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ABSTRACT Automatic machine translation plays an important role in reducing language barriers between
people speaking different languages. Deep neural networks (DNN) have attained major success in diverse
research fields such as computer vision, information retrieval, language modelling, and recently machine
translation. Neural sequence-to-sequence networks have accomplished noteworthy progress for machine
translation. Inspired by the success achieved by residual connections in different applications, in this
work, we introduce a novel NMT model that adopts residual connections to achieve better performing
automatic translation. Evaluation of the proposed model has shown an improvement in translation accuracy
by 0.3 BLEU compared to the original model, using an ensemble of 5 LSTMs. Regarding training time
complexity, the proposed model saves about 33% of the time needed by the original model to train datasets
of short sentences. Deeper neural networks of the proposedmodel have shown a good performance in dealing
with the vanishing/exploding problems. All experiments have been performed over NVIDIATesla V100 32G
Passive GPU and using the WMT14 English-German translation task.

INDEX TERMS Information flow, neural machine translation, neural sequence-to-sequence networks,
residual connections, WMT14 English-German translation task.

I. INTRODUCTION
Alongside increasing globalization and exchange of infor-
mation come persistent need for means of translation. There
are between 6000 and 7000 natural languages around the
world [1]. Human translation is slow and expensive, so,
machine translation plays an important role in reducing lan-
guage barriers and facilitating communication between peo-
ple speaking different languages [2]. Machine translation is
the subfield of computational linguistics that aims to study
the translation of text and speech from a language to another
by means of software [3], [4], [5].

In spite of the achievements made that indicated a near end
to all the problems of machine translation, machine transla-
tion remains a big challenge. Different languages don’t only
have different vocabularies but also different styles and struc-
tures. So, the development of a machine translation system
faces several challenges: [6].
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1) Word meaning: various words have distinct meanings.
Nevertheless, sometimes the same word may have dif-
ferent meanings. In this case, it’s difficult to know
which one of these meanings is intended, and conse-
quently, generating the correct translation in the other
language is difficult too.

2) Order of the word: there are different word orders.
Some languages are subject to the order: subject (S),
verb (V), object (O), others follow VSO, SOV, VOS,
and other languages may have other word orders.
It’s important to pay attention to the order of the words
when translating from a language to another in order to
obtain an accurate translation.

3) Idioms: when gathering words, an expression is formed
that has a completely different meaning to the mean-
ings of the individual words. This should be taken
into account, so as not to get translation in a different
sense.

Due to these and other challenges, research in machine
translation has been active for more than five decades.
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Since the introduction of Warren Weaver’s memorandum
in 1949, several machine translation techniques have been
developed, including Example-based [7], Rule-based [8], Sta-
tistical Machine Translation (SMT) [5], [9], and recently,
Neural Machine Translation (NMT) [10].

NMThas arisen as a new technology in the field ofmachine
translation in the past few years. In spite of its short age, NMT
has achieved tremendous popularity in this research area due
to the encouraging translation results attained, as well as its
simple structure [11]. NMT is the technique that uses a single
deep neural network to translate a source language text into
its target language counterpart [12]. It consists of one large
end-to-end neural network containing two sub networks: the
encoder and the decoder. First, the encoder gets the words
of the source sentence, word by word, and turns them into a
representation of semantic vector. Then, the decoder uses this
representation to produce the output target sentence [13].

Despite the dominance of SMT technology in the field
of automatic machine translation, NMT has shown several
advantages in comparison with it [9] and [14]:

1) The SMT system is made up of various components
that are adjusted individually. In contrast, The NMT
model is one large end-to-end neural network that is
responsible for both encoding the input sentences and
generating the target sentences.

2) While the SMT system requires numerous precisely
defined features to do the translation, relying only on a
training corpus, andwith little or no feature engineering
effort, the NMT model can learn the same translation
task.

3) Unlike SMT,NMTcan capture significant long-distance
dependencies and information of intricated word
alignment.

4) The NMT model is different from the SMT. There is
no need for a large memory space to store a reordering
model, a translation model, and a language model.

Inspired by the idea of using residual connections to
improve the performance of models in many tasks such as
computer vision, image classification, image segmentation,
and NMT, we propose a residual learning framework applied
to the NMT model by Sutskever et al. [15]. Thus, the transla-
tion system will gain several advantages: 1) Residual connec-
tions boost information flow within the neural network and
improve the training efficiency. 2) The forward propagation
of information can improve the model accuracy, while the
backward flow of gradient can speed up the convergence,
and enhance the discrimination capability in classification
problems. 3) They have been used in training very deep
Convolutional Networks and achieved great breakthrough on
many datasets, such as ImageNet and MS COCO.

The contributions in this work include:
1) The development of a new NMT model that provides

higher translation accuracy and better performance
without increasing the number of training parameters.

2) Applying the residual connections in the proposed
model and verifying its efficiency in enhancing the

translation performance by comparing the loss and
accuracy curves with a state-of-the-art model.

3) Examining the extent to which the proposed model
can deal with the vanishing gradient problem in deep
models.

4) Evaluation of the original and the modified models
on the WMT14 English-German dataset has shown
that the modified model achieves better BLEU scores
than the original model.

The novelty in this paper is how to use skip connections
in the encoder layers of the proposed system to achieve:
1) Increased translation accuracy. 2) Reduced training time
compared to the original model. 3) Better performance with-
out increasing the number of training parameters, and con-
sequently without increasing the computational resources.
4) Reducing the problem of vanishing gradient, which is
clearly visible with increasing model depth.

The paper is organized into six sections starting with the
introduction, followed by a discussion of state of the art work
in using residual connections in different areas in Section II.
In section III, we propose the sequence-to-sequence NMT
model. Implementations and experimental setup are shown
in Section IV. Results and comparisons are presented in
Section V. Finally, Section VI, concludes the paper.

II. RELATED WORK
In 2016, He et al [16] presented a residual learning framework
to enhance the training of deep neural networks. They applied
residual connections between every few stacked layers. The
proposed framework has been evaluated on the ImageNet [17]
and CIFAR-10 [18] datasets. On the ImageNet, the deep
network consisted of 152 layers, while on CIFAR-10 dataset,
it consisted of 100 and 1000 layers. The results showed
that the proposed framework offered less error rates with
lower complexity. Although residual connections has been
presented originally in image classification, they have proven
highly efficient in many other tasks.

Guided by the results of the experiments they carried out,
which showed that stacking multiple layers of Recurrent
Neural Network (RNN) naively in the decoder would lead to
slow training and degraded performance, Shu [19] studied the
effect of using residual connections between the RNN layers
of the decoder. The researchers used the same NMT architec-
ture of Bahdanau et al. [20] and added another RNN to the
decoder. The hidden states of the new RNN are calculated
using the original decoder states. Now, instead of using the
last RNN output, the Softmax layer uses a summation of the
states of the two RNNs to compute its output. The authors
declared that their proposed system is expected to abbreviate
the back-propagation path of the model and consequently
help the optimization. Evaluation of the proposed system has
been performed on the ASPEC English-Japanese translation
dataset [21]. The results showed an increase in BLEU score
compared to the original model. Although the model achieves
high translation accuracy, it consumes considerable time.
Each time the decoder produces an output word, the model
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must go through the whole input sequence. This consumed
time increases with the lengths of the source and target
sequences.

Instead of using the last word yt-1, along with other infor-
mation from the encoder, to produce the target word yt,
Werlen et al. [22] introduced a decoder that relies on
residual connection and uses target words from y0 to yt-1
to produce the target word yt. The proposed decoder is an
attentive residual recurrent network. At each time step, the
decoder makes a decision on which of the previously gener-
ated target word should be taken into consideration to predict
the next one. The proposed system has been evaluated on
three language pairs: English-German, English-Chinese, and
Spanish-English, and showed an increase in BLEU scores
in comparison to other models. Despite the improvement
in translation accuracy achieved by the model, left-to-right
decoding reduces the ability to control the appearance of a
particular word or value in the target sentence.

III. THE PROPOSED SEQUENCE TO SEQUENCE NMT
MODEL
Since residual connections have been improved the models’
performance in many applications. Residual connection is a
type of skip connection that overtakes the non-linear transfor-
mations with an identity mapping and obviously reconstructs
the layers as learning residual functions with reference to the
layer inputs. The residual connection can be explained by the
following formula:

Xl = Hl (Xl−1)+ Xl−1 (1)

where Xl−1 and Xl are input and output to the l th layer, and
Hl is the residual function applied on the l th layer.
In this section, we study the effect of applying residual

connections on the sequence-to-sequence NMT model pro-
posed by Sutskever et al [15]. Figures 1 and 2 show Sutskever
model and the proposed model after adding residual connec-
tions from the embedding layer to the Softmax layer for a
single LSTM layer encoder and a single LSTM layer decoder
framework, respectively.

FIGURE 1. Sutskever model [15]. A, B, and C are the words of the input
sentence. W, X, Y, and Z are the words of the generated target sentence.

Sutskever et al proposed a translation model that employed
Long Short-Term Memory (LSTM) to translate English sen-
tences into their French counterparts. The model consisted
of an encoder and a decoder. First, the input sequence is
passed through the encoder to convert it to a semantic vector
of fixed length. Then, the decoder uses this vector to gener-
ate the target sequence. Evaluation of the system, using the
WMT 14 English to French test set, showed an achievement

of 34.8 BLEU and performance comparable to the phrase-
based machine translation system.

FIGURE 2. Proposed model.

Given a dataset of N sentence pairs, the proposed model is
trained to learn a set of parameters θ that maximize the log-
likelihood function:∑N

i=1
logP(Y i|X i, θ) (2)

For every pair of sentence (X,Y)∈N.Given an input sentence
X=(x1, x2, . . . , xT) and an output sentence Y=(y1, y2, . . . ,
yV), the encoder starts to read the input sequence word by
word, and generates a fixed dimensional context vector −→

c
that is the summary of all information in the input sentence
so that:

h[j] = f
(
x[j], h[j−1]

)
(3)

−→
c
= q ({h1, . . . , hT }) (4)

where h[j] is the hidden state at time j, f is a non-linear
function, and q = h[T ] is the last hidden state generated by
the encoder.

Residual connections allow the propagation of features
from lower layers to upper ones. This way, the upper lay-
ers not only refine the previous presentations, but also cre-
ate new features, which consequently improves the learning
performance.

The embedding layer generates distributed vector repre-
sentations of words. These representations are important as
they capture a large number of accurate syntactic and seman-
tic word relationships.

In the proposed model, residual connections are added
between the embedding layer and the Softmax layer to
enhance the model performance by using embeddings of
inputs to the decoder. Using the fixed dimensional context
vector generated be the encode as an initial hidden state, the
decoder starts generating the target sentence one word at a
time, as shown in figure 2, using the formula:

yi = g
(
yi−1, h∗i−1, v

)
(5)

where g is a non-linear function, yi−1 is the output word at
time i-1, h∗i−1 is the decoder hidden state at time i-1, and v is
the output of the embedding layer.

IV. EXPERIMENTAL SETUP
This section begins by presenting the dataset preprocessing.
The evaluation criteria is based on: the log-likelihood in equa-
tion (1), training time, and the BLEU Score Variation (BSV)
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introduced later in this section. Training LSTM networks
require a lot of resources and training time; the LSTM cell
is very complex with several gates added to its design. The
training time increases with increased sentence length. In the
following sections, we study this effect of variable sentence
length on the improvement of both translation accuracy and
training time.

A. DATASET PREPROCESSING
The WMT14 English-German dataset [23] that is available
on the Stanford Natural Language Processing Group website,
has been used in the training and evaluation of both the orig-
inal Sutskever model and the proposed model. The dataset
contains about 4.5M (4,468,840) sentence pairs, consisting of
694,766 unique English words and 1,531,652 unique German
words. The maximum English sequence length is 100 tokens,
and the maximumGerman sequence length is 100 tokens too.

To work properly, the dataset in [23] has been divided into
five different datasets according to the sentence length: the
first group consists of 313,966, the second of 1,651,851, the
third of 2,900,904, the fourth of 3,686,003, and finally
the fifth has 4,094,299 sentences respectively. This data clas-
sification is assumed to help study the effect of sentence
length and vocabulary size on the performance of the base-
line model and the proposed model. Table 1 summarizes the
proposed dataset classification method.

TABLE 1. Proposed datasets used in training experiments.

The testing datasets available were used in the valida-
tion and the evaluation of the models. Newstest2012 and
Newstest2014 sets were used for validation; Newstest2013
and Newstest2015 were used for testing. Table 2 shows the
number of sentences.

In the incoming sections, two experiments will be shown:
the first considers a single layer encoder/decoder model,
while the second considers two layers encoder/decoder
model3. The aim of this work is to study the effect of applying
residual connections on translation accuracy and training time
complexity. Also to examine how residual connections can
deal with the vanishing and exploding problems.

TABLE 2. Test datasets used to evaluate the models.

B. SINGLE LAYER ENCODER/DECODER MODEL SINGLE
LAYER ENCODER/DECODER MODEL: TRAINING SETTINGS
An ensemble of 5 LSTMs has been proposed to evaluate both
the original model and the proposed model, using almost
the same training settings of Sutskever et al. The complete
training criteria could be summarized as:

1) LSTM has been used in both the encoder and the
decoder with 1000 cells at each layer, and word embed-
dings of 1000 dimensions.

2) All of LSTM parameters are initialized with the uni-
form distribution interval [-0.08, 0.08].

3) The stochastic gradient descent (SGD) optimizer has
been used without momentum, and the initial learning
rate is set to 0.7. After 5 epochs, the learning rate
decreases by half every half epoch. Each model has
been trained for 7 epochs.

4) The dataset is divided into batches of 128 sentences.
5) To avoid exploding gradients, a hard constrained has

been set on the norm of the gradient. The gradient g is
scaled to 5g/s when s > 5, where s = ||g||2.

6) The input vocabulary consists of 160,000words and the
output vocabulary consists of 80,000 words. The other
words have been replaced with ‘‘UNK’’ token.

7) The input sentences are entered in reversed word order.

All experiments have been carried out on a single NVIDIA
Tesla V100 32G Passive GPU.

SINGLE LAYER ENCODER/DECODER MODEL: RESULTS AND
COMPARISONS
In this section, the proposed sequence-to-sequence NMT
model is tested using the testing datasets, as mentioned in
a previous section. To verify the efficiency of the proposed
model, and prove how the residual connections has enhanced
the performance, we present both the training loss and the
training accuracy curves. Figure 3 shows the training loss
curves for both training and development sets for all the
datasets that have been used in the training. Figure (3-a)
presents the training loss curves for both training and devel-
opment sets of Dataset10, moreover figure (3-b) gives the
training loss curves for both training and development sets
of Dataset20, Figure (3-c) and (3-d) presents the training loss
curves for both training and development sets of Dataset30
and Dataset40 respectively.

From figure (3), it could be concluded that the pro-
posed residual connections criteria improved the conven-
tional model to achieve efficient information flow. The loss
curves of the proposed model all surpass those of the original
model, for all datasets. Although the difference in the loss val-
ues between Sutskever and the proposed models begins with
small fractions, as shown in figures 3.a and 3.b; the proposed
model maintains consistent performance with increasing sen-
tence length and increasing number of words that are not in
the vocabularies as shown in Figure 3.d.

The same could be observed in the accuracy curves, shown
in figure (4). Table 3 shows the BLEU scores obtained when

118316 VOLUME 10, 2022



S. A. Mohamed et al.: Residual Information Flow for Neural Machine Translation

FIGURE 3. Training (T_Loss) and validation(V_Loss) error curves on: (a) Dataset10. (b) Dataset20. (c) Dataset30. (d) Dataset40.

TABLE 3. BLEU scores gained from an ensemble of 5 models with beam
size = 1.

evaluating the proposed model and the original model, using
4 test datasets.

The proposed model outperforms the baseline state of the
art work in all test datasets. With sentences no longer than
10 words, the proposed model gains .002% BLEU. With
sentences no longer than 20 words, the proposed model out-
performs the baseline by .15% BLEU. With sentences no
longer than 30 words, the proposed model outperforms the
baseline by .3%BLEU. Finally, with sentences no longer than
40 words, the difference in BLEU is 0.012%.

Regarding the training time, the proposed model shows
better performance, than the original model, with short
sequences. Table 4 shows the time (in hours) needed to train
the group of 5 LSTMs in both the original and the proposed
models, over the training datasets. As shown, the proposed
model consumes less training time than the original model
to train datasets of short sequences. For sequences of no
more than 10 words, the proposed model consumes 69.2%
of the training time the original model needs to train the
same dataset. For sentences of no more than 20 words, the
proposed model needs only 67.5% of the training time
the original model consumes to train the same dataset. The
outperformance of the proposedmodel in saving training time
decreases as the sequence length increases.

C. TWO LAYERS ENCODER/DECODER MODEL
From the state of the art work, it could be concluded that while
increasing the model’s depth, the vanishing and exploding
problems increase [16]. In this section, it is important to focus
on the effect of increasing themodel’s depth on the translation
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FIGURE 4. Training (T_Accuracy) and validation (V_ Accuracy) accuracy curves on: (a) Dataset10. (b) Dataset20. (c) Dataset30. (d) Dataset40.

TABLE 4. Training time (in hours) needed to train an ensemble
of 5 models with beam size = 1.

accuracy. Several experiments are carried out where each
model is trained twice.

1) TWO LAYERS ENCODER/DECODER MODEL: TRAINING
SETTINGS
Firstly, the training procedure and hyperparameter values are
chosen similar to those used in the original model. However,
the results obtained were not satisfactory, as will be explained
later. Thus, the following adjustments are to be considered:
1) The models have been trained using different learning

rate values (beside 0.7): 0.3, 0.4, and 0.5.
2) The parameters of only the first LSTM have been

initialized with the uniform distribution interval
[−0.08, 0.08], in both the encoder and the decoder
stages. Then, the parameters of all LSTMs have been
initialized with the same interval.

3) Other uniform distribution intervals: [−0.06, 0.06] and
[−0.07, 0.07] have been used.

All experiments have been carried out on a single NVIDIA
Tesla V100 32G Passive GPU.

2) TWO LAYERS ENCODER/DECODER MODEL: RESULTS
AND COMPARISONS
a: EXPERIMENT (1): THE EFFECT OF THE LEARNING RATE
VALUE
Both the proposed NMT model and the original model have
been tested over the testing datasets. Table 5 shows the
BLEU scores obtained on testDataset10. The training has
been carried out at different learning rate values, and with the
parameters of only the first LSTM initialized in the interval
[-0.08, 0.08], in both the encoder and the decoder stages.
Here, we will define a new parameter: BLEU Score Varia-
tion (BSV), which represents the difference in BLEU score
between the first and second run.

BSV = |BLEU (First Run) - BLEU (Second Run)| (6)

It is preferred that the variation between obtained BLEU
scores be minimum to maintain training system stability.

From table (5), the following observations could be
pointed:-

The obtained BSV values, at different learning rates, show
that the proposed model outperforms the original model in
terms of stability. It is shown that the difference between first
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TABLE 5. BLEU scores gained from the two layers encoder/decoder
original and proposed models.

and second runs in case of the proposed model varies from
0.6659 to 4.4201; however in case of the original model the
BSV varies from 0.2484 to 13.1431 which means that the
system is too much dependent on the learning rate value and
lacks stability. The proposed model shows more consistency
than the original model.

At learning rate 0.7, the value of the BSV is maximum in
case of the original model and reached 13.1431. Similarly,
the proposed model expressed the highest BSV. The learning
rate has been too large, resulting in an unstable training
process and sub-optimal weights learning. Therefore, both
the original model and the proposedmodels have been trained
using other values of learning rates: 0.3, 0.4, and 0.5.

Table 6 shows the minimum BLUE scores obtained from
the original and the proposed models, at different learning
rate values. From the table, it can be concluded that the pro-
posed model outperforms the original model at all learning
rate values.

TABLE 6. Minimum BLEU scores obtained from the two layers
encoder/decoder original and proposed models.

b: EXPERIMENT (2): THE EFFECT OF INITIALIZING ALL
LSTMS PARAMETERS
The proposed and the original models have been re-trained
with the parameters of all LSTMs initialized in the interval
[−0.08, 0.08], in both the encoder and the decoder stages.
Table 7 shows the BLEU scores gained on testDataset10.
Initialization of the parameters of the second LSTM in the
same interval as the first LSTMhas not been useful in creating
new features and therefore has not improved performance.
The proposed model still shows more consistency than the
original model. BSV values of the proposed model are less
than their correspondings of the original model at all learning
rates.

To further study the effect of initializing the parameters
of the second LSTM on the model performance, we have
repeated the training with initializing the second LSTM
parameters in the interval [−0.07, 0.07], then in the interval

TABLE 7. BLEU scores obtained when initializing all LSTMs parameters in
the interval [−0.08, 0.08].

TABLE 8. BLEU scores obtained when initializing the second LSTM
parameters in other intervals.

[−0.06, 0.06]. Table 8 shows the BLEU scores received from
the proposed model at all learning rates.

From table (8) it could be shown that with the interval
[−0.06, 0.06], the proposed model is more consistent. The
BSV values are less compared to those of table 7 except at
learning rate 0.5. Also, the BLEU scores have been improved
except at learning rate 0.7. With the interval [−0.07, 0.07],
the proposed model shows more consistency too. The BSV
values are less than those of table 7 except at learning
rate 0.3.The BLEU scores have been improved at learning
rates 0.3 and 0.4. The minimum BSV have been at
learning rate of 0.4 for both intervals.

Although choosing different initialization intervals for
each LSTM layer has improved the translation accuracy
and model consistency as shown in Table 8, the translation
accuracy and consistency are still lower than those shown
in Table 5.

So, we conclude that the random initialization of the
parameters of the second LSTM, in both the encoder and
the decoder, helps the model to create new features, and
consequently improves the translation accuracy. Also, the
best learning rate to train the model on the WMT14 English-
German translation task is 0.4.

V. CONCLUSION
In this work, a residual-connected framework of the
sequence-to-sequence NMT model has been presented.
The proposed model used residual connections between the
embedding layer and the Softmax layer of the decoder. This
concept of residual connections has been validated over a
single NVIDIA Tesla V100 32G Passive GPU. For single
layer encoder/decoder models, the experiments have shown
that the proposed model performs better and gives higher
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BLEU scores compared to the baseline model. Regarding
training time complexity, training datasets of short sentences
has been reduced from 45.5 hours to 30.7 hours compared
to the state of the art work, which means a reduction of
67.5% in computational time complexity. In the two layers
encoder/decoder models, the proposed model has shown bet-
ter performance than the original model through the vanish-
ing/exploding problems. The stability of the proposed model
has been pointed through the values of BSV, where the values
were reduced from 13.14 to 4.42 compared to the original
model. Future work will focus on the efficiency of using
residual connections framework on similar datasets. Further-
more, dense connected networks might be tackled for better
performance.
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