 2022



H. Fu et al.: Research on Gas Outburst Prediction Model Based on MFISO With TCN

IEEE Access

Dropout +

]L

WeightNorm

{+

*

Dropout

Jr

WeightNorm

4

FIGURE 9. The structure diagram of residual connections of TCN.

»
(=]
T

ThLU
—o— RelLU

—
()]
T
L

—
(=]
T
1

S o
W ()
T
1

Activation function output value y
- =)
=) n

1
w
1
N
1
w

-2 -1 0 1 2
Input value x

FIGURE 10. Comparison of activation functions.

accuracy of gas outburst due to the necrosis of some neurons.
The ThLU function is shown in (31).

X, x>0
f)=q1 - (€29
m, x<0

Fig. 10 shows the comparison of the activation functions
of ReLU and ThLU. When x > 0, the output values of the
positive half-axis of the ThLU function are the same as the
output values of the ReLU function, which are both equal
to the input values. When x < 0, the output values of the
ReLU function are all zero, but the output values of the ThLU
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TABLE 3. Optimization intervals of TCN relevant hyperparameters.

hyperparameters optimization intervals
The number of
convolutional layers L [0-50]
The filter coefficients k& [0-10]

function are all non-zero and less than zero. The output values
of the ThLU function are better than those of the ReLU
function, and the improved TCN model is more effective in
gas outburst prediction.

B. ESTABLISHING MFISO-TCN GAS PROTRUSION
PREDICTION MODEL

In order to make the TCN model have better historical data
capturing ability and wider data perception field in gas out-
burst prediction, the MFISO algorithm was used to optimize
the number of convolutional layers L and filter coefficients
k of the TCN model to build the MFISO-TCN gas outburst
prediction model. The optimization intervals of TCN relevant
hyperparameters are shown in Table 3.

The process of establishing MFISO-TCN gas outburst pre-
diction model is shown in Fig. 11.

(1) Set the population number N and divide the population
into two groups equally, choose the maximum number of
iterations 7', and initialize the snake population using (17) to
obtain a uniformly distributed snake population.

(2) Initialize the TCN relevant hyperparameters and opti-
mization intervals.

(3) The optimal individual and optimal fitness values for
male and female snakes under the current hyperparameters
are calculated, and the food quantity Q and temperature Temp
are calculated according to (10) and (11).

(4) In the snake development phase, the spiral search
strategy was used to update the male and female individual
locations according to (21), (22), (23), and (24).

(5) In the mating mode of snakes, the fitness values of male
and female snake positions are calculated according to (25),
(26), and (27), and if the next generation is successfully
hatched, the new individual position is recorded and the worst
snake position is replaced.

(6) Determine whether the maximum number of iterations
is satisfied, if the condition is satisfied, the optimal hyper-
parameters are assigned to TCN, otherwise return to (3) to
continue iteration.

(7) Use the optimal hyperparameters optimized by MFISO
algorithm to construct MFISO-TCN gas outburst prediction
model and output the prediction results.

V. EXPERIMENTAL ANALYSIS

Since there are many influencing factors related to gas out-
burst in underground mines, 8184 sets of data containing ten
influencing factors from a coal mine in Shanxi, including
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FIGURE 11. MFISO-TCN gas outburst prediction model.

TABLE 4. Partial data on influencing factors related to gas outburst.

X X5 Xs Xy Xs X X7 Xs Xo Xio
1 563.00 5.66 11.00 3.68 12.00 3.53 0.38 2410.00 3.74 6.8390
2 590.00 2.52 8.00 421 18.00 2.85 0.48 3139.00 3.30 6.8353
3 604.00 2.38 9.00 4.03 16.00 2.64 0.52 3354.00 3.28 6.8533
4 607.00 3.66 9.00 434 17.00 2.77 0.12 3087.00 3.14 6.8466
5 634.00 3.45 12.00 4.80 15.00 2.92 1.0 3620.00 5.10 6.8476
6 640.00 3.15 11.00 4.67 15.00 2.75 0.82 3412.00 3.10 6.8548
7 450.00 2.57 12.00 243 16.00 432 0.82 1996.00 3.58 6.8509
8 544.0 4.02 11.00 3.16 13.00 3.81 0.51 2207.00 3.90 6.8525
9 629.00 2.12 13.00 4.62 19.00 2.80 0.13 3456.00 3.68 6.8383
10 401.00 6.09 10.00 1.87 25.00 4.52 0.53 1855.00 5.64 6.8517

coal mining depth X; (m), coal seam thickness X, (m), coal
seam inclination X3 (deg), original gas content of mining
seam X4 (m3/t), coal seam spacing X5 (m), advancement

of ten groups of influencing factors are listed, as shown
in Table 4.

speed X¢ (m/d), extraction rate X7, daily production Xg
(m3), adjacent seam gas content Xy (m3/t), and gas outburst
X0 (m3/min), were selected. The first 8000 sets of mea-
sured data were selected as the research object, the first
6000 sets of data were used as the training samples of the
gas outburst prediction model, and the remaining 2000 sets
were used as the testing samples of the model. The data
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A. BUILDING THE TCN NETWORK MODEL
The selected time series of ten influencing factors related to
gas outburst are reconstructed in phase space, and the delay
time t and embedding dimension d are solved using the
interactive information method and Cao method.

From Fig. 12, the first extreme point of 1(Q, S) is at the
delay time of 3, so T = 1. From Fig. 13, when dy = 14, E1(d)
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FIGURE 14. The time series of absolute gas outburst.

tends to 1 and gradually stabilizes, and E2(d) is constant
equal to 1. At this time, (dp + 1) is the optimal embedding
dimension, so d = 15. Reconstruct the time series of relevant
influence factors according to (1), and remove the invalid
data features in the high-dimensional space. Fig. 14 and
Fig. 15 show the comparison of the original time series of
gas outburst and the reconstructed time series.
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FIGURE 16. The curves of fitness values.

From Fig. 14 and Fig. 15, as the number of samples gradu-
ally increases, the sequence of gas outburst gradually appears
noise points and has strong nonlinearity, and the distribution
of the reconstructed sequence is regular and the extension
performance is good.

B. COMPARISON OF ALGORITHM OPTIMIZATION

The MFISO algorithm is used to search for the optimization
of the relevant hyperparameters of the TCN model, and the
results are compared and analyzed with those of the SO
algorithm, WOA algorithm and PSO algorithm. Fig. 14 shows
the iterative comparison of the fitness values of the optimized
TCN model for each algorithm.

From Fig. 16, the MFISO algorithm with Sine chaos map-
ping, spiral search strategy, and snake dynamic adaptive fac-
tor reached the convergence state and searched the optimal
fitness value after only 22 iterations of the four algorithms
in the process of searching for the optimal hyperparameters.
The feasibility of using the MFISO algorithm to optimize the
relevant hyperparameters of TCN and build the gas outburst
prediction model is demonstrated.
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TABLE 5. Comparison of model error.

Type of Model
MFISO-TCN TCN GRU LSTM
MAE 3.12% 9.54% 11.35% 12.36%
Type of error MAPE 0.48% 1.38% 1.58% 1.89%
RMSE 3.31% 9.95% 11.75% 12.77%
C. COMPARISON OF ALGORITHM OPTIMIZATION g4l Truo values ' ]
To prove the validity of the research content of this article, 82+ Predicted values of MFISO-TCN
two sets of model simulations were compared and mean abso- E80F Predicted values of TCN ]
lute error (MAE), mean absolute percentage error (MAPE) ":\E 7.8+ Predicted values of GRU 8
and root mean squared error (RMSE) were selected to mea- E76r Predicted values of LSTM .
sure the deviation of model prediction values from the true 2745 ]
values. The specific equations are as follows. é 7.2
£7.0
H D
1 s 6.8
MAE = — - 3 | Iyi = yil  100% (32) C66 .
i=1 64F i
1 Ho 6.2 : - :
MAPE = — .} 2 100% (33) 0 500 1000 1500 2000
H i=1 i Number of samples
1 H FIGURE 17. Comparison of model prediction results.
RMSE = | = > i = ¥)? x 100% (34)
i=1

In (32), (33), (34), y; is the real value of the ith sample
of data set of gas outburst, y’ is the predicted value of the
model for the ith sample of data set, H denotes the number of
samples of data set.

1) PERFORMANCE COMPARISON OF DIFFERENT TYPES OF
MODELS

Traditional TCN, gated recurrent unit (GRU) [21] and long
short term memory (LSTM) [22] were selected for net-
work training and compared with MFISO-TCN gas out-
burst prediction model for analysis. All models were trained
200 times.

Fig. 17 shows the comparison of the prediction results
of each model for 2000 sets of real data after training.
MFISO-TCN model has better prediction and data reduction
ability than other models, the difference between traditional
TCN and MFISO-TCN is not significant for the data points
in the smooth segment, but for the peak values in the seg-
ments of 750-850 and 1700-1800, MFISO-TCN performs
better. Although GRU and LSTM can predict the trend of
the entire gas outburst sequence, their response is worse
than MFISO-TCN for complex and unstable gas outburst
sequences.

Table 5 shows the comparison of the prediction errors of
the above four models, and MAE, MAPE, and RMSE are
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used to measure the validity of the models for gas outburst
prediction. According to the comparison results, the predic-
tion accuracy of MFISO-TCN is greater than the other three
models, and it is effective in gas outburst prediction.

2) PERFORMANCE COMPARISON OF TCN MODELS
OPTIMIZED BY DIFFERENT ALGORITHMS

The standard SO algorithm, WOA algorithm, and PSO algo-
rithm were used for hyperparameters searching and network
training of TCN models, and finally compared with MFISO-
TCN gas outburst prediction model for analysis. All models
were trained 200 times.

Fig. 18 shows the comparison of the prediction results of
each model after training on 2000 sets of real data. The TCN
models optimized by different algorithms all perform well in
gas outburst prediction, but the MFISO-TCN model is still
more capable of capturing data in different segments than the
other models.

Table 6 shows the comparison of the prediction errors
of the above four different algorithm optimized models.
The comparison shows that the prediction accuracy of the
gas outburst prediction model established by the optimized
hyperparameters of the SO algorithm has been better than
that of the standard TCN, but the effect of improving
the accuracy is much less than that of the MFISO-TCN

VOLUME 10, 2022



H. Fu et al.: Research on Gas Outburst Prediction Model Based on MFISO With TCN

IEEE Access

TABLE 6. Comparison of model error.

Type of Model
MFISO-TCN SO-TCN WOA-TCN PSO-TCN

MAE 3.11% 8.72% 9.47% 10.68%

Type of error MAPE 0.47% 1.31% 1.41% 1.53%

RMSE 331% 8.96% 9.82% 10.97%
gal True values ' i 3) Combining the ThLU function to improve the TCN
82} Predicted values of MFISO-TCN 1 model effectively overcomes the problem that the neu-
E80F Predicted values of SO-TCN y rons of TCN are prone to necrosis during the training
M'\E 7.8+ Predicted values of WOA-TCN - process. Optimizing the relevant hyperparameters of
E76¢ Predicted values of PSO-TCN - the improved TCN using the MFISO algorithm can
2 74¢ ] effectively intensify the generalization ability and pre-

272 diction accuracy of the TCN.

7.0 4) The MFISO-TCN gas outburst prediction model
5« 6.8 was compared with TCN, GRU, LSTM, SO-TCN,
6.6 WOA-TCN, PSO-TCN in two sets of experiments,
64r ] respectively. The proposed method can predict the time
6'20 00 1000 1500 2000 series of gas outburst in underground mines more accu-

Number of samples

FIGURE 18. Comparison of model prediction results.

gas outburst prediction model. The feasibility of using the
MFISO algorithm to optimize the relevant hyperparameters
of TCN and build the gas outburst prediction model is further
demonstrated.

In summary, the gas outburst prediction model established
by using the multiple strategy fusion and improved snake
optimization algorithm to search for the relevant hyperparam-
eters of TCN can effectively enhance the prediction accuracy
of gas outburst in underground mines.

VI. CONCLUSION

1) The complex and variable time series of gas outburst
in underground mines are reconstructed by the phase
space reconstruction method to analyze the connection
between the relevant influencing factors in the high-
dimensional space, which removes the invalid data fea-
tures, accelerates the convergence speed of the model,
and intensifies the prediction accuracy of the model.

2) The Sine chaos mapping, spiral search strategy and
snake dynamic adaptive factor are used to improve the
snake optimization algorithm, which enriches the pop-
ulation diversity, improves the defect of easily falling
into local optimum in the process of searching for the
best, and strengthens the global search capability of the
algorithm.
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rately and has certain theoretical research and engineer-
ing practical significance.
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