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ABSTRACT Work on identifying the various techniques for 6G wireless networks has already begun as
the present specification for 5G networks nears conclusion. Reconfigurable Intelligent Surfaces (RISs) are
one of these potentially useful technologies for 6G service providers. They provide unparalleled levels of
freedom in terms of wireless channel engineering, allowing the system to change the channel’s properties
whenever and however it chooses. Nonetheless, such qualities need a thorough understanding of the reaction
of the related meta-surface under all conceivable operational situations. Analytical models and complete
wave simulations may both be used to gain a better knowledge of the radiation pattern features, although
both have inaccuracies under specific situations and are exceedingly computationally intensive. As a result,
in this study, we offer a unique neural network-based technique for description of the meta-surfaces response
that is both rapid and accurate. We look at a variety of scenarios and show how the proposed methodology
can be used in them. In particular, we show that our technique is capable of learning and predicting the
parameters driving the reflected wave radiation pattern with the accuracy of a complete wave simulation
(98.8%–99.8%) while using just a fraction of the time and computer complexity of an analytical simulation.
The above finding and approach will be particularly useful in the design, defect tolerance, and servicing of
the hundreds of RISs which will be installed in the 6G distributed system.

INDEX TERMS Meta-surfaces, neural networks, deep learning, beyond 5G, 6G.

I. INTRODUCTION
In comparison to 5G and other heritage networks, sixth-
generation (6G) wireless networks will be considerably more
varied and dense. As a result, the 6G architecture will need
to evolve to meet the ever-changing capacity and Quality
of Service (QoS) demands [1]. Multiple enablers, such as
light fidelity (Li-Fi), visible light communication (VLC), Ter-
aHertz (THz) communications, Reconfigurable Intelligent
Surfaces (RISs), and others, have been proposed tomeet these
ever-increasing demands. RISs have gotten a lot of attention
among these approaches. The reason for this is that they
turn the physical environment from an opponent to an ally in
the communication process by rapidly modifying the related
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Meta-Surfaces (MSs). In practice, they make propagation
characteristics more predictable and reliable [2], [3]. Such
capabilities will be crucial in addressing the 6G network
needs [4].

By altering the frequency, phase, amplitude, or polariza-
tion of the incident EM wave, RIS may intelligently and
adaptively rearrange the wireless environment [2]. When
there are obstructions in the way of the direct communi-
cation path between the transmitter and receiver or when
the channel quality between the transmitter and receiver is
too low, RIS can be employed in wireless communications
as an alternate path provider or as a quality enhancer [5],
also in mm-Wave massive multiple-input multiple-output
(MIMO) [6], device-to-device communication, simultaneous
wireless information and power transfer, enhanced physical
layer security, unmanned aerial vehicle communication for
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FIGURE 1. Advantages of applying DNN MS to the 6G networks.

smart cities, and intelligent internet of things (IoT) appli-
cations for wireless sensor networks [7]. Several studies
demonstrate the advantages of the RIS-aided network [8], [9].

MSs are electromagnetically thin-film and flat artifi-
cial structures that have lately permitted the production of
innovative electromagnetic (EM) and optical elements with
designed and even unconventional functions [10]. These
include perfectly alright manipulation of encroaching radio
signals in terms of power, direction, phase, and polariza-
tion in a frequency-selective manner [11], [12], as well as
absorption of certain elements of encroaching radio sig-
nals (produced by the numerous transmitting smart objects
points within the surroundings). An MSs is made up of a
series of subwavelength structures called as unit cells on a
rather detailed level. In addition, we explore the situation
of tunable MSs in this research. Unit cells in this scenario
will be adjustable capacitances, C and resistors, R, from a
modelling standpoint. This gives the MSs their tunability
properties by allowing the unit cells to take numerous states.
Notably, designing an MS with set goal EM functionality
is already a difficult undertaking. As a result, designing
and operating a tunable MS will be significantly more dif-
ficult. Multiple research projects, including as [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], and [14], have
examined the probable designs and properties of such pro-
grammable MSs, and have made substantial progress in this
area.

Furthermore, while tunability is undoubtedly an attractive
aspect of programmable MSs, obtaining the properties of a
reflected wave provided the parameters of the incoming wave
and the situations of each contributing unit cell, as illustrated
in Fig. 1, is a significant difficulty. Furthermore, a quick
but accurate assessment of the radiation pattern can help
with a variety of 6G communication networks, including the
design, reliable operation, and management of MSs and, as a
result, RISs. Determining the properties of the reflected wave
in an MS setup, on the other hand, is currently difficult.
The reason for this is that, they may be derived using either
analytical approaches with various limiting assumptions
or computationally demanding simulations using full wave
EM solvers.

Simply, Fig. 1 shows how the phase profile resulting from
the optimization technique enters the input layer of the neural
networks, and the number of the nodes in the input layer in
our study is 400 nodes. From the input layer, the data is trans-
mitted to the next layer, which is the group of hidden layers,
which weights are distributed to the nodes that build these
layers, in order to achieve the correct prediction closest to the
ideal prediction, and thus we have achieved great goals such
as a priori knowledge of radiation pattern characteristics for
fast tuning of MSF in a highly dynamic wireless environment
and Detection of faults in MSF during maintenance via the
verification of radiation pattern parameters with the accurate
estimates generated by the proposed ML based framework.

Finally, the last layer comes, which is the output layer,
in which the final product appears, and the value of the phase
angles that make the reflected electromagnetic waves direct
towards the desired angle. Then the phase angles return to
the input layer again as a feed-back to the neural network
model to reduce the error rate and increase the accuracy of
the model.

To clarify, understanding the EM properties of each unit
cell makes calculating the associated EMfield easier. The unit
cell, and hence the MSs, is reflecting in most circumstances
(the transmission coefficient is zero). To obtain the far-field
pattern, we simply require reflective properties (radiation
phase and amplitude) of the unit cell. In some well-defined
applications, such as beam-steering and concentrating of pla-
nar impinging waves, analytical models exist for defining and
forecasting the reflected EM field. These models, however,
contain simplifications that might lead to restricted applica-
tion in practical setups and, as a result, lower overall precision
of findings when compared to the exact solution derived
from Maxwell’s equations [15]. Furthermore, repeated com-
putational full-wave simulations, which are now frequently
used and yield accurate device response forecasts [16], are
memory and time intensive. Moreover, the design process is
heavily reliant on empirical thinking or trial-and-error [17],
which is wasteful and ineffectual, especially when dealing
with highly nonlinear problems.

Machine learning (ML) technologies, notably Neural
Networks (NNs), are well-known for their capacity to
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understand complicated correlations between input and
output data, allowing them to solve differential equa-
tions without the requirement for numerical full-wave
computations [15], [18]. Because the MSs EM reaction
(e.g., reflection) is basically the solution toMaxwell’s nonlin-
ear equations, it may be able to develop an ML structure that
directly forecasts the EM reaction without using full-wave
simulations. As a result of this study, a data-driven NN-based
strategy for obtaining an accurate assessment of the radia-
tion pattern or many metrics of interest that allow the entire
description of the radiation pattern is presented. The follow-
ing are some of the paper’s most important contributions:
• We build a unique Neural Network-based radiation pat-
tern forecast that is almost as accurate as complete wave
simulations but with the computing cost of analytical
approaches, according to our study.

• To the greatest of our expertise, this is the first tech-
nique in which specific important characteristics of the
reflected beam far-field radiation pattern for a provided
MSs, such as principal side lobe level (SLL), half-power
beam-width (HPBW), maximum energy radiation direc-
tion, and directivity (D), have been expected and effec-
tively used for the complete description of the reflected
beam radiation pattern. As a result, our technique may
be used effectively in 6G networks (Fig. 1).

• For the locally tunable MS case, we provide a unique
analysis depending on the accuracy of forecast of
the aforementioned parameters. We propose a realistic
framework and benchmark for the choice of a multi-
layer perceptron MLP-based forecast for the reflected
beam radiation pattern using progressive design
technique.

The remainder of this paper is organized as fol-
lows: In Section II we describe the gradually framework
design including the two scenarios that we have analyzed.
In Section III we go through the methods we used to design
the two scenarios we looked. The unit cell design and char-
acteristics of each scenario are explained in Section IV.
Deep Neural Networks (DNNs) are described in Section V.
In Section VI, we present the evaluation. Finally, we conclude
the paper in Section VII.

II. THE GRADUALLY FRAMEWORK
We now provide the architecture for our far-field radiation
pattern prediction, in which we explore two main situations,
and show that using data-driven learning methodologies, it is
feasible to forecast the properties of the reflected wave from
a provided MSs. The MSs is simply a description of an array
of unit cells with certain unit cell configurations, depending
on the situation.

MSs Design scenario is further enhanced to include
two scenarios. These scenarios are dependent on the MSs
underlying unit cell configurations, and they are listed
below:
• A PIN diode unit cell configuration is used in the first
case across the MSs.

• The second option has an array of unit cells spanning
the MSs, with the same adjustable resistance R and
capacitance C values for all unit cells.

As a result, the R-C MSs configuration scenario, also
known as the locally adjustable MSs, refers to a situation
in which the unit cells might have varied R and C values.
In sections V and VI, we go over these situations and the
accompanying approaches for predicting radiation patterns in
further depth.

In the first case, we investigate if data-driven models can
accurately forecast the whole reflected wave far-field radia-
tion pattern for a 1-bit controllable MSs. The role that 1-bit
tunable MSs arrangements will play in applications like as
object tracking, radiation absorption, sensing, and so on is
one of the motivations for investigating them. As a result,
the MSs in this situation is made up of a 20 × 20 array
of unit cells. We scan the azimuth and elevation angles
from 1 to 179 degrees with a 1-degree granularity for the runs
simulations in the PIN diode scenario. We chose this range
of angles since we don’t need to assess negative elevation
angles because the transmittance is zero. The multiple-layer
perceptron (MLP) neural network was the model that we
investigated for our data-driven framework. As a result, the
spacing between the input and the center of the hidden neuron
determines its output. Because it models spatial parame-
ters, such a framework is a priori highly attractive for our
approach.

In the second case, which extends our gradual frame-
work to a fully tunable MSs, the MSs under consideration
is made up of an array of unit cells that can be in var-
ious states. In this scenario, we change the values of the
capacitance C and constant resistance R, which describe the
structural properties of the unit cell. Our model’s assessment
may, however, be expanded to any incident wave direction
if necessary (incident angle). We change the values of the
capacitor to four basic values, which are as follows 0.564 pF,
0.608 pF, 0.632 pF and 0.765 pF. Furthermore, and perhaps
most crucially, the MLP framework is used in this situation
for our data-driven strategy. Due to time and computational
constraints, the data we utilize for training and testing the
model in this scenario, where we examine a locally adjustable
MSs, are obtained via an analytical approach. The reason for
this is that, given our computing power restrictions, collecting
enough data through an EM simulator to create a decent
model would take a very long time.

In addition, we test if our data-driven models can forecast
four key metrics that define the entire reflected wave far-
field radiation pattern rather than just the pattern itself. The
principal to SLL, D, HPBW, and angle of maximum radiation
are the metrics of interest. It’s worth noting that analyzing
only the abovementioned factors helps eliminate models with
a high dimensionality output.

The inputs for our NN based framework in this situation
are 2-D arrays, with each value reflecting the four potential
modes of the unit cell at the appropriate point in the MSs.
A 20 × 20 grid of unit cells is also included in the MSs.
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The framework therefore attempts to forecast the measure-
ments of the reflected beam far-field radiation pattern for an
MSs with a group of provided unit cell state arrangement for
normal incidence angles. It’s worth noting that theMSs under
investigation has a total of 4400 potential configurations.

III. METHODOLOGY
The majority of other academic work, on the other hand,
is rooted in traditional design methodologies such as model
designs, parameter sweeps, trial-and-error methods, and opti-
mization algorithms. Performing numerical full-wave numer-
ical simulations with the use of an optimization technique is
a time consuming and resource intensive operation. Further-
more, if the design parameters are modified, simulationsmust
be rerun, preventing consumers from focusing on their actual
demands. As a result, we have considered using ML to fill in
the gaps in our search for a quick, efficient, and automated
design strategy.

ML, especially its subset, deep learning, is a method
for automatically understanding the relationship between
input and objective data based on examples from previous
experiences.

The methodology used in this study is divided into three
stages:
â The first stage is the design stage, and this stage contains

three main steps, and they are as follows:-
• Design of initial one unit cell, this design was

implemented by CST Package software.
• Optimize one unit cell usingMGSA-PSO algorithm

to obtain perfect results, this algorithm was written
using MATLAB program.

• Design complete MS plate, the plate contains
20 × 20 unit cells; they have different shapes.
So each unit cell has the ability to change electro-
magnetic waves direction and its ability to change
for two states in 1-bit coding or four states in
2-bits coding, each state has a different phase angle
through a variable varactor capacitance.

â The second stage can be called the training stage, and
this stage contains four main steps, and they are as
follows:-
• The powerful algorithm and high-precision opti-

mization technique MGSA-PSO was applied to the
whole MS plate in order to direct and focus the
reflected electromagnetic waves from the MS plate
in the desired direction angle, and this process was
done 413 times.

• The 413 optimization run is the basic building block
of the training database; accordingly, this data was
loaded into Python environment for processing.

• From the Python environment, we transfer the data
to the Tensorflow and Keras environments. The
Tensorflow environment builds and trains deep neu-
ral networks, while the Keras environment performs
all low-level calculations and facilitates the learning
process.

• The data is returned and organized to the Python
environment for final preservation after applying
the information leads entropy data technique.

â Finally, the third stage can be called the test stage, and
this stage contains three main steps, and they are as
follows:-
• After the complete training of a large number of

incidence angles, it was necessary to test the DNN
system by asking DNN model to reflected beams
in specific reflected angles for different incidence
angles that the system has not trained.

• The tested results and the computed results were
compared, and then the tolerance and accuracy of
the expected results were calculated.

• The expected final results are shown in CST Pack-
age as a final solution.

All these steps are shown in flowchart in Fig. 2.

FIGURE 2. Sketch representation of the reflection beam process for
MS based on DNN.

MLhas been used in a variety of wave interaction concepts,
antenna optimization and design [19], [20], [21], including
electromagnetic compatibility (EMC) [22], optical and pho-
tonic structures [23], [24], all dielectric MS [25], and Plas-
monic nanostructure [26], because of its supporting factor
to providing less computation power, less design time, more
accuracy, and more flexibility. The control of the reflection
beam angles technique of a MS has been provided in this
study using a DNN. Unlike earlier work, we develop and
optimize one-unit cell and a wholeMS plate during the design
stage to achieve the best control of the reflection beam angles.
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As a result, when a series of samples are used to training
the deep learning model, our suggested model can regu-
late the reflected beam-former automatically using specified
reflection information. The result of numerical simulations
compared to the reflected direction destination shows that
our suggested method is effective in controlling reflected
beams of any angle. Our strategy is effective for those tech-
nicians who are not experts in the field of electromagnetics
because it determines the reflected wave angle directly with-
out using poorly optimization technique, consumes fewer
computational resources, has high accuracy, and ultra-wide
angle directions. This allows them to focus on their specific
requirements, speeding up practice problems. As a result,
we show in this work and for this case that:

- Our ML technique properly anticipates the reflected
beam pattern’s measurements.

- We can generalize the same concept and methods to the
scenario when we obtain samples from an EM solver if
we have the processing capacity.

The Huygens principle, according to which the far-field
equals the total of the emissions of all unit cells, is used to
determine the radiation pattern in the abovementioned ana-
lytical model. This model, in particular, implies that mutual
coupling between neighboring unit cells may be ignored.
We additionally suppose that a normal incoming plane wave
illuminates the MSs equally and that the reflecting ampli-
tude is constant throughout all stages. With these postulated,
we may describe the reflecting field using eq. (1),

E (θ, ϕ) = K
∑M

i=1

∑N

j=1
ej[8ij+k0ζ ij(θ,ϕ)] (1)

where the main objective is controlling the phase shift of the
unit cells8ij is the reflection amplitude constant (i, j), M and
N are the number of unit cells in a row or a column, k0 =
2π/λ0 is the wave number and ζij(θ , ϕ) is the relative phase
shift of the unit cells with respect to the radiation pattern
coordinates (ϕ, θ ), which denotes the relative phase shift of
the unit cells with respect to the radiation pattern coordinates,
given by:

ζ ij (θ, ϕ) = Du sin θ [
(
i−

1
2

)
cosϕ +

(
j−

1
2

)
sinϕ]

(2)

By comparing the findings with full-wave simulations, this
technique has been shown to be accurate in assessing the far-
field of an MSs for beam-steering [16]. While the estimates
produced have a modest influence on the value and location
of the side lobes, these are unimportant to the goal of this
study.

Digital Coding metamaterials are made up of elements that
contain a series of ‘‘0’’s and ‘‘1’’s, while a programmable
metamaterial is controlled by a programmable device. In this
work, we will present two scenarios, on the first scenario
(1-bit scenario) the lumped element in this case is PIN diode,
the PIN diode can be in only two states, either 0 state, or 1
state. When the phase angle is 0, this indicates that the PIN

diode is operating as an open switch, which in turn indicates
that the PIN diode is in the 0 state. While in the case of
the phase angle is 180, this indicates that the PIN diode is
operating as a closed switch, which in turn indicates that the
PIN diode is in the 1 state. On the other hand, the second
scenario (2-bit coding scenario) the lumped element in this
case is variable capacitor, the variable capacitor can be in only
four states (‘‘00’’, ‘‘01’’, ‘‘10’’, and ‘‘11’’), the number of
states is related to the number of bits Nb also used decipher
the states by Ns = 2Nb , in ability to adjust to the logic circuits
of the control devices. In the 2π range, the phase states are
divided by π /2N−1b based on Nb. For example, 2-bits coding
has four phase states (‘‘00’’, ‘‘01’’, ‘‘10’’, and ‘‘11’’), which
are 0, π /2, π , 3π /2, respectively. It’s worth noting that a
steady phase offset for all states would have no effect on
performance; what matters is the phase difference between
states. The concept is illustrated in Table 1.

TABLE 1. Comparison between 1-bit and 2-bits scenarios.

Performance Metrics: The far field pattern obtained in the
previous step is post-processed to obtain a set of performance
metrics relevant to beam steering. We detail them next.

A. DIRECTIVITY
A basic antenna parameter that measures the concentration
of energy in a particular direction in terms of isotropic
scattering.

D (θ, ϕ) =
4πU (θ, ϕ)∫ 2π

0

∫ π
0 U (θ, ϕ) sin θdθdϕ

(3)

where U (θ, φ) ∝ |E(θ, φ)|2 denotes the scattered radia-
tion intensity in a particular direction, and the numerator
denotes the overall scattered power. The elevation angle of
a completely reflective MS is limited to [0, π /2], and the
maximum directivity is restricted to 4πA/λ2, where A is the
MS aperture area. The directivity is measured from several
angles, including the intended reflection angle and the real
reflection angle.

B. TARGET DEVIATION (TD)
It is calculated in degrees and estimates the variation in
reflected angle between the goal (θr, φr) and real (θa, φa)
owing to phase profile discrepancies. It is computed as
follows:

TD =
√
(θr − θa)2 + (ϕr − ϕa)2 (4)

C. SIDE-LOBE LEVEL (SLL)
Due to the phase structure of the MS and, in particular, its
limited aperture, a series of smaller reflected beams may
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appear in addition to the primary beam. The SLL is defined as
the directivity of the side-lobe closest to themain lobe divided
by the directivity of the main beam (in dB). To reduce energy
dispersion in undesirable directions, a low SLL is preferred.

D. HALF POWER BEAM WIDTH (HPBW)
The steering resolution is defined by the waist of the primary
reflected beam. The square root of the solid angle at the
−3 dB of a lobe maximum is used to determine the HPBW,
which is measured in degrees.

IV. UNIT CELL PERFORMANCE MODEL
In this design, the twomost important features that effectively
control the efficiency of the unit cell surfaces are incorpo-
rated, namely the shape of the unit cell and the change of the
phase angle of the element. As for the first item, which is
changing the shape of the unit cell, the shape of the unit cell
is introduced in Fig. 3. It consists of 12 twisted and concentric
arms similar to the arms of a fan, around them an arc in the
form of a semi-circle, and that arc extends from its lower end
a ribbon connected to the lumped element and finally ends
with the via. The unit cell has ten shapes, the first of which has
12 fan ribs, the second has 11 ribs, and the third has 10 ribs,
and thus the number of fan ribs decreases until it reaches the
tenth antenna shape, which contains only 3 fan ribs, and the
unit cells are arranged regularly from the most to the least
ribs, then it is counted arrange the unit cells in reverse, from
the fewest ribs to the most. So that the whole row consisted of
twenty unit cells, ten of them were arranged from highest in
number of ribs to least, and the other ten were arranged from
least in number of ribs to most as shown in Fig 4. Thus, the
physical change has been made in the element’s form. The
dimensions for the unit cell component values (see Table 2)
were determined through simulation and optimization with
the CST Microwave Studio software. The proposed MS is
constructed on a ROGERS RO4350B substrate with a loss
tangent (tan δ) of 0.0031 and a permittivity (εr) of 3.6 and is
planned to operate at 5.3 GHz.

TABLE 2. Unit cell dimensions (in millimeter).

As for the second item, which is the change in the phase
angle of the unit cell, it depends on the type of the lumped
element. If the lumped element in the cell is a pin diode,
the change in phase angle will be only two states, either
180◦ or −180◦ as shown in Fig. 3. Either if the lumped

element is a variable resistor and a variable capacitor, the
extent of the phase angle change will be a large range of cases
according to the values of both the variable resistance and
the capacitor, but we limited the capacitor values to only four
values, which are 0.564 pF, 0.608 pF, 0.632 pF and 0.765 pF.
More clarification in the item on changing the value of the
angle will be explained in the next section.

We chose to perform this study at 5.3 GHz. Because
5.3 GHz is included of the free and widely used industrial,
academic, and medical (ISM) range, we chose it as the
intended working frequency. Furthermore, the operating fre-
quency of 5.3 GHz was chosen to reduce the problems setup
that may arise in the mm-Wave spectrum. The expensive
price of the mm-Wave transceiver and the intricacy of the
MS design are two of these obstacles.

FIGURE 3. Schematic of unit cell for operation at 5.3 GHz. (a) 3D view,
(b) Top view with unit cell shape dimensions indicating types of lumped
element either 1-bit or 2-bits.

A. FOR FIRST SCENARIO (PIN DIODE)
A PIN diode is added to every of the unit cells to adjust the
phase of the incident wave. The PIN diode is numerically
equal to a series connection of inductance and resistance in
the ON state, and to a series connection of inductance and
capacitance in the OFF state, as shown in Fig. 5. As a result,
the PIN diode impedance during EM wave illumination may
be described as:

ZL =

R+ jωL, ON state

jωL +
1
jωC

, OFF state
(5)

The reflection coefficient may be calculated using the follow-
ing formula:

0 =
ZL − ZR
ZL + ZR

= |0| ejϕ (6)
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FIGURE 4. Configuration of complete and half row from MS plate.

where ZR is the unit cell’s radiation impedance. The unit cell’s
construction is designed to deliver the right amount of ZR
to achieve a 180◦ phase difference between OFF and ON
states at the operating frequency. At 5.3 GHz, the suggested
architecture allows for a 180◦ phase change between ON and
OFF states (see Fig. 5). This result is consistent with the
manufactured unit cell’s measurement results. At 5.3 GHz,
the simulation result achieves a 180◦ phase shift betweenOFF
and ON states, however the measurement result somewhat
lowers the frequency with the right phase shift value. This
minor variance is due to a flaw in the measuring setup, which
is tolerable.

FIGURE 5. Reflection phases simulated and measured results for the
proposed pin diode unit cell in two ON and OFF situations. The fabricated
unit cell with pin diode is illustrated in the Figure.

B. FOR SECOND SCENARIO (R - C)
We will mix unit cells of multiple reflection phase states
to provide reconfigurable steering performance; for exam-
ple, in the scenario of two coding, we will employ four
distinct states equidistantly across the 0–2π range, i.e. with

values 135, 45, −45, −135 degrees. They may be done by
using specified values of the varactor capacitances Cvar and a
biasing voltage that is adequate.

The suggested unit cells’ reflection amplitude and phase,
as computed by full-wave EM simulations for normal inci-
dence, are depicted in Fig. 6. In order to specify the required
capacitances for the initial phase prescription, we need a
‘‘look-up table’’ relating the reflection phase with the capac-
itance of the load. It is specified by illuminating the uniform
MS with a normally incident plane wave at the operation
frequency of 5.3 GHz. To be realistic, we limit the achievable
series capacitances in the range [0.5: 0.9] pF, the change in
the value of the capacitor is carried out by one of these two
methods, either by using external Field Programmable Gate
Arrays (FPGAs) or by directly embedding the controllers
within the MS structure. Even under this restriction, we have
access to a large reflection phase span of 315◦, while the
reflection amplitude remains almost unity, thus offering the
capabilities to effectively reconfigure the unit cell radia-
tion features. Varactor capacitances of 0.564 pF, 0.608 pF,
0.632 pF and 0.765 pF achieve the desired reflection phase
states. At the same time, the matching amplitudes are large
and rather uniform; absorption is a maximum at resonance,
therefore specific capacitance values that move the MS res-
onance nearer to 5.3 GHz will invariably be associated with
lesser reflection amplitudes.

FIGURE 6. Reflection magnitude and phase simulated results for the
proposed unit cell.

V. DEEP NEURAL NETWORK (DNN)
In the recent two decades, artificial NNs have gained popular-
ity for a variety of applications, particularly in optimization
and artificial intelligence. Among the most important factors
that affect the efficiency of NNs are the following:

A. DATASET PRODUCTION FOR TRAINING AND TESTING
For ML, random sample is typically employed to produce
samples for training. Random gradient inputs for unit cells,
on the other hand, will always result in a random dispersion
pattern. These patterns are not only non-learnable, but they
are also irrelevant for design goals. As a result, the training
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samples are not totally random combinations throughout the
whole space, where the overall number of combinations,
as previously stated, is Q(N×M)

= 2400 in 1-bit arrangement
and Q(N×M)

= 4400 in 2-bits arrangement.
A sample production space is also defined in our tech-

nique to manage the entropy of the data input [27]. We have
a 413 optimization run to control the random combinations as
shown in Fig 7. In the following, we will present four samples
of these 413 optimization runs that lead the entropy on each of
the 1-bit and 2-bits scenarios. In the beginning, the angle of
incidence on the MS plate must be adjusted, so that a horn
antenna is employed as a main radiator at the transmitting
side, which is a distance of 2 meter from the MS plate, and
has a gain equal to 15.3 dBi, as shown in the inset Fig. 8.

The first sample has been used in the 1-bit coding MS,
where the angle of incidence (θi, ϕi) = (45◦,−90◦), and
applying the powerful MGSA-PSO algorithm [28], [29] to
the first 1-bit scenario in order to control the phase angle per
unit cell. The result was the direction of the reflection beam at
the reflection angle (θr, ϕr) = (30◦, 90◦) as shown in Fig. 8a,
the state of each unit cell in the 1-bit coding shown in Fig. 9a.
The characteristics of the reflected beam was the directivity
in the direction of maximum radiation D = 15.1 dB, SLL =
-10.5 dB, HPBW = 8◦, and Target Deviation (TD) = 0.85◦.

FIGURE 7. Training data a 413 optimization run as information lead
entropy.

In the case of the second sample, it is the same inci-
dence angle as the first sample, but with a reflection angle
of (θr, ϕr) = (60◦, 90◦) and is applied to the 1-bit MS as
shown in Fig. 8b. The state of each unit cell is shown in
Fig. 9b. The characteristics of the reflected beam was the
directivity in the direction of maximum radiation D= 15 dB,
SLL = −0.1 dB, HPBW = 8.5◦, and TD = 1.1◦.
The third sample is the same incidence and reflection

angle as the first sample, but applied to the 2-bits coding,
as shown in Fig. 8c. Fig. 9c illustrates the MS phase profile
for pairing of target angles supposing normal incidence to
show the output of the coding stage and the influence of the
deflection angles (θ , ϕ) on the needed phase differences in
the x and y axes. The characteristics of the reflected beam
was the directivity in the direction of maximum radiation

FIGURE 8. The incident and reflected beam from MS for different cases.

D = 15.5 dB, SLL = −9.2 dB, HPBW = 6.2◦, and
TD = 0.45◦.

FIGURE 9. MS phase profile for different cases.

Finally, the fourth and last sample is the same incidence
and reflection angle as the second sample, but applied to the
2-bits coding, as shown in Fig. 8d. The state of each unit
cell is shown in Fig. 9d. The characteristics of the reflected
beam was the directivity in the direction of maximum radia-
tion D = 15.2 dB, SLL = −9.5 dB, HPBW = 7.3◦, and
TD = 0.65◦. From the above, we conclude that the accuracy
of the 2-bits coding MS scenarios is greater than the accuracy
of the 1-bit coding MS scenarios, because the 2-bits coding
scenarios have twice the number of state in the 1-bit coding
scenarios. In general, this is the phase profile for each sample
of neural network, and represents the final solution and the
phase angle per each unit cell in order to result in directing
the reflected beam at the desired steering angle, which in turn
returns as a feed-back to the neural network model to help
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improve the general prediction of the neural network model
and it reduces error and increases model accuracy.

To put it another way, a configuration that produces inter-
pretive outcomes and hence has no entropy is created at
random initially. Then, using a random fluctuations from
[0 100] %, entropy is added into the model. As a result,
the incoming data contains both utterly random samples and
purposeful configurations. This diverse variety of entropy is
exactly what our NN needs to be trained.

The amount of samples obtained for testing and training
the model of the first Scenario using the aforementioned
procedure was 9 × 104 and second scenario was 2.5 × 105.
Amongst these samples, 85% of these data were utilized
for training and validation, while the other 15% were saved
in a completely different set for the model’s testing phase.
Furthermore, 80% of the samples from the training and vali-
dation set were utilized for training, whereas the residual 20%
have been used for validation. The quantities of the pixels
in the supplied images were standardized without changing
their variance by executing a max-min escalation. It’s not
the case with our input parameters, as the variation of each
pixel is included in the relevant data that the model utilizes
to make predictions. It is crucial to note, however, that when
comparing measurements with various units, normalizing the
characteristics is critical, as variables recorded at different
scales may not actively contribute and may result in bias.
Because this was the case for the parameter estimates, the
goal samples both for the training and test datasets were nor-
malized by removing the mean of each measure and dividing
it by the variances.

B. PREDICTION SYSTEM OPERATION
After our model has been trained for a certain incoming con-
figuration, it first calculates if the supplied configuration will
produce interpretable outcomes analytically. When it does,
the trained model is used to forecast the variables of interest.
If the configuration produces a random far-field radiation
pattern, it is discarded since themodel cannot deliver accurate
results for this setting. Once the model has been trained, then
we apply the aforementioned processes in our technique for
forecasting the measures of relevance from a forthcoming
MS configuration.

C. NN MODEL
With this principle in mind, let’s look at the configuration of
the NN model used in this to evaluate the two scenarios.

D. MULTI-LAYER PERCEPTRON NEURAL NETWORK
We use NNs to forecast the metrics of relevance of the
reflected beam radiation pattern as part of this research. As a
result, MLP is our proposed NN in this section. Before being
entered into the NN, the input pictures of 20 × 20 pixels that
indicate the unit cell configurations are flattening into vectors
of 400 parameters for the MLP application.

The architecture of the MLP method is depicted in Fig. 10,
multi-layer networks have an input layer whose neurons code

the information supplied to the network, a configurable num-
ber of ‘‘hidden’’ internal layers, and an output layer. In the
same layer, neurons do not communicate with one another.
These networks’ learning process is supervised. The input
nodes make up the first layer. A feed-forward neural network
with one hidden layer and a Multilayer PerceptronMLP node
function at each hidden node is known as an MLP network.
The dimension of the input vector is equal to the number
of nodes. The interconnection weights are calculated using
the minimal error between the neural model output and the
training data. The goal of the training procedure is to fine-
tune. The network interconnection weights and in order to
reduce the error function; the back-propagation technique is
used in this iterative procedure. The weights are updated for
each iteration.

The capability of neural networks to generalization is one
of its major benefits. Accordingly, a trained network will
categorize new data as being in the same category as the
learning data, despite if it has never encountered it before.
Only a small portion of all imaginable neural network pat-
terns are available to developers in the majority of real-world
applications. The dataset should be divided into three parts
for the optimal generalization:
• The training set is used to train a neural network: The
dataset’s error is reduced throughout training.

• A neural network’s performance on patterns that weren’t
taught during the learning phase is assessed using the
validation set.

• A test set for assessing a neural network’s general
effectiveness.

The number of hidden layers was set to three, and the
number of nodes per layer was set at 150. Because sweep-
ing through all conceivable permutations was not compu-
tationally feasible, a decision regarding the aforementioned
parameter values was obtained after an extended user-driven
research. The MLP’s remaining parameters are provided
in Table 3.

FIGURE 10. Structure of the multi-layer perceptron neural network.

Table 3 shows that the MGSA-PSO was chosen as the
training algorithm because it speeds convergence compared
to first ordering algorithms such as the gradient descent while
minimizing the high computing expense of second order
approaches like Newton’s method. We can omit selecting
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the learning rate ultra-parameter since the training time for
our rudimentary model is not a constraint, and we find bet-
ter answers in less iteration by utilizing this quasi-Newton
technique. Regularization, on the other hand, is a method
of limiting a model’s complexity and therefore reducing the
possibilities of overfitting by punishing the most complicated
solutions in the objective functions. As a result, we use
L2 normalization in our approach. This is specifically
enforced in the model via the λ hyper parameter.

TABLE 3. Multi-layer perceptron neural network parameters.

VI. EVALUATION AND DISCUSSIONS
We now offer the assessment for each of the scenarios
covered within this framework, highlighting the signifi-
cant findings and insights, using the approach discussed in
Sections III and IV.

As a result, our prediction that DNN models can properly
forecast the reflected wave radiation pattern in a one-unit cell
for any two scenarios 1-bit and 2-bits coding combination
has been proven. For any incident and reflected beam that
were not included in the training set, Fig. 11 provides a visual
contrast between the projected radiation pattern by the trained
MLP and the real diagram acquired from EM simulation.
In this example, two reflection angles untrained have been
selected, 15◦ and 75◦.

This demonstrates that our predictor can learn and adapt
tow cases with untrained/unseen 1-bit and 2-bits coding status
in the training dataset. By comparing the angle of the reflec-
tion beam in the case of the true diagram resulting from the
optimization algorithm and the angle of the reflection beam
resulting from the MPL, it was noticed that the difference
between the two angles is very small, whether in the 1-bit
scenario or in the 2-bits, but the difference is less significantly
more in the case of the 2-bits scenario. Fig. 12 illustrates
the MS phase profile for pairing of target reflection angles
untrained, 15◦ and 75◦.

The task of predicting the radiation pattern characteristic
for the scenarios is fundamentally a regression problem. As a
result, the MSE is the cost/error function to reduce during the
training stage.

Moreover, the explicability of the performance is not very
good using this error function. Instead, for each metric of
interest, we establish a tolerance (or a series of tolerances).
The proportion of forecasts that fall inside this tolerance level
is then calculated.

In this publication, this is also referred to as the accu-
racy measure. As a result, the quality of the MLP over the
many metrics of interest that we intend to forecast using our

FIGURE 11. Comparison between the predicted radiation pattern by the
MLPNN and the true diagram by optimization algorithm.

FIGURE 12. MS phase profile in predicted radiation pattern by
the MLPNN.

technique is described in the following subsections.
Table 4 also includes the outcomes of the subsequent
discussions.

A. DIRECTIVITY
In this subsection we represent performance evaluates
for realistic MS as a function of steering orientation,
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Fig. 13a shows total scan pattern for directivity for all the
domain angles of reflection resulting from a beam incident
at angle of (θi, ϕi) = (30◦, 0◦) on the 1-bit coding MS,
and the incidence angle (θi, ϕi) = (60◦, 0◦) as shown in
Fig. 13b. The directivity was also calculated when the same
previous beams incidents at angles (θi, ϕi) = (30◦, 0◦) and
(θi, ϕi) = (60◦, 0◦) on the 2-bits coding MS, as shown
in Fig. 13 c, d.

FIGURE 13. Directivity performance as a function of steering direction for
different cases.

We found that the MLP offered pretty close prediction for
the directivity parameter, subject to only certain tolerance
limitations. In particular, Table 4 shows that when the tol-
erance is adjusted to 0.25 dB, 95% of the test samples are
successfully predicted.

Furthermore, we notice an increased accuracy of 99.99%
when the tolerance is decreased further, to 0.5 dB. When the
tolerance level is dropped to 0.1 dB, however, the MLP’s
accuracy plummets to 56.3%.

TABLE 4. Accuracy measure: 1-bit versus 2-bits.

B. TARGET DEVIATION (TD)
We provide performance evaluations for genuine MS
as a function of steering orientation in this subsection,

Fig. 14a shows total scan pattern for TD for all the domain
angles of reflection resulting from a beam incident at angle
of (θi, ϕi) = (30◦, 0◦) on the 1-bit coding MS, and the
incidence angle (θi, ϕi) = (60◦, 0◦) as shown in Fig. 14b.
The directivity was also calculated when the same previous
beams incidents at angles (θi, ϕi) = (30◦, 0◦) and (θi, ϕi) =
(60◦, 0◦) on the 2-bits coding MS, as shown in Fig. 14 c, d.
The results in Table 4 for the angle of highest radiation

are generated by averaging the prediction accuracy of the
elevation and azimuth angles in order to provide a single
picture of this characteristic. To be more specific, tolerance
values of 5, 2, and 1 are considered for this measurement.
Table 4 shows the MLP has an efficiency of 99.8%, 72.7%,
and 40.6%, respectively, for the appropriate tolerance levels.
If can be observed, as the tolerance limit is reduced, the
accuracy decreases, which is consistent with our previous
results from other metrics of interest. Furthermore, when
compared to the other metrics of interest, the accuracy for
the lesser tolerance levels is much worse.

FIGURE 14. TD performance as a function of steering direction for
different cases.

C. SIDE-LOBE LEVEL (SLL)
Performance evaluations for actual MS as a function of steer-
ing orientation are represented in this subsection, Fig. 15a
shows total scan pattern for SLL for all the domain angles of
reflection resulting from a beam incident at angle of (θi, ϕi) =
(30◦, 0◦) on the 1-bit coding MS, and the incidence angle (θi,
ϕi) = (60◦, 0◦) as shown in Fig. 15b. The directivity was also
calculated when the same previous beams incidents at angles
(θi, ϕi) = (30◦, 0◦) and (θi, ϕi) = (60◦, 0◦) on the 2-bits
coding MS, as shown in Fig. 15 c, d.

Table 4 yields identical results for the SLL as it does for
the directivity parameter.When we change the tolerance from
0.5 dB to 0.25 dB and eventually to 0.1 dB for the MLP,
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the related accuracy measures are 99.9%, 98.3%, and 86.1%,
correspondingly.

FIGURE 15. Side-Lobe Level performance as a function of steering
direction for different cases.

D. HALF POWER BEAM WIDTH (HPBW)
We express performance evaluations for realistic MS as a
function of steering orientation in this section, Fig. 16a shows
total scan pattern for HPBW for all the domain angles of
reflection resulting from a beam incident at angle of (θi, ϕi) =
(30◦, 0◦) on the 1-bit coding MS, and the incidence angle
(θi, ϕi) = (60◦, 0◦) as shown in Fig. 16b. The directivity
was also calculated when the same previous beams incidents
at angles (θi, ϕi) = (30◦, 0◦) and (θi, ϕi) = (60◦, 0◦) on
the 2-bits coding MS, as shown in Fig. 16 c, d. Low values
indicate highly precise tracking and localization, while high
values indicate diffuse scattering or more angular coverage.
The tolerance values of 1, 0.5, and 0.25 are used in this
calculation. Table 4 shows the MLP has accuracy values of
99.5%, 97.3%, and 79.2%, correspondingly.

The tolerance values of 1, 0.5, and 0.25 are used in this
calculation. Table 4 shows the MLP has accuracy values of
99.5%, 97.3%, and 79.2%, respectively. It’s worth noting
that the accuracy numbers have a similar pattern to the other
metrics of interest. As a result of the above talks, we can
conclude that the suggested approach is capable of precisely
predicting the reflected beam far field-radiation pattern or
the measurements that may adequately define it. We show
Fig. 17 to further emphasize this point. Specifically, when the
tolerance in dB rises, Fig. 17a demonstrates the evolution of
the quality of the forecasts for directivity and SLL.

Finally, when the tolerance in degrees increases, Fig. 17b
depicts the evolution of the quality of the forecasts for the
incidence angle and HPBW. We can see that as the toler-
ance is increased, the accuracy 100% improves. However,
we note that the beam width forecast gets to 100% accuracy
at extremely low tolerance values, but the angle of radiation

FIGURE 16. HPBW performance as a function of steering direction for
different cases.

FIGURE 17. Accuracy vs tolerance for both 1-bit and 2-bits.

measurement requires the predictors to have greater tolerance
limits in order to attain better accuracy.
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To more clearly demonstrate the benefits of our DNN
model, we compare the conventional method (such as Com-
plete Wave Simulations using CST), analytical models (such
as Adaptive Neuro-fuzzy Inference System (ANFIS) [30]
and Support Vector Machine (SVM) [31]) and our DNN
technique in terms of time-consuming, iterations of computa-
tion in CST, the difference between computed radiation and
target radiation, radiation efficiency and accuracy rate. This
comparison is performed for the second scenario 2-bits at
incident angle (θi, φi) = (30◦,−90◦), and required, reflected
angle (θr, φr) = (60◦, 90◦). Our DNN model technique
generates results about 393.7 times faster than the traditional
one, as can be seen, this is due to the much iteration the
MGSA-PSO algorithm does, this attests to the DNN model’s
superior effectiveness and efficiency. We also calculate the
discrepancy between estimated radiation and target radiation,
which indicates the accuracy rate of the radiation outcomes.
In particular, the accuracy rate for the top 30% of samples
might go to 90%. In reality, as deep learning models can
only generate probabilistic predictions, they may not be exact
enough to achieve 100% accuracy, necessitating extra opti-
mization procedures. Even said, deep learning may compute
values that are closer to the ideal ones, which can speed up the
radiation process and cut down on the amount of calculation.
From the above, it can be concluded that the DNN model
is better than both of the conventional method and analyt-
ical models, either from the aspect of computational itera-
tions and quantities, time consumption, or result accuracy
rate. Consequently, the outcomes validate the DNN model.
For 2D MS radiation, the DNN model offers an effective
method in a variety of application environments; the compar-
ison is listed in Table 5.

TABLE 5. Comparison between our DNN model and other models.

VII. CONCLUSION AND FUTURE WORK
We provide a unique data-driven methodology for measuring
the reflected beam far field radiation pattern from a MS in
this study, which uses a NN-based approach. One of the most
noteworthy benefits of such a technique is that, while its
precision is comparable to that of complete wave simulator
systems, the time complexity required to attain the same is

substantially less. It may also be used as a way for enabling
self-healing features and simplifyingMSsmanagement in the
6G wireless smart environment. As a result, we’ve set up an
adaptive design framework as part of this process. We investi-
gated two particular instances using this framework, in which
we developed an estimation of the complete radiation pat-
tern for a PIN diode MSs, R-C local tunable MSs. Further-
more, we have proved the efficiency of NN-based techniques
through our research. In particular, it was discovered that,
when compared to complete wave simulator equivalents, NN-
based techniques could forecast the radiation pattern with a
high degree of accuracy in a substantially shorter time period.
Finally, we have provided a first study in this work through
the scenarios, in which, rather than assessing the whole radi-
ation pattern, we have expected the most significant criteria
that regulate any radiation pattern, namely, Angle of maxi-
mum radiation, directivity, beam width, and principle- SLL.
This procedure will not only assure the requisite accuracy in
estimates, but it would also enable for a speedier convergence
time.

We are confident that our research will serve as a base for
future studies on the primary problems and areas for future
study on the combination of RISs and several developing
technologies leading to 6G, such as Non-OrthogonalMultiple
Access (NOMA), Physical Layer Security (PLS), Simulta-
neous Wireless Information and Power Transfer (SWIPT),
Unmanned Aerial Vehicle (UAV) enabled wireless networks,
Visible Light Communications (VLC), autonomous driving
networks and etc. In particular, the IRS may use machine
learning techniques to recognize the wireless environment
and subsequently alter its radiation characteristic dynami-
cally to achieve varied tasks. It is believed that this study
will offer valuable and practical guidelines for future work on
exploring IRS-aided wireless networks in numerous aspects
because they are new and mostly unexplored. In particu-
lar, we anticipate that the incorporation of IRSs into future
wireless networks will substantially change their structure
from the conventional one with only active components to
a novel hybrid one including both active and passive com-
ponents coexisting in an intelligent manner, opening fertile
directions for future research. The ground-breaking DNN
technique addresses the future difficulties in bridging theory
and practice in RIS-enabled systems. Keep an eye out for
this innovative technology as it has a bright future in wireless
communications.
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