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ABSTRACT Peak detection is a crucial preprocessing step in the analysis of various spectral signals. The
method based on the continuous wavelet transform is more practical and popular, and has better detection
accuracy and reliability because it identifies peaks across scales in the wavelet space and implicitly removes
noise as well as the baseline. However, there are inevitably overlapping peaks in the measured spectra,
and the formed composite ridges affect peak detection accuracy. Most peak detection methods have limited
applicability to overlapping peaks. A weighted continuous wavelet transform (WCWT) peak detection
algorithm is proposed to improve the adaptive ability of the peak detection method. This method yields more
obvious spectral peak characteristics in low-scale regions. Composite ridges can be successfully truncated
by setting a noise threshold based on the standard deviation of the spectral signal. In addition, the maximum
value in the ridges was compressed and shifted to a smaller scale, which could determine the peaks more
accurately. The method was applied to the peak detection of simulated spectra, Romanian database of Raman
spectra, and real liquid electrode glow discharge spectra. The results show that the proposed method exhibits
good peak detection performance.

INDEX TERMS Peak detection, weighted continuous wavelet transform, overlapping peaks, peak ridges.

I. INTRODUCTION
Spectroscopy technology, includingmass spectrometry (MS),
atomic absorption spectroscopy (AAS), Raman spectroscopy,
laser-induced breakdown spectroscopy (LIBS), and liquid
electrode glow discharge (LEGD) spectroscopy, can be used
for the qualitative and quantitative analyses of material
components by identifying the positions and intensities of the
spectral peaks. Therefore, the spectroscopy has been widely
used in material measurements, environmental monitoring,
biomedicine, water quality testing, and other domains [1],
[2], [3], [4], [5], [6]. Peak detection is the basis of spectral
analysis and has a direct influence on the reliability of the
subsequent analyses. Various peak detection methods have
been developed, such as, the derivative method [7], the
local maximum method [8], the curve fitting method [9],
[10], the deconvolution method [11], [12], and the wavelet
transform method [13], [14], [15], [16], [17], [18], [19], [20].
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These methods have positive significance for the detection of
spectral peaks.

Peak detection methods based on the continuous wavelet
transform (CWT) have received significant attention in recent
years because they exhibit the advantages of flexibility,
multi-resolution, and easy implementation. Du et al. [13]
employed the CWT for peak detection, which improved the
accuracy and reliability of detection by identifying cross-
scale peaks in the wavelet space and implicitly removing
noise and baselines. Zhang et al. [14] developed a multiscale
peak detection method that takes full information of the
ridges, valleys, and zero-crossings in the CWT coefficient
matrix to improve peak detection accuracy. Zheng et al. [15]
presented an improved method that combined CWT with a
crazy climber algorithm to identify peaks by the position of
ridges and achieved better performance in overlapped peak
detection. Liu et al. [19] improved the mother wavelet to
shorten its linewidth, which was applied to identify Raman
spectral peaks and achieved good results. Zheng et al. [10]
explored a method that combined CWT and curve fitting to
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reduce the influence of noise. However, curve fitting reduced
the peak detection efficiency.

In the CWT peak detection algorithm, peaks are usually
obtained by searching for ridges or valleys in the coefficient
matrix, where the ridges are determined from the local
maxima in the search window. However, in the CWT
coefficient matrix, owing to the presence of overlapping
peaks, the ridges merge to form composite ridges at larger
scales. In addition, the ridge is not a straight line because of
the influence of the adjacent peaks and noise on the spectra.
The maximum value of the ridge, particularly that of the
composite ridge with overlapping peaks, is typically located
on a larger scale. The maximum value of the ridge on a larger
scale cannot correctly determine the peak position, which
affects peak detection accuracy.

As a result, the peak detection method that can effectively
identify overlapping peaks and reduce false peaks requires
further investigation. In this study, an improved method that
introduces a weighting function to the mother wavelet, that
is, the weighted continuous wavelet transform (WCWT)
peak detection method is developed, and the selection of
the wavelet function and scale parameters is described
in detail. The noise threshold is defined by the standard
deviation of the spectral signal, which can effectively truncate
compound ridges. Moreover, the maximum value of the
wavelet transform coefficient is compressed and shifted to a
smaller scale to determine the peak position more accurately.
In general, the improved peak detection method inherits the
advantages of the continuous wavelet transform method and
exhibits better peak detection performance.

II. PRINCIPLES AND METHODS
A. CONTINUOUS WAVELET TRANSFORM
The wavelet transform is proposed based on the short-time
Fourier transform, which can simultaneously achieve a local
transformation in the time and frequency domains. Therefore,
CWThas the outstanding property of focusing on local details
of the signal. The CWT is widely used in signal processing,
such as discontinuity and chirp signal detection [21], which
allows wavelet transforms at every scale. The scales were
determined by weighing the need for detailed analysis [13].
In particular, CWTmakes the peak information in the spectral
peaks more obvious by redundant continuous translation
at each scale. Mathematically, the CWT is represented
by Eq. (1):

C(a, b) =
∫
R

f (t)wa,b(t)dt

wa,b(t) =
1
√
a
w(
t − b
a

), a ∈ R+ − {0} , b ∈ R (1)

where f (t) is the signal, a is the scale parameter, b is
the translation parameter, and w(t) is the wavelet mother
function, wa,b(t) is the scaled and translated wavelet and C
is the two-dimensional coefficient matrix that reflects the
similarity between the wavelet functions and the signal. CWT

can be regarded as the convolution of the signal and wavelet
functions on a certain scale. The larger C(a, b) is, the greater
the similarity of the signal to the wavelet function wa,b(t) is.
Therefore, the spectral peak positions can be estimated by
using the ridges formed in the wavelet space from the local
maxima of the wavelet transform coefficients.

B. WAVELET MOTHERFUNCTION AND WEIGHTING
FUNCTION
The choice of wavelet mother function mainly depends
on its function symmetry and waveform. The background
infor-mation of the spectral lines can be effectively sup-
pressed by selecting a wavelet mother function with sym-
metric properties for CWT. In addition, the selection of
the wavelet mother function requires that its shape be
similar to the peak shape of the peak-seeking spectrum. The
Mexican hat wavelet is a mother wavelet commonly used in
wavelet transforms for peak detection. This is proportional
to the second derivative of the Gaussian probability density
function, which has the main characteristics of a spectral
peak shape, including symmetry, a maximum peak, and
an approximately Gaussian shape. The mathematical repre-
sentation of the Mexican hat wavelet is given by Eqs.(2):

ϕ(x) =
2
√
3

(
1
π

) 1
4

(1− x2)e−
x2
2 (2)

The second derivative Gaussian wavelet (Gaus2 wavelet)
is also derived from the Gaussian function and exhibits a
mathematical form and peak characteristics similar to those
of the Mexican hat wavelet, which can be defined by Eqs.(3):

ψ(x) =
2
√
3

(
2
π

) 1
4

(1− 2x2)e−x
2

(3)

The resolution of the CWT is controlled by the scale
parameter a of the mother wavelet. As the scale increases,
the resolution decreases. Wavelet transform on a small scale
can achieve better resolution of overlapping peaks because
of the smaller half-width of the wavelet. The Gaus2 wavelet
and Mexican hat wavelet with the same scale are shown in
Figure 1. The Gaus2 wavelet has a smaller half-width, which
can obtain a better resolution of overlapping peaks in the
wavelet space.

The coefficient a1/2 in Eq.(1) ensures the energy conserva-
tion of the wavelet function wa,b(t) and the mother function
w(t) at any scale a, which is an important characteristic of
many wavelet-based algorithms such as data compression.
For peak detection algorithms, the constraint of energy
conservation can be ignored, allowing the targeted selection
of wavelets with specific properties, thereby tailoring the
wavelets according to the shape of the data peaks and
the desired sensitivity for overlapping peak detection [16].
In other words, by allowing the wavelet transform calculation
to be customized for a particular type of data, the weighting
function g(a) can be introduced into the mother wavelet of
CWT. For the Gaus2 wavelet employed in this study, the
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FIGURE 1. Comparison of Gaus2 wavelet and Mexican hat wavelet at the
same scale.

FIGURE 2. (a) Simulated overlapping peaks, (b) ridges of CWT in Mexican
hat wavelet space, (c) ridges of CWT in Gaus2 wavelet space, and
(d) ridges of WCWT in Gaus2 wavelet space.

modified wavelet is given as follows:

wa,b(t) = g(a)ψa,b(t) (4)

The weighting function selected is g(a)=1/ea. As the
scale parameter a increases, the wavelet transform becomes
weaker. This is necessary for the truncation of the composite
ridges by setting a noise threshold.

To evaluate the performance of the Gaus2 wavelet and
weighting function for peak detection, a fully overlapping
peak consisting of two peaks with the same amplitude and
width can be simulated as expressed in Eq.(5):

f (t) = f1(t)+ f2(t) = e−
(t−90)2
2×200 + e−

(t−108)2
2×200 (5)

The circles in Figure 2 represent the local maximum
coefficients at each scale in the wavelet space, and the
resulting curve is defined as a ridge. Figure 2(a) shows the
simulated overlapping peaks with two peaks. Figures 2(b)
and (c) show the local maxima obtained from the Mexican
hat and Gaus2 wavelet, respectively. In general, the half-
width of a wavelet increases with the scale. The resolution

FIGURE 3. (a) CWT coefficient, (b) WCWT coefficient.

of the overlapping peaks decreases with the increasing scale.
Owing to its smaller half-width, the Gaus2 wavelet can
easily distinguish the overlapping peaks in the wavelet space.
Therefore, the Gaus2 wavelet is chosen for follow-up, except
for special instructions. Figure 2(d) shows the coefficients
obtained from the Gaus2 wavelet through the WCWT,
which has a smaller scale range. The standard deviation
(SD) of the spectral signal is used to determine the noise
threshold. For the WCWTmethod, as the scale increased, the
transform strength weakened, and the transform coefficient
accordingly decreased. The local maxima of the coefficient
matrix are identified using the local window search method
[15], and the coefficient matrix is filtered through the defined
noise threshold. After filtering, only the local maxima at
small scales were retained and the composite ridges of the
overlapping peaks were truncated. The noise threshold is
0.001 times the standard deviation of the spectral signal.

As shown in Figure (3), the WCWT method retains the
transformation characteristics well at a smaller scale, making
the peak characteristics in the low-scale region more obvious.
Meanwhile, the maximum at the ridge position is compressed
and migrated to a smaller scale position. The effects of
adjacent peaks and noise on the peak ridges at small scales
are weak, and the search for the maximum value of the ridges
at small scales is more accurate for the reflection of the peak
position. Therefore, it is ideal to introduce the weighting
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FIGURE 4. Local maxima: (a) interval is 1 and scale is a = i ; (b) interval
is 1 and scale is a = 1.18i−1; (c) interval is 0.5 and scale is a = i .

function g(a) for the peak detection of overlapping and weak
peaks using wavelet transform.

C. SCALE PARAMETER SELECTION
The selection of scale parameters is important for the wavelet
transform peak detection algorithm. The range of scale
parameters is large in the traditional CWT [13], [14], [15],
[16], [17], [18], [19], [20]. If the scale parameter has a
large range, the number of calculations will increase without
improving accuracy. If it is small, the accuracy of the peak
detection will be affected. The smaller the scale, the weaker
are the detected peaks. The selection of the minimum scale
directly affects the identification ability of the weak peaks.

Compared with the scale parameters in the following two
situations, a = i and a = 1.18i−1, when the integer i is
increased from 1 to 20, and a = 1.18i−1 takes to two decimal
places. i = 20, 1.18i−1 ≥ 20, so 11.8 is chosen as the log-
base. An overlapping peak is simulated using Eq.(6), and the
local maximum can be obtained using the WCWT, as shown
in Figure 4. The WCWT preserves only local maxima at
smaller scales.

f (t) = f1(t)+ f2(t) = e−
(t−50)2
2×3 + 3 · e−

(t−56)2
2×3 (6)

The overlapping peaks in Figure 4 (a) and (b) have fewer
peak data points with an interval of one between the data
points. As shown in Figure 4(a), when the scale is a = i,
the peak on the left exhibits only two local maxima over
the entire scale, which cannot lead to a useful peak ridge.
The length of the ridge is usually greater than or equal to
3 [13]. When the scale is a = 1.18i−1, seven local maxima
exist, as shown Figure 4(b). The smaller the distance between
scales, the better the identification of overlapping and weak
peaks. More scale parameters should be set in intervals with
smaller values and fewer scale parameters should be set in
intervals with larger values. This method can reduce the
algorithm redundancy and improve the operational efficiency.
As shown in Figure 4(c), when the interval is 0.5 and the scale
is a = i, the peak on the left exhibits six local maxima, which
can form a useful peak ridge.

In summary, for spectral information obtained from
high-resolution instruments, a scale with equal spacing is
sufficient, because spectral peaks are formed based on
more data points. However, for spectra measured using
portable spectrometers with lower resolution, fewer data
points formed peaks. Therefore, it is necessary to select scale
parameters with small spacing for accurate peak detection.
The resolution of the overlapping peaks decreases with an
increase in scale, and a scale parameter with a small spacing
can achieve better overlapping and weak peak resolution.

D. RIDGE IDENTIFICATION AND PEAK DETERMINATION
As mentioned previously, the peak ridges are closely related
to the estimation of the peak positions. When extracting
ridges, the full use of the wavelet space and valleys in the
original spectrum can accurately estimate the location of the
peaks. The first step in ridge identification involves obtaining
the local maxima in the wavelet space. At each scale of the
CWT coefficient matrix, the slide-window search method
is employed to identify the local maxima [14] and to filter
the coefficient matrix using a defined noise threshold SD.
The search results formed a two-dimensional matrix of the
local maxima. The valley is the local minimum value in the
wavelet space that represents the start or endpoint of the peak
position. The local minimum value can also be determined
by searching for a two-dimensional wavelet coefficient
matrix.

Subsequently, the minimum scale is selected as the initial
scan scale, and the local maximum value position under
this scale is used to draw the points. Scan the next scale to
find the closest value for each scan position and then add
each scan position to the closest ridge. If a new maximum
value appears, then a new connection starts as the root.
Traverse all scales and complete the search for the maximum
values.

Local minima in the wavelet space are used to determine
the start and end points of the estimated peak positions. The
optimal coordinates of the ridge are located in the valley
coefficient matrix. The starting point is the closest local
minimum on the left side of the optimal coordinate and the
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FIGURE 5. (a) Simulated spectrum with Gaussian noise; (b) CWT coefficients; (c) WCWT coefficients.

FIGURE 6. (a) CWT local maxima; (b) WCWT local maxima.

endpoint is the closest local minimum on the right side of
the optimal coordinate. The optimal coordinates are the ridge
coordinates with the highest occurrence in the wavelet space.
Search for the maximum value of the coefficient between the
start and end points. This maximum value corresponded to a
peak on the relative ridge.

After obtaining all the peaks from the above processes,
the unfiltered false peaks in the previous steps were removed
by thresholding the maximum value on the ridge line [18].
Meanwhile, it is essential to ensure that the SNR of these
peaks is greater than or equal to three for better removal of
false peaks.
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TABLE 1. Specific parameters of peaks in simulated spectrum.

III. EXPERIMENTAL
A. SIMULATED SPECTRA
To demonstrate the peak detection performance of the
proposed method, a simulated spectrum was formed by
combining several Gaussian peaks and Gaussian white noise
(20 dB) was added to the simulated spectrum. The Gaussian
peak can be obtained using Eq.(7):

f (t) = He−
(t−c)2

2σ2 (7)

where f is a function of the variable t , e is the natural constant,
H is the peak height, c is the peak position, and σ is the
standard deviation proportional to the peak width. To fit
various types of spectra, the synthesized spectra contains
strong, weak and overlapping peaks with different peak
widths. The specific parameters of these peaks are listed in
Table 1.

B. SPECTRAL DATASETS
Raman spectroscopy is performed when the target sample
is excited by a single-wavelength laser, and the generated
spectrum possesses ‘‘fingerprint’’ information, which can be
used for the identification of the substance. Information on
the abundant material structure is usually manifests as peaks
in Raman spectra. Thus, peak detection is crucial for obtain-
ing information in the spectrum. The Romanian database
of Raman spectra (RDRS) contains raw spectra, manually
annotated peak information from mineral samples, crystal
structures, sample images, sample origins, and vibrations,
which can be obtained from http://rdrs.uaic.ro/. Therefore,
this database was used to evaluate the peak detection methods
in this study.

Laser-induced breakdown spectroscopy (LIBS) datasets
were also used to evaluate the experimental results. As a fast
chemical analysis technique that enables remote detection,
it has been widely adopted owing to its efficient and fast
analysis and wide coverage of elements. ChemCam is a
LIBS device carried by Curiosity (United States), which

landed on Mars in 2012. This was the first LIBS device
used for the planetary exploration. The LIBS spectrum
and data were obtained from the National Aeronautics
and Space Administration Planetary Data System (NASA
PDS) and collected using ChemCam and its backup
prototype.

C. REAL LEGD SPECTRA
To verify the reliability and practicability of the WCWT,
real liquid electrode glow discharge (LEGD) spectroscopy
was used as experimental data. LEGD is an atmospheric
pressure glow discharge. During the discharge process, the
metal ions dissolved in the solution entered the plasma
and are converted into neutral metal atoms via high-voltage
discharge. The metal atoms are then excited to the excited
state and energy is emitted in the form of a characteristic
spectrum during the transition from the excited state to the
ground state. The composition and concentration of the metal
elements in the measured substance can be obtained by
analyzing the spectrum to qualitatively and quantitatively
determine the metal ions in the solution. This plasma
has the advantages of small size, convenient portability,
low cost, low excitation power, and no need for inert
gas [22], [23].

IV. RESULT AND DISCUSSION
A. PERFORMANCE ON RIDGES IDENTIFICATION
The experimental data for ridge identification were simulated
spectra in which 12 peaks were generated, as shown in
Figure 5(a). Figure 5(b) shows an image of the CWT
coefficients. It was found that with an increase in scale, the
wavelet coefficient increased, the resolving power decreased,
and the overlapping peaks were completely merged at larger
scales. As shown in Figure 5(c), through the WCWT, the
spectral peak features were compressed at larger scales
and became clear at lower scale, which facilitated the
determination of the positions of the weak peaks and
overlapping peaks.

At larger scales, the coefficient maxima of the overlapping
peaks merged to form composite ridges. Figure 6 shows
the filtered local maxima using the noise threshold. The
local maxima obtained using the CWT method are shown
in Figure 6(a). It can be seen that the composite ridges are
detected at the four positions marked by the red arrows, and
the composite ridges will mistakenly introduce false peaks.
As shown in Figure 6(b), composite ridges can be truncated
using the WCWT method. Although the position marked by
the red ellipse in the figure exhibits an obvious curvature,
the maximum value on the ridge is compressed and migrated
to a small-scale parameter position with higher resolution
via the weighting route. As a result, overlapping peaks can
be readily identified by the WCWT. Furthermore, the scale
parameter range of the WCWT decreases, however, it is not
equivalent to intercepting a small scale parameter because
each peak position corresponds to a different scale parameter
range.
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B. PEAKS DETECTION RESULT AND COMPARISONS
To evaluate the peak detection results obtained using the
WCTW method, the publicly available LIBS dataset and
RDRS were employed, and a comparative analysis was
performed with other methods, including multiscale peak
detection (MSPD) [14] and MassSpecWavelet [13].

The traditional receiver operating characteristic (ROC)
curve was adopted as the standard to evaluate the peak
detection results. If the determined position exceeded the
given error margin of the true position, the corresponding
peak was considered false. The false detection rate (FDR) and
sensitivity (true positive rate, TPR) of ROC can be calculated
using the following equations:

TPR =
TP

TP+ FN
=
TP
P

(8)

FDR =
FP

FP+ TP
(9)

where TP is the number of peaks detected within the true
peaks. FN is the number of peaks that are not detected by
the algorithm. P is the total number of true peaks. FP is the
number of detected false peaks. ROC curves were obtained
using different peak detection methods by plotting a series
of relationships between the TPR and FDR under different
parameter settings. For the same FDR obtained by different
peak detection methods, a larger TPR corresponds to better
performance of the method.

The ChemCam carried by the Curiosity Mars Rover has
obtained a large number of LIBS spectra from the surface
of Mars, including almost 1000 different rock and soil
targets, to accurately analyze the elemental composition and
spectral characteristics of samples from different targets.
ChemCam has three 2048 channel spectrometers covering
the wave-length range from 240.1 to 342.2 nm, 382.1 to
469.3 nm, and 474.0 to 906.5 nm. It uses a 1067 nmNd:KGW
laser with a 350 µm spot size, 5 ns laser pulse width, and
14mJ pulse energy.When the sample was placed at a distance
of 1.5 m, ChemCam emitted 50 laser pulses at five different
locations on the sample and collected the spectra. In this
study, the second spectral data of 50 samples were selected
and analyzed using WCWT, MSPD, and MassSpecWavelet.
TheWCWTmethod uses the Gaus2 wavelet andMexican hat
wavelet as the mother functions. The ROC curve was used
to evaluate the performance of the aforementioned methods.
The SNR of the MassSpecWavelet ranged from 0 to 13,
and the threshold values of the WCWT and MSPD methods
ranged from 0.001 to 1. The ROC curves of the three methods
for the LIBS dataset are shown in Figure 7(a). TheMSPD and
WCWT performed better than MassSpecwavelet. Overall,
the TPRs of the WCWT and MSPD were much higher
at all FDRs than those of MassSpecWavelet. Compared
with MSPD, the performance of WCWT is superior, and
the WCWT method with the Gaus2 wavelet as the mother
function has the best peak detection performance.

Random noise, fluorescent baselines, overlapping peaks,
and peak-dense regions coexist in the Raman spectra of

FIGURE 7. ROC curves of the three peak detection methods (WCWT,
MSPD, and MassSpecWavelet) for the two datasets. (a) LIBS and (b) RDRS.

RDRS, which leads to significant challenges for peak
detection methods. Sixty Raman spectra were selected,
and TPR and FDR were recorded at different thresholds.
Thresholding by the maximum ridge for the WCWT and
MSPD was selected from 0.001 to 0.5. To remove false peaks
better, the SNR of the WCWT method was set to 3. The
SNR values for the MassSpecWavelet method were varied
from 0 to 20. The ROC curves of the three methods for the
RDRS dataset are shown in Figure 7(b). The WCWTmethod
also uses the Gaus2 wavelet and Mexican hat wavelet as
the mother function. The TPRs of the WCWT were larger
for all FDRs than those of MSPD and MassSpecWavelet.
The WCWT is more stable, particularly when the FDR is
small, which means that the WCWT can identify more true
peaks when FDR remains low. The excellent results of the
WCWT in Raman spectroscopy indicate that this method
exhibits favorable commonality compared with the other
two methods. For the WCWT method, the Gaus2 wavelet
with a smaller half-width exhibited a better peak detection
performance than the Mexican hat wavelet.

To evaluate the peak detection performance of the different
methods further, the F1 measure was employed as another
criterion. The F1 metric is a trade-off between the false
discovery rate and sensitivity to quantify the algorithm
performance [8]. A larger F1 leads to a better peak detection
performance. The F1 measure is defined by Eq. (10):

F1 =
2 · (1− FDR) · TPR
1− FDR+ TPR

(10)
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FIGURE 8. Advantages of WCWT for weak and overlapped peak detection compared with those of
MassSpecWavelet and MSPD. (a) Detection result of WCWT; (b) detection result of MSPD; (c) detection
result of MassSpecWavelet.

FIGURE 9. Peak detection results of LEGD. (a) Detection results of WCWT and (b) detection results of
MSPD.
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TABLE 2. The optimal F1 measure and the corresponding TPR and FDR of
different methods.

Table 2 shows the optimal F1 measure obtained using
the three peak detection methods and the corresponding
TPR and FDR values for the RDRS. The F1 values of the
WCWT method for both wavelet cases are higher than those
of the other two methods, illustrating the applicability of
this method. This also means that the WCWT can achieve
peak detection with a high true positive rate and a low false
detection rate. In addition, the WCWT method using the
Gaus2 wavelet with a smaller half-width has better peak
detection performance than the Mexican hat wavelet.

Although MassSpecWavelet, MSPD, and WISPD all have
the feature of continuous wavelet transform, they can avoid
the interference of noise and the baseline to some extent.
These methods exhibit different performances for weak
and overlapping peak detection and false peak removal.
As shown in Figure 8(c), for the Raman spectra, the detection
performance of MassSpecWavelet using SNR to identify
peaks is poor. As shown in Figure 8(b), the MSPD method
can detect partially overlapping peaks because of the full
use of the peak information in the wavelet space, which still
causes the missed detection of some weak overlapping and
weak peaks. Figure 8(a) shows the peak detection results
of the WCWT method, which can detect each peak among
the overlapping peaks and mark the weak peaks with a
box. Clearer low-scale spectral peak characteristics were
obtained using the WCWT. In addition, overlapping and
weak peaks can be easily identified by selecting the Gaus2
wavelet with a smaller linewidth and scale parameter with
small spacing. The only unsatisfactory result was that the
broad peak indicated by the right oval mark in Figure 8(a)
was detected as an overlapping peak with two peaks, which
may indirectly reflect the strong overlapping peak resolution
ability of the WCWT method.

C. RELIABILITY AND PRACTICABILITY
LEGD spectra were acquired using a miniature fiber optic
spectrometer (AvaSpec-ULS3648, Avantes, Netherlands),
and the liquid glow discharge device was described in detail
in a previous study [24]. The simulated water samples
contained Zn, Cd, Cu, Pb and Na ions. Figure 9(a) shows the
peak position information obtained by the WCWT method,

which can accurately detect eight spectral lines of the five
metal elements in the simulated water sample, including
Zn (213.7 nm), Cd (228.8 nm), Cu (324.7 and 327.4 nm),
Pb (368.4 and 405.8 nm), and overlapping peaks of sodium
element at 589.0 and 589.6 nm. In addition, the molecular
band spectra of OH (nm) and N2 (315–406 nm) as well as
the atomic lines of Hβ (486.1 nm) and Hα (656.5 nm) were
accurately detected. Hβ and Hα are two important basic data
for calculating plasma parameters in LEGD.

The plasma excitation temperature was measured using
the relative intensities of Hβ and Hα [25]. Plasma electron
density was calculated using the stark-broadened profiles of
the Hβ lines. Figure 9(b) shows the peak-finding results of
the MSPD method. It can be seen that although most of
the spectral peaks can be well identified, the overlapping
peak of sodium (589.6 nm) cannot be identified. The WCWT
method provides clearer spectral peak characteristics by
weighting and simultaneously selecting a scale parameter
with a small spacing and a wavelet function with a small
linewidth, which can effectively identify overlapping peaks.
The results show that theWCWTmethod has better reliability
and practicability for processing the LEGD spectra.

V. CONCLUSION
In this study, an improved peak detectionmethod based on the
weighted continuous wavelet transform is proposed. Simulta-
neously, scale parameters with a small spacing and a Gaus2
wavelet with a small line width were selected. The WCWT
can weaken the intensity of the transform at larger scales
and cause low-scale regions to exhibit more obvious spectral
peak characteristics. Setting a noise threshold based on the
standard deviation of the spectral signal effectively truncates
the complex ridges. In addition, the WCWT combines ridge
and valley information in the matrix for better identification
of the spectral peaks. The simulated spectral results showed
that the WCWT achieved better ridge identification and peak
finding accuracy. The detection results of the Romanian
database of Raman spectra in this study show that the
WCWT method can attain a high TPR while maintaining
a low FDR and has better peak detection performance than
MSPD and MassSpecWavelet, especially for the detection of
overlapping peaks. The practical application of the WCWT
method in LEDG spectroscopy showes good reliability and
practicability.
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