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ABSTRACT Weighted fractional Fourier transform encrypted chaotic direct sequence spread spectrum
(WFRFT-CD3S) signal is aperiodic and complex Gaussian distributed. The aperiodicity and complex
Gaussian distribution are conducive to the covert transmission of information but also make it difficult to
acquire theWFRFT-CD3S signal. An acquisitionmethod implemented in two steps is proposed to acquire the
Doppler-shifted WFRFT-CD3S signal. First, a bidirectional correlation search method is proposed to align
the received signal with the local spreading sequence in the time domain. The correlation peak attenuation
caused by the Doppler frequency shift is eliminated by differential. Second, the accumulated phase angle
caused by the Doppler frequency shift is obtained by the differential correlation value between the aligned
received signal and the local spreading sequence. Then, the Doppler frequency shift is estimated by the
accumulated phase angle. The detection probability, the false alarm probability, and the root mean square
error (RMSE) of the Doppler shift estimation are analyzed theoretically and simulated. The theoretical results
are verified by simulation. Theoretical results and simulations show that the detection probability is higher
than 0.999, the false alarm probability is less than 0.001, and the RMSE of Doppler shift estimation is lower
than 63 Hz when the signal-to-noise ratio is higher than −7.3 dB.

INDEX TERMS Acquisition, chaotic direct sequence spread spectrum, aperiodicity, Doppler frequency
shift, detection probability, false alarm probability, root mean square error.

SYMBOL LIST
bk The k-th message bit of the transmitter.
ck ck is the chaotic sequence corresponding to the

k-th message bit. The m-th chip of ck is ck,m.
c0,1 System initial value.
ck,1 Chaotic initial value of ck .
q Tent mapping parameter.
xk xk is the WFRFT-chaotic sequence. The m-th

chip of xk is xk,m.
N Spreading factor.
Fα The α-order WFRFT matrix.
F Normalized Fourier transform matrix.
Fm,n Element in the m-th row and n-th column in F .
ωαm Weighting coefficient of the WFRFT matrix.

The associate editor coordinating the review of this manuscript and

approving it for publication was Walid Al-Hussaibi .

P Inverse matrix.
sn Transmitted WFRFT-CD3S signal.
sk sk is the WFRFT-CD3S signal when transmit-

ting bk . The m-th chip of sk is sk,m.
yn Received WFRFT-CD3S signal.
yk yk is the received signal corresponding to sk . The

m-th chip of yk is yk,m.
fd Doppler frequency shift.
φ0 Initial phase of received signal.
τ0 Transmission delay.
Tc Chip duration.
vn White Gaussian noise.
σ 2 Variance of Gaussian white noise.
Pc Average chip energy.
G (fd ) The correlation value attenuation of the

WFRFT-chaotic sequence caused by Doppler
frequency.

118000 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-5189-9146
https://orcid.org/0000-0003-4366-9874
https://orcid.org/0000-0002-3509-4620


J. He et al.: Acquisition of Time and Doppler Shift in WFRFT Encrypted Chaotic Direct Sequence Spread Spectrum System

ỹk,m ỹk,m is the differential received signal in the time
acquisition process, and the number of chips
contained in the delay is N .

x̃k,m x̃k,m is the differential WFRFT-chaotic signal in
the time acquisition process, and the number of
chips contained in the delay is N .

acc Acceleration of vehicle.
G′ (acc) The correlation value attenuation of the differ-

ential signals caused by vehicle speed variation.
ya The received signal segment in the a-th round of

correlation search.
ỹa The differential received signal in the a-th round

of correlation search.
x̃k x̃k is the differential WFRFT-chaotic sequence

in the time acquisition process, and them-th chip
of x̃k is x̃k,m.

gk Output of thematched filter corresponding to x̃k .
|gmax| Maximum output magnitude of the three

matched filters in Fig. 2.
ZT Acquisition threshold.
τ̂0 Estimation of transmission delay.
dk,m Despread signal.
g′ Output of the matched filter in Doppler shift

estimation process.
f̂d1 Coarse estimate of the Doppler frequency shift.
fd2 Residual Doppler frequency shift.
ỹ′k,m ỹ′k,m is the differential received signal in the

Doppler shift estimation process, and the num-
ber of chips contained in the delay is L.

x̃ ′k,m x̃ ′k,m is the differential WFRFT-chaotic signal
in the Doppler shift estimation process, and the
number of chips contained in the delay is L.

L The number of chips contained in the delay of
differential processing.

gfd Correlation value of ỹ′k,m and x̃ ′k,m.
µgfd Mathematical expectation of gfd.
σ 2
gfd Variance of gfd.
θ Phase angle of gfd.
fθ The probability density function of θ .
σ 2
θ Variance of θ .
f̂d2 Fine estimation of the Doppler frequency shift.
f̂d The estimation of the Doppler frequency shift.
SNR Signal-to-noise ratio (SNR).
gu The correlation value when the received signal

and the local WFRFT-chaotic sequence are not
aligned.

ugu Mathematical expectation of gu.
σ 2
gu Variance of gu.
ηu Magnitude of gu.
fηu The probability density function of ηu.
PF The false alarm probability.
gs The correlation value when the received sig-

nal is aligned with the local WFRFT-chaotic
sequence.

µgs Mathematical expectation of gs.

σ 2
gs Variance of gs.
ηs Magnitude of gs.
fηs The probability density function of ηs.
PD The detection probability.
ε (L) Root mean square error (RMSE) of Doppler

shift estimation.
|x| Absolute value of x.
arg (x) Argument of x.
XT Transpose of matrix X .
X̄ Conjugate of matrix X .
� Hadamard product operator.
E (x) Mathematical expectation of x.

I. INTRODUCTION
The broadcast nature of wireless channels makes legitimate
communication signals easy to be intercepted by noncooper-
ative receivers. The chaotic direct sequence spread spectrum
(CD3S) communication spreads the message bits through the
aperiodic chaotic sequence, which is resistant to the period-
icity detection [1], [2], [3]. Since the background noise is
usually Gaussian and the chaotic sequence is usually non-
Gaussian, the noncooperative receiver can still intercept the
CD3S signal by analyzing the statistical characteristics of the
received signal [4], [5]. Theweighted fractional Fourier trans-
form (WFRFT) can change the statistical distribution of the
aperiodic signals into Gaussian distribution [6]. Reference [5]
proposed a weighted fractional Fourier transform encrypted
chaotic direct sequence spread spectrum (WFRFT-CD3S)
system, which makes the transmitted signal aperiodic and
complex Gaussian distributed. The WFRFT-CD3S system
enables message bits to be transmitted covertly and is suitable
for enhancing the security of data links for the unmanned
aerial vehicle (UAV). However, in the UAV system, the data
link suffers from time-selective fading caused by Doppler
frequency shift [7], [8], and the acquisition of WFRFT-CD3S
signals in the presence of Doppler frequency shift is a chal-
lenging issue. In this paper, we further discuss the acquisition
of timing and Doppler frequency shift in the WFRFT-CD3S
system based on [5].

The Doppler shift attenuates the correlation between the
received signal and the local spreading sequence, thereby
increasing the complexity of acquisition [9]. So far, few
papers have discussed the acquisition of WFRFT-CD3S
signals or similar aperiodic CD3S signals in the presence
of Doppler shifts. For the periodic direct sequence spread
spectrum (DSSS) signal with Doppler frequency shift, the
researchers achieve acquisition through the time-frequency
two-dimensional search and focus on improving detection
performance or reducing computational complexity through
different signal processing methods. The extended replica
folding acquisition search technique [10] and the all-phase
fast Fourier transform [11] were applied to improve detec-
tion performance. The compressed sensing theory [12] and
the Doppler frequency estimation algorithms [13], [14] were
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applied to reduce the computational complexity. Reference
[15] proposed a sparse discrete fractional Fourier transform
(SDFrFT) algorithm with low computational complexity to
acquire high-dynamic DSSS signals, and the SDFrFT algo-
rithm was optimized in [16].

In the DSSS system, the spreading sequence is a fixed
periodic binary pseudo-noise (PN) sequence. Different acqui-
sition methods for DSSS signals are based on the period-
icity and binary characteristics of PN sequences, and these
acquisition methods essentially implement a time-frequency
two-dimensional search. In the WFRFT-CD3S system, the
spreading sequence is the aperiodic and complex Gaus-
sian distributed WFRFT-chaotic sequence. The acquisition
methods for the DSSS signal are not applicable to the
WFRFT-CD3S signal for three reasons. First, each bit of the
WFRFT-CD3S signal is spread by different WFRFT-chaotic
codes. Even if the Doppler frequency shift is not consid-
ered, the aperiodic WFRFT-CD3S signal cannot be acquired
by a fixed WFRFT-chaotic sequence when the WFRFT-
CD3S signal leads the local WFRFT-chaotic sequence [5],
[17]. Second, the computational complexity of the time-
frequency two-dimensional search is unacceptable since the
WFRFT-chaotic sequence is aperiodic. Third, the phase angle
of the complex Gaussian distributed WFRFT-CD3S signal
is random, making it difficult to estimate the Doppler shift
before the synchronization. A possible acquisition method is
to periodically insert a pilot signal into the WFRFT-CD3S
signal and achieve the acquisition through the pilot assis-
tance. However, the pilot signal destroys the aperiodicity
of the transmitted signal and reduces the anti-interception
performance of the transmitted signal. When the pilot signal
is detected, the noncooperative receivers can implement tar-
geted jamming on the pilot to disrupt the acquisition [18],
[19]. Therefore, this study does not use the pilot signal to
assist the acquisition.

In this study, we accomplish the acquisition of time and
Doppler shifts in two steps instead of directly implementing
a time-frequency two-dimensional search. First, we align
the received signal with the local spreading sequence by a
one-dimensional correlation search in the time domain. This
process is named time acquisition. The correlation search is
performed on the differential received signal and the local
differential spreading sequence. There is only a fixed phase
angle offset between the differential received signal and the
local differential spreading sequence, but no Doppler fre-
quency shift [20], which will not cause attenuation of the
correlation peak. Inspired by [17], the correlation search is
implemented bidirectionally to ensure that the correlation
peak can be detected regardless of whether the aperiodic
received WFRFT-CD3S signal lags or leads the local spread-
ing sequence. After the time acquisition, we coarsely estimate
the Doppler frequency shift by analyzing the spectrum of the
despread signal to obtain a relatively large estimation range.
Then, the residual Doppler shift is finely estimated by the
correlation of the differential received signal and the local
differential spreading sequence.

The rest of the paper is organized as follows: Section II
presents the system model of WFRFT-CD3S. The proposed
acquisition method of time and Doppler shift is discussed
in detail in Section III. Section IV theoretically analyzes the
detection probability, false alarm probability, and root mean
square error (RMSE) of Doppler shift estimation. Section V
presents the numerical simulation results. Finally, conclu-
sions are given in Section VI.

II. SYSTEM MODEL
In the WFRFT-CD3S system, the message bit bk is spread by
the WFRFT-chaotic sequence xk =

[
xk,1, xk,2, · · · , xk,N

]T.
N is the spreading factor. The aperiodic and complex Gaus-
sian distributed WFRFT-chaotic sequence xk is generated
in two steps. First, generate the chaotic sequence ck =[
ck,1, ck,2, · · · , ck,N

]T by two chaotic maps. Then, encrypt
the chaotic sequence by WFRFT.

The first chaoticmap generates the chaotic initial value ck,1
according to the system initial value c0,1. In this study, the
first chaotic map is the Tent map, which is given by

ck,1 =

{
ck−1,1

/
q, 0 < ck−1,1 ≤ q,(

1− ck−1,1
)/
(1− q), q < ck−1,1 < 1,

(1)

where q ∈ (0, 1) is the Tent mapping parameter. The system
initial value c0,1 needs to meet the initial value condition
of the first chaotic map. When the first chaotic map is the
Tent map, the system initial value c0,1 is in (0, 1). The Tent
map can generate different chaotic sequences according to
different system initial values in (0, 1), but the characteristics
of these chaotic sequences are similar. When the system
initial value is not in (0, 1), the Tent map cannot generate
chaotic sequences.

The second chaotic map generates the chaotic sequence ck
according to chaotic initial value ck,1. In this study, the second
chaotic map is the improved Logistic map, which is given by

ck,m+1 = 1− 2
(
ck,m

)2
. (2)

TheWFRFT-chaotic sequence xk is obtained by encrypting
the chaotic sequence ck byWFRFT. For the chaotic sequence
ck , the α-order WFRFT is given by [21]

xk = Fαck
=
(
ωα0 I + ω

α
1F + ω

α
2P+ ω

α
3PF

)
ck , (3)

where Fα is the α-order WFRFT matrix. When α ∈ [0.8, 1],
the real and imaginary parts of xk are independent and obey
the same Gaussian distribution [6]. F is the normalized
Fourier transform matrix, and its element in them-th row and
n-th column is given by

Fm,n =
1
√
N
exp

[
−j

2π
N
(m− 1) (n− 1)

]
. (4)

The weighting coefficient ωαm is given by

ωαm =
1
4

3∑
n=0

exp
[
j2π (α − m) n

4

]
. (5)
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The inverse matrix P is given by

P =


1 0 0 · · · 0
0 0 0 · · · 1
...

...
... . .

. ...

0 0 1 · · · 0
0 1 0 · · · 0

 . (6)

The WFRFT-CD3S signal is generated by spreading the
message bit bk through theWFRFT-chaotic sequence xk . This
process can be expressed as

sk = bkxk , (7)

where sk =
[
sk,1, sk,2, · · · sk,N

]T, sk,m = skN−N+m.
When there is a Doppler frequency shift, the received

WFRFT-CD3S signal can be expressed as

yn = sn−τ0exp (j2πnfdTc + jφ0)+ vn, (8)

where fd is the Doppler frequency shift, φ0 is the initial phase,
Tc is the chip duration, τ0 is the transmission delay, and vn is
the white Gaussian noise. The mean and variance of vn are
0 and σ 2, respectively.

III. ACQUISITION
A. PROBLEM DESCRIPTION
To facilitate analysis of the effects of Doppler frequency shift,
the Doppler frequency shift is temporarily assumed to be
constant. When there is a Doppler shift, the correlation value
of the WFRFT-chaotic sequence xk can be calculated as

E

(
N∑
m=1

x̄k,mxk,mej2πmfdTc+jφ
)

= Pc
N∑
m=1

ej2πmfdTc+jφ

= Pc

[
1− ej2π fdTcN

1− ej2π fdTc
ej2π fdTc+jφ

]
= Pc

[(
e-jπ fdTcN − ejπ fdTcN

)
ejπ fdTcN(

e-jπ fdTc − ejπ fdTc
)
ejπ fdTc

ej2π fdTc+jφ
]

= NPc
sin (π fdTcN )
N sin (π fdTc)

ejπ fdTc(N+1)+jφ, (9)

where the average chip energy Pc is given by

Pc = E
(
xk,mx̄k,m

)
≈

1
N

N∑
m=1

xk,mx̄k,m. (10)

Equation (9) shows that the Doppler frequency shift
fd attenuates the correlation peak of the WFRFT-chaotic
sequence xk by

G (fd ) =
sin (π fdTcN )
N sin (π fdTc)

. (11)

Inspired by [20], we remove the Doppler shift in the
received signal by differential processing. The differential
received signal is given by

ỹk,m = yk,mȳk−1,m, (12)

where yk,m represents the received signal corresponding to
sk,m. The WFRFT-chaotic sequence is differentiated accord-
ingly as follows

x̃k,m = xk,mx̄k−1,m. (13)

The correlation value between the differential signal x̃k,m and
ỹk,m is given by

E

(
N∑
m=1

x̄k,mxk−1,myk,mȳk−1,m

)

= E

[
N∑
m=1

x̄k,mxk−1,m
(
sk,mej2πmfdTc+jφk + vk,m

)
·

(
s̄k−1,me-j2πmfdTc−jφk−1 + v̄k−1,m

)]
= E

(
N∑
m=1

bkbk−1x̄k,mxk,mxk−1,mx̄k−1,mej2πNfdTc

+ x̄k,mxk−1,mvk,mv̄k−1,m

+ x̄k,mxk−1,mbkxk,mej2πmfdTc+jφk v̄k−1,m

+ x̄k,mxk−1,mvk,mbk−1x̄k−1,me-j2πmfdTc−jφk−1
)

= E

(
N∑
m=1

bkbk−1x̄k,mxk,mxk−1,mx̄k−1,mej2πNfdTc
)

= NP2cbkbk−1e
j2πNfdTc . (14)

Since there is only a phase offset but no frequency offset
between x̃k,m and ỹk,m, the magnitude of the correlation value
in (14) is not attenuated. Furthermore, the phase angle in (14)
contains the Doppler shift fd. Therefore, the Doppler shift fd
can be estimated from (14)when the received signal is aligned
with the local WFRFT-chaotic sequence.

The above analysis assumes that the Doppler frequency
shift is constant. However, the Doppler frequency shift
varies with vehicle speed in the engineering. Assuming
that the vehicle performs a uniformly accelerated motion
with the acceleration of acc when receiving the message bit
bk−1, the Doppler frequency corresponding to the m-th chip
of bk−1 can be expressed as

fd (m) = fd0 + m1fd, (15)

1fd =
accTc
λ

, (16)

where fd0 represents the initial Doppler frequency shift, 1fd
represents the Doppler frequency variation between adjacent
chips, and λ is the carrier wavelength. When the Doppler
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FIGURE 1. Curve of the attenuation of the correlation peak of the
differential signals as a function of acceleration.

frequency shift varies, the correlation value between the dif-
ferential signal x̃k,m and ỹk,m is given by

E

(
N∑
m=1

x̄k,mxk−1,myk,mȳk−1,m

)

=E

[
N∑
m=1

x̄k,mxk−1,m
(̄
sk−1,me-j2πm(fd0+m1fd)Tc−jφk−1+v̄k−1,m

)
·

(
sk,mej2π(m+N )[fd0+(m+N )1fd]Tc+jφk−1 + vk,m

)]
= E

(
N∑
m=1

bkbk−1xk−1,mx̄k−1,mx̄k,mxk,mej2π(2mN1fd)Tc+j1φ

+ x̄k,mxk−1,mv̄k−1,mvk,m

+x̄k,mxk−1,mbk−1x̄k−1,me-j2πm(fd0+m1fd)Tc−jφk−1vk,m

+x̄k,mxk−1,mv̄k−1,mbkxk,mej2π(m+N )[fd0+(m+N )1fd]Tc+jφk−1
)

=E

(
N∑
m=1

bkbk−1xk−1,mx̄k−1,mx̄k,mxk,mej2π(2mN1fd)Tc+j1φ
)

=NP2cbkbk−1
sin
(
2πN 21fdTc

)
N sin (2πN1fdTc)

ejπN1fdTc(N+1)+j1φ,

(17)

where 1φ = Nfd0 + N 21fd.
According to (16) and (17), the acceleration of the vehicle

attenuates the correlation peak of the differential signals by

G′ (acc) =
sin
(
2πaccN 2T 2

c λ
−1
)

N sin
(
2πaccNT 2

c λ
−1
) (18)

Fig. 1 shows the curve of the attenuation of the correlation
peak of the differential signal with the acceleration. In Fig. 1,
the carrier frequency is 2 GHz, the carrier wavelength λ is
0.15 m, the spreading factor N is 1000, the chip duration Tc
is 1 µs, and the initial velocity of the vehicle is 300 m/s.
In Fig. 1, the theoretical result in (18) is consistent with the
simulation results. When the acceleration is 500 m

/
s2, the

FIGURE 2. Block diagram of time acquisition based on bidirectional
correlation search.

correlation peak of the differential signals is attenuated by
0.99992. The acceleration of UAV is usually much less than
500 m

/
s2. Therefore, the Doppler frequency variation can

be ignored in the engineering. Since the Doppler frequency
variation has little impact on acquisition performance, the
Doppler frequency is assumed to be constant in the remainder
of this paper to simplify the analysis.

Based on the above analysis, we acquire the WFRFT-
CD3S signal with Doppler shift in two steps. First, align
the received signal with the local spreading sequence by a
one-dimensional correlation search between x̃k,m and ỹk,m.
Second, estimate the Doppler shift according to (14).

B. TIME ACQUISITION
The WFRFT-chaotic sequence is aperiodic, and the received
signal may lag or lead the local WFRFT-chaotic sequence.
Therefore, the direction of the correlation search must be
consistent with the delay to achieve acquisition. Considering
that the delay is unknown, we propose a time acquisition
method based on a bidirectional correlation search, which
consists of a forward correlation search channel and a back-
ward correlation search channel.

During the correlation search, the unknown binary mes-
sage bits limit the coherent integration time. In order to avoid
the phase inversion, the correlation search must be performed
through the WFRFT-chaotic sequence xk corresponding to
the single message bit bk . In [17], the received signal is
also divided into segments of N chips to facilitate parallel
search. However, this approach results in that the number
of aligned chips falls between N

/
2 and N when detection

happens, thereby reducing the detection probability. In this
study, to ensure that the number of aligned chips is always N ,
we divide the received signal into segments with a length of
2N chips and N chips overlap.
The proposed time acquisition method based on bidirec-

tional correlation search is shown in Fig. 2. In order to
avoid the attenuation of the correlation peak due to Doppler
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shift, the received signal and the local WFRFT-chaotic
sequence are differentiated. Correlation search is performed
by matched filters. Each matched filter performs one round
of correlation search every time N chips of yn are received. a
represents the rounds of correlation search.

In Fig. 2, the received signal segment ya and the differential
received signal ỹa are given by

ya = [yaN−N+1, yaN−N+2, · · · , yaN+N ]T , (19)

ỹa = ya � ȳa−1, (20)

The local WFRFT-chaotic sequence xk still contains only
N chips. The differential WFRFT-chaotic sequence x̃k is
given by

x̃k = xk � x̄k−1. (21)

To make the two input sequences of the matched filter
equal in length, the differential WFRFT-chaotic sequence is
zero-padded to 2N chips. The output of the matched filter is
given by

gk = F−1
[(
Fỹa

)
�

(
FUN x̃k

)]
, (22)

where F−1 is the inverse Fourier transform matrix, UN =[
IN ,ON ,N

]T is the zero padding matrix, IN is the N -order
identity matrix, and ON ,N is the N × N zero matrix.

In the backward search channel, the correlation search
is performed through the fixed differential WFRFT-chaotic
sequence x̃2. As the WFRFT-CD3S signal is continuously
received, the matched filter constructed by the fixed differ-
ential WFRFT-chaotic sequence x̃2 is equivalent to back-
ward correlation search. In the forward search channel, the
correlation search is performed by dynamically generated
differential WFRFT-chaotic sequences x̃2a and x̃2a−1. Every
time N chips of yn are received, the receiver generates x2a
and x2a−1 with a total length of 2N chips. which is equivalent
to a forward correlation search. Therefore, the two matched
filters constructed by x̃2a and x̃2a−1 are equivalent to forward
correlation search.

In Fig. 2, |gmax| is the maximummagnitude of the elements
in g2, g2a, and g2a−1. ZT is the acquisition threshold. When
|gmax| > ZT, the acquisition is considered to have been
achieved, and the delay estimation τ̂0 can be obtained from
the position of |gmax|.

Fig. 3 shows the schematic diagram of the alignment
between the received signal and the local WFRFT-chaotic
sequence. Since the received signal segment ya contains
2N chips, ya contains at least one complete message bit.
As shown in Fig. 3, in a certain round of correlation search,
the N chips in one spreading period will be all aligned.

C. DOPPLER SHIFT ESTIMATION
There are two problems with estimating the Doppler shift
directly from (14). First, the unknown message bits bk and
bk−1 cause phase ambiguity. Second, the estimation range of
the Doppler frequency shift is |fd| < (2NTc)−1. It can be seen
from (11) that it is less meaningful to estimate the Doppler

FIGURE 3. Schematic diagram of the alignment between the received
signal and the local WFRFT-chaotic sequence.

FIGURE 4. Autocorrelation function of the WFRFT-chaotic sequence in the
frequency domain. (a) Doppler shift does not exist; (b) Doppler shift
exists.

frequency shift in this range. In this subsection, we first
make a coarse estimate of the Doppler shift to obtain a larger
estimation range. Then, remove the phase ambiguity in (14)
and complete the fine Doppler shift estimation.

For the DSSS system with binary PN sequence, the
despread signal is a single tone signal superimposed with
noise. The coarse estimate of the Doppler frequency shift can
be obtained from the spectrum of the despread signal. In the
WFRFT-CD3S system, since the WFRFT-chaotic sequence
is a complex Gaussian distribution, the despread signal is
relatively more complicated. The despread signal is given by

dk,m = bkxk,mx̄k,mexp (j2πmfdTc + jφk)+ vk,mx̄k,m, (23)

It can be seen from equation (19) that the despread signal
dk,m is not a superposition of a single tone signal and noise.
Therefore, it is not guaranteed that the Doppler frequency
shift can be estimated from the spectrum of despread signal
dk,m.
The WFRFT-chaotic sequence has good autocorrelation

properties in the frequency domain, as shown in Fig. 4(a).
The Doppler shift of the WFRFT-chaotic sequence in the
time domain results in the correlation peak shift in the fre-
quency domain, as shown in Fig. 4(b). Therefore, in the
WFRFT-CD3S system, the Doppler frequency shift can
be coarsely estimated by searching the correlation peak
between the received signal and the local WFRFT-CD3S
sequence in the frequency domain. In this study, the corre-
lation search in the frequency domain is implemented by a
matched filter, which is given by

g′ = F
[(
F−1Fyk

)
�

(
F−1Fxk

)]
= F (x̄k � yk) , (24)
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where yk contains N chips and is the synchronized received
signal corresponding to xk . Equation (24) is equivalent to
analyzing the spectrum of the despread signal. Denote the
m-th element in g′ as g′m, then the coarse estimate of the
Doppler frequency shift can be obtained by

f̂d1 =
1
NTc

(
arg max
1≤m≤N

∣∣g′m∣∣
)
−

1
NTc

. (25)

Considering the periodicity of the Fourier transform of the
discrete signal, the estimation range of (25) is

|fd| <
1
2Tc

. (26)

When the chip duration Tc is 1µs, the estimation range of
Doppler shift is (−500 kHz, 500 kHz).

The spectral resolution in (24) is (NTc)−1. When the
Doppler frequency shift is exactly in themiddle of the two fre-
quency points, the residual Doppler frequency shift reaches
the maximum. That is, the residual Doppler frequency shift
is

|fd2| =
∣∣∣fd − f̂d1∣∣∣ ≤ 1

2NTc
. (27)

According to (11), the maximum attenuation caused by
the residual Doppler frequency shift is 0.6366, which is still
a relatively large attenuation. Therefore, it is necessary to
implement fine estimation to remove the residual Doppler
frequency shift.

In (12), the differential received signal ỹk,m contains two
message bits, causing phase ambiguity. To avoid phase ambi-
guity caused by unknown message bits, we differentiate the
chips in the synchronized received signal yk which contains
only one message bit. The Doppler frequency shift is com-
pensated by f̂d1 in the differential process. The differential
received signal ỹ′k,m is given by

ỹ′k,m = yk,m+Le-j2π(m+L)f̂d1Tc ȳk,mej2πmf̂d1Tc

= yk,m+L ȳk,me-j2πLf̂d1Tc , (28)

where L is the number of chips contained in the delay of
differential processing.

Correspondingly, the differential WFRFT-chaotic signal
x̃ ′k,m is given by

x̃ ′k,m = xk,m+L x̄k,m. (29)

Denote the correlation value of ỹ′k,m and x̃ ′k,m as gfd. The
correlation value gfd is equal to

gfd =
N−L∑
m=1

¯
˜
′xk,mỹ′k,m. (30)

The expectation of gfd can be calculated as

µgfd = E (gfd)

= E

(
N−L∑
m=1

¯
˜
′xk,mỹ′k,m

)

= E

(
N−L∑
m=1

x̄k,m+N /2xk,myk,m+N /2ȳk,me
-jπN f̂d1Tc

)

= (N − L)P2ce
j2πL

(
fd−f̂d1

)
Tc
. (31)

The fine estimation of the Doppler frequency shift can be
calculated by

f̂d2 =
θ

2πLTc
, (32)

where the phase angle θ is given by

θ = arg (gfd) . (33)

Since L is less than N , it can be seen from (27) that the
phase angle in (33) is in (−π, π). That is, residual Doppler
frequency shift fd2 is small enough to not cause phase ambi-
guity.

In summary, the estimated value of the Doppler shift is

f̂d = f̂d1 + f̂d2. (34)

IV. THEORETICAL ANALYSIS OF PERFORMANCE
A. FALSE ALARM PROBABILITY
The false alarm occurs when the received signal is misaligned
with the local WFRFT-chaotic sequence but the magnitude of
the correlation value is greater than the acquisition threshold.
For ease of writing, we assume that the delay between the
received signal and the local WFRFT-chaotic sequence is N
chips. This assumption does not affect the theoretical analysis
results. Then the correlation value when the received signal
and the local WFRFT-chaotic sequence are not aligned is
given by

gu =
N∑
m=1

x̄k,mxk−1,myk−1,mȳk−2,m. (35)

The signal-to-noise ratio (SNR) is defined as

SNR =
Pc
σ 2 . (36)

The correlation value gu obeys a complex Gaussian distri-
bution according to the central limit theorem. The mathemat-
ical expectation of gu can be derived as

ugu = E

(
N∑
m=1

x̄k,mxk−1,myk−1,mȳk−2,m

)

=E

[
N∑
m=1

x̄k,mxk−1,m

×

(
bk−1xk−1,mej2πmfdTc+jφk−1 + vk−1,m

)
·

(
bk−2x̄k−2,me-j2πmfdTc−jφk−2 + v̄k−2,m

)]
= 0.

(37)

The variance of gu can be derived as

σ 2
gu = E (ḡugu)− E (ḡu)E (gu)
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= E

{[
N∑
m=1

xk,mx̄k−1,m

×

(
bk−1x̄k−1,me-j2πmfdTc−jφk−1 + v̄k−1,m

)
·

(
bk−2xk−2,mej2πmfdTc+jφk−2 + vk−2,m

)]
·

[
N∑
m=1

x̄k,mxk−1,m
(
bk−1xk−1,mej2πmfdTc+jφk−1

+ vk−1,m
)
·

(
bk−2x̄k−2,me-j2πmfdTc−jφk−2 + v̄k−2,m

)]}
= E

[
N∑
m=1

xk,mx̄k,mx̄k−1,mxk−1,m

×
(
x̄k−1,mxk−1,mxk−2,mx̄k−2,m

+ x̄k−1,mxk−1,mvk−2,mv̄k−2,m

+ v̄k−1,mv̄k−1,mxk−2,mx̄k−2,m

+ v̄k−1,mv̄k−1,mvk−2,mv̄k−2,m
)]

= NP2c
(
P2c+Pcσ

2
+ Pcσ 2

+ σ 4
)

= NP4c

(
1+

1
SNR

)2

. (38)

Denote the magnitude of gu as ηu. Since the mathematical
expectation of gu is 0, and the real and imaginary parts of
gu are independent and identically distributed, ηu obeys the
Rayleigh distribution. The probability density function of ηu
can be expressed as

fηu (ηu) =
2ηu
σ 2
gu

exp

(
−
η2u

σ 2
gu

)
. (39)

The false alarm probability of time acquisition can be
derived as

PF = P {ηu ≥ ZT}

=

∞∫
ZT

fηu (ηu)dηu

= exp

(
−
Z2
T

σ 2
gu

)

= exp

[
−
Z2
T

NP4c

(
1+

1
SNR

)−2]
. (40)

B. DETECTION PROBABILITY
Detection occurs when the received signal is aligned with
the local WFRFT-chaotic sequence and the magnitude of
the correlation value is greater than the acquisition thresh-
old. The correlation value when the received signal is aligned

with the local WFRFT-chaotic sequence is given by

gs =
N∑
m=1

x̄k,mxk−1,myk,mȳk−1,m. (41)

The correlation value gs obeys a complex Gaussian distri-
bution according to the central limit theorem. According to
(14), the mathematical expectation of gs is equal to

µgs = E

(
N∑
m=1

x̄k,mxk−1,myk,mȳk−1,m

)
= NP2cbkbk−1e

j2πNfdTc . (42)

The variance of gs can be derived as

σ 2
gs = E (ḡsgs)− E (ḡs)E (gs)

= E

[(
N∑
m=1

xk,mx̄k−1,mȳk,myk−1,m

)]

·

(
N∑
m=1

x̄k,mxk−1,myk,mȳk−1,m

)]
− N 2P4c

= E

{[
N∑
m=1

xk,mx̄k−1,m
(
bk x̄k,me-j2πmfdTc−jφk + v̄k,m

)
·

(
bk−1xk−1,mej2πmfdTc+jφk−1 + vk−1,m

)]
·

[
N∑
m=1

x̄k,mxk−1,m
(
bkxk,mej2πmfdTc+jφk + vk,m

)
·

(
bk−1x̄k−1,me-j2πmfdTc−jφk−1 + v̄k−1,m

)]}
− N 2P4c

= E

[
N∑
m=1

xk,mx̄k,mx̄k−1,mxk−1,m
(
x̄k,mxk,mvk−1,mv̄k−1,m

+ v̄k,mv̄k,mxk−1,mx̄k−1,m + v̄k,mv̄k,mvk−1,mv̄k−1,m

+

N∑
m=1

x̄k,mxk,mxk−1,mx̄k−1,m

)]
− N 2P4c

= NP2c
(
Pcσ 2

+ Pcσ 2
+ σ 4

+ NP2c
)
− N 2P4c

= NP4c

(
2
SNR
+

1

S2NR

)
. (43)

Denote the magnitude of gs as ηs and the magnitude of µgs
as µηs . Since the WFRFT-chaotic sequence xk is a complex
Gaussian distribution, the real and imaginary parts of gs
are correlated when SNR = +∞. As the SNR decreases,
the correlation between the real and imaginary parts of gs
decreases. When the SNR is low, ηs approximately obeys the
Rice distribution. The probability density function of ηs can
be expressed as

fηs (ηs) ≈
2ηs
σ 2
gs

exp

(
−
η2s + µ

2
ηs

σ 2
gs

)
I0

(
2ηsµηs
σ 2
gs

)
, (44)
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where I0 (·) is the zeroth-order modified Bessel function, one
of the definition equations of which being

I0 (x) =
1
2π

2π∫
0

exp (xcosθ) dθ. (45)

The detection probability of time acquisition can be derived
as [22]

PD = P {ηs ≥ ZT}

=

∞∫
ZT

fηs (ηs)dηs

=

∞∫
ZT

f
2ηs
σ 2
gs

exp

(
−
η2s + µ

2
ηs

σ 2
gs

)
I0

(
2ηsµηs
σ 2
gs

)
dηs

= Q

(√
2µηs
σgs

,

√
2 ZT
σgs

)
, (46)

where the Marcum Q-function is defined as [23]

Q (a, b) =

∞∫
b

xexp
(
−
a2 + x2

2

)
I0 (ax) dx. (47)

C. ROOT MEAN SQUARE ERROR OF DOPPLER SHIFT
ESTIMATION
The residual frequency shift of the coarse Doppler frequency
shift estimation is processed by the fine estimation. There-
fore, the RMSE of the Doppler frequency shift estimation is
determined by the fine estimation.

According to (43), the variance of gfd can be easily derived
as

σ 2
gfd = (N − L)P

4
c

(
2
SNR
+

1

S2NR

)
. (48)

Similar to gs, it can be known that the phase angle of gfd
follows the Rice phase distribution. The probability density
function of phase angle θ can be expressed as [24]

fθ (θ) =
1
2π

exp (−K )+
1
2

√
K
π
cosθ

·exp
(
−K sin2θ

) [
1+ erf

(√
Kcosθ

)]
, (49)

where erf (x) = 2
√
π

∫ x
0 exp

(
−u2

)
du is the error function,

K =

∣∣µgfd ∣∣2
σ 2
gfd

= (N − L)
S2NR

2SNR + 1
. (50)

According to [26], the variance of the phase angle θ is approx-
imately equal to

σ 2
θ ≈

1
2K
=

2SNR + 1

2 (N − L) S2NR
. (51)

FIGURE 5. Output of the matched filters when time acquisition happens.
(a) The received signal lags the local WFRFT-chaotic sequence. (b) The
received signal leads the local WFRFT-chaotic sequence.

The estimate obtained by (32) is unbiased. Combining (32)
and (51), the RMSE of the Doppler shift estimate is approxi-
mately equal to

ε (L) =

√
σ 2
θ

(2πLTc)2

≈

√
2SNR + 1

8π2 (N − L)L2T 2
c S

2
NR

. (52)

According to (52), ε (L) takes the minimum value when

L =
2
3
N . (53)

V. SIMULATION ANALYSIS
In all simulations, the system initial value c0,1, the Tent
mapping parameters q, the WFRFT order α, the spreading
factor N and the chip duration Tc are set to 0.3, 0.65, 0.94,
1000 and 1µs, respectively.

A. SIMULATION ANALYSIS OF TIME ACQUISITION
Fig. 5 shows the output of the matched filters when time
acquisition happens. The Doppler frequency shift is set to
5 kHz and the SNR is set to 10 dB in Fig. 5. The correla-
tion peak attenuation caused by Doppler frequency shift is
avoided by differencing. When the received signal lags the
local WFRFT-chaotic sequence, the correlation peak appears
in the backward search channel. When the received signal
leads the localWFRFT-chaotic sequence, the correlation peak
appears in the forward search channel. In Fig. 5(b), the
attenuated correlation peak appearing in g2a is not caused
by Doppler frequency shift but is caused by partial chips
alignment between the received signal and the local WFRFT-
chaotic sequence. Fig. 5 shows that the proposed bidirectional
correlation search method can acquire the aperiodic WFRFT-
CD3S signal with Doppler frequency shift.
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FIGURE 6. False alarm probability and detection probability based on the
acquisition threshold.

FIGURE 7. Superior limit and inferior limit of the acquisition threshold
based on the SNR.

Fig. 6 shows the curves of false alarm probability and
detection probability as a function of the acquisition thresh-
old. It can be seen from Fig. 6 that the theoretical results of
detection probability and false alarm probability are basically
consistent with the simulation results. For the detection prob-
ability when the SNR is 0 dB, there is a deviation between
the theoretical value and the simulated value but the deviation
is limited. Both the detection probability and the false alarm
probability show an overall decreasing trend with the increase
of the acquisition threshold. Assume that the system detection
probability index PFI is set to 0.001. When SNR = 0dB, there
is an acquisition threshold ZT ∈ [41, 211] such that PF ≤ PFI
and PD ≥ PDI. When SNR = −10dB there is no acquisition
threshold ZT that PDI and PFI can be satisfied at the same
time.

It can be inferred from Fig. 6 that there is an optimal acqui-
sition threshold Z∗T such that PDI and PFI can be satisfied at
the lowest SNR. To analyze the optimal acquisition threshold
Z∗T of the proposed bidirectional correlation search method,
Fig. 7 shows the curves of the acquisition threshold superior
limit Zmax and inferior limit Zmin as a function of SNR.

FIGURE 8. RMSE of the doppler frequency shift estimation based on the
number of chips contained in the delay.

In Fig. 7. PDI and PFI are set to 0.999 and 0.001, respectively.
The acquisition threshold superior limit Zmax is the highest
acquisition threshold at whichPDI can be satisfied. The acqui-
sition threshold inferior limit Zmin is the lowest acquisition
threshold at which PFI can be satisfied. When SNR is greater
than−7.3dB, Zmin is lower than Zmax. When SNR is equal to
−7.3 dB, Zmin and Zmax are equal to 131.8. This means that
when SNR is greater than −7.3dB, setting ZT to 131.8 can
make PDI and PFI be satisfied at the same time. When SNR
is lower than −7.3dB, Zmin is greater than Zmax. Therefore,
PDI and PFI cannot be satisfied at the same time when SNR
is lower than −7.3 dB. In summary, the optimal acquisition
threshold Z∗T is 131.8 and the minimum acquirable SNR is
−7.3dB under the given simulation conditions.

B. SIMULATION ANALYSIS OF DOPPLER SHIFT
ESTIMATION
To analyze the influence of the delay in the difference process
on the Doppler frequency estimation error, Fig. 8 shows the
RMSE of the Doppler frequency estimation based on the
number of chips contained in the delay. As the SNR decreases
and the number of chips L increases, the deviation between
the theoretical and simulated results increases. The reason is
that as the SNR decreases and L increases, the value of K
in (50) decreases, thereby increasing the approximation error
in (51). The deviation between the theoretical and simulated
results in Fig. 8 is limited, which means that it is still feasible
to design the system parameters according to the theoretical
results in engineering. To ensure the resolution when the
RMSE is small, the vertical axis of Fig. 8 is limited to
[0 Hz, 50 Hz] and the simulation results when L is close to
N or 0 are not shown in Fig. 8. When L is close to N or 0, the
RMSE rises rapidly, and L is not suitable to be taken near N
or 0. Equation (53) shows that the RMSE is minimized under
the given simulation conditions when L = 2N

/
3 ≈ 667.

However, Fig. 8 shows that the RMSEs are close to each other
when L ∈ [550, 750]. Therefore, L can take a value around
2N
/
3 in engineering.

Fig. 9 shows the RMSE of the Doppler shift estimation as
a function of SNR for different residual Doppler shifts. The
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FIGURE 9. RMSE of the doppler frequency shift estimation based on SNR.

delay between the differentiated chips is set to L = 667. The
residual Doppler shift is in [−500Hz, 500Hz] under the given
simulation condition. Therefore, the residual Doppler shifts
in Fig. 9 are set to 100 Hz, 300 Hz, and 500 Hz. The RMSEs
under different residual Doppler frequency shifts are close to
each other when SNR ≥ −8 dB. When SNR < −8dB and
the residual Doppler shift is 500 Hz, the RMSE of Doppler
shift estimation increases significantly. The reason for this
phenomenon is the phase ambiguity caused by the residual
Doppler shift superimposed noise. It can be inferred from
Fig. 9 that the residual Doppler shift does not affect the
estimation error in the absence of phase ambiguity. However,
in (33), higher residual Doppler shifts are more likely to cause
phase ambiguity under the influence of noise. The minimum
acquirable SNR in the time acquisition phase is −7.3dB.
When SNR > −7.3dB, the RMSE of Doppler shift estimation
is less than 63 Hz.

VI. CONCLUSION
In this paper, we acquire the aperiodic WFRFT-CD3S sig-
nal with Doppler shift through two steps of time acquisi-
tion and Doppler shift estimation. The false alarm proba-
bility and detection probability of time acquisition, and the
RMSE ofDoppler frequency shift estimation are theoretically
analyzed. The theoretical results are verified by simulation
results. The simulation results show that the proposed bidi-
rectional correlation search method can achieve acquisition
regardless of whether the received WFRFT-CD3S signal
leads or lags behind the local WFRFT-chaotic sequence. The
optimal acquisition threshold is obtained through simulation
analysis. The optimal acquisition threshold is 131.8 and the
minimum acquirable SNR is −7.3 dB under the simulation
conditions given in Section V. When the SNR is greater than
−7.3 dB, the detection probability is greater than 0.999, the
false alarm probability is less than 0.001, and the RMSE of
Doppler frequency shift estimation is less than 63 Hz. The
Doppler frequency shift is assumed to be constant in this
study but the proposed method is applicable to the data link
of UAV where the Doppler frequency varies.

The optimal acquisition threshold was obtained by numer-
ical simulation and was not derived theoretically in this
study. In engineering, the optimal capture threshold can
also be obtained through the numerical analysis method in
Section V-A. It will be our future work to reduce the min-
imum acquirable SNR and derive a theoretical solution for
the optimal acquisition threshold.
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