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ABSTRACT To improve the accuracy of soil heavy metal content prediction, this study proposes a dynamic
neural network optimization model (DNNOM). The model is based on a radial basis function neural network
(RBFNN). The weights and bias of the output layer of the RBFNNwere generated using an adaptive dynamic
genetic optimization algorithm (ADGOA), and the center point of the hidden layer of the RBFNN was
determined using an efficient density peak clustering algorithm (EDPC). An adaptive variance measure
(AVM) was then used to generate the width vector of RBFNN hidden layer. The model was applied to the
predict soil heavy metal content in six new urban areas in Wuhan. Through comparison with support vector
machine(SVM), light gradient boosting machine(LightGBM), RBFNN, and genetic algorithm optimizes the
radial basis function neural network(GA-RBFNN), the experimental results demonstrate that the DNNOM
is closer to the real value than the other four models, and the four error indicator values are also significantly
lower than those of the other comparison models, which have higher prediction accuracy. Especially when
compared with RBFNN, the MAPE and SMAPE of DNNOM decreased by 3.98% and 3.9%, respectively.

INDEX TERMS Dynamic neural network optimization model, soil heavy metal content prediction, radial
basis function neural network, adaptive dynamic genetic optimization algorithm.

I. INTRODUCTION
Currently, soil pollution in China is not optimistic, particu-
larly heavy metal pollution, which has become increasingly
serious [1]. These heavy metals cannot be decomposed by
microorganisms in the soil; therefore, they accumulate in
the soil and eventually change its properties [2]. In addition,
these heavy metals are absorbed by natural organisms and
enter the human body through circulation, ultimately posing a
significant threat to human health [3]. Investigation of heavy
metal content in soils in polluted areas is an indispensable part
of soil heavy metal pollution control. However, owing to the
limitations of manpower, material, and financial resources,
it is difficult to carry out detailed detection of heavy metal
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content in the soil of polluted areas. This problem can be
effectively solved by using known data on soil heavy metal
content to predict soil heavy metals in unknown areas.

In recent years, with the gradual deepening of research
on artificial neural networks, artificial neural networks are
more and more applied to soil data prediction. Cao et al. [4]
proposed a parallel bird swarm algorithm (PBSA) to solve the
parameter optimization problem of wavelet neural network
based on wavelet neural network (WNN), so as to improve
the accuracy of WNN model in predicting soil heavy metal
content; Wang et al. [5] used convolutional neural network
(CNN) to extract effective internal feature data from com-
plex spectral data to predict the moisture content in soil.
Li et al. [6] proposed a prediction method for the spatial vari-
ation of soil organic matter based on the RBFNN, and its
prediction error was less than that of the Kriging method.
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Hao et al. [7] proposed a convolutional neural network based
on ensemble empirical mode decomposition (EEMD-CNN)
for short-term soil temperature prediction, and the results
showed that this model could successfully provide accurate
and reliable short-term soil temperature prediction to help
improve productivity. Yin et al. [8] proposed a GANN model
based on a genetic algorithm and a neural network to predict
the heavy metal content in soil, and the results showed that
the prediction accuracy was better than that of the tradi-
tional interpolation method. Dutta et al. [9] proposed fuzzy
cognitive maps (FCMs) based on recurrent neural networks
(RNN) to identify and classify seven different types of soils
to improve crop yield.

Compared to traditional prediction methods, artificial neu-
ral networks have a higher prediction accuracy for nonlinear
problems [10], [11]. The RBFNNhas beenwidely used in soil
data prediction owing to its strong nonlinear fitting ability,
ability to approximate any continuous function, and higher
accuracy than traditional linear regression prediction; how-
ever, there are also some problems in the training process of
the RBFNN [12], [13], [14]. The center point and width vec-
tor of the hidden layer in RBFNN are randomly generated by
the K-means clustering algorithm, but the K-means clustering
algorithm has high sensitivity to outliers, which easily causes
the generated center point to be too far from the real center
point. The weights and bias of the output layer are randomly
generated, and different initial weights and biases lead to
different training results, which easily causes the training
results to fall into local optima.

Various solutions have been developed to address these
issues. To improve the stability of the RBFNN prediction
results, Cao et al. [15] proposed a deep composite model
(DCM), which used the particle swarm optimization algo-
rithm based on self-adaptive learning (SLPSO) to generate
the weights and bias of the RBFNN to improve the pre-
diction accuracy of the model for soil heavy metal content.
Cheng et al. [16] introduced a genetic algorithm (GA) into
RBFNN to generate the weights and bias of the output layer
to prevent poor prediction performance of the model caused
by poor initial weights and bias. Xiong et al. [17] used particle
swarm optimization (PSO) and discrete particle swarm opti-
mization (DPSO) to optimize the structure and parameters of
an RBFNN. The experimental results show that the model
has a high prediction accuracy for stock price time series.
In addition, some experts and scholars have improved the
generation method for the center points of the hidden layer
of the RBFNN. Hu et al. [18] used a clustering method based
on feature vectors in the feature space to identify the center
points of the RBFNN, which can effectively improve the pre-
diction accuracy of the RBFNN. According to the principle
that the intra-class distance between samples in the same
cluster should be smaller than the inter-class distance between
clusters, Zhu et al. [19] adopted an improved algorithm
to dynamically adjust the randomly selected initial cluster
centers. The experimental results showed that the improved
initial cluster centers were highly representative and that

the accuracy of the K-means clustering algorithm was
improved.

To solve the problems of RBFNN in prediction, researchers
have proposed many solutions, but the actual prediction
results are still not ideal. Therefore, this study proposes a
dynamic neural network optimization model (DNNOM) to
solve the problem of that low prediction accuracy of soil
heavy metal content. The model adopts an adaptive dynamic
genetic optimization algorithm (ADGOA) to solve the prob-
lem of randomly generating parameters of the RBFNN output
layer and adopts an efficient density peak clustering algo-
rithm (EDPC) to determine the center point of the RBFNN
hidden layer, which reduces the influence of outliers. Finally,
the effects of the scaling factor and data distribution were
considered. An adaptive variance measure (AVM) was used
to generate the width vector of the RBFNN hidden layer.
Through a comparison experiment, it was proven that the
model has a better prediction effect.

II. BASIC THEORY
A. RADIAL BASIS FUNCTION NEURAL NETWORK
The RBFNN is a three-layer feedforward neural network with
a single hidden layer based on the function approximation
proposed in the late 1980s [20],[21]. Because of its strong
nonline arapproximation ability and simple structure, it is
widely used in data prediction, data mining, and pattern
classification. In addition to the traditional neural network
processing information, the RBFNN uses a radial basis func-
tion to perform nonlinear mapping of the input data in its
hidden layer and transmits the data to the next layer through
linear calculations [22]. The structure of an RBFNN is shown
in Fig. 1.

FIGURE 1. The structure of RBFNN.

The RBFNN processes input data in two parts. The two
components were supervised and unsupervised. In supervised
learning, the weight parameters of the hidden and output
layers were determined by training the sample data set. In this
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process, error functions are used to calculate the gradient
value of each parameter, and gradient descent methods such
as stochastic gradient descent (SGD) are used to continuously
modify the parameters. Taking the weight of the output layer
as an example, the updated formula is as follows:

wt = wt−1 − µ
∂E
∂wt−1

(1)

where µ denotes the learning rate, E denotes the error func-
tion, w denotes the weight of the output layer.

The center point of the RBFNN can change; therefore the
density of the data sample distribution should be consid-
ered when selecting the center point. Several centers where
the data sample distribution is dense can be appropriately
selected. When the data samples are sparsely distributed,
fewer central points can be selected. If the data sample is
evenly distributed, the center point should be evenly selected.
In summary, the selected center point should be representative
of the entire dataset.

In unsupervised learning, self-organizing learning, such
as the K-means clustering algorithm, is used to determine
its position to obtain the central point of the radial basis
function of the hidden layer. The width vector of the radial
basis function is then obtained by processing the central point
information of the radial basis function, and the calculation
formula is as follows:

σj =
cmax
√
2h

(2)

where h is the number of data center points and cmax is the
maximum distance between the selected centers.

After determining the width vector of the radial basis func-
tion, relevant calculations were performed on the input data
that passed through the hidden and output layers. The output
of the input data sample xi at the j node of the hidden layer is
calculated as follows:

∅ (xi, j) = exp

(
−

1

2σ 2
j

xi−cj

)
(3)

where cj and σj are the center point and width vector of the j
node in the hidden layer, respectively.

The output of the input data sample xi at the m node of the
output layer was calculated as follows:

ym = ϕ (ωm∅ (xi, j)) (4)

where ϕ is the activation function and ωm is the weight of this
node.

B. GENETIC ALGORITHM
Genetic Algorithm [23], [24] (GA) originated from the com-
puter simulation of biological systems and borrowed from the
theory of biological evolution and heredity to some extent.
It is an imitation of natural evolution rules developed by
a stochastic search algorithm, with different target problem
solution as the populations of different individuals to generate

the population and then to encode the population and calcu-
late the fitness, selection, crossover, and mutation operations
to find the optimal individual to complete the target problem
solving [25], [26]. The main steps of the algorithm are as
follows:

1. The relevant parameters of the GA were set according to
the objective problem of obtaining different solutions.

2. Several candidate solutions were randomly generated as
population individuals according to the candidate solutions of
the target problem, and their fitness values were calculated.
The individual with the highest fitness value is regarded as
the historical optimal individual.

3. Encoding operation: the individuals of the population
are first initialized, and then the individuals of the population
are encoded in the form of array. The encoding method is
typically binary or real coding, and the fitness value of each
individual in the population is calculated.

4. Selection operation: the population of individuals with
relatively high fitness values is selected according to the
fitness value of the population, using the roulette method
for the selection operation. In this method, a population of
individuals was selected. Generally, when the fitness value
of individuals is higher, the probability of individuals being
selected is higher, and the corresponding probability of being
inherited by the next generation is higher.

5. Crossover operation: gene segments are exchanged
between selected population individuals according to the
crossover probability, which is usually a fixed value.

6. According to the mutation probability, it is usually a
fixed value.

7. Individuals that have been selected, crossed, and
mutated are considered as the new population individuals and
decoded. Subsequently, the fitness values of the individuals
in the new population were calculated to update the historical
optimal individuals.

8. Repeat steps 3-7. When the termination condition is met
or the maximum number of iterations is reached, the iteration
is terminated, and the optimal individual is output.

We provide a summary of GA in the following
Algorithm 1.

Algorithm 1 GA
1: Initialization of population;
2: The individuals of the population are coded;
3: Calculate the fitness value of the individual;
4: while (stop condition in not reached ) do
5: Selection operation;
6: Crossover operation;
7: Mutation operation;
8: Calculate the new fitness value;
9: end while

C. EFFICIENT ENSITY PEAK CLUSTERING ALGORITHM
The efficient density peak clustering algorithm (EDPC) [27],
[28] is based on the density peak clustering algorithm, and a
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kernel function is used to focus on the influence of neighbor-
ing data points. Only the nearest neighbor information of data
points is used to estimate the density difference of data points,
which simplies the calculation process and reduces the time
complexity of the algorithm. Second, the local dynamic scale
calculationmethod based on the nearest neighbor information
is used to reduce the influence of different density clusters
on the local data density to distinguish outliers (noise points)
from normal points more easily.

1) LOCAL DENSITY DEFINITION
The data density estimation method was adopted based on
the data sample points. The mean value of the influence of k
nearest neighbors of data point p on its density is called the
local density of data point p, and its formula is as follows:

ρp =
1
k

∑
xiεKNN (p)

exp
(
−
d (p, xi)
δk (xi)

)
(5)

where ρp is the local density of data point p; d (p, xi) is
the distance between data point p and data point xi; k is
the number of neighboring points; δk (xi) is the euclidean
distance from data point xi to its k-nearest neighbor, and
KNN (p) is the set of k nearest neighbors of a data
point p.

2) DEFINITION OF k-NEAREST NEIGHBOR SET
The k-distance neighborhood of a data point p includes all
data whose distance to some data points o is not greater than
δk (p), and the formula is as follows:

KNN (p) = {o | oεD, dist (p, o) ≤ δk (p)} (6)

where D is the data set, and the k distance δk (p) of data point
p is the distance dist (p, o) between data point p and data point
o in data set D.

3) DEFINITION OF OUTLIERS
The outlier degree of data point p represents the anomaly
degree of p. The larger the outlier degree, the more likely the
point is to be an outlier. The formula is as follows:

M (p) = 1− ρp (7)

According to equations (5) and (7), the outlier degree is
a positive number of no more than one, and the larger the
outlier degree M (p) is, the more likely the point is to be
an outlier. Can better explain the degree of outliers in the
data.

III. ADAPTIVE DYNAMIC GENETIC
OPTIMIZATION ALGORITHM
Genetic algorithm optimizes the radial basis function neural
network, which is a classical optimization method. The GA
takes the parameters in the RBFNN as the population individ-
uals and performs iterative optimization on the individuals in
the population. After the optimization process, the individual
with the best fitness in the population was assigned to the

RBFNN as the initial value of its parameters and then trained.
Thus, the problem of unstable network performance caused
by the randomness of traditional parameter initialization is
avoided, and the initial parameter values are more in line with
the network requirements to achieve better training results.
Therefore, we optimized the genetic algorithm to achieve
better training results.

A. ADAPTIVE PROBABILITY ADJUSTMENT STRATEGY
In the traditional crossover and mutation operation of genetic
algorithm, the crossover and mutation probabilities are gen-
erally fixed values. The fixed values determine whether the
selected individuals participate in crossover and mutation
operations. However, excellent individuals with relatively
high fitness values in the population are also selected to
participate in crossover and mutation operations, which often
leads to a decrease in the fitness value of the individual after
the crossover mutation operation compared with that before
the crossover mutation operation. Therefore, the algorithm
can easily obtain locally optimal solutions. Aiming at the
above problems, this paper proposes a compound adaptive
probability adjustment method (CAPAM) based on sigmoid
and cosine functions to improve the crossover and mutation
operators.

To maintain the excellent individuals with higher fitness
as much as possible, the individuals with lower fitness can
participate in crossover and mutation operations as much as
possible. Crossover and mutation probabilities should be kept
at a high value around the average fitness value, and slow
transformation should be carried out, to allow individuals
with low fitness values to have high crossover and mutation
probabilities as far as possible and allow individuals with low
fitness values to participate in crossover and mutation opera-
tions as far as possible. In the vicinity of the maximum fitness
value, crossover andmutation probabilities should be kept at a
slightly lower value than zero, so that the excellent population
individuals can be preserved while avoiding falling into the
local optimum.

The sigmoid function has two properties:
1. The range of the function is [0, 1], which can be used to

more easily construct the probability adjustment formula for
crossover and mutation.

2. It has a smoother bottom and top, and meets the require-
ments of crossover probability and mutation probability more
than other functions.

The sigmoid function was formulated as follows:

ϕ (x) =
1

1+ e−x
(8)

The independent variable x in ϕ (x) is replaced by the
cosine part to form the composition function as follows:

ϕ (f ) =
1

1+ exp
(
2Acos

(
f−favg

fmax−favg
π
)) (9)

According to the properties of the sigmoid function, when
x ≥ 9.903438, ϕ (x) approaches 1; when x ≤ −9.903438,

119016 VOLUME 10, 2022



K. Cao et al.: DNNOM for Heavy Metal Content Prediction in Farmland Soil

ϕ (x) approaches 0. To ensure that the range of ϕ (x) is within
the interval [0,1], A = 9.903438.

Therefore, the CAPAMproposed in this study is as follows:

Pc =


Pcmax −

Pcmax − Pcmin

1+ exp
(
2Acos

(
f ′−favg
fmax−favg

π
)) f ′ ≥ favg

Pcmax f ′ < favg

(10)

Pm =


Pmmax −

Pmmax − Pmmin

1+ exp
(
2Acos

(
f−favg

fmax−favg
π
)) f ≥ favg

Pmmax f < favg

(11)

where Pc is the crossover probability, ranging from 0.5 to 0.9;
Pcmax is the maximum crossover rate; Pcmin is the minimum
crossover rate; f ′ is the larger fitness value of the two individ-
uals involved in the crossover operation; favg is the average
fitness value of the entire population; Pm is the mutation
probability, ranging from 0.01 to 0.1; Pmmax is the maximum
crossover rate; Pmmin is the minimum crossover rate; f is
the fitness value of the mutants participating in the mutation
operation.

As can be seen from the CAPAM function image in Fig. 2,
the crossover and mutation probabilities have higher values
near favg, and the crossover and mutation probabilities of
individuals in [favg, (favg + fmax)/2] interval in the popu-
lation are improved, the convergence speed of the entire
population is accelerated, and the crossover and mutation
probabilities have lower values near fmax , which also reduces
the crossover and mutation probabilities of individuals with
fitness in [(favg + fmax)/2, fmax] interval, so that the excel-
lent individuals with high fitness in the population can
be preserved while avoiding falling into the local optimal
solution.

FIGURE 2. The CAPAM function image.

B. SIMULATED ANNEALING HEATING RULE
Traditional genetic algorithms tend to have the shortcoming
of low local search accuracy when solving optimization prob-
lems. The introduction of a simulated annealing operation
can compensate for this shortcoming of genetic algorithms.
The v individual is searched at temperature Tk, where k
is the number of cooling times. The cooling equation is

as follows:

Tk+1 = αTk (12)

where α is the cooling coefficient,which is generally set
as 0.99.

Owing to the large temperature drop at the beginning of
the simulated annealing algorithm, an incomplete search may
occur for some temperatures, which can easily cause the algo-
rithm to fall into the local optimal solution. Therefore, adding
a heating strategy can activate the acceptance probability of
each state to adjust the current state and avoid falling into a
local optimum.

We provide a summary of simulated annealing heating rule
in the following Algorithm 2.

Algorithm 2 Simulated Annealing Heating Rule
1: for each individual do:
1: Select the v individual with the highest fitness value as the
initial solution;
2: Let the current solution S = v;
3: Swapping randomly selected individuals produces a new

solution S ′ = v′;
4: Calculate the increment of fitness value dE = f

(
v′
)
−f (v);

5: if dE > 0 then
6: p = exp

(
−
dE
Tk

)
;

7: else
8: p = 1;
9: end for

C. THE FRAMEWORK OF ADGOA
When ADGOA was used to generate the weights and bias
of the RBFNN, they were in the form of an array of real
numbers in the RBFNN, and the shapes were 8×1 and 1×1,
respectively. Therefore, the individual form of the population
generated by real number encoding should also be in the form
of a real number array. and It is a large array combined with
two small arrays with shapes of 8× 1 and 1× 1 respectively,
and the small array is used as the basic unit for genetic
operation. By encoding the weights and bias in the RBFNN,
the loss of important gene segments during the evolutionary
process can be avoided. We provide a summary of adaptive
dynamic genetic optimization algorithm (ADGOA) in the
following Algorithm 3.

Algorithm 3 ADGOA
1: Initialization of population;
2: The individuals of the population are coded;
3: Calculate the fitness values of the individual, fmax and fmin;
4: while (stop condition in not reached) do
5: Selection operation;
6: use equations (10) to (11) to genarate Pc and Pm;
7: use Algorithm 2 to update p;
8: Calculate the new fitness value, fmax and fmin;
9: end while
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IV. ADAPTIVE RADIAL BASIS NEURAL NETWORK
A. DYNAMIC CENTER POINT SELECTION STRATEGY
The center point of the traditional RBFNN hidden layer
basis function is generated by K-means clustering algorithm.
K-means clustering algorithm is an unsupervised learning
method. The algorithm steps are as follows:

1. In the whole data set, k sample points were randomly
selected as the initial clustering centers of k subsets;

2. The euclidean distances from the remaining sample
points to the k subset cluster centers were calculated, and
the nearest cluster was assigned according to the minimum
principle.

3. Based on the clustering results, the average value of the
samples in each cluster was used as a new clustering center.

4. Repeat steps 2 and 3;
5. Finally, k cluster centers were obtained.
The selection of clustering center points of the K-means

clustering algorithm mainly depends on the initial cluster
center points randomly generated in the front, and the ran-
domly selected initial cluster center points often lead to the
instability of the algorithm.TheK-means clustering algorithm
can not ignore the sensitivity to outliers, and it is often easy
to make the cluster center point and the real center point devi-
ation. However, if the K-means clustering algorithm chooses
outliers and edge points as the initial center points of the next
clustering, it can easily degrade the performance and effect of
the clustering, thus rendering the entire clustering algorithm
unstable.

EDPC was introduced into the hidden layer of RBFNN to
generate the initial cluster center points, which can effectively
solved the problem of the K-means clustering algorithm ran-
domly generating the initial cluster center points. Unlike the
K-means algorithm based on segmentation, EDPC uses the
closeness degree of sample data to cluster, classifies accord-
ing to the closeness degree of the connection between sample
points, and classifies closely connected sample points into a
class until all sample points in the sample data are traversed.
An EDPC based on data sample density optimization was
introduced into the K-means clustering algorithm to measure
the density of each sample in the data sample. The k sample
points with the largest density were used to replace the k sam-
ple points randomly selected by the corresponding K-means
clustering algorithm as the initial clustering center points of
the k subsets. Thus, the sensitivity of the K-means algorithm
to the initial clustering center point can be reduced.

EDPC adopts a local density formula to estimate the data
density of data sample points to distinguish normal data
points from outlier data points. Formula is as follows:

M (p) =
1
k

∑
xiεKNN (p)

exp(−
d(p, xi)
δk (xi)

) (13)

where M (p) is the density of the data sample points,k is
the number of neighboring points, d(p, xi) is the euclidean
distance from the data sample point p to xi, δk (xi) is the
euclidean distance from the data sample point xi to its k

neighboring points, and KNN (p) is the k neighbor set of the
data sample point p, that is, the outlier degree of the data
sample point. For points in the same cluster, assuming that the
k neighbors of p belong to the same class, δk (xi) > d (p, xi)
and the value ofM (p)will be relatively large. In other words,
in the k neighbor set of p, the closer the sample data points
are to the center, the greater is the density of the sample data
points.

B. ADAPTIVE VARIANCE MEASURE
The clustering center point u = {u1, u2, . . . , um}, and the cor-
responding scaling factor is determined according to the data
density distribution of each cluster center point; thus the
width of each cluster center point can conform to the spatial
distribution of its data samples. Because of the different
distribution spaces of the cluster sample data, the distance or
the same width of two adjacent cluster center points cannot
reflect the density of cluster center points. Therefore, the
selection of the width should comprehensively consider the
density of the cluster data samples and the distance between
the centers of each cluster.

The average distance between the center points of each
cluster was taken as the base distance:

meanD (ui) =

∑
i6=j dist

(
ui, uj

)
k − 1

(14)

where meanD (ui) is the average distance between the center
points of each cluster, k is the number of neighboring points,
dist

(
ui, uj

)
are european distances.

The variance represents the density of the sample data
distribution. Each cluster was regarded as a data set and the
variance of each cluster was obtained as follows:

Si =
1

size(Ci)

∑
x∈Ci

dist(x, ui)2 (15)

where Si is the variance of each cluster, size(Ci) is the number
of samples belonging to cluster center point ui, dist(x, ui) is
the european distance, and Ci is the subsample.

The scaling factor of the center point width is:

εi =
Si
/
( 1k
∑k

i=1 Si)
(16)

Therefore, we can obtain the width of each center point
according to equations (14), (15) and (16):

σi = εimeanD (ui) (17)

When the cluster data samples are densely distributed, the
cluster variance Si is relatively small, and the corresponding
scaling factor εi was also smaller, thereby reducing the width
of the center point.When the cluster data samples are sparsely
distributed, the clustering variance Si is relatively large, and
the corresponding scaling factor εi is also large; therefore, the
width of the center point also increases appropriately.
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V. EXPERIMENTS AND ANALYSIS
A. DYNAMIC NEURAL NETWORK OPTIMIZATION MODEL
The DNNOM firstly uses an adaptive dynamic genetic opti-
mization algorithm (ADGOA) to generate the weights and
bias of RBFNN output layer. Subsequently, an efficient den-
sity peak clustering algorithm (EDPC) was used to determine
the center point of the hidden layer of the RBFNN. Finally,
the adaptive variance metric (AVM) was used to generate the
width vector of the hidden layer of the RBFNN consider-
ing the influence of the scaling factor and data distribution.
Through a comparison experiment, it was proven that the
model had a better prediction effect.

The steps of DNNOMare briefly described in Algorithm 4,
and the DNNOM framework is shown in Fig. 3.

Algorithm 4 DNNOM
1: Set the structure of RBFNN;
2: Use EDPC to find the center point of RBFNN hidden layer;
3: Use AVM to calculate the width vector of RBFNN hidden
layer;
4: Generate the weight and bias of RBFNN output layer by
ADGOA;
5: while (stop condition in not reached) do
6: Calculate the output of RBFNN;
7: Calculate gradient value;
9: end while

B. VALIDATION OF ADAPTIVE DYNAMIC GENETIC
OPTIMIZATION ALGORITHM
In this experiment, we compared ADGOA, particle swarm
optimization (PSO), bird swarm algorithm(BSA), genetic
algorithm(GA) and new adaptive genetic algorithm (NAGA)
[29]. The GA, PSO, and BSA are swarm intelligence opti-
mization algorithms that attempt to simulate the adaptability
of individual populations on the basis of natural characteris-
tics. They all adopt certain transformation rules to solve the
problem through the search space. PSO and BSA are classical
optimization algorithms that are widely used in various fields
and have a certain representativeness. NAGA is a classical
improved algorithm in genetic algorithm. By comparing the
above four algorithms, the effectiveness of ADGOA can be
better verified. Therefore, we choose 12 groups of test func-
tions for the performance test experiment. The first six are
unimodal functions and the last six are multimodal functions
[30]. The global optimum is 0.

1) Schwefels P2.22 (domain: [−10,10])

f1 (x) =
n∑
j=1

|xi| +
n∏
i=1

|xi| (18)

2) Step (domain: [−100,100])

f2 (x) =
n∑
i=1

(xi + 0.5)2 (19)

3) Zaharov (domain: [−5,10])

f3 (x) =
n∑
i=1

x2i +

(
n∑
i=1

0.5ixi

)2

+

(
n∑
i=1

0.5ixi

)4

(20)

4) Rosenbrock’s (domain: [−10,10])

f4 (x) =
n−1∑
i=1

{
100

(
xi+1 − x2i

)2
+ (xi − 1)2

}
(21)

5) Sum of Different Powers (domain: [−1,1])

f5 (x) =
n∑
i=1

|xi|i+1 (22)

6) Sphere (domain: [−100,100])

f6 (x) =
n∑
i=1

x2i (23)

7) Ackley (domain: [−32,32])

f7 (x) = 20+ e− 20exp

−0.2
√√√√1
n

n∑
i=1

x2i


− exp

(
1
n

n∑
i=1

cos (2πxi)

)
(24)

8) Rastrigin (domain: [−5.12,5.12])

f8 (x) =
n∑
i=1

[
x2i − 10 cos (2πxi)+ 10

]
(25)

9) Schwefels (domain: [−500,500])

f9 (x) = 418.9829n−
n∑
j=1

xi sin
(√
|xi|
)

(26)

10) Dixon-Price (domain: [−10,10])

f10 (x) = (x1 − 1)2 +
n∑
i=2

i
(
2x2i − xi−1

)2
(27)

11) Griewank (domain: [−600,600])

f11 (x) =
n∑
i=1

x2i
4000

−

n∏
i=1

cos
(
xi
√
i

)
+ 1 (28)

12) Levy (domain: [−10,10])

f12 (x) = sin2 (πω1)

+

n−1∑
i=1

(ω1 − 1)2
[
1+ 10sin2 (πωi + 1)

]
+ (ωn − 1)2

[
1+ sin2 (2πωn)

]
Where ωi = 1+ (x i − 1)

/
4,

for all i = 1, · · · , n (29)
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FIGURE 3. The framework of DNNOM.

The parameter settings for the experiments are listed in
Table 1. To ensure the same experimental conditions, the
12 groups of test functions under each algorithmwere iterated
100 times. The changes in the optimal fitness values of the
five algorithms during the iteration process of the first six
unimodal test functions are shown in Fig. 4, and the fitness
mean values and standard deviations after the iteration are
listed in Table 2. The change in the optimal fitness value
during the iteration process of the last six multimodal test
functions is shown in Fig. 5, and the fitness mean value and
standard deviation after iteration are listed in Table 3.

TABLE 1. Parameter setting.

As can be seen from Table 2 and 3, the standard deviation
of BSA is lower than those of the other four algorithms for f4
and f7. Under other test functions, the average and standard
deviation of NAGA and ADGOA were lower than those of
the other three algorithms, indicating that the convergence
accuracy of NAGA and ADGOA was better than that of
the other three algorithms. Under f1, f2 and f8, the standard
deviation of NAGA is lower than that of ADGOA. Under
f5 and f11, the mean value of NAGA was lower than that of
ADGOA. Except for these two cases, the standard deviation
and mean value of the ADGOA were lower than those of the
NAGA for the other test functions. The results show that the

convergence accuracy of ADGOA is better than that of the
other four algorithms.

As shown in Fig. 4 and 5, the optimal adaptive value
curve representing NAGA and ADGOA is always lower
than that represented by PSO, GA, and BSA, regardless
of the test function used. Moreover, the curves represented
by NAGA and ADGOA always reached their lowest points
before the other three. This indicates that the convergence
speeds of the NAGA and ADGOA are better than those
of the PSO, GA, and BSA algorithms. Under f1, f2, f4 and
f10,the NAGA and ADGOA curves are very close to each
other, most of them coincide with each other, and there is
no obvious difference. Under the other test functions, the
curve representing ADGOA was consistently lower than that
representing NAGA was. This shows that the convergence
speed of ADGOA is better than that of NAGA under these test
functions. Therefore, the convergence speed of the ADGOA
was better than those of the other four algorithms.

C. SOIL HEAVY METAL CONTENT PREDICTION
The RBFNN has powerful nonlinear input and output map-
ping capabilities. When making a prediction, the relationship
between the data can be mapped effectively so that the known
data information can be used to predict the heavy metal
contents in the soil. The higher the correlation between input
variables and output variables of the neural network, the
better the prediction effect of the neural network. Therefore,
when using RBFNN to predict soil heavy metal content, it is
necessary to collect external factors related to soil heavy
metals, such as the location of sampling points and the heavy
metal content in the soil.

Heavy metal content data of farmland soil in six new urban
areas of Wuhan,Hubei Province,China, were selected as the
experimental data. The data were obtained by the Wuhan
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TABLE 2. Result comparison under f1f2f3f4f5 and f6.

TABLE 3. Result comparison under f7f8f9f10f11 and f12.

TABLE 4. Contents of heavy metals in farmalnd soils in the suburbs of
Wuhan.

Academy of Agricultural Sciences in strict accordance with
the ‘‘Soil Environment Monitoring Technical Specifica-
tions,’’ according to the land area and crop distribution in each

TABLE 5. The pearson coefficient calculation result.

region, combined with soil type and GPS positioning sam-
pling. The dataset contained the longitude, latitude, altitude,
functional area and eight different soil heavy metal contents.
The functional area represents the specific crop type, such as
rice or wheat. The eight heavy metals in the soil were As,
Cd, Cr, Cu, Ni, Pb, Zn and Hg. Table 4 carries out statistical
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FIGURE 4. The change of the best fitness value under f1f2f3f4f5 and f6.

analysis of the heavy metal content in the data set. Because of
the spatial differentiation of the enrichment degree of heavy
metals in the soil within the region and the difference in the

content of heavy metals in the soil in different functional
regions, the location of the sampling points and the functional
regions in which they are located are correlated with the
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FIGURE 5. The change of the best fitness value under f7f8f9f10f11 and f12.

content of heavy metal in the soil to a certain extent. In addi-
tion to the location of the sampling points, there was also
a correlation between the contents of different heavy met-
als. Therefore, to obtain a better prediction effect, different
heavy metal contents and location information were selected

as the input variables of the model. In this data prediction
experiment, heavy metal As was selected as the prediction
data, the correlation between other indicators and heavymetal
As was compared, and the Pearson coefficient was used as
the measurement index. The calculation results are listed
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TABLE 6. Loss statistics of different nodes.

in Table 5. In the calculation results of the Pearson coefficient,
the top four heavy metals were Cd, Ni, Pb and Zn. Therefore,
the longitude, dimension, altitude, functional area, and con-
tents of Cd, Ni, Pb and Znwere taken as the input of themodel
to predict the content of As. After sorting the soil heavy metal
information, 500 sets of data were selected as training data,
and 25 sets of data were used as testing data. Eight indices
including longitude, dimension, altitude, functional area, and
the content of four heavy metals (Cd, Ni, Pb and Zn) were
used as input variables, and the content of heavy metals As
was used as the output variable.

First, the data were normalized using the following
equation:

PN =
P− Pmin
Pmax−Pmin

(30)

where PN is the normalized data, P is the original data,
Pmax and Pmin are the maximum and minimum values of the
original data respectively.

All experiments in this study were performed on a
Windows 10 computer with an Intel Core I5 processor,
PyCharm 2020 Professional programming software, and the
Python programming language.

In terms of parameter setting, the number of nodes each
layer of the various neural network models should be deter-
mined first. According to the experimental data, the input
feature dimension is four, and the output feature dimension
is one; thus, the input layer node of the neural network model
can be determined as four, and the output layer node is one.

To set the hidden layer nodes of the RBFNN, GA-RBFNN
and DNNOM models, the number of hidden the layer nodes
are determined using the following formula:

h =
√
m+ n+ a (31)

h = log2n (32)

where h is the number of nodes in the hidden layer, m is
the number of nodes in the output layer, n is the number of
nodes in the input layer, and a is a constant between zero
and ten. The number of hidden layer nodes was calculated
from 2 to 12. The following equation was used to compare the

TABLE 7. Parameter setting.

loss value of 100 iterations for different hidden layer nodes,
and the number of hidden layer nodes was determined based
on the loss value. Formula is as follows:

loss =
∑(

y− ŷ
)2 (33)

where loss is the loss value after 100 iterations, y is the true
value, and ŷ is the predicted value.
Table 6 shows that the RBFNN model had the minimum

loss value when the number of hidden layer nodes was seven.
The GA-RBFNN and DNNOM models exhibited the lowest
loss value when the number of hidden laminations was eight.
In addition, the training times of the RBFNN, GA-RBFNN
and DNNOM were all set to 500, and the learning rate was
set to 0.01, which is common.

To verify the effectiveness of DNNOM, a comparative
experiment was conducted on the prediction of soil heavy
metal As content with the model constructed by RBFNN, and
the genetic algorithm optimizes the radial basis function neu-
ral network(GA-RBFNN). Classical models commonly used
for data prediction, such as support vector machine (SVM)
and light gradient boosting machine(LightGBM), have been
used to predict and compare the content of heavy metal As
in soil. The parameter settings for the models are shown in
Table 7.

By observing and comparing the RBFNN andGA-RBFNN
in Fig. 6, it was found that the trends of the predicted values
of RBFNN and GA-RBFNN were mostly close to or even
coincide; however, at some points, the predicted values of
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FIGURE 6. The prediction results of RBFNN, GA-RBFNN, SVM, LightGBM and DNNOM.

the GA-RBFNN were closer to the real values than those of
RBFNN. This indicates that the prediction accuracy of the
GA-RBFNN is higher than that of the RBFNN. By observing
and comparing SVM, LightGBM and DNNOM, it was found
that the predicted values of the threemodels were closer to the
real values than those of RBFNN andGA-RBFNN, indicating
that the prediction accuracies of the three models were higher
than those of the RBFNN and GA-RBFNN. At the same time,
it can be observed that the predicted value of DNNOM is
closer to the real value than that of SVM and LightGBM at
some points, indicating that the predicted value of DNNOM
is closer to the real value than that of SVM and LightGBM at
some points, indicating that the predicted value of DNNOM
is closer to the real value than that of SVM and LgihtGBM.

To clarify the difference between the predicted and real
values of the five models, we first calculated the difference
between the predicted and real values of the five models, cal-
culated the proportion of the travel value to the real value, and
finally counted the points between the different proportions.
The calculation formula is as follows:

pi =
|yi − ŷi|

yi
(34)

where yi is the true value, ŷi is the predicted value, and pi is
the proportion of difference between the predicted value. The
statistical results are shown in Fig. 7.

FIGURE 7. The distribution of the number of prediction points under
different ratio range.

In Fig. 7, the predicted values of SVM, LightGBM,
and DNNOM were more concentrated in the interval of
less than 10%, whereas the predicted values of RBFNN
and GA-RBFNN were more concentrated in the interval of
10% −20%, indicating that SVM, LightGBM, and DNNOM
were closer to the real values than RBFNN and GA-RBFNN.
In the interval of less than 10%, DNNOM had more predicted
points than the SVM and LightGBM. Although SVM and
LightGBM have more points in the interval between 10%
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TABLE 8. The calculated value of error indicators.

and 20%, the predicted value of DNNOM is closer to the real
value than those of SVM and LightGBM. The results showed
that when DNNOM was used to predict the heavy metal As
content, the predicted value was closer to the real value than
the other four models.

In addition to the above comparison between the pre-
dicted and real values, and the statistical distribution of the
proportion of the difference between the predicted and real
values in the real value, the prediction effect of the DNNOM
model was evaluated using five indices: mean absolute error
(MAE), mean square error (MSE), mean absolute percentage
error (MAPE), symmetric mean absolute percentage error
(SMAPE) and coefficient of determination (R2). The MAE,
MSE, MAPE, and SMAPE are commonly used in regression
models to quantify the error between predicted and actual
values. The smaller the value, the smaller the error, and the
higher the prediction accuracy of the model. R2 is used to
reflect the proportion of the total variation of the dependent
variable that can be explained by the independent variable
through the regression relationship, that is, the degree of fit
between the predicted value and the actual values. Its value is
between 0 and 1. The larger the value, the higher is the degree
of explanation of the independent variable for the dependent
variable, the greater is the degree of fitting, and the better is
the model performance. The formula used is as follows:

MAE =
1
n

(
n∑
i=1

∣∣yi − ŷi∣∣) (35)

MSE =
1
n

i∑
i=1

(
yi−ŷi

)2 (36)

MAPE =
100%
n

n∑
i=1

∣∣∣∣yi−ŷiyi

∣∣∣∣ (37)

SMAPE =
100%
n

n∑
i=1

∣∣yi−ŷi∣∣
(|yi|+|ŷi|)

2

(38)

R2 =

∑n
i=1 (ŷi−ȳ)

2∑n
i=1 (yi−ȳ)

2 (39)

where yi is the true value, ŷi is the predicted value, and ȳ is
the average value. The calculation results of the five models
for different error calculation formulas are listed in Table 8.

As shown in Table 8, comparing RBFNN,GA-RBFNN
and DNNOM, we can see that the four error indices of
DNNOM are significantly lower than those of RBFNN and
GA-RBFNN. This indicates that the prediction performance

of the RBFNN optimized by ADGOA and EDPC is sig-
nificantly better than that of the traditional RBFNN and
GA-RBFNN. Comparing SVM, LightGBM and DNNOM,
we can see that the four error indices of DNNOM are lower
than those of SVM and LightGBM, indicating that the predic-
tion performance of DNNOM is better than that of SVM and
LightGBM. In addition, the prediction of heavy metal As by
DNNOM produced the maximum value of R2 (0.726), which
showed the highest fitting degree, indicating that the perfor-
mance of DNNOM was better than other models.Therefore,
in the prediction of soil heavy metal content, DNNOM pro-
posed in this paper has better prediction performance than the
other four models, and can be used as an effective method to
accurately predict soil heavy metal content.

VI. CONCLUSION AND FUTURE WORK
Currently, an increasing amount of soil is being polluted by
heavy metals, which directly affect human health. There-
fore, strengthening the management and utilization of soil
has become a priority. The prediction accuracy of current
methods for soil heavy metal content prediction is generally
low. TheDNNOMproposed in this paper introducesADGOA
to solve the problem of random generation of output layer
parameters based on RBFNN, and EDPC and AVM to solve
the problem of random selection of hidden layer center points
and width vectors. The experimental results show that the
prediction performance of DNNOM is better than that of the
other models, and the prediction accuracy of the soil heavy
metal content can be higher, which can provide a newmethod
for predicting soil heavy metal content. However, DNNOM
may also be affected by the amount of input data, which may
lead to long running times. In future work, we will further
adjust the structure of DNNOM to reduce its running time
and apply it to other fields.
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