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ABSTRACT Due to the popularity of 5G connectivity and The Internet of Things sensors, deep learning
algorithms are being extended to edge devices. Compared with AI(Artificial Intelligence) cloud platforms,
the deployment of deep neural networks on edge devices must focus on low power consumption, low latency,
stability and reliability. In recent years, the development of lightweight deep neural network architecture has
provided a basis for the deployment of deep neural networks on edge devices. However, the shortcomings
of deep neural networks, such as overconfidence, vulnerability to adversarial attack, and easy over fitting
when samples are insufficient, still limit their applications in many fields. One of the ways to compensate
for these defects is to use deep ensemble. An ordered aggregation-based ensemble selection algorithm is
proposed, which uses soft-margin as the importance assessment metric to take full advantage of the diversity
and complementarity of lightweight deep neural networks obtained from different initialization training,
so as to improve the overall performance of multiple edge devices. The experimental results show that this
algorithm has a significant improvement in generalization performance compared with random ensemble
and ordered aggregation algorithms based on accuracy or diversity, and provides a new complementary idea
for the deployment of lightweight deep neural networks on edge devices.

INDEX TERMS DNN, deep ensemble, selective ensemble, ordered aggregation, soft-margin.

I. INTRODUCTION bility to adversarial attack, and easy over fitting when samples

At present, deep learning models with multi-layer process-
ing architectures show better performance than shallow or
traditional classification models. With the development of
5G connectivity and the IoT (Internet of Things) sensors,
deep learning algorithms are expanding to edge devices,
the deployment of DNNs (Deep Neural Networks) on edge
devices must focus on low power consumption, low latency,
stability and reliability. In recent years, the development of
lightweight deep neural network architecture has provided a
basis for the deployment of DNN's on edge devices. However,
the shortcomings of DNNs, such as overconfidence, vulnera-
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are insufficient, still limit their applications in many fields.
One of the ways to compensate for these defects is to use deep
ensemble. Deep ensemble learning combine the advantages
of deep learning and ensemble learning to improve gener-
alization performance and robustness by training multiple
models and aggregating their predictions. The members of
a good ensemble model should be both accurate and error-
independent. The loss surfaces of DNNs are non-convex and
depend on millions of parameters, and the geometry of these
loss surfaces is not well understood. Even for simple net-
works, the number of local optima and saddle points is large
and can grow exponentially in the number of parameters [1],
[2]. Moreover, the loss is high along a line segment con-
necting two optima [3], [4]. These two observations suggest
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that the local optima are isolated. Meanwhile, in the process
of DNNs training, SGD ( Stochastic Gradient Descent ) [5]
and its variant Adam [6] are the most common optimization
algorithms. The random noise of mini-batch data sampling in
sgd-like algorithms and the random initialization of deep neu-
ral networks, coupled with the existence of various local min-
imum solutions in high-dimensional optimization problems,
show that DNNs trained with different random seeds can
converge to very different local minima, although they have
similar error rates [7], [8], [9]. That is, DNNSs trained with
different random seeds usually do not produce the same error
in the test set, even if the models have converged, they may
produce inconsistent predictions given the same input [10].
So theoretically, it is feasible to ensemble DNNs trained with
different initialization to improve the prediction performance.
Furthermore, single model in an ensemble can be distributed
to multiple end devices, which can further speed up inference
and potentially simplify the design of specialized hardware.

MobileNetV2 is a classic lightweight deep neural network
architecture that seeks to perform well on mobile devices.
30 MobileNetV2 models with different initialization were
trained on the training set of the CIFAR-10 and CIFAR-100
datasets in this paper. Then 2, 3, 4, ... 29, 30 models were
randomly selected from the 30 models for ensemble. Next,
the accuracy of each ensemble model was calculated on the
test set. This process was repeated 100 times to get the
corresponding test results. As shown in Figure. 1(a) and
Figure. 1(b), the solid line represents the mean of 100 random
ensemble results at each ensemble scale, and the shaded
area represents the variation range of 100 random ensemble
results at each ensemble scale. There is still a large room for
optimization in the random ensemble results.

In this paper, the selective ensemble method of lightweight
DNNs based on ordered aggregation is studied, and an
ordered aggregation algorithm based on soft-margin to
improve the performance of the ensemble is proposed. The
experimental results show that the ensemble model obtained
by this algorithm has a significant improvement in general-
ization performance compared with random ensemble and
ordered aggregation algorithms based on accuracy and diver-
sity. It makes the ensemble of multiple lightweight DNNs
better at the same computational efficiency. This ordered
aggregation-based algorithm is simple to use and does not
require architectural tuning, which provides a new idea for
the ensemble design and deployment of lightweight DNNs.
The main contributions of this study are as follows:

1) The ensemble results of lightweight DNNs obtained
by random initialization training under different ensemble
scales are analyzed, and it is proposed that the diversity
and complementarity brought by random initialization can be
fully utilized to optimize the final ensemble performance.

2) According to the margin theory, soft-margin is proposed
as one of the importance assessment metric for selecting the
base lightweight DNNs.

3) Ordered aggregation of greedy heuristics algorithms
based on soft-margin, accuracy and diversity assessment
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FIGURE 1. Variation range of random ensemble results for MobileNetv2
at different ensemble scales on CIFAR-10/CIFAR-100.

metric are proposed and compared to random ensemble, the
algorithm based on soft-margin can get the optimal general-
ization performance.

The rest of this article is organized as follows. The sec-
ond section introduces the related work on deep neural net-
work ensemble and selective ensemble methods. In the third
section, the ordered aggregation-based ensemble selection
method of lightweight DNNs with random initialization is
given in detail. In the fourth section, the experiment is carried
out and the results of ordered aggregation method based on
different metrics are analyzed objectively. The fifth section is
the conclusion of this article.

Il. RELATED WORK
A. DEEP NEURAL NETWORK ENSEMBLE
In implicit ensembles, the parameters of the models are
shared, and the single unthinned network at test time approx-
imates the ensemble averaging. However, explicit ensembles
do not share model parameters, and the ensemble output is
a combination of the predictions of the ensemble models
using different approaches, such as majority vote, averaging
and so on.

During the training of the network, dropout [11] removes
hidden nodes from the network in order to create an ensemble
network. During the testing phase, all nodes are active. Using
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dropout, the network is regularized to avoid overfitting, and
the output vectors become sparse. Dropconnect [12] provides
a generalization of dropout. It randomly drops each connec-
tion, unlike dropout, which drops output unit. This causes
sparsity in the weight parameters of the model. Both dropout
and dropconnect require a lot of training time. As a solution,
deep networks with stochastic depth [13] were designed to
reduce the network depth during training while keeping it
unchanged during testing. Stochastic depth is an improve-
ment on ResNet [14], where residual blocks are removed
randomly during training and these transformation blocks are
bypassed via skip connections. Swapout [15] involves drop-
ping individual units or skipping randomly through blocks,
it is a generalization of dropout and stochastic depth.

All the aforementioned methods create an ensemble of
networks by sharing the weights. Some researchers have
explored explicit ensembles that do not share weights
between models. Huang et al. [16] exploites good and bad
local minima and let the SGD converge M-times to local
minima along the optimization path, and take the snapshots
when the model reaches the minimum, these snapshots are
then ensembled by averaging for object recognition. The
training time of the ensemble model is the same as that of the
single model. The ensemble output is taken as the average of
the output of the snapshot models’ outputs. Random vector
functional link network [17] has also been explored to create
explicit ensemble, in which different random initialization of
hidden layer weights in the hierarchy makes the ensemble
prediction diversified.

Fast Geometric Ensembling (FGE) [18], shows that it is
possible to collect models that are spatially close to each other
but produce different predictions using cyclic learning rates.
They use the collected models to train the ensemble, and there
is no computational overhead compared with training a single
DNN. An effective method of Bayesian neural network model
averaging is also discussed in [19]. SWA [20] is inspired by
the development track of FGE scheme. The purpose is to find
a single model that can approximate FGE set, but provides
stronger interpretability, convenience and scalability during
testing.

The above DNN ensemble methods mainly take into
account how to reduce training costs, without considering
the screening of base models, so they are essentially random
ensemble. As can be seen in Fig.1, random ensemble results
have a large range of variation, and it is difficult to ensure
the optimal results. This paper mainly explores the selective
ensemble of different base models under the condition of
random initialization, and makes full use of the diversity
and complementarity brought by the random initialization
of DNNs to obtain better ensemble performance, so that the
lightweight DNNs can get better overall performance when
deployed on multiple edge devices.

B. SELECTIVE ENSEMBLE
In order to achieve the ideal generalization performance,
the ensemble learning algorithm usually generates a large
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number of base models to form an ensemble system. How-
ever, it is not that the more base models participating in the
ensemble, the better the generalization performance of the
ensemble system, including the following reasons: (1) Some
generated models may have lower accuracy, and their partic-
ipation in the ensemble will reduce the generalization per-
formance of the final ensemble system. (2) Some generated
models may be similar to each other, that is, they usually give
the same results for the same samples, and ensembling some
similar models will not improve their generalization perfor-
mance. (3) Ensembling a large number of models requires
a lot of storage and computing overhead and reduces the
prediction speed of the ensemble system.

For the above reasons, the base models need to be screened.
The base models ensemble selection is to select an approxi-
mate optimal subset from the initial base model pool accord-
ing to some performance evaluation metric, and use the
ensemble subset as the final ensemble system. In the past
ten years, scholars have carried out a series of research work
and proposed many ensemble selection algorithms. In gen-
eral, these algorithms can be divided into three categories:
(1) Ensemble selection based on ordered aggregation [21],
[22], [23]; (2) Ensemble selection based on clustering algo-
rithm [24], [25], [26]; (3) Ensemble selection based on opti-
mization [27], [28], [29]. Optimization-based algorithms can
usually select an ideal subset of ensembles, but at the cost of
significant computational and time overhead, especially for
ensembles of DNNs. Therefore, this paper mainly discusses
the ensemble selection method based on ordered aggregation.

The ensemble methods in traditional ensemble learning
mostly use simple base models like decision trees, and they
mostly use majority voting for ensemble. These methods
are not fully applicable to DNNs. The complexity of the
DNN base model is higher, and the output is in the form of
probability, so this work studies ordered aggregation method
based on three importance assessment metric and compared
to random ensemble, the method based on soft-margin gives
the best performance.

1ll. ORDERED AGGREGATION-BASED ENSEMBLE
SELECTION OF LIGHT DNNs WITH RANDOM
INITIALIZATION

A. ORDERED AGGREGATION AND IMPORTANCE
ASSESSMENT

The basic idea of ensemble selection methods based on
ordered aggregation is as follows. First, the performance of
each base model in the initial ensemble system is evaluated
separately according to some importance assessment metrics.
Then, the base models are reordered according to the cor-
responding assessment values obtained to get a new model
sequence, in which those base models that are evaluated
to have good performance are ranked in the front of the
sequence. Finally, some strategy is used to select the top k
(0O<k<T) models from the new sequence to form the final
ensemble subset.
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For an ordered aggregation-based ensemble selection algo-
rithm, the importance assessment metric used by the algo-
rithm determines the performance it can achieve. It is well
known that accuracy and diversity are the two most com-
monly used importance assessment metrics. To measure
ensemble diversity, a classical approach is to measure the
pairwise similarity/dissimilarity between two learners, and
then average all the pairwise measurements for the overall
diversity. The representative paired metrics are Disagree-
ment, Q-Statistic, Correlation Coefficient, Kappa-Statistic
and Double-Fault etc. Non-pairwise measures try to assess
the ensemble diversity directly, rather than by averaging
pairwise measurements. The representative unpaired metrics
are Kohavi-Wolpert Variance, Interrater agreement, Entropy,
Difficulty, Generalized Diversity and Coincident Failure etc.
Although there are many diversity metrics, the exact form
and measurement of diversity has not been solved, and the
optimization of existing diversity metrics cannot guarantee
the learner to obtain good generalization performance.

B. MARGIN THEORY

Schapire et al. [30] introduced the margin-based explanation
to AdaBoost, Formally, in the context of binary classification
ie., f (x) € (—1,+1), the margin of the classifier z on the
instance x, is defined as f(x)h(x), the margin of the ensemble
H@) =Y jerh @) isf ) H(x) = Yy af @) by (x),

while the normalized margin of the ensemble is

ST af @) by (x)
ZIT=1 oy

Based on the definition of the margin, Schapire et al [30],
Breiman [31], Gao and Zhou [32] successively gave the
upper bound of the generalization error of the ensemble
model.

Theorem 1: Schapire et al. [30] Forany § > O and 6 > 0,
with probability at least 1 — 6 over the random choice of
sample S with size m, every voting classifier f € C (H)
satisfies the following bound:

f @) H (x) = (1)

Pr f () < 0] < Pr f ) < 0]

Lol L (mmmian 2 ,
ﬁ( 62 5) @

Theorem 2: Breiman [31] For any § > 0, with probability
at least 1 — 6 over the random choice of sample S with size
m, every voting classifier f € C (H) satisfies the following
bound:

1 1 |H
Privf () <01 <R (m@m +int+1)+ Ll 3
b R m 8
where 6 = y\f (,51) >4 |H|’R _ 32f:§\H| .

Theorem 3: Gao and Zhou [32] For any § > 0, with
probability at least 1 — § over the random choice of sample S
with size m > 5, every voting classifier f € C (H) satisfies
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the following bound:

Priyf () < 0] < 2 + inf [Pr Of (x) < 0]
D m

9 €(0,1]
Tu+3/3u
R P 3m

\/ Mpeprn<o] @

where = e%lnmln Q|H|) + ln@.

In 2019, A Grgnlund, L Kamma et al. published a paper
at the NeurIPS conference [33], proving that Gao and Zhou
gave almost the tightest upper bound on the generalization
error, improving at most one log factor. And this upper bound
has been matched with the lower bound, and theoretically
impossible to get a better result.

The margin theory is a very effective theoretical tool to
analyze the generalization performance of ensemble models.
From Egs.(2)-(4), when other variables are fixed, the larger
the margin over the training examples, the better the gener-
alization performance. Therefore, if a base model is more
beneficial to increase the margin of the ensemble model on
the training samples, then it is more conducive to improve the
generalization performance of the ensemble model. Inspired
by the theory described above, margin is tried to be used as
an important assessment metric for ordered aggregation of
individual DNN in this paper, and is compared with accuracy
and diversity assessment metrics.

Since the final output of the deep convolutional neural
network model is based on the class probability (or confi-
dence). Therefore, the soft voting method is usually used,
and the individual classifier 4; outputs a 1-dimensional vec-
tor (hl1 @x), -, hll (x))T for the example x. Among them,
h] (x) € [0, 1] can be regarded as the estimated result of the
posterlor probability P (CJ| x) The f1na1 output of category c;
can be written as H/ (x) = Zl Wl i (x).

Assume that V = {v(l),v(z), .- (N)Iv(i)& =

V(Ll)] ,i = 1,2,---N} is a set of vectors where v() is
the predictions probabilities for the j; label on example x;
combined by soft voting, label y € {1,2,--- , L}.

Based on the above theoretical analysis and the ensemble
method of DNNSs, the soft-margin of the given example x; can
be written as Ai/l (vﬁf’) (M v;f’))) = Ai/[ (2\1;? - M),

soft-margin is in the range [—1,1].

WY,

C. THE ORDERING AGGREGATION OF GREEDY
HEURISTICS BASED ON DIFFERENT IMPORTANCE
ASSESSMENT METRICS

The selection of an optimal subensemble from a given base
model pool is a difficult combinatorial optimization problem.
With the limited computational resources, only approximate
solutions are accessible for ensembles of realistic size. Ref-
erence [22] pointed out that the generalization performance
of an ensemble cannot be improved by pruning technology
based on individual attributes of the ensemble members,
exhaustive search confirms that the greedy ordering heuristics
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TABLE 1. The ordering aggregation of greedy heuristics algorithm.

Input:The trained models H = {h;[i =1,2,--- M} and
the validation set Dy, = {(x;,v:)]i=1,2,---N} for
computing the importance assessment

Output: The ordered list ES of M trained models

Initialize : A list of vectors o ‘
Vo= {vW 0@ oM@ =]y 0 ...vg)}

1=1,2,---N} where UJ@ = 0 is initial number of
predictions in label j on the example x; in D,q;, L is the
number of class labels, and ES is an empty list.
Model ordering :
For each h; € H do

Compute the the accuracy of h; in D,
End For
return the most accurate model Ay
Append hys: to ES and remove hpesy from H
Compute all the base models’ softmax output on D,,;, abtain
a 3D tensor V' which is (M ,validation numbers,classes)
Function Compute Soft-Margin()

For ¢ in range (validation numbers)

y =sample ¢’ s lable

soft-margin = ( 2V[i][y] - ensemble model numbers) /
ensemble model numbers
End Function
While (H is not empty) do
For hy in H

If use soft-margin assessment

Ensemble hj and the models in ES

Compute the ensemble model’s soft margin with
Compute-Soft-Margin() on D,,q;

If use accuracy assessment

Ensemble h;. and the models in ES

Compute the ensemble model’s accuracy on D,

If use diversity assessment

count the samples of D,,,; that ensemble model (without
hy) is wrong but hy is right

end if
end For
return the best Ay,
append the best hj, to ES and remove the best hy, from H
end While
return the list ES

devised can efficiently identify near-optimal subensembles of
increasing size.

In this paper, the ordered aggregation of lightweight DNNs
based on greedy algorithm is studied. First, the most accurate
base model in the validation set was selected, and then the
base model from the remaining base models was chosen to
add to the ensemble in each round, which makes the accuracy,
diversity or soft-margin assessment of the ensemble model
the best. For details on the ordered aggregation of greedy
heuristics algorithm, see Table 1.
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FIGURE 2. The average accuracy of the random ensemble method,

ordered aggregation method based on accuracy, diversity and soft-margin
under each ensemble scale on CIFAR-10/CIFAR-100.

Compared with the random ensemble method of DNNs, the
ensemble selection method needs to train more base models,
but more base models can bring more diversity and com-
plementarity to improve the overall ensemble performance,
this work studies three importance assessment metric for
lightweight DNNs selection, it is found that methods based
on soft-margin proposed by this paper can select better base
models than methods based on accuracy and diversity. Com-
pared with random ensemble, it has a significant improve-
ment in generalization performance. It further proves the
correctness and validity of the margin theory, and provides
a basis for the further research of soft-margin in lightweight
DNNS5 ensemble.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL ENVIRONMENT AND CONFIGURATION
In the experiments, the public datasets CIFAR-10 and
CIFAR-100 are used to test the proposed method. In order to
reduce the size and computation cost of the ensemble model,
the classic lightweight DNN MobileNetV?2 is used as the base
model for training. Four groups of experiments were carried
out, as shown in Table 2, each group of experiments was
conducted 50 times. In order to reduce the random influence
caused by different distribution of validation set and test set,
the test set in the original data set is randomly divided into
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TABLE 2. Four groups of contrast experiments.

Ensemble Operational details Time
method consumpution (s)
Random Randomly select 2, 3, ..., 30 models from 30 base models for ensemble, and -
ensemble calculate the accuracy on the test set of each ensemble scale.

Ensemble by Use the accuracy assessment metric and greedy heuristics algorithm to sort the  0.26
accuracy met- 30 base models on the validation set, and calculate the accuracy of the ensemble

ric of the first 2, 3, ..., 30 models on the test set.

Ensemble by Use the diversity assessment metric and greedy heuristics algorithm to sort the 36.38
diversity met- 30 base models on the validation set, and calculate the accuracy of the ensemble

ric of the first 2, 3, ..., 30 models on the test set.

Ensemble by Use the soft-margin assessment metric and greedy heuristics algorithm to sort  193.67

soft-margin

the 30 base models on the validation set, and calculate the accuracy of the

metric ensemble of the first 2, 3, ..., 30 models on the test set.
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FIGURE 3. The boxplots of the prediction results of the ordered aggregation method based on three different importance assessment metrics

and random ensemble method on the CIFAR-10 dataset when the ensembled size is 2-10 models.
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FIGURE 4. The boxplots of the prediction results of the ordered aggregation method based on three different importance assessment metrics

and random ensemble method on the CIFAR-100 dataset when the ensembled size is 2-10 models.

the validation set and the test set according to 1:1, and the
number of samples in each category of the validation set and
test set is the same, the validation set and test set used were
different each time. 50 rounds of calculations are performed
and the final results are counted.

B. ENSEMBLE RESULTS OF ORDERED AGGREGATION
METHOD BASED ON DIFFERENT METRICS

The total number of samples in the datasets CIFAR-10 and
CIFAR-100 is 60,000. The number of training set samples
in the original dataset is 50,000. The training set samples
was used to train multiple randomly initialized lightweight
DNNs. The purpose of this paper is to make full use of
the diversity brought by random initialization, so the sam-
ples in the training set did not change in the experiment.
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The remaining 10,000 samples were divided into validation
set with 5,000 samples and test set with 5,000 samples.
Ensemble selection algorithm used validation set to screen
base models. Since the validation set has a great impact on
the results of base models selection, in order to ensure the
reliability of experimental results and the effectiveness of
proposed method, in each experiment, the validation set and
test set samples were mixed and then redivided randomly
according to 1:1 again. 50 experiments were conducted in
total, and the validation set and test set in each experiment
were different. Very common hyperparameter settings were
used to train the models, because compared to the accuracy
of single model, the difference in the accuracy of different
ensemble models is worthy of more attention. which init
Ir = 0.1 with warm up and divide by 5 at 60th, 120th, 160th
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TABLE 3. Boxplot statistics of the four algorithms on the CIFAR-10
dataset.

TABLE 4. Boxplot statistics of the four algorithms on the CIFAR-100
dataset.

Ensemble size  Statistics ~ Random  Accuracy  Diversity  Soft-margin Ensemble size  Statistics ~ Random  Accuracy  Diversity  Soft-margin
Max 95.36 95.32 95.40 95.58 Max 72.35 72.20 72.18 72.60
Q3 94.90 95.06 95.03 95.12 Q3 71.77 71.53 71.56 71.77
5 Median 94.76 94.86 94.79 94.89 2 Median 71.54 71.22 71.26 71.44
Mean 94.75 94.87 94.79 94.93 Mean 71.46 71.29 71.28 71.48
Q1 94.58 94.69 94.58 94.76 Ql 71.06 71.04 71.00 71.18
Min 94.24 94.20 93.94 94.42 Min 70.22 70.46 70.32 70.58
Max 95.56 95.60 95.54 95.66 Max 73.46 73.58 73.50 73.78
Q3 95.17 95.26 95.20 95.30 Q3 72.79 72.79 7274 73.15
3 Median 94.92 95.09 95.04 95.14 3 Median 72.43 72.41 7242 72.84
Mean 94.96 95.07 95.01 95.14 Mean 72.49 72.49 7247 72.82
Q1 94.78 94.89 94.82 95.02 Q1 72.26 72.20 72.13 72.52
Min 94.78 94.35 94.54 94.72 Min 71.55 71.64 71.48 71.84
Max 95.56 95.68 95.72 95.74 Max 74.19 74.16 73.86 74.41
Q3 95.30 95.38 95.34 95.42 Q3 73.45 73.45 73.40 73.68
4 Median 95.11 95.23 95.18 95.32 4 Median 73.12 73.10 73.03 73.41
Mean 95.14 95.25 95.18 95.29 Mean 73.17 73.12 73.11 73.44
Q1 94.99 95.12 94.98 95.18 Q1 72.87 72.74 72.85 73.18
Min 94.74 94.76 94.52 94.92 Min 7221 72.40 72.04 72.06
Max 95.74 95.92 95.64 95.64 Max 74.36 754.57 74.76 74.88
Q3 95.38 95.46 95.40 95.46 Q3 73.82 73.89 73.87 74.10
5 Median 95.22 95.31 95.27 95.40 5 Median 753.56 73.48 73.44 73.86
Mean 95.25 95.30 95.24 95.39 Mean 73.57 73.54 73.51 73.84
Q1 94.08 95.12 95.09 95.28 Q1 73.23 73.26 73.21 73.55
Min 94.88 94.76 94.74 95.10 Min 72.57 72.62 72.63 73.10
Max 95.78 95.74 95.74 95.90 Max 74.86 75.10 74.87 74.98
Q3 95.45 95.49 95.44 95.54 Q3 74.04 74.20 74.13 74.28
6 Median 95.26 95.38 95.32 95.44 6 Median 73.73 73.87 73.78 74.03
Mean 95.29 95.35 95.32 95.43 Mean 73.76 73.86 73.83 74.06
Ql 95.14 95.24 95.22 95.28 Ql 73.36 73.45 73.49 73.80
Min 94.82 94.94 94.90 94.94 Min 72.80 72.68 72.69 73.18
Max 95.96 95.80 95.84 96.02 Max 75.10 75.26 75.28 75.14
Q3 95.48 95.54 95.48 95.61 Q3 74.26 74.38 74.49 74.53
7 Median 95.41 95.43 95.34 95.48 7 Median 73.92 74.00 74.02 74.34
Mean 95.34 95.41 95.34 95.48 Mean 73.96 74.02 74.06 74.29
Q1 95.14 95.28 95.21 95.30 Q1 73.57 73.65 73.69 74.09
Min 94.94 94.96 94.82 94.98 Min 72.96 72.92 72.98 73.58
Max 95.78 95.82 95.82 96.00 Max 75.20 75.35 75.26 75.34
Q3 95.49 95.58 95.52 95.64 Q3 74.42 74.55 74.49 74.68
3 Median 95.41 95.45 95.41 95.51 3 Median 74.06 74.17 74.15 74.38
Mean 95.40 95.45 95.39 95.52 Mean 74.11 74.16 74.19 74.37
Q1 95.26 95.32 95.25 95.39 Q1 73.80 73.75 73.85 74.11
Min 95.04 95.02 94.96 95.10 Min 73.06 73.10 73.42 73.48
Max 95.76 95.90 95.92 96.00 Max 75.35 75.54 75.40 75.30
Q3 95.56 95.59 95.58 95.63 Q3 74.54 74.62 74.56 74.68
9 Median 95.39 95.50 95.42 95.52 9 Median 74.16 74.33 74.33 74.51
Mean 95.42 95.48 95.43 95.53 Mean 74.21 74.29 74.33 74.46
Q1 95.30 95.33 95.28 95.37 Q1 73.92 7391 73.93 74.21
Min 94.98 94.98 95.02 95.18 Min 73.22 73.22 73.48 73.50
Max 95.84 95.94 95.88 96.02 Max 75.68 75.56 75.15 75.38
Q3 95.56 95.63 95.63 95.70 Q3 74.65 74.66 74.64 74.76
10 Median 95.45 95.47 95.47 95.56 10 Median 74.40 74.46 74.30 74.60
Mean 95.44 95.50 95.46 95.56 Mean 74.35 74.39 74.38 74.53
Q1 95.30 95.36 95.32 95.40 QI 74.35 74.01 74.11 74.31
Min 95.04 94.96 94.98 95.20 Min 73.26 73.22 73.48 73.77

epochs, trained for 200 epochs with batchsize 256 and weight
decay Se-4, Nesterov momentum of 0.9.

30 MobileNetV2 models with different initialization were
trained separately on the training set of CIFAR-10 and
CIFAR-100 using the same hyperparameter settings. Then,
the algorithm in Table 1 and the random ensemble method
were used to get ensemble models of different sizes, and the
accuracy of the ensemble model on the test set under each
scale was calculated. After that, the validation set and test
set were divided randomly again, and the above ensemble
selection steps were repeated for 50 times, the results of
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50 ensembles under each scale were counted. Figure. 2(a) and
Figure. 2(b) show the average accuracy of the random ensem-
ble method, ordered aggregation method based on accuracy,
diversity and soft-margin under each ensemble scale. The
results show that, for CIFAR-10, since the accuracy of single
base model is already relatively high, the diversity among
the basic models becomes smaller. Fig. 2(a) shows that the
base models screening method using diversity is not as good
as the method using accuracy. For CIFAR-100, because the
accuracy of single base model is not high, the diversity among
the base models is relatively large. From Figure 2(b), it can

118275



IEEE Access

L. He et al.: Ordered Aggregation-Based Ensemble Selection Method of Lightweight DNNs With Random Initialization

be seen that the method of using diversity to screen the base
models is slightly better than using the accuracy. However, the
accuracy and diversity assessment metric cannot fully guar-
antee the overall generalization performance of the ensemble
model, so the ensemble performance of these two methods is
not significantly improved compared to the random ensemble
method. In the scale where a large ensemble gain can be
achieved, that is, when the number of base models is about ten
or less, The method using soft-margin based on margin theory
proposed in this paper can achieve the best performance no
matter in the CIFAR-10 dataset with high accuracy of single
base model or on the CIFAR-100 dataset with low accuracy
of single base model.

In order to compare the pros and cons of different meth-
ods more comprehensively, the boxplots of the prediction
results of the ordered aggregation method based on accuracy,
diversity and soft-margin and the random ensemble method
when the ensemble scale is 2-10 were drawn, as shown
in Figure. 3 and Figure. 4.

Boxplot is a statistical graph that describes the degree of
dispersion of a set of data, which can reflect the overall pros
and cons and stability of the effects of different algorithms.
It can be seen from Figure. 3 and Figure. 4 that the IQR
(interquartile range) differences between the ordered aggre-
gation method and the random ensemble method are not
obvious, it shows that the four algorithms have little differ-
ence in the degree of dispersion when randomly dividing the
validation set and test set. In 50 runs, when the number of
ensembled base models is 2-10, for CIFAR-10 dataset, the
maximum value, upper quartile (Q3), median, lower quartile
(Q1) and minimum value of the ordered aggregation algo-
rithm based on soft-margin are greater than the other three
algorithms except for the maximum value in the ensemble
of 5 models; for CIFAR-100 dataset, the maximum, Q3,
median, Q1 and minimum value of the ordered aggregation
algorithm based on soft-margin are greater than the other
three algorithms except for the median value in the ensemble
of 2 models and the maximum value in the ensemble of
6-10 models. It shows that under the ensemble of the same
scale, the ordered aggregation algorithm based on soft-margin
can select the subensemble model with the best generalization
performance. The specific statistics are shown in Table 3 and
Table 4 where the best indicators are deepened in bold.

V. CONCLUSION

This paper proposes a soft-margin based selective ensemble
method for lightweight DNNs. The ensemble selection strat-
egy of this work argues that the soft-margin of the ensemble
model on the validation set is effective in building an ensem-
ble model with stronger generalization ability. First, select
the most accurate base model on the validation set, and then
use the ordered aggregation of greedy heuristics algorithm
to sequentially add base model which can maximize the
soft-margin of the ensemble to form a new larger ensemble
model. The method is compared with the ensemble selection
method based on accuracy and diversity and the random
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ensemble method. The experimental results on the CIFAR-10
and CIFAR-100 datasets show that before the model ensem-
ble gains tends to converge, the soft-margin based lightweight
DNNs ensemble selection method can achieve significantly
the best generalization results compared to the other three
methods, no matter the base model has a high or low accuracy.

Compared with the random ensemble method of deep neu-
ral network, the method in this paper needs to train more base
models, and these base models will consume more training
resources. But more base models can bring more diversity
and complementarity to improve the overall ensemble perfor-
mance. Therefore, the method in this paper is more optimal
when it comes to ensemble selection of lightweight models,
but for large models with very high training costs, the exces-
sive training cost may not be suitable for the method in this

paper.

The next step, the research team intends to further explore
how to associate soft-margin with diversity to improve the
generalization performance of lightweight deep ensemble
models. Based on the analysis and experiments in this paper,
the proper combination of soft-margin and diversity can
achieve good results, which may provide new research ideas
for integration selection.
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