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ABSTRACT Diabetic retinopathy (DR) is an essential factor that has caused vision loss and even blindness in
middle-aged and older adults. A system that can automatically perform DR diagnosis can help ophthalmol-
ogists save a lot of tedious work, such as DR grading or lesion detection. At the same time, patients can find
their diseases earlier and perform the correct treatment. However, most of the existing methods require many
DR annotations to train the model, and the DR data will vary to different degrees due to various shooting
tools. The above problems lead to the inefficient use of existing data in the experiment, limiting actual
deployment. To alleviate this problem, we propose a novel Graph Adversarial Transfer Learning (GATL) for
DR diagnosis in a deep model through transfer learning, including intra-domain alignment and inter-domain
alignment. The proposed GATL enjoys several merits. First, our GATL adopts the self-supervised training
to save the annotating cost in the target domain thus this domain adaptation method can significantly reduce
annotation cost compared to the supervised approaches. Second, we introduce the graph neural network to
extract potential features between unknown samples. Third, to enhance the robustness of the model, we use
adversarial training to perform both inter-domain and intra-domain alignment to further improve the model’s
classification accuracy. GATL achieved 94.3%, 97.5%, and 91.1% in accuracy, sensitivity, and specificity
in the APTOS dataset and 92.7%, 95.7%, and 89.7% in the EyePACS dataset, respectively. Extensive
experimental results on two challenging benchmarks, including APTOS 2019 and EyePACS, demonstrate
that the proposed GATL performs favorably against baseline DR classification methods.

INDEX TERMS Diabetic retinopathy classification, graph adversarial network, transfer learning, intra-
domain, inter-domain.

I. INTRODUCTION

Diabetic retinopathy (DR) is one of the eye diseases with
a rapidly increasing incidence in recent years. It is a com-
plication of diabetes, which can cause damage to the blood
vessels in the eye and eventually lead to vision loss, even
blindness [1], [2]. In modern social life, high blood pressure
and high blood sugar have become factors that plague the
health of most middle-aged and older people. This further
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increases the incidence of DR. Therefore, the early detection
of diabetic retinopathy is essential, significantly improving
the effectiveness of treatment. However, in clinical testing,
the early diagnosis of DR is relatively tricky. Even profes-
sional ophthalmologists need to spend a lot of time and energy
to compare color images. Therefore, developing a system for
automatic detection or classification of DR is very meaning-
ful and necessary.

An automated diagnostic system will review retinal images
and perform DR classification based on the learned experi-
ence. In some public retinal datasets, DR is usually classified
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(a) class 0

(b) class 1

FIGURE 1. lllustration of different DR grades.

by experts into the following five categories [3]: RO-no
DR, R1-mild, R2-moderate, R3-severe, and R4-proliferative.
In detail, the type of DR is affected by several factors, such
as the number of lesions, area size, and appearance in fundus
images. At the same time, the above five categories can
also be divided into two different categories according to
the standard [3], [4], [5]. For instance, Figure 1 provides an
illustration of five DR grades in the Kaggle DR dataset [6].
Notably, the features of DR lesions in fundus images are com-
plex and diverse. Therefore, the diagnostic system needs to
extract critical features with discriminative from the sample
images to perform DR screening accurately. In recent years,
deep learning has achieved excellent results in many fields,
and there are also many studies that apply deep learning to DR
classification [7], [8], [9]. Dutta et al. [7] introduce an auto-
mated knowledge model to identify the critical antecedents of
DR, which identify the target class thresholds weighted Fuzzy
C-means algorithm. Kassani et al. [8] propose a new feature
extraction method using a modified Xception architecture for
the diagnosis of DR disease, which is based on deep layer
aggregation that combines multilevel features from different
convolutional layers of Xception architecture. Pratt et al. [9]
develop a network with CNN architecture and data augmen-
tation, which can identify the intricate features involved in
the classification task such as micro-aneurysms, exudate, and
hemorrhages on the retina and consequently provide a diag-
nosis automatically and without user input. There are some
researches based on pixel-level supervision [10], or patch-
level supervision [5], [11], [12] also have been proposed.
Since the annotation of fundus images requires manual anno-
tation by experienced domain experts, the advanced meth-
ods [13], [14], [15] will be limited in flexibility and scalability
in actual deployment.

Although the above studies all demonstrate the effective-
ness of their methods on a single dataset, the problem of
domain adaptation is ignored in practical application scenar-
ios. For example, in clinical experiments, imaging equipment
for acquiring various image data may be provided by multi-
ple manufacturers. These devices have specific differences
in software and hardware, resulting in different levels of
image quality gaps, and annotating sufficient data in new sce-
narios requires cost-expensive professional labor. Therefore,
when a model trained in a fixed source domain is applied
to another unknown domain, its diagnostic accuracy usually
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drops significantly. One way to address this problem is to
fine-tune the model trained on the source domain with enough
labeled samples from the target domain to align the inter-
domain differences. However, the annotation data of medical
images is minimal, manual annotation requires a lot of time
and energy from experts, and the economic cost is high.
Therefore, it is necessary to make effective use of label data.
As aresult, the method of semi-supervised field adaptation is
of great significance for DR classification.

Traditional domain adaptation methods usually use Convo-
lIutional Neural Networks (CNN) as the backbone to extract
the internal features of the samples for classification. This
ignores the potential connections between retinal images.
In other words, GNN can ignore the invalid features in the
CNN-extracted features and achieve the effect of noise reduc-
tion. There is already a large body of literature available
on this application [16], [17], [18], [19], [20], [21], [22].
Therefore, the Graph Neural Network (GNN) can extract
the potential features between images to use more practical
information for DR detection. Nevertheless, the problem of
model instability is often encountered during the experiment.
Through experience, the model under adversarial training is
often very robust, and adding adversarial loss is an excel-
lent way to enhance the stability of the model. In addition,
if the model is simply constrained by the method of intra-
domain alignment, the model trained with a large amount
of source domain data may not be suitable for the target
domain. Therefore, adding a method of inter-domain align-
ment can further improve the model effect. Thus, we propose
anovel Graph Adversarial Transfer Learning (GATL) method
for diabetic retinopathy classification in this paper. GATL
not only focuses on the pixel characteristics of the retinal
image itself, but it also extracts the potential relationships
between samples, making the most of the original data.
At the same time, GATL uses the high-confidence prediction
value of the target domain as a pseudo-label and uses the
confrontation training of two classifiers to promote further
the intra-domain alignment of the source domain and the
target domain. Finally, the newly designed discriminator will
narrow the relationship between domains and align the data
distribution of the source domain and target domain.

The main contributions of our method are as follows:

(1) We provide a brand-new graph-based domain-
adaptive approach to investigate additional fundus image
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characteristics, and we employ transfer learning to success-
fully make use of additional data for DR classification of
unidentified data.

(2) We train the model by designing two classifiers for
adversarial purposes to improve the robustness of the model
and also to improve the classification performance of the
model.

(3) We design a discriminator and obfuscate the discrimi-
nator’s judgment of the source and target domain data, allow-
ing the model to be further compared between domains on
top of the intra-domain comparison.

Il. RELATED WORK

This section first introduces some recent research results on
the classification of diabetic retinopathy and then summarizes
the successful applications of some domain adaptation meth-
ods in medical images.

A. RETINAL IMAGE CLASSIFICATION

With the continuous development of computer vision, some
computer-assisted retinal image research has also achieved
great success [23], [24], [25], [26], [27], [28], [29], [30],
[31]. For example, Chen et al. [23] propose a general deep
learning model for DR classification, which uses a 2-stage
training method to solve the overfitting problem. By the
way, they also provide a simple method of addressing the
imbalance of DR databases. Erciyas et al. [24] develop a deep
learning-based method in which diabetic retinopathy lesions
are detected automatically and independently of datasets, and
the detected lesions are classified. Vives et al. [25] present
a bio-inspired approach on synaptic metaplasticity in con-
volutional neural networks to detect diabetic retinopathy.
Jadhav et al. [26] design an optimal feature selection-based
diabetic retinopathy detection method which can develop
automated DR detection by analyzing the retinal abnormal-
ities like hard exudates, hemorrhages, Microaneurysm, and
soft exudates. Canayaz et al. [27] propose an approach based
on feature selection with wrapper methods used for fundus
images. Abdelmaksoud et al. [28] introduce E-DenseNet,
a hybrid deep learning method. Based on transfer learn-
ing, they combine the EyeNet and DenseNet models. Zhang
et al. [29] design a Source-Free Transfer Learning technique
for detecting referable DR that uses unannotated retinal pic-
tures and only uses the source model during the training
process. Gangwar et al. [30] tackle the challenge of automated
diabetic retinopathy diagnosis and suggest an unique deep
learning hybrid solution. Yi et al. [31] suggest the network
known as RA-EfficientNet, in which a residual attention (RA)
block is added to EfficientNet in order to extract additional
features and address the issue of minute changes between
lesions.

However, none of the above methods considers domain
adaptation issues. The fundus data taken by different equip-
ment are different to a certain extent. Moreover, in practice,
annotated data is challenging to obtain due to the high cost,
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requiring limited available data to design domain adaptation
methods.

B. DOMAIN ADAPTATION METHODS IN MEDICAL IMAGE
CLASSIFICATION

In deep learning research, data labels are often the most
expensive and difficult to obtain. This problem is particularly
manifested in medical images. Therefore, how to efficiently
use existing tags to predict unknown data has become a hot
issue. Domain Adaptation [32] is one of the popular research
directions. In recent years, many successful domain adapta-
tion methods [33], [34], [35], [36], [37] have been widely
used in medical images. Wang et al. [33] propose a method
called deep adversarial domain adaptation to improve the
performance of breast cancer screening using mammography.
They aim to extract the knowledge from a public dataset
and transfer the learned knowledge to improve the detection
performance on the target dataset. Castellanos et al. [34]
design a method that combines neural networks and domain
adaptation in order to carry out unsupervised document bina-
rization. Abbet et al. [35] propose a method for colorectal
cancer tissue phenotyping to Adapt, which takes advantage
of self-supervised learning to perform domain adaptation
and remove the necessity of a fully-labeled source dataset.
Konyakhin et al. [36] present their solution to the Traffic4Cast
2021 Core Challenge, which employs multiple domain adap-
tation techniques to fight the domain shift. Hong et al. [37]
report an unsupervised domain adaptation framework for
cross-modality liver segmentation via joint adversarial learn-
ing and self-learning.

Inspired by the above migration methods, to effectively
use open source data tags and reduce the loss caused by
domain transformation, we propose a GATL network for DR
classification.

lil. METHOD
This paper introduces a graph adversarial transfer learning
method for DR classification. In this section, we divide GATL

into two stages. Finally, we report the whole training schema
of our GATL.

A. THE FIRST STAGE OF GATL
We define the input data as X X¢ U Xy with N =

Ns + N samples, where Xg = {xf, e X, ,xISVS] are

source retinal images with the corresponding labels Ys =
denotes the unlabeled data from target domain.

The purpose of domain adaptation is to train a classifier F,
which can accurately predict the sample category under the
premise of a large amount of source domain data support and
can be well applied to target domain data. In our proposed
GATL, we use resnet50 as the backbone of the CNN feature

extractor G, to extract the intrinsic features of the fundus
images. At the same time, the GNN feature extractor G, will

S _ t t t
. ,yNS},andXT = {xl,,m S Xps s Xy,
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FIGURE 2. GATL framework description: First, fundus images are fed to a feature extractor that combines CNN and GNN architecture. Then, the extracted
key features are respectively transmitted to classifiers F; and F, for adversarial training, and discriminator D is trained for confusing the source and
target domains. Finally, the entire model is trained simultaneously from two perspectives of intra-domain and inter-domain alignment.

explore the potential connections between samples. The bi-
classifier | and F; will output the prediction vector of each
retinal image.

We first feed the source domain data to the CNN feature
extractor G., and update the CNN network in the following
supervised loss,

—ZZﬁce

tlnl

(<)) %)
(M

where L., denotes the standard cross-entropy loss function.
0, 0r1, and Op> represent the parameters of G., F1 and
F2 respectively.

In a short time, we can obtain a feature extractor G. with
a certain feature representation ability. Then we join the
GNN extroctor G, after G.. With the obtained representation
neighbor method to build the graph, the formula is as follows,

min  Lees (Xs, Ys) =
0c,0r1,0r2

, h‘;vs } from G., we use the k-nearest

2
dy = |5 — s @)

where dj; denotes the similarity between the i-th feature &}
and j-th feature hjs. from Hg. By sorting dj;, we can obtain the
top k features with high similarity. At the same time, the sort
index is Idx = {i1,--- , im, - - -}, in which i,, represents the
m-th closest neighbor feature to i-th one.

Thus, the adjacency matrix A can be obtained according to
the following rules.

1,in <k
k_ »fm =
Aif_{O,im>k

In this way, we can use G, to extract special features in the
graph structure. Assist by the labels, we update backbone and
replace Eq(1) in the following way,

ZZﬁce

i=1 n=1

3

(Ge (Ge () - 71)
“

min
0c,0g.,0f1 ,9f2
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where 6, denotes the parameters of G,. The features extracted
through the cooperation of G, and G, will be sent to F'1 and
F2. We designed a self-supervised loss L, to enhance the
robustness of the model. The formula is as follows,

»Css:|Pl_P2|l (5)

where P and P, represent the output predict vectors from F
and F, for the same source input. In addition, |-|; represents
the [; distance.

B. THE SECOND STAGE OF GATL

After training the model with a large amount of labeled source
domain data, we feed the target domain data to the network
and perform high-confidence label filtering on the softmax
output of the classifier. The filtered annotations are used as
pseudo labels Y7 = {y},, -+, ), -} for the fundus image
of the target domain.

In this way, we can use the target domain data in a self-
supervised manner. At the same time, self-supervised training
can reduce the fuzzy samples of the decision boundary. The
loss function is as follows,

Lee ZZﬁw

n
0c,0¢.,071,0¢2 o1

(©)

where n; is the number of selected high-confidence pseudo-
label.

The difference from the first stage is that in order to per-
form inter-domain alignment, we design a discriminator D to
identify whether the image belongs to the source domain or
the target domain. The purpose is to confuse the discrimina-
tor’s recognition of inter-domain samples so that the feature
extractor can extract cross-domain features. The inter-domain
loss is as follows,

min Lgis = |D (G, (Ge (7)) —

04,0g,0c

D (G (Ge ()], ()

where 6, denotes the parameter of D. By reducing the sample
difference between domains GATL will narrow the distance
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between the source domain and the target domain, and further
improve the accuracy of the model applied to the target
domain.

C. TRAINING STRATEGY
GATL aims to perform DR classification by aligning the
category distribution within and between domains in this
work. We divide the GATL training process into the following
three steps:
Step 1. Training the model by the labeled source data
Use the large amount of source domain data to learn G,
Gg, F1, and F2 together to reduce the empirical risk of the
source distribution. The model runs in the following way,

min £ = ALees — (1 — A) Ly ®)

where A denotes the balance factor.

Step 2. Self-supervised learning for the unlabeled target
domain

Join the self-supervised training of the target domain and
inter-domain alignment. Freeze the parameters of feature
extractors G, and G, and then update classifiers /' and F; to
maximize the difference in probability output between them
while maintaining classification accuracy. The model runs
under the adversarial loss,

mil’l £ = )\.lﬁce_y - )\'2£SS - )\3£d1s (9)

where A1, A, and A3 denote the balance factors.
Step 3. Further optimization on feature extractors
Freeze the parameters of the classifiers F; and F», and
update the feature extractors G, and G, to minimize the dif-
ference between the classifiers while minimizing the differ-
ence in sample characteristics between domains. The model
runs in the following way,

min £ = AL + (1 — A) Lyis (10)

After repeating the above steps several times, GATL can
effectively classify DR and perform inter-domain alignment
based on intra-domain alignment. The model optimization is
summarized in Algorithm 1.

IV. EXPERIMENTS

A. IMPLEMENTATION DETAILS

The entire experimental process is completed using GeForce
2080ti GPU under the PyTorch framework. According to
statistics, the model converges around 40 epochs, at which
point the curve of the loss function also reaches a smooth
state. It took about 6 hours from start to model convergence.
Each retinal image is adjusted to 512*512 pixels and aug-
mented by random rotation, cropping, and contrast-color aug-
mentation before input to the network. In the GATL training
process, we choose Adam as the optimizer, the batch size is
32, and the epoch is set to 50. For the learning rate setting,
we chose the strategy of dynamically adjusting the learn-
ing rate, which gradually decreases according to the epoch
change. The initial learning rate is set to 0.1. In detail, we use
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Algorithm 1 Graph Adversarial Transfer Learning (GATL)

Input data: Source data Xg with corresponding labels Y,
target data Xr, every images are reshaped into 512 x 512 and
augmented, batch size =32, learning rate=0.0001, number of
epochs T, the parameters A and k.
Initialize network parameters for G., Gg, F1, F> and D;
for t(epoch) = 0 to T do (step 1)
Extract the feature vectors from G, and G, for source data
Obtain the predicted probabilities from F; and F, for source
features
Optimize the parameters in G¢, G, F1 and F; by minimiz-
ing Eq.8
end for
for t(epoch) = T to T> do (step 2)
Extract features from G, and G, for target data
Obtain the predicted probabilities from F and F; for target
features
Freeze G, and G
Optimize the parameters in | and F»> by minimizing Eq.9
end for
for t(epoch) = T, to T3 do (step 3)
Freeze F| and F»
Optimize the parameters in G, and G, by minimizing
Eq. 10
end for
Return: The trained network parameters

resnet-50 as the backbone, and the classifier is composed of
linear layers. For parameter settings, the balance factor A and
KNN parameter k in graph building are 0.4 and 4. As for
the data division, the source data are all fed into the network
training, and the target domain is split into training and testing
sets with an 80:20 ratio. The available codes and trained mod-
els will be available at https://github.com/huanw0813/GATL
once the paper is published.

B. DATABASE DESCRIPTION
The proposed model is evaluated on publicly available
EyePACS [6] and APTOS 2019 [38] datasets.

EyePACS compiled 88,702 color fundus images from the
patients’ left and right eyes. Multiple devices took these
images under different imaging conditions. To uniformly pro-
cess these fundus images with specific differences, we resize
them to 512*512 pixels in the preprocessing stage. After
being annotated by experts, these images were classified into
five categories: 0 - No DR, 1 - Mild, 2 - Moderate, 3 - Severe,
and 4 - Proliferative DR. In addition, the proportion of various
types of images in this dataset is unbalanced, and the specific
distribution is shown in Table 1.

APTOS 2019 is an open-source retinal dataset collated
by the Asia Pacific Tele-Ophthalmology Society, in which
fundus images were collected under different imaging condi-
tions. There are 3662 images in this dataset, all uniformly pre-
processed and rescaled to 512*512 pixels. Clinicians labeled
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TABLE 1. The class distribution of datasets.

Label EyePACS  APTOS 2019
DR O 65343 1,805
DR 1 6205 370

DR 2 13153 999

DR 3 2087 193

DR 4 1914 295

these images into the following five categories: 0 - No DR,
1 - Mild, 2 - Moderate, 3 - Severe, and 4 - Proliferative DR.
The category distribution of the dataset is organized into
Table 1.

We divide the samples in these two data sets into binary
categories according to the normal/abnormal criteria.

C. EVALUATION METRICS

To evaluate the performance of the proposed method,
we employ accuracy (ACC), precision (PRE), sensitivity
(SEN), and specificity(SPE) for binary normal/abnormal DR
grading tasks. In this section, we also use the ROC curve and
confusion matrix to evaluate the performance of GATL. The
evaluation formulas are as follows,

TP + TN
Accuracy = (11
TP+ TN + FP + FN
.. TP
Precision = ——— (12)
TP + FP
e P
Sensitivity = ——— (13)
TP + FN
Specificit N (14)
ecificity = ————
Peeiey = IN ¥ FP

where TP means that the predicted value and the true value
are sick; FP means that the predicted value is sick and the true
value is healthy; TN indicates that both the predicted value
and the true value are healthy; FN means that the predicted
value is healthy, and the true value is sick.

We also included AUC in the evaluation. AUC is a per-
formance metric to measure the quality of a model, and it is
defined as the area under the ROC curve. Usually, researchers
can utilize the AUC area to measure the effectiveness of the
binary classification model, representing the probability that
the predicted positive example is ranked ahead of the negative
example. The more significant the AUC value, the better the
classification effect of the classifier.

D. EVALUATION ON DR CLASSIFICATION

1) COMPARE WITH BASELINE METHODS ON APTOS
DATASETS

In order to further analyze the performance of GATL on
DR classification, we have selected some baseline meth-
ods for comparison. The comparison results are shown in
Tables 2. From Table 2, it can be observed that the proposed
GATL achieves the highest accuracy of 94.3% among all the
methods, which is 1.9% higher than the supervised meth-
ods SE-ResNeXt50 and Vgg-16, 3.1% higher than SFTL,

119076

ROC curve

1.09

0.8 7 ’

0.6 e

True Positive Rate
AY

0.2 e

’ — AUC=0.99

0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

FIGURE 3. ROC curves of the proposed GATL for DR classification on
APTOS 2019 dataset, where FPR is False Positive Rate.

2.8% higher than AmResNet50, 3.25% higher than PB-CNN,
2.3% higher than ShallowNet+PI, and 3.6% higher than
EfficientNet. This shows that GATL has a great advantage
in DR classification accuracy. GATL also achieves the high
sensitivity of 97.5% among all the baseline methods, which
is 10.4% higher than SE-ResNeXt50, 16.8% higher than
EfficientNet, 2.4% higher than SFTL, 8.5% higher than
AmResNet50, and 4.9% higher than Vgg-16. This indicates
that the misdiagnosis rate of GATL is low, and it can play an
excellent effect in clinical applications.

2) COMPARE WITH BASELINE METHODS ON EyePACS
DATASETS

We exchanged the source and target domains of the proposed
GATL, and chose the corresponding baseline method for
comparison. The comparison results are shown in Tables 3.
From Table 2, it can be observed that GATL achieves
the highest accuracy of 92.7% among all the methods on
EyePACS datasets, which is 1.8% higher than Inception V3,
5.36% higher than Bi-channel CNN, 7.2% higher than ViT,
and 9% higher than Vgg-16. Also, in terms of sensitivity,
GATL achieves the highest value of 95.7%, which is 41.2%
higher than VGG16, 1.2% higher than Custom CNN, 18.77%
higher than Bi-channel CNN, 2% higher than ViT, and 15.7%
higher than Modified VGGNet.

Summarizing the results of the above two tables, we can
summarize the following conclusions, (1) GATL still has
a high accuracy rate after swapping the source and target
domains, which means the proposed model has high robust-
ness due to the adversarial loss. (2) Our domain adaptation
method performs better than some supervised methods. This
shows that after intra-domain and inter-domain alignment,
the classification effect of GATL can be compared with some
supervision methods.

3) PERFORMANCE OF ROC VISUALIZATION
In order to evaluate the performance of the proposed model,
we draw ROC curves for two public data sets as shown in
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TABLE 2. Compared with baseline methods for normal/abnormal DR classification on APTOS 2019 datasets, where FPR is False Positive Rate.

Methods APTOS 2019
Accuracy Sensitivity ~ Specificity ~ Precision ~ FPR

SE-ResNeXt50 [39] 92.4 87.1 98.2 -

EfficientNet [40] 90.7 80.7 97.7 -

Vgg-16 [41] 92.4 92.6 92.0 -

SFTL [29] 91.2 95.1 85.8 -
EfficientNet-B3 [42] | - 98 98 -

AmResNet50 [25] 91.5 89 - -

PB-CNN [43] 91.05 - - -
ShallowNet+PI [44] 92 - - -

Removing L 4; 91.8 95.3 88.6 92.4 42
GATL 94.3 97.5 91.1 94.5 2.7

TABLE 3. Compared with baseline methods for normal/abnormal DR classification on EyePACS dataset, where FPR is False Positive Rate.

Methods EyePACS
Accuracy  Sensitivity ~ Specificity ~ Precision =~ FPR
Inception V3 [45] 90.9 - - -
VGGI16 [46] 83.7 54.5 93.7 -
Custom CNN [47] - 94.5 90.2 -
Modified VGGNet [48] | - 80 92 -
Bi-channel CNN [49] 87.37 76.93 93.57 -
ViT [50] 85.5 93.7 - -
Removing L4, 89.8 92.5 88.2 90.2 7.5
GATL 92.7 95.7 89.7 92.9 4.6
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FIGURE 4. ROC curves of the proposed GATL for DR classification on
EyePACS dataset.

Figure 3 and 4. ROC curve is an analysis tool of the coordinate
scheme in signal detection theory. ROC analysis can not be
affected by cost/benefit when making decisions and giving
objective and neutral suggestions.

The areas above and below the diagonal in the ROC plot
are opposing areas. The diagonal lines represent the results
of random classification. The closer the curve is to the upper
left corner in the comparative experiment, the better the
classifier’s performance. It can be seen from Figure 3 that
GATL is very effective in the task of DR classification. The
value of AUC reaches 0.99 for the DR binary classification
task. Also, in Figure 4, the value of AUC reached 0.98 in the
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® Normal
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FIGURE 5. TSNE of the proposed GATL for DR classification on APTOS
2019 dataset.

DR classification. This shows that GATL has improved with
training in the migration of the two data sets, which proves
the effectiveness of GATL.

4) PERFORMANCE OF TSNE VISUALIZATION
We also made TSNE diagrams for two datasets simultane-
ously to show the effect of GATL more intuitively.

TSNE is a data visualization tool for data dimensionality
reduction. It can reduce and visualize high-dimensional data
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® Abnormal

FIGURE 6. TSNE of the proposed GATL for DR classification on EyePACS
dataset.

Normal

True label

Abnormal

Normal Abnormal
Predicted label

FIGURE 7. Confusion matrix of the proposed GATL for DR classification
on APTOS dataset.

and intuitively display the distribution of data samples. As
shown in Figure 5, the fundus image features after passing
through the GATL network are clearly divided into two cat-
egories. The same effect was also shown on another dataset
as shown in Figure 6, which shows that GATL uses GCN to
extract potential features between samples, which improves
the classification accuracy.

5) PERFORMANCE OF CONFUSION MATRIX

In order to analyze the classification performance of GATL
and adjust the parameters, we draw confusion matrices as
shown in Figures 7 and 8 based on two public datasets. The
confusion matrix can quickly visualize the proportion of var-
ious misclassified categories into other categories, which can
help researchers adjust subsequent models, such as setting
weight attenuation for some categories. From Figure 7 and 8
we can observe that the misdiagnosis rate of GATL is very
low, which is of great significance in practical applications.
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FIGURE 8. Confusion matrix of the proposed GATL for DR classification
on EyePACS dataset.
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FIGURE 9. The graph of the loss function from start to the model
convergence.

6) PERFORMANCE OF LOSS GRAPH

To imply the model training performance, we visualize the
graph of loss function from start to model convergence in
the training process. Figure 9 summarizes the training loss
curves for APTOS2019 and EyePACS datasets, showing the
model begins convergence at 10 epochs and remains stable in
the following training steps. This visualization further proves
the model robustness of our GATL approach, bringing it into
correspondence with above-mentioned visualizations.

7) FEATURE MAP VISUALIZATION FOR INTERMEDIATE STEPS
To visualize the sample images in the intermediate steps,
we generate feature maps from the first convolutional layer
for an abnormal retinal image. As shown in Figure 11, it is
key evidence to visualize the shape and texture information
seen by the convolution layers. That demonstrates the pro-
posed GATL can explicitly identify and recognize patterns
inside the network models.
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FIGURE 10. CAM images of APTOS 2019, where (a), (b) are abnormal
samples and (c), (d) are normal samples.

TABLE 4. Compared with baseline methods for multiple DR classification
on APTOS 2019 datasets.

Methods APTOS 2019
Accuracy Sensitivity ~ Specificity

ResNet50 [52] 74.6 56.5 85.7
MobileNet [53] 79 76.4 84.6

Vgg [41] 80 85.3 86.6
Bodapati et al. [54] | 80.9 - -

Bodapati et al. [55] | 82.5 - -

GATL 83.5 69.2 97.8

8) CLASS ACTIVATION MAP VISUALISATION

To further evaluate the performance of GATL, we visualized
the Class Activation Map (CAM) of the features extracted
by GATL, as shown in Figure 10. CAM is a tool that helps
researchers [51] visualize CNNs. It can clearly show the
image regions that the network is focusing on. DR can present
with microaneurysms, hemorrhages, hard and soft exudates,
and microvascular abnormalities within the retina, which are
usually in the vicinity of blood vessels. The CAM diagram
shows that the GATL network’s attention is concentrated on
the lesion region surrounding the vessel in the DR image,
demonstrating that GATL is capable of accurately localizing
the vessel location for lesion identification.

E. FURTHER ANALYSIS

In this section we analyze some factors that affect GATL
performance.

1) THE IMPACT OF PRE-TRAINING
In order to explore the effect of pre-training on the
model effect, we compared the effect of pre-training and
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FIGURE 11. The feature map visualization for an abnormal sample.
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FIGURE 12. Pre-training influence diagram.

non-pre-training models. As shown in Figure 12, the red line
represents the change process of the classification accuracy
with the increase of epoch after adding ImagNet pre-training.
The blue line represents the result of not adding pre-training.
From 12, it can be observed that the accuracy of the pre-
trained GATL is higher than that of the non-pre-trained model
at the beginning of training, which is because the pre-trained
network model already has the potential to extract simple
features. After a period of training, the accuracy of the pre-
training model has gradually grown from 68% to 90%. At the
same time, the accuracy of the un-pre-trained model after
training increased from 60% to 83%. This means that pre-
trained models can converge faster and achieve good results.
In subsequent training, the accuracy of both the pre-trained
GATL and the non-pre-trained network gradually leveled off,
but the accuracy of the pre-trained GATL was higher than
that of the non-pre-trained model. This demonstrates that
the pre-trained network can extract essential characteristics
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® Normal
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FIGURE 13. The TSNE diagram after removing the graph neural network.

and, to some part, demonstrates the superiority of transfer
learning itself, implying that using transfer learning to DR
classification is efficient. GATL can effectively use the source
domain data, transfer the knowledge of the known domain to
the new domain, and ensure that the good effect of the model
can be further improved. In the diagnosis of some clinical
diseases, experts need to spend a lot of energy to screen the
medical results of patients, which causes labeled data to be
precious and challenging to obtain. Our GATL reduces the
model’s dependence on labeled data to some extent.

2) IMPACT OF THE GRAPH NEURAL NETWORK

We then analyze the influence of the GNN module.
We removed the GNN module when performing experiments
on the EyPACS data set and finally reduced the dimensions
of the extracted features and made TSNE maps, as shown in
Figure 13. It can be observed that after removing the GNN
module, the number of fuzzy samples has increased a lot. This
shows that the graph neural network is of great significance
for the extraction of latent features. The GNN module plays
an essential role in GATL.

3) THE EFFECTIVENESS OF DISCRIMINATOR D

The discriminator D provides the domain-differentiation abil-
ity, which is optimized by loss Lg;s. To evaluate the effective-
ness of discriminator D, this paper removes Lg;s in the final
objective function, and it obtains accuracies of 91.8% and
92.7% on APTOS2019 and EyePACS datasets (Table 2 and
Table 3), respectively. That states the discriminator improves
the accuracy performance of 2.5% and 2.9% on both datasets,
and verifies the necessary of the discriminator D.

4) THE IMPACT OF MULTIPLE CLASSIFICATIONS

To explore whether the proposed GATL is generalizable in
a multiclassification task, we conducted experiments on DR
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FIGURE 14. Variation in GATL accuracy at different k values.

TABLE 5. Accuracy of GATL for different values of the balance coefficient
Ainstep 1.

stepl | APTOS 2019

A Accuracy Sensitivity
0.1 86.6 83

0.2 89 87.2

0.3 89.8 87.2

0.4 91.2 90.8

0.5 89.3 88.6

TABLE 6. Accuracy of GATL for different values of the balance coefficient
X1, A2, and A, in step 2.

step2 APTOS 2019

A1 A2 A3 Accuracy Sensitivity
0.3 0.3 04 | 87.2 88.2

0.35 0.35 0.3 | 89.6 90.4

0.4 0.4 0.2 | 90.2 90.8

0.45 045 0.1 | 894 89.6

with five classifications and collated the results into Table 4
for comparison with other methods. It can be observed that
GATL also achieved good results on the multiclassification
task. 83.5%, 69.2% and 97.8% were achieved in terms of
accuracy, specificity and sensitivity, respectively. Of these,
GATL achieved the best results in terms of accuracy and
specificity, suggesting that GATL has general ability and a
low rate of misdiagnosis.

5) THE IMPACT OF K

In our model, k is a significant adjustable parameter of the
relationships initializing module, which has a huge impact
on accuracy. In order to explore the effect of changing k
values on the model, we took different k£ values for several
experiments when performing binary classification under the
APTOS dataset. Limited by the memory of the graphics card,
we only set k empirically between [2], [7], and the results
are shown in Figure 14. It can be observed that the accuracy
of GATL reaches its highest value when k is 4, so for the
experiments, we set k = 4.
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TABLE 7. Accuracy of GATL for different values of the balance coefficient
A in step 3.

step3 | APTOS 2019

A Accuracy Sensitivity
0.1 91.2 93.4

0.2 91.6 92.8

0.3 92.6 94.6

0.4 94.3 97.5

0.5 93.7 96.8

Similarity Metric

100
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g
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FIGURE 15. The performance of GATL when using different similarity
metrics.

6) THE IMPACT OF A

To analyze the effect of the balance coefficients on the
experiment, we adjusted and recorded the accuracy of GATL
with different parameters during different training sessions
as shown in Tables 5, 6, and 7. As can be observed from
Table 5, the model achieves its best results in Step 1 when
A = 0.4. From Table 6, it can be observed that in Step 2,
to maximize the differentiation of classifiers F'1 and F2 while
ensuring accuracy, the model achieves the highest accuracy
and sensitivity when A1 = 0.4, A, = 0.4, and A3 = 0.2.
In Step 3, as seen in Table 7, GATL achieves the best results
when A = 0.4.

7) THE IMPACT OF SIMILARITY METRICS

Many studies have found that in some data the Euclidean
distance does not reflect the true distance between features
very well [56], [57], [58]. In order to analyze which similarity
measure is more suitable for GATL in DR data, we experi-
mented with three similarity metrics on APTOS dataset and
recorded the variation in model performance in Figure 15.
It can be observed that the use of cosine and Euclidean
distances has little effect on model accuracy, but the sensi-
tivity is relatively low when GATL uses cosine distances to
calculate feature similarity. This implies that the numerical
differences are more prominent for lesion characteristics in
DR images than the dimensional differences. In addition to
this, we experimented with the Minkowski distance, but the
adjustment of the parameter p in the Minkowski distance was
difficult. In the end, we empirically set p to 1.5, and the
results are shown in Figure 15. The experimental findings
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demonstrate that the Euclidean distance is more suited for
determining how related DR image features are.

V. CONCLUSION AND DISSCUSSION

This study proposes a novel graph adversarial transfer learn-
ing method to achieve DR classification via the domain
adaptation structure. In order to successfully employ the
extra information for DR classification of unidentified data,
we first provide a unique graph-based domain adaption strat-
egy for investigating additional fundus image characteristics.
Second, we create two adversarial classifiers for use in train-
ing the model. This enhances the model’s classification per-
formance in addition to strengthening its robustness. Finally,
we design a discriminator and obfuscate the discriminator’s
judgment of the source and target domain data such that the
model may be aligned between domains on top of the intra-
domain alignment. Specifically, GATL combines the charac-
teristics of convolutional neural networks and graph neural
networks to extract the pixel features and potential features
of fundus images. Under the guidance of adversarial training,
the goal is to align within and between domains. Extensive
results on two public datasets show that our GATL method is
better than some baseline DR classification methods.

GATL is well compatible with a wide range of data, making
more efficient use of existing data while still maintaining
a high accuracy rate for classifying DR. However, the only
regret about GATL is that it cannot take into account the
fine classification of lesions. Because of the small size and
similarity of DR lesions, GATL can only determine with high
accuracy whether a lesion is present or not, but further analy-
sis is required to determine the degree of illness. We hope
to overcome this problem in our next research work and
contribute to the fine classification of DR.
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