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ABSTRACT This article proposes a novel strategy for realizing a reduction in radar cross-section (RCS) of
dual-polarized crossed dipole antenna. At first, a compact and polarization-insensitive absorptive frequency-
selective reflection (AFSR) structure is proposed by incorporating a bandstop ring resonator within the
circular-cross based broadband absorber. The bandstop ring resonator is designed on the backside of the
resistive layer due to which a reflection window is realized at a frequency of 8.2 GHz between the two
broadband absorptions (4.2−7.0 GHz and 9.2−11.5 GHz). A dual-polarized crossed dipole antenna is
designed with operating frequency lying within the reflecting notch of the AFSR structure. A 6 x 6 AFSR
structure array is truncated at the center where from which the crossed dipole is connected through a feed
substrate. The AFSR structure enacts as a modified ground plane to the crossed dipole antenna. The proposed
AFSR integrated antenna achieves an average mono-static RCS reduction of 12.51 dB and 12.62 dB for the
TE and TM incident waves, respectively. Further, the AFSR based antenna is also measured for the bi-
static RCS, wherefrom the average total RCS reduction of 80% for TE and TM incidence is attained in the
frequency band of 4.2 to 11.5 GHz.

INDEX TERMS Absorptive frequency-selective reflection, frequency-selective surface, polarization-
insensitive.

I. INTRODUCTION
The detectability reduction of the target from the radar system
is a vital aspect of stealth technology. In recent years, studies
involving the development of radiating systems exhibiting
low radar cross-section (RCS) have gained a great deal of
attention. RCS which quantifies the detectability parameter
of the target should have the minimum value for enhancing
the secrecy factor of the target in stealth technology [1].
Thus, the RCS of the radiating system employed in the
stealth technology is of key consideration. In the literature,
several approaches for the realization of low RCS radiating
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systems have been reported. Some of these reported tech-
niques include geometrical shaping of antennas [2], [4],
applying radar absorbing materials [5], [7], utilization of
polarization converter structures [8], [9], and usage of sur-
faces involving artificial magnetic conductor [10], [11].
However, in the reported techniques several drawbacks like
poor radiation, narrowband RCS reduction with angle based
low RCS are also accompanied.

The advent of absorptive frequency-selective reflection
(AFSR) type structure has serve for a substantial application
in the realization of a low RCS antenna system [12], [13].
The AFSR structure is a specialized category of frequency-
selective surface (FSS), which features a notch shaped
reflection band along with one-/two-sided absorption bands.
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A suitable integration of the ASFR structure with the antenna
can be effective in realizing a system with low out-of-band
RCS. In the recent past several studies on the AFSR struc-
tures have been reported in the literature [14] and [19].
A band notched AFSR structure using circular slot res-
onator and metal strip resonator has been reported in [14].
A polarization-insensitive AFSR using multiple resonators
has been proposed in [15]. A triple-layered polarization
insensitive AFSR structure with reflectance band centered
at 5 GHz has been proposed in [16].

Recently various studies on the RCS reduction tech-
niques have been reported [20], [30], that includes realiza-
tion of low RCS antenna using AFSR structure [23], [24].
In [23], a dipole antenna is studied with a single-polarization
AFSR structure realizing a reduction in out-of-band RCS.
Low RCS monopole and dipole antennas have been studied
in [24], by integrating with a 3-D AFSR structure based
on multimode resonators. The AFSR structure exhibiting
polarization-insensitive behavior can have a suitable appli-
cation for RCS reduction of the radiating system operating in
dual polarization.

The objective aimed in this work is to study the integration
strategy of a dual-polarized crossed dipole antenna with a
polarization-insensitive AFSR structure for achieving RCS
reduction. A brief preliminary study of this work has been
presented in [31] in which a mono-static RCS reduction
of a single polarized dipole antenna is discussed using the
proposed ASFR structure. In comparison with the initial
work [31], the study carried out for the extended work in this
paper includes the experimental validation of the AFSR struc-
ture along with the corresponding equivalent circuit model.
Further, the extended work in this paper in contrast to the
initial work [31], employs a dual-polarized crossed dipole
antenna integrated which is more suitable than a single-
polarization dipole antenna integrated with the polarization-
insensitive AFSR structure. Further, the mono-static RCS in
this extended paper, unlike the initial work [31], is exper-
imentally determined. Furthermore, in this extended work,
the bi-static measurements are also performed. The novelties
achieved in the proposed work are enlisted as:
• Design of the 2-D polarization-insensitive AFSR struc-
ture by subtle idea of printing a circular ring resonator on
the back of the front resistive substrate which achieves
a reflection notch (at 8.2 GHz) with the adjacent side
absorption bands (4.2-7.0 GHz and 9.2-11.5 GHz) on
both side. The design complexity of the proposed AFSR
is much lesser as compared to asymmetric AFSR design
of [14], 3-layer design of [16] and 3D AFSR structures
reported in [17] and [19].

• Integration of a crossed dipole antenna with a 6 x 6 pro-
posed AFSR structure unit cells in a novel and proficient
manner such that AFSR structure acts as a reflector at
the antenna’s operating frequency. The proposed work
realizes a dual-polarized low RCS antenna in contrast to
the single-polarized antennas reported in [23] and [28].

FIGURE 1. AFSR unit cell geometry, (a) perspective view, (b) front side,
and (c) back side of top resistive layer. Dimensions (in mm): p = 15,
rc = 2.2, wc = 1, rb = 3.2,w1 = 0.8, wb = 0.6, l = 4.3, and H = 8.

FIGURE 2. Simulated reflection coefficients of the AFSR structure and the
broadband absorber.

• The mono-static RCS of the AFSR integrated antenna
achieves an average reduction of 12.51 dB and 12.62 dB
for the TE and TM incidence, respectively in comparison
with the conventional reflector back antenna.

• In contrast to the reported works [23], [29], the bi-static
measurement on the proposed AFSR antenna is carried
out at different angles for obtaining the normalized total
scattered cross section. An average bi-static total RCS
reduction of 80.2% is exhibited for both TE and TM
incident wave as compared to the conventional reflector
back antenna.

The paper is organized in the sequence given. Section II dis-
cusses the AFSR structure including analysis and experimen-
tal validation. Section III presents the integration technique of
crossed dipole with the AFSR structure for both mono-static
and bi-static RCS reduction. Finally, conclusion is provided
in section IV.
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FIGURE 3. ECM of the proposed AFSR structure (R = 200�, C0 = 0.051 pF,
L0 = 2.45 nH, C1 = 0.0011 pF, L1 = 3.185 nH, C2 = 0.1 fF, L2 = 39.305 nH,
C3 = 0.0091 pF, Zd = 181 �, t = 0.8 mm, Z0 = 377 �).

FIGURE 4. ECM response in comparison with the CST results.
(a) Broadband absorber, and (b) AFSR structure.

II. AFSR STRUCTURE
A. DESIGN AND ANALYSIS
The geometrical discription of the proposed unit cell for the
ASFR structure is depicted in Fig. 1, which is basically a
two-layered combination comprising of resistive layer at top
and ground layer at bottom and separated by distance H
(Fig. 1(a)). The design is printed on a 0.8 mm thick FR-4
substrate. The resistive layer comprises of a circular-cross
shaped resonator on the front side in which the lumped chip
resistors having resistance of 200 � are mounted within the
four gaps of the rectangular strip (Fig. 1(b)). On the backside
of the resistive layer a metallic circular ring resonator is
printed. The CST Microwave studio is used for analyzing the
structure.

The resistive layer with circular-cross resonator and
lumped chip resistors placed from the ground layer at a dis-
tance of λ/4 provides a broadband absorption for the incident
EM wave as shown in Fig. 2 and having 90% absorption
bandwidth from 4.7 to 10.7 GHz. For obtaining a reflection
notch in middle of the absorption band a metallic circular ring
is printed on the backside of the resistive layer. This circular
ring resonator acts as a bandstop FSS at the desired reflection
notch of 8.2 GHz. It can be observed from Fig. 2 that due to
insertion of ring resonator at the back side of resistive layer
the broad absorption band gets bifurcated into two absorption

FIGURE 5. Simulated responses of the proposed AFSR structure with
respect to different (a) polarization, and (b) incidence angle.

bands from 4.2 to 7.0 GHz and 9.2 to 11.5 GHz with a notch
shaped reflection band at the center frequency of 8.2 GHz.

For understanding the working related to the proposed
AFSR structure, a corresponding equivalent circuit model
(ECM) is designed as shown in Fig. 3. The ECM is a one-port
network in which the corresponding models of front and back
side resonators of the resistive layers are cascaded. For the
circular-cross resonator at the front side, the lumped resistor
and the associated gap capacitance is modelled by the parallel
R− C0 combination. The inductance of the rectangular strip
is modelled by inductor L0 while the parallel L1 − C1 mod-
els the circular ring. At the backside of resistive layer, the
circular ring is modelled by the parallel L2 − C2 while
the inter-capacitance is represented by C3. The thickness
of the substrate is modelled by a transmission line having
the characteristic impedance Zd = Z0/

√
εr (Z0 denotes

the impedance in free space) and length equivalent to the
substrate thickness (t). The transmission line having charac-
teristic impedance Z0 and thicknessH also models the air-gap
between the resistive layer and the ground.
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FIGURE 6. Photograph of the fabricated AFSR prototype. (a) Front, and
(b) back side of the top layer. (c) Side view.

FIGURE 7. Measured reflection coefficients for the proposed AFSR
structure (a) in comparison with the simulated result, (b) under different
polarization, and (c) oblique incidence.

The Keysight ADS solver is used for analyzing the ECM of
the proposed AFSR structure. The simulated reflection coef-
ficient of the ECM compared with the full wave CST simula-
tion is shown in Fig. 4. The response of the ECM without the
backside ring resonator model is shown in Fig. 4(a), in which
a broadband absorption is observed in close resemblence
with the full wave simulation of the broadband absorber.
The reflection of the ECM for AFSR is shown in Fig. 4(b)
in which the reflection notch at the center is achieved by
the addition of corresponding model of the backside ring
resonator. The close concurrence between the ECM and CST
responses explains the working of the AFSR design.

The proposed AFSR structure is analyzed in response to
multiple polarization angles associated with the incident EM
wave as depicted in Fig. 5(a). The consistent response of
the design under various polarization angles determines the

FIGURE 8. Schematic representation of the crossed dipole antenna with
(a) reflector, and (b) AFSR structure.

polarization-insensitive behavior of the AFSR structure. Fur-
thermore, the AFSR structure is also analyzed corresponding
to the oblique angle of incidence up to 50o. The angular
stability for the proposed structure exists up to 30o beyond
which the absorption bands gets degraded.

B. FABRICATION AND MEASUREMENTS
For obtaining the experimental validation of the AFSR struc-
ture, a prototype consisting of 21 x 21 proposed unit cells are
fabricated using a 0.8 mm thick FR-4 substrate (εr = 4.4,
tanδ = 0.02). The photograph of the fabricated proto-
type having overall size of 315 mm x 315 mm is given
in Fig. 6. Lumped chip resistors with 200 � resistance
(CRCW0603200RFKEA fromVISHAY ) are solderedwithin
the gaps of the circular-cross resonators (Fig. 6(a)). The
metallic ring resonators are printed on the backside of the top
resistive layer (Fig. 6(b)). The resistive substrate is separated
from the ground layer using a plastic spacers as presented in
Fig. 6(c).

The reflection measurements on the fabricated prototype is
carried in an anechoic chamber using the free space technique
with standard gain horn antennas of C, J and X bands in
connection with the Keysight PNA N5224B. The measured
reflection coefficient of the fabricated prototype in com-
parison with the simulated response is shown in Fig. 7(a).
The close resemblance achieved between the experimen-
tal and simulated responses validates the proposed design
experimentally. Further, the polarization-independence of the
proposed structure is also experimentally validated by mea-
suring the response at various polarization angles as shown in
Fig. 7(b). The response of the proposed structure is measured
under oblique incidence and the angular stability is experi-
mentally validated up to 30◦, beyond which the absorptivity
in the two bands gets degraded.

III. LOW RCS CROSSED DIPOLE ANTENNA
The design for the dual-polarized low RCS antenna utilizing
the AFSR structure is proposed in this section. The AFSR
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FIGURE 9. Photographs of the fabricated prototype of the crossed dipole antenna with (a) reflector, (b) truncated 6 x 6 structure and
(c) final AFSR structure.

structure exhibiting polarization-insensitive behavior is co-
designed with the dual-polarized crossed dipole antenna.
The crossed dipole antenna is designed having operating
frequency around 8.2 GHz which corresponds to the reflec-
tion band associated with the proposed AFSR structure.
A microstrip to broadside coupled stripline transition feeds
the crossed dipole [32]. The reference structure consists of
a crossed dipole backed by a metallic reflector as shown in
Fig. 8(a). The dimension of the reflecting surface is taken to
be equal with the size of 6 x 6 AFSR unit cell arrray (90 mm x
90 mm). In the design for AFSR integrated antenna, an array
comprising of 6 x 6 unit cell is taken. On the resistive layer,
a square portion with size of the order of the feed substrate
is truncated at the center. The crossed dipole connected with
the feed substrate as shown in Fig. 8(b), is inserted within
this square portion and connected with the ground layer of
the AFSR structure. In other words the grounded reflector
of the antenna is modified with the 6 x 6 AFSR structure.
The photographs showing the fabricated prototypes for the
crossed dipole antenna with both metallic reflector and AFSR
structure are depicted in Fig. 9.

The simulated and measured reflection coefficients (S11)
of the crossed dipole antenna with both reflector and AFSR
structure are shown in Fig. 10. The reflection of less than
−10 dB is observed at the operating frequency of 8.2 GHz
for both the cases of reflector and ASFR backed antenna.
At 8.2 GHz the gain of 5.52 dBi is observed for the

FIGURE 10. Reflection coefficient of the crossed dipole antenna.

AFSR backed antenna which is slightly less than the gain
corresponding to reflector backed antenna (6.35 dBi). The
simulated and measured radiation patterns of the crossed
dipole antenna with both the reflector and AFSR backing
in both the xz and yz planes are given in Fig. 11. It can
be examined that the radiation pattern of the AFSR backed
antenna is nearly similar as compare to the reflector backed
antenna.
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TABLE 1. Comparative performance of the proposed AFSR integrated antenna with the recently reported Low RCS antennas.

FIGURE 11. Radiation pattern of the crossed dipole antenna at 8.2 GHz.
(a) xz plane (with reflector). (b) xz plane (with AFSR). (c) yz plane (with
reflector). (d) yz plane (with AFSR).

A. MONO-STATIC RCS MEASUREMENT
The radar cross section measurements are carried out for the
fabricated structures involving both the reflector and AFSR
backed crossed dipole antennas. The Keysight PNA N5224B
featured with time domain gating application is employed for
the mono-static RCS measurement using the same standard
gain horn antenna for both transmitter and receiver. The RCS
is defined from the general equation by (1).

RCS =
Pr
Pt
.
(4π )3R4

GtGrλ2
= K .

Pr
Pt

(1)

FIGURE 12. Mono-static RCS of the AFSR integrated antenna in
comparison with the conventional reflector based antenna for (a) TE, and
(b) TM incident wave.

The termsPr andPt in (1) denote the received and transmitted
powers, respectively. The gains associated with reflecting
and transmitting antennas are represented by Gr and Gt ,
respectively. The range to target is given by R, whereas λ
gives the associated wavelength.
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FIGURE 13. Schematic of experimental setup for bi-static measurement.

FIGURE 14. Normalised total bi-static RCS of the AFSR integrated antenna
with reference to the conventional reflector based antenna for (a) TE, and
(b) TM incident wave.

The mono-static RCS is measured in reference to a stan-
dard square PEC having same size as that of the grounded
dimensions associated with antenna. The comparitive mono-
static RCS of the metallic reflector and AFSR backed crossed
dipole antenna for the TE and TM incident waves are shown
in Fig. 12. It is observable that as compared with the reflector
backed antenna, the AFSR integrated antenna achieves a low
RCS with the maximum reduction of 27.52 dB (at 10.6 GHz)
and 38.01 dB (10.6 GHz) for the TE and TM incidence,
respectively. The AFSR integrated antenna achieves an aver-
age reduction of 12.51 dB and 12.62 dB for the TE and TM

incident waves, within the frequency band extending from
4.2 to 11.5 GHz, respectively as compared to the conventional
metallic reflector backed antenna.

B. BI-STATIC MEASUREMENT
The bi-static RCS measurement involves the transmitter and
receiver test antennas placed at different locations. In the bi-
static measurement, as depicted by Fig. 13, the transmitting
antenna is normal to the structure while the receiving horn
antenna is moved from 0o to 900 along the circular path at
10o steps in either anticlockwise or clockwise direction. The
Esca(f , φ) denoting the scattered field for each step angle is
defined by (2) [33], [34].

Esca(f , φ) = S21,O(f , φ)− S21,FS (f , φ) (2)

where the transmission coefficients between the two horn
antennas corresponding to the object and free space are repre-
sented by S21,O and S21,FS , respectively. The normalized total
radar cross section RCSt,norm of the AFSR integrated antenna
is calculated by the integrating scattered fields intensities as
given in (3) [33]:

RCSt,norm =

∫
|Esca,AFSRA(f , φ)|2dφ∫
|Esca,RA(f , φ)|2dφ

(3)

where Esca,AFSRA and Esca,RA are the scattered fields
of the AFSR based and conventional reflector antennas,
respectively.

The measured RCSt,norm for the AFSR combined crossed
dipole antenna in reference with the metal reflector based
antenna is provided in Fig. 14. It is noticed that with respect
to the reflector based antenna, the AFSR structure based
crossed dipole antenna achieves a significant reduction in the
normalized total RCS. In the entire operating frequency band
of 4.2 to 11.5 GHz, the average value of normalized RCS
obtained is around 0.197 and 0.198 for the TE and TM inci-
dent wave, respectively which signifies a total RCS reduction
of around 80.24% for both the TE and TM incidence, relative
to the conventional reflector based crossed dipole antenna.

Table 1 presents the proposed AFSR integrated crossed
dipole antenna with the other low RCS antennas reported in
the literature. The proposed study presents the RCS reduc-
tion of dual-polarized crossed dipole antenna for the first
time in comparison with the single polarization antennas
reported [23], [28]. The proposed design is compact in com-
parison with reported work in [23], [25], and [26]. Fur-
ther, the design complexity of the proposed structure is less
than [23], [24], [26], and [28], in terms of lesser quantity of
lumped components utilized. Also, the -10 dB RCS reduction
bandwidth of the proposed design is more than [23] and [27]
in the lower band while the RCS reduction bandwidth for the
upper band is higher than the work reported in [23], [25],
and [26]. The average RCS reduction achieved in the pro-
posed design significantly higher in comparison with the
reported work [29]. The proposed study achieves the RCS
reduction using a 2D AFSR structure in comparison with
the 3D FSS structures used in [24] and [28]. Furthermore, in
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contrast to the reported works [23], [29], the scattered fields
for theAFSR integrated antenna aremeasured in the proposed
work at various angles and an average bi-static total RCS
reduction of around 80% is experimentally demonstrated for
both the TE and TM incident wave.

IV. CONCLUSION
In this study, a low RCS dual-polarized crossed dipole
antenna is studied for the first time by judiciously inte-
grating with a polarization-insensitive AFSR structure. The
AFSR structure exhibiting a reflection notch (at 8.2 GHz)
between the wide absorbing bands is designed by imprinting
a bandstop ring shaped resonator on the back of the top
resistive substrate. The crossed dipole antenna designed at the
frequency concurrent with the reflecting notch of proposed
AFSR structure, is adjusted within a small truncated area at
the middle of the AFSR structure with 6 x 6 proposed unit
cell array. The AFSR structure acts as a modified ground for
the antenna. Both the mono-static and bi-static measurements
performed on the dual-polarized antenna backed with the
AFSR structure verify the RCS reduction while the other
antenna parameters are observed to be maintained nearly the
same. An average mono-static RCS reduction of 12.51 dB
and 12.62 dB is acheived for the TE and TM incidence,
respectively in the operating frequency band (4.2−11.5 GHz)
for the AFSR based antenna compared with the conventional
reflector comprising counterpart. Furthermore, an average
total bi-static RCS reduction of around 80% is experimen-
tally demonstrated in reference to the conventional reflector
backed antenna. The proposed low RCS antenna is a potential
candidate in the dual-polarized applications for stealth com-
munication.
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