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ABSTRACT Many recent studies have focused on the automatic classification of electrocardiogram (ECG)
signals using deep learning (DL) methods. Most rely on existing complex DL methods, such as transfer
learning or providing the models with carefully designed extracted features based on domain knowledge.
A common assumption is that the deeper andmore complex the DLmodel is, the better it learns. In this study,
we propose two different DL models for automatic feature extraction from ECG signals for classification
tasks: A CNN-LSTM hybrid model and an attention/transformer-based model with wavelet transform for
the dimensional embedding. Both of the models extract the features from time series at the initial layers of
the neural networks and can obtain performance at least equal to, if not greater than, many contemporary
deep neural networks. To validate our hypothesis, we used three publicly available data-sets to evaluate the
proposed models. Our model achieved a benchmark accuracy of 99.92% for fall detection and 99.93% for
the PTB database for myocardial infarction versus normal heartbeat classification.

INDEX TERMS Electrocardiograph, benchmark testing, fall detection, time series analysis, machine
learning, deep learning, LSTM, CNN, attention, transformer, PTB XL.

I. INTRODUCTION
According to [1], in the United States of America alone,
the leading cause of death for men and women irrespective
of the racial and ethnic groups is heart disease. Hence,
a timely and accurate diagnosis of the heart conditions
is of vital importance. An Electrocardiogram (ECG) is a
well-grounded method used for measuring and evaluating the
performance of the cardiovascular system. Several techniques
exist in both literature and practice to evaluate the ECG
signals in different manners. It is one of the most important
parameters that indicate a person’s physiological well-being
and is extensively used to evaluate the cardiac situation of
the patients. It has been widely used for different purposes
such as to get an overview of the health of a human
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heart, for bio-metric purposes, and for fall detection and
prevention as described in [2]. ECG is a non-invasive
method for evaluating the health of the human cardiovascular
system. It can detect many heart diseases such as atrial
fibrillation, myocardial infarction, AV block, and ventricular
tachycardia, etc. It provides an insight into the central
nervous system, particularly the autonomic nervous system.
Many of the automatic classification techniques using deep
learning for ECG use either very deep neural networks
or a pre-trained neural network that require either the
weights set up to a configuration after being trained on an
immense amount of similar data sets. Another approach is
to pre-process the data sets by applying some filtration or
feature extraction which is based on data domain knowledge
and then fed into a neural network to train this. All of
the above–mentioned steps involve an explicit understanding
of the domain and the pre-process itself. [3] overviews
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FIGURE 1. A Normal ECG.

the many ECG feature extraction techniques present in the
literature.

Our work is motivated by the desire to design novel and
simple models that avoid any feature selection and complex
data pre-processing which necessitates domain knowledge,
while on the other hand requiring less computation power
but achieving at least state-of-the-art accuracy. In this paper
we propose two architectures to achieve these goals including
out-performance of benchmarks and analysis of the statistical
evidence of our claims.

II. ELECTROCARDIOGRAM - A TIME SERIES
This section presents an introduction to ECG signals
and the importance of using automatic ECG classification
techniques. An ECG is a physiological signal that is measured
as the potential difference between the electrodes placed on
the body surface. The cardiac impulse passes through the
heart causing the electrical current to spread from the heart
to adjacent tissues. A small current extends to the surface of
the body. The electrodes placed on the skin can effectively
detect the current on opposite sides of the heart, and record
the electrical potentials generated by the current. A normal
ECG consists of five major deflections called P, Q, R, S, and
T waves, which constitute a single cardiac rhythm as shown
in Fig. 1. The P wave lasts about 0.08 s and is the smallest,
followed by the large QRS complex which lasts between
0.08 s and 0.10 s. The end of the cardiac cycle is marked by
a T wave that lasts approximately 0.16 s. A single waveform
varies depending on the size of the heart and the conductive
properties of the body which in turn gives the waveform a
unique pattern per person [4]. ECG has not only been used to
monitor and evaluate the cardiovascular system but has also
been used as a biometric identifier [5], a predictor of gender
and age as described in [6], and for detecting fall activities as
in [7].

The disruption of blood flow to the muscle layer of the
heart causes a cardiovascular condition called a myocardial
infarction (MI). This disruption is mostly due to the build-up
of the plaques in the arteries which result in reduced blood
flow to that part of the heart muscle. MI is called a silent heart
attack because the patient is not aware of the condition unless
they suffer from a heart attack. An early diagnosis of MI is
therefore of vital importance as it would help the patients to
get timely treatment hence preventing the high percentage
of mortality associated with it. Due to the small amplitude
(millivolts), the manual interpretation of ECG signals is
time-consuming and prone to errors. This limitation can be
mitigated by an automatic diagnosis of heart conditions based
on the signals. Our study aims to work towards automation of
the cardiovascular disease diagnosis from ECG signals.

In this study, we propose two methods to automatically
extract features from a time series and then feed those
features into another deep learning model for classification.
First, a hybrid model for multiple ECG classification tasks
is proposed as an alternative to many complex models that
require many pre-processing steps before the actual training.
We experimented with a robust hybrid deep learning model
for the ECG classification tasks, which proved to outperform
many state-of-the-art complex models and achieve similar
or even better accuracy with no pre-processing steps. The
CNN placed in front of a LSTM also known as CNN-
LSTM, has recently been used for multiple classification
tasks; however, its use for ECG classification has not been
systematically explored. The CNN model first searches for
the features in high-dimensional input data and then after
converting it into one-dimensional data, it is fed as an input
to the LSTM model. The role of a CNN in this context is
to act as an automatic feature extractor. Secondly, a novel
attention/transformer model using wavelets for dimensional
embedding is introduced to improve the efficiency of the
classification process. As it has less trainable parameters
than CNN-LSTM it has advantages in terms of (training)
performance as shown in Table 8. As a bonus, we also
evaluated both models also on the data for fall detection.

III. RELATED WORK AND OUR CONTRIBUTION
Several recent studies have focused on automatic ECG
classification. Among the several different techniques present
for ECG classification, deep learning has gained popularity
in recent times. This is mainly owing to its automatic feature
learning and the availability of large public data sets. Many
deep learning techniques use feature extraction as an essential
pre-processing step before feeding the data to the neural
network. The most common feature extraction techniques
for ECG classification are continuous wavelet transform
(CWT), discrete cosine transform (DCT) [8], Pan-Tompkins
algorithm [9] and discrete wavelet transform (DWT) [10].
One of the major disadvantages of using wavelet transform
as a feature extractor is that the complexity of the process
increases with the increase in decomposition level. All feature
extraction processes require some domain knowledge in
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order to efficiently extract relevant features from the data.
Therefore, we aim to explore the research question of whether
a similar state-of-the art result can be achieved with no
pre-processing and with a simpler model architecture in an
efficient manner in terms of resources and computation.

Our contributions to this study are twofold: First, we
introduce a CNN-LSTM architecture that surpasses many
complex and pre-trained models that have been optimized
for single data sets on multiple data sets at the same
time. Second, to further optimize the automatic feature
extraction, we introduce a novel embedding technique for an
attention/transformer encoder architecture that uses discrete
wavelet transform to extract features from the ECG time
series and feeds them to the attention mechanism. In addition,
we provide statistical evidence for the significance of the per-
formance figures reported by the two models proposed by us.

In the following sub-sections, we present the state of the
art in the related work and highlight our contributions.

A. CNN-LSTM ARCHITECTURES
Jambukia et al. [4] presented an overview of the ECG
classification of different types of arrhythmias. Another
current review on deep learning methods for ECG arrhythmia
classification [11] deduced that among the many deep
learning models, CNNs and LSTMs were among the most
effective for learning arrhythmia in ECG classification tasks.
The use of the CNN-LSTM architecture for classification
is not entirely novel. Socher et al. [12] proposed a model
for 3d object classification that combines a CNN with an
RNN. They concluded that the CNN provides the translation
variance for lower-level features whereas RNNs can learn the
interactions and compositional features in the data. Zheng
et al [13], transformed the data acquired by a three-axis
accelerometer into an image format and then used a CNN
with three convolution layers to classify human activities.
XIA et al. [14] used CNN after a LSTM layer to classify
human activity recognition (HAR) with an accuracy of
95.85%. Ordóñez et al. [15] proposed an activity recognition
classifier that combines a deep CNN and dense layers. In [16]
the authors proposed a 1-D CNN for the classification of
cardiac arrhythmia, and in [17], a 34-layer convolutional
neural network is used for classification of cardiac arrhythmia
exceeding the performance of board-certified cardiologists.
However, few studies have focused on hybrid CNN-LSTM
models for ECG classification. Studies like [18], [19],
[20], and [21] have implemented CNNs and their variants
for ECG classifications. [22] used RNNs to classify the
ECG signals. The use of LSTM-based approaches is also
beneficial for other cardiac signal analyses. Reference [23]
construct a bidirectional LSTM for the analysis of blood
flow dynamics from static CT angiographic images. In [24]
a restricted Boltzmann machine and deep belief networks
were used for detection of ventricular and supraventricular
heartbeats using single-lead ECGs. For a general overview
of deep-learning techniques in cardiovascular image analysis,
see the survey [25].

In our study, we not only performed multiple classifica-
tions with CNN-LSTM model for ECG but also worked with
three different ECG data sets including data for fall detection
to present a proof of concept that CNN placed in front of
LSTM surpasses many complex and pre-trained models.

B. ATTENTION AND TRANSFORMER ARCHITECTURES
The seminal paper by Vaswani et al. ‘‘Attention is All you
Need’’ [26] has triggered an enormous number of successful
applications of attention mechanisms and transformer archi-
tectures in deep learning.

The main idea behind attention-based transformer archi-
tectures is to replace the recurrence mechanisms used in
LSTMs and the convolutions used in convolution networks
to extract features entirely using an alternative so-called
self-attention mechanism. This mechanism is shown in
eq. (1) and computes the correlation between the input
values among each other and can be interpreted as an
associative memory using ideas from statistical physics,
see [27]. Replacing the (serial) recurrence mechanism with
the standard matrix algebra of the (self-) attention mechanism
has a number of advantages for parallelization capabilities
and the performance of classification tasks.

However, the vast majority of research has been and still is
focused on the natural language processing (NLP) domain.
Little research has been carried out on the application of
attention-based architectures in other domains, such as time
series analysis. One of the first papers in this regard is
LSTNet by Lai et al. [28], where the authors introduced
long- and short-term time-series networks (LSTNet) using
the convolutional neural networks and recurrent neural
networks to extract short-term local dependency patterns and
to discover long-term patterns for time series trends. Shih
et al. [29] applied an attention mechanism to multivariate
time series data in three medical domains. Song et al.
[30] have applied attention models to clinical time series
analysis. A systematic and comprehensive analysis and study
of utilizing attention mechanisms, however, in the time-series
domain is still required. The application of transformers in the
domain of ECG classification can be found in [31].

One of the shortcomings of the self-attention mechanism
preventing its application for e.g., time-series is the O(n2)
complexity with regards to the length of the input vector,
i.e., the length of the time series in our case. To address
this problem LinFormer has been introduced by Wang
et al. in [32]. Linformer is the first theoretically proven
linear-time transformer architecture and henceforth might
be suitable also for long time series. The linear scaling is
achieved by discovering that self-attention is low rank, and
henceforth projecting information on a low rank constant
sub-dimensions achieves to decouple from theO(n2) scaling.
Recently Rabe and Staats [33] have proposed an algorithmic
solution to at least reduce the memory (but not the time)
complexity from O(n2) to O(n).

In this paper, we propose a novel attention architecture
using projection on discrete wavelet components as a
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means to address the O(n2) problem and for dimensional
embedding. Moreover, the results show that using this
technique, attention-only architecture is on par with or even
outperforms more complex models and has several additional
advantages such as e.g., better run-time performance.

IV. ALGORITHMS
This section provides a brief overview of the algorithms and
the technologies that were used during the course of this
study and also presents the state of the art in the respective
technologies.

A. CNN-LSTM MODEL
We define some basic terms related to the convolutional
neural network and LSTM for clarity in the following section.

1) CNNs AND LSTMs
Convolutional neural networks, introduced as LeNet in
1989 by LeCunn, have revolutionized the field of image
recognition and are among the most prominently used
deep neural networks. They were named after the linear
matrix operation called convolution. Since convolution is
a linear operation, the convolution layer is often followed
by a non-linear layer. Although introduced earlier, it gained
popularity after its application as the first deep neural
network applied for object recognition in the ImageNet
Large Scale Visual Recognition Competition (ILSVRC) in
2012. AlexNet was proven to excel on the largest computer
vision data set as compared to contemporary methods.
Recently, [34] presented a state-of-the-art review of the recent
deep CNNs architectures. The individual CNN components
were explained in [35] in a structured way. The most common
architectures of CNNs include an input layer, a convolution
layer followed by a pooling layer, a drop-out layer, and
a fully connected layer followed by an output layer. The
number of layers and their layout can change depending on
different problem sets. The convolution operation1 itself is
given by:

Vi,j = X ∗Wi,j + b =
∑
L

XL ∗W L
i,j + b

=

∑
L

∑
k,l

XLkl ∗W
L
i+k,j+l + b

where X or XL resp. denote the L-th input matrix. W is the
convolution kernel matrix, b is the bias, and Vi,j is the output
matrix after convolution.

CNN’s are known for their excellent feature extraction
capability. One of the most salient features of CNN is
its translation invariance. Therefore, it can extract features
irrespective of the spatial context. Though it has proven to be
beneficial in image recognition, its application and usefulness
in time series are yet to be fully exploited. Cases, where
the historical context is relevant for classification, would
not work well with CNN alone, as it does not carry any

1in the two dimensional case–the one-dimensional case is analogous.

information about the history of the time series. The CNNs
initially extract the local features in the sub-regions of the
time series and then the information is merged in later stages
to detect the higher order features.We applied 1D convolution
to the time series using both univariate and multivariate data
sets. The ECG Human activity recognition (HAR) data set
and PTB diagnostic data set contained one feature each,
so the 2D convolutional operation would not be suitable
as it will incorrectly convolve across multiple time series.
Long short-term memory (LSTM) networks–a variation
of recurrent neural networks (RNNs)–were introduced by
Hochreiter [36] in 1997. They tend to present a solution to the
common problem associated with RNNs called vanishing and
exploding gradients. In principle, classical RNNs can keep
track of long-term dependencies in the sequences. However,
in practice, during the backpropagation phase of training,
these long-term gradients either vanish or explode owing to
the successive multiplicative operations. An LSTM consists
of a chained loop structure. Each LSTM unit is made up of an
input gate, an output gate and a forget gate. The LSTMs keep
the long-termmemory bymaintaining a cell state that sustains
a part of the information from earlier states by forgetting
and/or applying increment operations on the previous states.
Adding a CNN in front of an LSTM helps to feed the LSTM
the features from CNN which were extracted from the time
series.

2) CNN-LSTM ARCHITECTURE AND ALGORITHM
Fig. 2 and Fig. 3 provide a more graphical overview of our
model. Initially (1*N) time series with N time stamps are
convolved with k filters each of size M*1. Subsequently,
the k feature maps each of size (N-M)+1 time stamps are
generated which are passed through a dropout layer followed
by the max pooling layer and later fed into the LSTM layer
where the encoded extracted features are fed into it from
the CNN. The LSTM unit is followed by a fully connected
or dense layer that applies softmax as an output function
to classify the input time series into one of the output
classes.

Algorithm 1 Classification of ECG Signals With Raw
Signals Using CNN-LSTM
Input: A time series ECG raw data ts
Output: The classified label l
1: ts← RAW_VALUE_EXTRACTION(ts)
2: features← CNN(ts)
3: l ← LSTM_CLASSIFICATION(features)
4: return l

Algorithm 1 outlines the algorithms for extracting features
from the ECG signal and classifying them using a CNN-
LSTM model. The number of CNNs and LSTMs can be
varied but we used a maximum of five 1-d convolution layers
in front of the three LSTM layers.
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FIGURE 2. CNN-LSTM Model for PTB DB.

FIGURE 3. Final CNN-LSTM Architecture for Fall and HAR using ECG
signals.

B. ATTENTION MODEL
For reader’s convenience, we recall the basic definitions of
the attention mechanism following [26] and the notation
therein.

1) ATTENTION
Attention is defined as

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V , (1)

where Q, K and V ∈ Rn×dk are input embedding matrices,
n is the length of the (time) series, and dk is the embedding
dimension, resp.

The transformer uses Multi-Head Self-Attention (MHA)
allowing themodel to jointly attend to information at different
positions of the time-series or different semantics of the
domain. MHA is defined as

MultiHead(Q,K ,V ) (2)

= Concat (head1, head2, . . . , headh)WO, (3)

where h is the number of heads. Each head is defined as

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (4)

= softmax

[
QWQ

i (KW
K
i )T

√
dk

]
VWV

i , (5)

where WQ
i , W

K
i ∈ Rdm×dk , WV

i ∈ Rdm×dv , and WO
∈

Rhdv×dm (projection onto the output) are learned matrices and
dk , dv are hidden dimensions of projection subspaces. For
simplicity in the sequel, we drop the differentiation between
dm, dk and dv and refer to them by d .
The matrices Q, K and V are usually referred to as query,

key and value matrices to remind of the associative memory
architecture of a transform, compare e.g., also the analysis
in [27].

2) ATTENTION AND DIMENSIONAL EMBEDDING
For applying the attention mechanism to time-series one has
to decide on the proper dimensional embedding, i.e., on the
dimension of the embedding subspace and on the embedding
transformation. We recall that in the domain of ECG the
‘‘natural’’ dimension is small. For instance, the signals are
one-dimensional if a one-dimensional channel (single lead) is
used (as is the case in this paper for the attention/transformer
model, i.e., Algorithm 2). Even if multi-channel ECGs are
used usually the number of channels is limited to a small
number of 3 to maximally 12 channels. Henceforth, if we
used the channel as the embedding, the dimension would
be 1 in our case, i.e., d = 1. This is way too small to
capture interesting patterns and, indeed, a test showed that
the gradient descent does not converge, but stays constant
after one or two initial updates. Furthermore, as depicted in
the previous section, the self-attention suffers from an O(n2)
problem. We propose the following architecture to solve both
problems simultaneously:

1) Assuming m � n. For simplicity of the notation,
we assume without loss of generality that n is divisible
by m, i.e., n = mw. This effectively segments the time-
series n into nm ‘‘windowed’’ segments of length w,
where m ∈ 1, . . . k with k := n/w. If n is not divisible
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FIGURE 4. Dimensional Embedding.

without remainder, we could fill the time series with
zeros (padding).

2) For each ‘‘windowed’’ sub- time-series tnk we calculate
the decomposition to a chosen (fixed) wavelet by
performing a discrete wavelet transformation (DWT),
see below. Assuming that the result of applying the
DWT is in dimension p, we have transformed the input
from Rn into Rm×p depicted in Fig. 4.

Remark 1: In this paper, we propose a deterministic
embedding using DWT rather than a learned, randomly
initialized embedding, which is an alternative approach that
has been used in other attention architectures in the past. This
should–in theory–require less training data–a conjecture that
we want to validate in future work using synthesized data.
Remark 2: Note, that within the context of dictionary-

based learning, a deterministic embedding using DWT could
be considered as a ‘‘predefined analytical dictionary’’ [37].
Contrary to a fixed feature design using wavelet components,
however, an embedding with an attention/transformer archi-
tecture has a flavor of learning the representation dynamically
from the data as the proper amount of attention is learned
from the data indeed. A systematic investigation of these
aspects is deferred to future work, too.

3) DISCRETE WAVELET TRANSFORMATION (DWT) FOR
DIMENSIONAL EMBEDDING
For the reader’s convenience, we recall a few well-known
definitions and theorems wavelet theory following [38]
and [39] and using the notation from [40]. We con-
sider signals as real-valued functions. We call a function
ψ ∈ L2(R) an orthonormal wavelet if dyadic translations
and dilations of ψjk (x) = 2

j
2ψ

(
2jx − k

)
constitute a Hilbert

space and if in addition, it satisfies a regularity (admissibility)
condition, namely

∫
∞

0 |ψ(t)|
2 dt
t <∞, ensuring convergence

and
∫
ψ(t) dt = 0. The function ψ is usually called the

mother wavelet and its child wavelets are defined asψj,k (t) =
1
√

2j
ψ
(
t−k2j

2j

)
. A projection of a function x(t) onto ψj,k is

FIGURE 5. Wavelet Transform Pyramid.

then given by

γjk =

∫
∞

−∞

x(t)
1
√
2j
ψ

(
t−k2j

2j

)
dt. (6)

The crucial idea is to decompose the space L2(R) into
resolution spaces of different resolutions. First, the resolution
space V0 is defined as the space of piece wise constant
functions on subintervals of [n, n + 1] with n = 0, . . . ,N .
If we define the corresponding step function

φ(t) =

{
1, if 0 ≤ t < 1
0 otherwise,

(7)

then V0 has dimension N , and the N functions φ0 := {φ(t −
j)}j=0,...,N−1 constitute an orthogonal basis. Analogously the
refined resolution spaces Vk are defined as the spaces of
functions constant on each sub-interval [n/2k , (n + 1)/2k ].
This yields a nested sequence of embedded spaces

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vk . (8)

We denote the orthogonal complements of Vk−1 in Vk as
Wk−1, i.e., Vk = Vk−1 ⊕ Wk−1 and call it the detail space.
This yields an orthogonal decomposition at level k as follows:

Vk = V0 ⊕W0 ⊕W1 ⊕ . . .⊕Wk−1 (9)

Then the k-level discrete wavelet transformation (DWT)
is defined as the change of coordinates from φk to
(φ0,ψ0,ψ1, . . . ,ψk−1), where φk := {φjk}j=0,...,N−1 and
ψk := {ψjk}j=0,...,N−1, resp. denote the family of functions
obtained from the mother wavelet.

This yields a filter bank interpretation of DWT, wherein
each step the signal is decomposed into an averaged and a
detailed signal using low-pass and a high-pass filter depicted
graphically in Fig. 5.

Thus, any signal can be decomposed into an averaged and
a detailed signal, namely V0 and W0. Due to the recursive
nature, this can be extended to any desired level k . Please
note, that due to the dyadic nature the data size is reduced by
a factor of 2 in each step. For further details, we refer to [38]
and [39] as well as e.g. [40].

We used Haar and Daubechies wavelets as well as symlets
(symmetrized version of Daubechies wavelets) as mother
wavelet.

4) TRANSFORMER ARCHITECTURE AND ALGORITHM
The DWT can be used not only for dimensional embedding
but also, for noise reduction as one can ignore some or all
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TABLE 1. Attention Models.

FIGURE 6. Transformer Architecture of Model att11.

coefficients for the detailed spaces. To explore the impact,
we tried several configurations, see Table 1.2

We deployed a transformer architecture with one head,
four transformer encoder layers, and a dimension of 150 or
250 hidden units of the feed-forward network. The network’s
architecture of the best model, att11, is illustrated in Fig. 6.

The original input tensor has a dimension of [14552, 1, 187]
corresponding to 14522 data rows, 1 feature, and a sequence
length of 187. The sequence was split into 17 chunks, with
a window length of 11. Each subsequence of length 11 was
converted using the DWT. For instance, for db8 for att7, this
leads to a transformed tensor of [14552, 22, 17]. (Note, that
due to boundary effects, the embedding dimension is not
always a multiple of 11.).

As a positional encoding, we tried the usual Fourier
encoding and used frequencies f of f = 100 and f = 10.000,
resp. While adding positional encoding is questionable after
embedding using DWT, we experimentally found the results
to be improved by a small amount.

All models were trained with a batch size of 256 and
a learning rate of 0.001 using the Adam optimizer [41].
Algorithm 23 layouts the algorithms for extracting fea-
tures from ECG data and classifying them using a trans-
former/attention model.

2Frequency refers to the frequency of the positional encoding. It should
be remarked, that model att5 differs from att4 by an additional residual
connection.

3Note, that for simplicity of notation we use the expression (V0 ⊕ . . . ⊕
Wm) from the decomposition in equation 9 generically, i.e., some of the
components of (V0 ⊕ . . .⊕Wm) might be empty.

Algorithm 2 Classification of ECG Signals With Raw
Signals Using Attention/Transformer
Input: A time series ECG raw data ts
Output: The classified label l
1: X ← RAW_VALUE_EXTRACTION(ts)
2: (V0 ⊕W0 ⊕W1 ⊕ . . .⊕Wm)← DWT(X )
3: (V0⊕ . . .⊕Wm)← (V0⊕ . . .⊕Wm)+POS_ENC(V0⊕
. . .⊕Wm)

4: for i ∈ Layers do
5: X ← TRANSFORMERi(V0 ⊕ . . .⊕Wm)
6: end for
7: l ← LINEAR_FEED_FORWARD(X )
8: return l

TABLE 2. Generic Runtime Complexity Analysis.

TABLE 3. Runtime Complexity Analysis for Algorithms 1 and 2.

C. COMPLEXITY ANALYSIS
1) RUNTIME COMPLEXITY ANALYSIS
In general, the runtime complexity for attention based
RNN/LSTM and CNN architectures are known as depicted in
Table 2, see e.g. [26],4 where n denotes the sequence length,
d the embedding dimension, and k the size of the kernel (in
case of CNN).

Note, that the maximum path length measures the maxi-
mum length between any two input and output positions in the
networks. Shorter path length makes it easier to learn long-
range dependencies.

Considering, that the dimensional embedding using
wavelets is of O(n) and has to be computed only once
and henceforth can be ignored compared to O(n2d + nd2),
we conclude from Table 2 the complexity of our algorithms
as depicted in Table 3.
From this analysis, we can conclude that Alg 1 is

always inferior to Alg 2 in terms of algorithmic complexity.
In addition, the transformer can be easily paralleled (typically
on a GPU), contrary to a CNN-LSTM.

Please note, that the above analysis assumes that the
matrix multiplication of two matrices A ∈ Rnm and
B ∈ Rml is in O(nml), which corresponds to a naive
implementation of matrix multiplication. Although this can

4Note, that we have added the complexity caused by the query matrices
which were omitted in [26].
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TABLE 4. Total Number of Samples in the ECG HAR Data Set [7].

be improved, compare Strassen’s algorithm [42], and–more
recently–Josh Alman and Virginia Vassilevska Williams
algorithm [43], these algorithms are normally not imple-
mented in the machine learning frameworks used and hence-
forth the naive implementation as the usual convention is
assumed.

2) MEMORY COMPLEXITY ANALYSIS
As for backpropagation, the weights optimized have to
be kept in memory, to optimize the algorithms efficiently,
we have essentially the same space as time complexity,
particularly space complexity of any attention-based model
of O(n2).

V. DATA PREPARATION AND EXPERIMENTAL SETUP
Since our study includes multiple data sets, therefore this
section explains the preparation steps taken for each data
set and the overall experimental setup. Experiments were
performed using a GPU server. All the experiments were
implemented using the PyTorch library because of its
supportive architecture with GPUs. The main aim of the
experiments was fall and MI detection using ECG signals in
an automated and efficient manner.

A. ECG DATA SET FOR FALL DETECTION
To the best of our knowledge, the ECG HAR data set is
the only one for the detection of different human activities
including falls, using ECG signals. It was originally collected
by [7], as an experiment that was part of the study by [44].
It originally consisted of two classes: one for the ECG of
a person falling from the bed and another one for the ECG
of a resting person. It was later augmented with two more
data sets, [45] and [46], by up-sampling the original data
set. In addition to that, another augmentation method called
slicing was applied to the data set. Slicing has been explained
in detail in [47]. After the addition of new data sets, the
final version has three classes namely: fall, rest, and daily
activities.

The overview of the final class distribution in data set is
depicted in Table 4.

In the previous experiments, the data set was filtered,
converted towavelet transform, and later to 3-D images called
scalograms. These scalograms were first used to fine-tune
and then train, a pre-trained AlexNet and GoogLeNet. The
state-of-the art validation accuracy obtained for classification
with this data set is 98.44%. This accuracy was obtained after
applying extensive pre-processing to the data set. Our current

model outperforms the state-of-the-art validation accuracy
and achieves a 99.21% accuracy with no pre-processing and
only fine tuning the ensemble model.

B. PTB DIAGNOSTICS DATA SET
After working with the ECG for falls and daily activities,
the model had to be tested on a standardized data set that
is publicly available. In the second set of experiments,
a publicly available data set called the PTB diagnostic was
used, which is freely available but is used as a standard for
ECG classification tasks.

The original PTB data set consists of 549 records from
290 subjects which were aged 17 to 87 years, with a mean
age of 57.2. A total of 209 subjects were males with a mean
age of 55.5 and 81 females with a mean age of 61.6 (for
1 female and 14 male subjects; age was not recorded). Each
record has 15 measured signals: the conventional 12 leads
(i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5 and v6) together
with the 3 Frank lead ECGs (vx, vy and vz). The data from
lead II were used to train the model which outperforms the
databases which even use all 12 lead data [48]. ECG beats
were extracted using the method described in [18]. The data
set used was divided into two classes: normal and abnormal
(myocardial infarction). In the previous prominent study [49],
all 12 leads were separately evaluated to determine which
leads contributed the most to the classification. We used lead
II of the data set to differentiate between healthy controls and
that with myocardial infarction. Since only one lead of ECG
was used in the previous two experimental phases, we used
another publicly available data set and used all 12 of its leads
to reaffirm the usefulness of the ensemble model for both
uni-variate and multivariate data sets.

C. PTB XL DIAGNOSTICS
PTB-XL is one of the largest freely accessible ECG data
sets available. It was collected over a span of seven years
between 1989-1996. It was made publicly available in
2020 in a structured database by Physikalisch-Technische
Bundesanstalt (PTB). The data set consists of a total of
21837 records of 12-lead ECG each comprising of 10 s. It is
a gender-balanced data set with 52% male and 48% female
records and an age range of 0-95 years. The data set consisted
of various diagnoses and a large number of healthy controls
as well [50]. PTBXL has a standardized set of pre-processing
instructions for the data set. Because different labels are
heavily imbalanced and imbalanced classes can introduce
bias in the trained model, it is important to divide the data
set in a way that each of the classes is represented equally
in each subset. Stratified sampling was used to divide it into
training-validation-testing data sets. The data set has multiple
classification categories as shown in Fig. 7. The goal is to
classify MI from other heart conditions, and models were
trained for diagnostic superclass and myocardial infarction
detection using Algorithm 1.
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FIGURE 7. Class Distribution for PTB-XL Data Set.

VI. RESULTS
Several methods to evaluate a DL classifier exist in the
literature. We evaluated our classifiers using the accuracy,
area under the curve (AUC), confusion matrix, sensitivity,
and specificity. The details of the results obtained by applying
each of the algorithms and the respective data set is explained
in this section. In the sequel, we present the results acquired
for each data set and also compare our results to the other
state-of-the-art work. An overview of the section is presented
in Table 14.

A. ECG HAR DATA SET
The data set was initially trained using a plain LSTM to com-
pare the model performance with the previous experiments.
The data were fed into the model without any pre-processing.
The LSTM initially yielded an accuracy of 49.80%whichwas
increased to 54% by fine-tuning the hyperparameters. In the
previous experiments, extensive pre-processing was carried
out to extract the related features and then those features were
fed into the model. Although that approach yields excellent
accuracy, it is not automated. LSTMs have been shown to
have a sense of previous timestamps or history in the time
series, but CNNs have a superior feature extraction capability.
To test our hypothesis, a CNN was placed on top of the
LSTM layer. The accuracy immediately improved to 93%.
After some fine tuning the hyperparameters and adjusting the
number of CNN layers, the validation accuracy got better than
the state-of-the-art results. A testing accuracy of 99.21%–
100% was achieved and a validation accuracy of 99.21%
was achieved. For the first data set, the results were almost
perfect with a validation accuracy of 99.21% and a testing
accuracy of 99.21%–100%. The previous work achieved
similar accuracy but with transfer learning and pre-processing
the signals by converting them into wavelet transforms and
then into scalograms. This model achieves similar accuracy

TABLE 5. Confusion Matrix for Fall Detection ECG Data Set using
CNN-LSTM (Algorithm 1).

TABLE 6. Confusion Matrix for Fall Detection ECG Data Set using
Attention (Algorithm 2).

even by avoiding all those steps. The following Table 5
depicts the confusion matrix for the testing data set showing
an almost perfect accuracy of 99.22%.

Fall detection using ECG signals was also performed by
applying Algorithm 2 to the HAR data set. Each sequence
in the data set consists of 4000 time stamps. The initial
tensor size was [1273, 1, 4000], which is in the format [total
Sequences, number of features, sequence length]. Each of
the ECG sequences was divided into 100 chunks of 40 time
stamps each, and then the wavelet transform was calculated
for each chunk resulting in a final dimension of [1273, 108,
40]. The model was trained in 403.39 s. This result was
again achieved without any manual feature extraction or
transfer learning model. The following Table 6 depicts the
confusion matrix for the testing data set showing also the
accuracy of 95.31%

B. PTB DIAGNOSTICS
Algorithm 1, i.e., CNN-LSTM was used to model the PTB
diagnostic to differentiate normal from abnormal heartbeats.
Previous studies have emphasized feature extraction before
feeding into the neural network, or transfer learningwhere the
model is initially trained with an existing data set and later on
trained with the same learned weights on the desired data set
such as in [51]. In the current benchmark forMI classification
using PTB diagnostic, ConvNetQuake neural network model
was adapted to achieve an accuracy of 99.44%. Similarly,
heavy pre-processing, such as wavelet transformation [52],
data balancing [53], and transfer learning [18], are used
in the literature to achieve higher accuracy for ECG
signal classification. In our study, no pre-processing of the
individual readings was applied, and the model achieving
99.66% accuracy, exceeded the state-of-the-art accuracy for
normal versus abnormal classification, which was previously
99.43%.

Algorithm 2, i.e., the attention /transformer model was also
used to model the PTB diagnostic to differentiate between
normal and abnormal heartbeats. This yielded an accuracy of
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TABLE 7. Confusion Matrices for PTB Data Set.

99.73%, a precision of 99.73%, a sensitivity of 99.2%, and a
specificity of 99.91%.

The confusion matrices of both algorithms are depicted in
Table 7 below.

In comparison to CNN-LSTM, i.e., Algorithm 1, the
attention model with wavelet embedding has been shown to
be more efficient as it uses fewer parameters and less training
time as compared to the CNN-LSTM model as shown in
Table 8. However, the time and number of parameters for
Algorithm 2might increase eventually with the increase in the
number of attention heads and encoder layers. A comparison
between the reference parameters used across the state-of-
the-art similar work and our work is shown in Table 8.
However, it must be noted that Table 8 is not complete
because not all parameters can be found for all related work
and NA in the table refers to not available.

Multiple metrics were used to evaluate the model per-
formance. The terms tp, fp, tn, and fn refer to the true
positives, false positives, true negatives, and false negatives
respectively. In medical terminology, true positive would
refer to the medical condition being diagnosed, so tp in
our context refers to the diagnosis of MI. The performance
metrics were calculated using the following formulas:

Accuracy = (tp+ tn)/(tp+ fp+ fn+ tn)

Precision = tp/(tp+ fp)

Sensitivity = tp/(tp+ fn)

Specificity = tn/(tn+ fp)

The results for our leading models are summarized in
Table 9.

Fig. 8 and Fig. 9 show examples of the training accuracy
and losses for the PTB data set, respectively.

C. PTB XL DIAGNOSTICS
Since PTB XL is a relatively new data set, many recent
studies using this data set have adapted it for different
classification tasks such as super diagnostic, sub-diagnostic,
and form etc. In our study, five super diagnostic (SD) classes
were classified. A validation accuracy of 75.70% and a
testing accuracy of 74.33% were achieved. An AUC score of
0.8395 was obtained, see Table 10.
A direct comparison to the state-of-the-art is not very

straightforward for PTB-XL mainly because it is a newer

FIGURE 8. Training and Validation Graph over Epochs for the PTB Data
Set for Algorithm 1.

FIGURE 9. Training and Validation Loss for the PTB Data Set for
Algorithm 2.

data set and many new studies that use it focus on different
classification tasks. Although our results for this data set
do not exceed the state-of-the-art accuracy, they are still
comparable. Virginia et al. [54] and Martin et.al [55]
achieved accuracies of 90.8% and 77.12%, respectively,
for MI classification respectively. Similarly, Śmigielet
et al. [56] achieved an accuracy of 78.0–75.2% for five-class
classification.

Our Algorithm 1 applied for myocardial infarction detec-
tion using the PTB XL data set, yields a validation accuracy
of 90.94% when it is MI versus the normal class in
super diagnostic, and 91.27% when it is MI vs other
four superclasses. Please note the AUC as a metric was
calculated only for PTB-XL data set as it is widely used
for comparison of this particular data set in the literature.
The experiment with Algorithm 2 on multi-lead data sets
such as PTB XL is still in a preliminary stage and requires
further investigation on how to merge the natural domain
dimension of multi-lead with the dimensional embedding
technique. However, similar results for another research
project of ours yield promising results for the Algorithm 2
with a multidimensional or multi-featured data set, see [57].
Henceforth these experiments have not been mentioned and
as work in progress will be published in a future contribution.
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TABLE 8. Parameter Comparison between State of the Art and Our Work.

TABLE 9. Metrics for Leading CNN-LSTM and Attention.

TABLE 10. Performance Indicators.

TABLE 11. Five Fold Cross-Validations.

D. STATISTICAL ANALYSIS
To assess the statistical validity of the results, we computed
a five-fold cross-validation for both algorithms and all data
sets, see Table 11. For PTB-XL data set the k-fold validation
was done only for super-diagnostic classes.

As one can see, the results are consistent with the findings
in sub section VI-A, the difference in the average results from
the reduced training in case of five fold cross validation.

However, to assess the statistical meaningfulness, a more
sophisticated approach is required. In a seminal paper [60],

Dietterich analyzed five approximate statistical tests for
determining whether one learning algorithm outperforms
another on a particular learning task. It includes the well-
known McNemar’s test for a single pass validation and
also proposes a new 5 × 2cv test designed for algorithms
where at least 10 validations can be carried out. In the
paper, Dietterich shows that the null-hypothesis of the two
algorithms to compare having the same performance, the
off-diagonal elements of the confusion matrix should be the
same, which can be checked statistically for significance
using a χ2 test or a test for t statistics.

Although Dietterich’s paper has been very well received
and is cited many thousand times, in the practice of machine
learning–contrary to other disciplines like e.g., the medical
sciences–, statistical analysis of significance is still not
common and is therefore usually not included in publications,
unfortunately. This limits not only the interpretation of pub-
lished results but also limits the ability to rigorously compare
benchmarks. For instance, the tests proposed in [60] assume
the availability of the data set backing the confusion matrix.
In particular, to apply any of the tests in order to compare
two algorithms A1 and A2, one must determine the incorrectly
classified samples from A1 and check whether these are
correctly classified by algorithm A2 and vice versa in order
to determine the statistical parameters needed for the test.
Even if the data are publicly available, information on which
sub samples are incorrectly classified is usually not available
from the publication. In our case, these data are clearly
not available for any of the bench marking publications.
Therefore, we could only compare our algorithms 1 and 2
against each other, but not against any of the bench marked
algorithms.

The implementation of the statistical analysis and the
results are discussed in the next sub section.

1) McNemar’s TEST
The McNemar’s test is a standard paired test used in the
medical field for the verification of usability of the new drugs
etc. However, it is not very commonly applied in the field
of deep learning for model comparison. Because we used
biomedical data in this study, McNemar’s test was used to
verify the statistical significance of the results obtained using
the proposed algorithms. To apply McNemar’s test, our data
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TABLE 12. McNemar’s Contingency Tables.

set was partitioned into training and testing sets, called R and
T, respectively. After training both models A1 (Algorithm 1)
and A2 (Algorithm 2) on t , the classifiers were tested on
each instance of R and eventually the following statistics are
collected:
• n00: Number of classes misclassified by both classifiers
A1 and A2.

• n01: Number of data instances misclassified by A1 but
not A2.

• n10: Number of data instances misclassified by A2 but
not A1.

• n11: Number of data instances misclassified by neither
A1 nor A2.

Additionally, n00+n01+n10+n11= n, where n is the total data
instances in the test set T. The contingency table layout for
McNemar’s test is presented in Table 12a.

The McNemar’s test was performed for both PTB and
ECG HAR data set. The null hypothesis (H0) is that both
algorithms have the same error rate, i.e., n01 = n10. The
confidence interval for all tests was 95%. The statistics
obtained for the ECG HAR data set are presented in
Table 12b.

For an alpha value of 0.05, the p-value is calculated to be
numerically 0.000, which implies that our test is significant
enough to reject the H0 and we conclude that both models
have different proportions of errors and are significantly
different in this data set. The same test was repeated for the
PTB data set and the obtained statistics are listed in Table 12c.

The p-value obtained for this test was 0.118 which is
greater than 0.05 hence, there was no significant evidence to
reject H0.

2) THE 5× 2 CV t TEST
The 5 × 2 cv t test is introduced in Dietterich [60] and
recommended therein: ‘‘For algorithms that can be executed
ten times, the 5 × 2 cv test is recommended as it is slightly
more powerful and because it directly measures the variance
due to the choice of training set’’. For this test, two-fold
cross validation was performed for five repetitions. During
every repetition, the data set was randomly partitioned into
two equal-sized sets S1 and S2. Both algorithms were trained
on each set and tested on the other set. This results in four
error estimates: P(1,2)A1

and P(1,2)A2
with A1 or A2, resp. trained

on S1 and tested on S2 and P(2,1)A1
and P(2,1)A2

with A1 or A2,
resp. trained on S2 and tested on S1. Estimated differences
are obtained by subtracting the corresponding error estimates
P(1,2)= P(1,2)A1

- P(1,2)A2
and P(2,1)= P(2,1)A1

- P(2,1)A2
. From

these differences, the estimated variance σ 2 is calculated as

σ 2
= (P(1,2) − P̄)2 + (P(2,1) − P̄)2, where P̄ = (P(1,2)

+ P(2,1)) /2. Let σ 2
i be the variance calculated from the

i-th replication. Then the 5 × 2cv t̄ statistic is calculated
as follows:

t̄ =
P(1,2)1√

1
5

∑5
i=1 σ

2
i

Under the H0, t̄ has approximately a t distribution with five
degrees of freedom. The calculated t statistic for PTB data
set and ECG HAR data set is 3.002 and 3.286 respectively.
Detailed tables for the five repetitions are presented in
Table 15 and Table 16. As both would have a corresponding
p value of 0.030 and 0.0218 respectively, it clearly shows that
both models are significantly different from each other with
different error estimates.

3) INTERPRETATION
Taking the results from both the McNemar and the more
powerful 5× 2 cv t test we can conclude that our algorithms
differ significantly and that the obtained Key performance
Indicators (KPIs) are statistically meaningful for the standard
confidence interval of 95%.

E. SUMMARY
As seen in Table 13, our model leads to almost all of the
evaluation criteria for the classification of PTB data set.

VII. DISCUSSION
As mentioned earlier, state-of-the-art accuracies were
achieved using the CNN-LSTM model for three data sets
and the attention model for PTB data set. In similar previous
studies, mostly one set of experiments is performed with a
single database to prove the usability of the models. However,
we worked on three data sets separately. The first data set was
used to classify human activities including falls. The second
one consists of extracted heartbeats for the classification of
MI vs normal heartbeats. The third data set consists of a
12-lead ECG data set for multiple cardiovascular conditions.
The success of our proposed algorithms on all three data
sets generalizes their usefulness for ECG classifications over
multiple tasks.

Hybrid models help to combine the features of the base
models. This is often more powerful than very deep models
with hundreds of layers because deeper models tend to
over-fit for medium-sized data sets. An LSTM model keeps
track of the past trends in the time series and can also help
in the prediction of the next time stamps. In our study, the
results of the CNN-LSTM model have shown to be always
better than both of the models implemented individually. This
was verified for the HAR data set by [61] and we compare
the results from Table 13 for PTB data set where multiple
variations of CNN and LSTMs have been applied separately
in the previous works. The performance of the model on the
HAR data set is observed to increase up to a certain level
with the increase in a) the number of filters in the conv1d
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TABLE 13. Our Result Compared with other similar Studies in Literature which used PTB Database (Built upon [49]).

TABLE 14. Overview of the Experiments with Different Data Sets and the Acquired Performances.

TABLE 15. 5 × 2 cv Test Contingency Table for PTB Data Set.

TABLE 16. 5 × 2 cv Test Contingency Table for ECG Data Set.

layer for CNN-LSTM and b) the number of dimensions in
the dimensional embedding with the attention model. Since
the data set is not very large, a final conclusion cannot be
drawn at this stage but it merits further investigation. The
attention algorithm clearly has a computational advantage
over the CNN-LSTM algorithm as seen in Table 8. It takes
less time to converge and even has fewer parameters to train
than the CNN-LSTM algorithm. Our study had the following
advantages:

• A hybrid CNN-LSTM model and attention with a
discrete wavelet transformation as an embedding are
proposed.

• No or very little manual feature extraction is required for
training the model.

• Three publicly available data sets were used separately
for the training using the proposed models.

• State-of-the-art accuracy of 99.86% and 99.44% is
achieved for the PTB data set and ECG for HAR
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classification respectively without any feature extraction
or pre-processing.

• Multiple standard statistical analysis techniques were
applied to the acquired results to statistically support our
algorithms.

Hence, we addressed our research question and achieved
results equivalent to many recent studies without any
pre-processing or feature extraction. We have also shown to
train the models in an efficient manner computationally.

As part of the future work, the authors would like to explore
the difference between the two algorithms using explainable
AI. Looking deeper into the gradients for each layer would
shed light into the learning process.

VIII. CONCLUSION
The models proposed and explained in this paper aim to
better classify ECG time series for different conditions using
minimum pre-processing steps. Publicly available data sets
have made it possible to verify the robustness and usefulness
of the proposedmodels by achieving state-of-the-art accuracy
using multiple data sets. This would eventually help medical
practitioners to identify multiple heart conditions automati-
cally with minimum feature extraction. Specifically for the
MI classification, because the results are close to 100%, the
model is ready to be deployed for medical evaluation.

APPENDIX
DATA AND CODE AVAILABILITY
The data sets used are publicly available and present in the
corresponding repositories:
• ECG HAR data set: [70]
• PTB DB data set: [48]
• PTB XL: [6]
The code is available on GitHub at https://github.com/

buttfatimasajid/Towards-Automated-Feature-Extraction-For-
Deep-Learning-Classification-of-Electrocardiogram-Signals.
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