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ABSTRACT Low-power and fault-tolerant features for microprocessors have been recognized as two
of the greatest concerns in applications for edge devices. In this study, we propose asynchronous cir-
cuit design techniques for field-programmable gate arrays (FPGA) that can fundamentally overcome the
drawbacks of conventional synchronous circuit designs. We used commercial FPGAs and implemented
an asynchronous MSP430 microprocessor using the proposed technique. We also introduce an interfacing
architecture between the synchronous block memory and asynchronous core to support the congeniality of
the commercial embedded processor and the asynchronous core. Furthermore, we analyze a compiler for
MSP430 and adapt its result to achieve a high-level development environment for asynchronous MSP430.
The experimental results showed that the asynchronous MSP430 consumes 62.3% less power than its
synchronous counterpart and has significant fault tolerance compared to the synchronous MSP430 under
unstable supply voltage conditions. Additionally, the asynchronous MSP430 emitted 13% less electromag-
netic noise at the working frequency.

INDEX TERMS Asynchronous circuits, field-programmable gate arrays, microprocessors.

I. INTRODUCTION
Most edge devices typically experience severe external
conditions, such as battery-based unstable supply voltage
and variations in temperature and humidity. Therefore,
applications, for edge devices, require a low-power and fault-
tolerant processor capable of reliably running applications
under unstable circumstances.

Conventionally, processors for edge devices are largely
implemented using synchronous circuit design methodology.
Nevertheless, this design methodology has some drawbacks
that contradict the requirements for the applications of edge
devices, such as excessive power consumption caused by the
clock network, performance degradation from clock skew,
and meta-stability issues owing to the existence of multiple
clock domains [1], [2].

To provide fault-tolerant and low-power characteristics,
which are the key features for the processors of edge
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devices, the design paradigm needs to shift to an alternative
methodology that does not use a clock network, namely an
asynchronous circuit design methodology.

Major industrial vendors have adopted asynchronous cir-
cuit design methodologies to overcome the obstacles of
the synchronous circuit design. For the FM6000 series [3],
which was introduced by Intel as a high-performance ethernet
switch chip, over 90% of the whole system was implemented
by employing asynchronous circuit design techniques. The
brain-inspired chip: TrueNorth [4], which is designed by
IBM as a neuromorphic processor, uses a ’spike’ architecture
for internal networking. The fundamental idea of the spike
system is a handshake protocol from the asynchronous circuit
design. The picoPIPE architecture [5] of the Speedster FPGA,
which is known as a high-performance FPGA, manufactured
by Archronix [6], also accommodates an asynchronous cir-
cuit design methodology.

However, implementing an asynchronous circuit is dif-
ferent from implementing a synchronous circuit design.
The control logic of an asynchronous circuit is normally
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implemented using specific graph-based theories, such as
a signal transition graph (STG) [7] and an asynchronous
finite state machine (AFSM) [8]. Furthermore, to design an
asynchronous processor for an edge device as an application-
specific integrated circuit (ASIC), a field-programmable gate
array (FPGA)-based design methodology is required for the
functional verification of the desired platform.

Nevertheless, most commercial FPGA vendors only sup-
port generic finite-statemachine (FSM)-based designs, which
are controlled by a global clock, and they do not support
asynchronous circuit designs in their design flow. This is the
reason why design techniques for asynchronous circuits on
FPGA are in high demand.

In this study, we propose asynchronous circuit design tech-
niques for commercialized FPGA. Using the proposed design
techniques, we designed and implemented a microprocessor
based on the MSP430 instruction set architecture (ISA) [9].

II. RELATED WORK
Unlike a conventional synchronous circuit, an asynchronous
circuit uses a locally distributed control signal, known as
handshake protocol, rather than a global signal to control the
entire system. The main issues in the design methodology of
asynchronous circuits are the handshake protocol and delay
model for circuit modeling.

The handshake protocol uses Request (Req) and Acknowl-
edgment (Ack) signals, which represent the validity and
arrival of data, respectively. According to the triggering
method, the handshake protocol can be classified as 4-phase
signaling (level signaling, return-to-zero) and 2-phase signal-
ing (transition signaling, non-return-to-zero) [10].

Regarding the delay model, which is another main issue in
the design methodology of asynchronous circuits, three delay
models have been studied: bounded delay, delay-insensitive,
and speed-independent. These delay models have distinctive
modeling strategies for the wires and gates of the circuits.

The bounded delay model assumes the limitation of
delayed time in the gates and wires. The design method-
ology based on this delay model is beneficial in terms of
implementation because it resembles a synchronous circuit
design, in which gates and wires are bounded in a clock
cycle. Therefore, in this model, except for the controller, the
data path can be used in the same manner as that of the
synchronous design technique without modification.

An AFSM controller that can support the extended burst
mode (XBM) [11] was implemented on the FPGA with
the bounded delay model [12]. However, the authors only
observed the feasibility of FPGA implementation for asyn-
chronous control logic, rather than implementing a large-
scale system such as a processor.

Similarly, another group implemented the XBM in an
FPGA [13]. The authors designed a synchronous circuit with
the characteristics of an asynchronous circuit by adapting a
locally clocked XBM which utilizes a clock signal to drive
the XBM. However, because the clock signal was used as the

driving signal for the XBM controller, they did not implement
an asynchronous circuit on the FPGA fundamentally.

In the case of the delay-insensitive model, the delays of the
wires and gates are modeled as unbounded, which resonates
with the ideal characteristics of an asynchronous circuit.
Delay-insensitive characteristics can be achieved by encoding
a Req signal into the data line. Accordingly, the data path
needs to utilize a dual-rail or quad-rail encoding scheme
rather than the conventional single-rail scheme.

As one of the design schemes based on the delay-
insensitive model, null convention logic (NCL) cell libraries
were developed by adapting look-up table (LUT)-based pro-
gramming to support implementation on the FPGA [14].
Because the delay-insensitive system requires a multi-rail
encoding scheme, area and complexity issues can occur in
the FPGA implementation applied to these cell libraries.

Another research group [15] subsequently solved the
area issue, which was a drawback of the previous study
[14], by combining the bounded delay model-based single-
rail scheme and the dual-rail-based delay-insensitive model.
Nonetheless, they did not design delay-insensitive cell
libraries, nor did they implement controllers for the bounded
delay model. Moreover, as they did not use the proposed
design technique to implement a large-scale system, the cov-
erage of the proposed design methodology was opaque [15].

For the speed-independent model, the delay in the wire is
assumed to be zero, and the delay of the gate is modeled as
unbounded. Thus, the speed-independent model can be more
asynchronous than the bounded-delay model. The imple-
mentation of an asynchronous microprocessor on an FPGA
based on the speed-independent model was introduced in [16]
by accommodating the STG-based controller. However, the
disadvantage of this approach is that the design of the STG
controller is more complex than that of the others because
the STG controller requires calculation and the adjustment of
timing to detect the transition of control signals. Addition-
ally, the speed-independent model requires arbitration logic
(MUTEX) which may adversely affect the design.

In this study, we propose techniques for designing
asynchronous circuits on commercial FPGAs. Specifically,
an AFSM-based bounded delay model is adapted for imple-
menting the control logic to avoid area issues and exploit
the ease of design. We also propose a specialized LUT-style
coding scheme that ensures stability in FPGA-based imple-
mentation of the control logic. In addition, to efficiently
utilize the implemented core, we propose an interfacing logic
between blockmemory, which is embedded in the FPGA, and
an asynchronous core.

To verify the coverage of the proposed design techniques,
we used the proposed techniques to design and implement an
MSP430 processor core which is frequently used in the end
node on a commercial FPGA.

Furthermore, to provide compatibility with a commer-
cial MSP430 microprocessor, we analyzed the compiler and
incorporated its results into the designed core.
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FIGURE 1. Example of the AFSM and boolean equation.

III. PROPOSED DESIGN TECHNIQUES FOR AFSM
CONTROLLER IN FPGA
In this section, we address the design techniques for the asyn-
chronous controller on a commercial FPGA based on the
AFSM by adapting an LUT-based programming style. The
interfacing module is also described by identifying the needs
of the interfacing module between the asynchronous core and
block memory. Finally, a hard macro-based implementation
technique is proposed to guarantee the functionality of the
implemented asynchronous system.

A. LUT-BASED DESIGN FOR THE
ASYNCHRONOUS CONTROLLER
The controller for the asynchronous circuit has multiple feed-
back lines. In this case, unexpected glitch signals could be
generated because of the RACE conditions [17] for each
signal. Consequently, this signal would introduce a hazardous
condition in the asynchronous circuit. This has been recog-
nized as a critical issue from the perspective of implementing
asynchronous controllers.

To explain the detail of the feedback signals in the
AFSM-based asynchronous controller, we designed the sim-
ple AFSM controller, which is depicted in Fig. 1.

Fig. 1 shows the example of an AFSM for an asynchronous
controller. The AFSM is synthesized into gate-level Boolean
equations for each output signal using a 3D tool [11]. The
results of the output signal (SigDout) and internal feedback
signal (zzz00) are shown in Fig. 1.

Fig. 2 (a) shows an example of generic Verilog pseudo
codes for the gate-level Boolean equation from the AFSM in
Fig. 1. Such a coding style is commonly used in the design of
synchronous-control circuits. However, for an asynchronous
controller, implementation based on this coding style could
not guarantee a ‘‘HAZARD-FREE’’ characteristic because an
unexpected timing violation would occur, as shown in Fig. 2
(b). The reason for this timing violation is that the routing
of wires and the placement of logic gates are distributed

FIGURE 2. Example of combinational Logic-based implementation.

flexibly by the FPGA design tool, and a logical expression
for the given equation specified by the designer can also be
optimized by the tool. Therefore, the timing of the feedback
loops in each signal can be affected at any specified time.

Unlike the design method above, the LUT-based design is
suitable for implementing an asynchronous controller for two
main reasons. Firstly, the given equation from the synthesizer
basically does not generate ‘‘HAZARD’’ conditions. Sec-
ondly, due to the nature of the operating principle of the LUT,
the delay of the wire cannot induce the ‘‘RACE’’ conditions.
The reason is that the logical expression is set into the LUT
directly, and instantiated LUT cells are placed uniquely and
relatively [18].

The logical equation for SigDout in Fig. 1 can be
implemented as a two-level logic, depicted pseudo-code in
Fig. 3 (a), with the LUT-based logic gates that the design-
ers should generate, as shown in Fig. 3 (b). To keep and
lock the location of the wire and gate, ‘‘RLOC (Relative
Location)’’ constraints with the coordinate information of the
x-axis and y-axis, such as X0Y0, and ‘‘KEEP’’ constraints
are added to the LUT-based code as shown in the left part
of Fig. 3 (a). By adopting LUT-based coding, the simulation
results depicted in Fig. 3 (c) show that the AFSM controller
implemented using the LUT operates well according to the
control flow, as shown in Fig. 1.

An asynchronous circuit requires specific logic cells such
as c-elements [10] to handle the control signals. With regard
to the implementation, there are two types of c-elements: the
latch-free type which is implemented with logic gates and
the latch-style type which is configured with an RS-latch.
Nonetheless, neither version of c-elements is supported in
the form of libraries using commercial FPGA design tools.
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FIGURE 3. Example of LUT-based implementation.

In this study, we provide both types of c-elements using an
LUT-based implementation.

Further, in the case of the bounded delay model, it requires
a worst-case analysis for each data path to match the
Req signal. Therefore, design-specific delay cells were also
implemented by creating an LUT-based gate chain [19].

B. INTERFACING ASYNCHRONOUS CIRCUIT WITH
SYNCHRONOUS BLOCK MEMORY
In an asynchronous circuit design, the interface with memory
is one of the major design issues. Because most FPGAs pro-
vide memory cells in the form of synchronous block memory,
an interface logic is required for asynchronous circuits in
FPGAs to use this memory. The interface logic should be
able to provide capabilities to generate the local clock and
read/write control signals to the block memory and identify
the response signals and data from the memory at the correct
time.

Fig. 4 (a) shows the proposed interfacing module between
the blockmemory and asynchronous core. The input clock for

FIGURE 4. Architecture for block memory interfacing and timing diagram.

the block memory (Mem_Clk) is generated by read or write
request signals (Read_req,Write_req) from the asynchronous
core. These signals are aligned with the data and address
changes from the data path, as shown in Fig. 4 (b). From
the perspective of the data path, designers can reuse the data
path of a synchronous core without changing to that of the
asynchronous core because the targeted asynchronous core
adopts a bounded delay model.

To guarantee the validity of the data from the block mem-
ory, the Read_ack and Write_ack signals are delayed by the
time matched with the worst case of the block memory from
when Read_req and Write_Req are asserted, respectively.
The worst-case delays of read (Twm_r) and write (Twm_w)
operations in block memory, as shown in the timing diagram
in Fig. 4 (b), are implemented in LUT-based matched delay
cells (LUT_delay). Hence, the functionality of the data path is
dominated by the 4-phase handshake protocol, and the control
path can be guaranteed concurrently.

Accordingly, the logic size of the proposed interfacing
module between the AFSM-based controller and the block
memory is relatively small. Thus, it did not induce perfor-
mance degradation owing to the interfacing module. Only
one OR gate delay was added, and the latency caused by the
LUT_delay was initially hidden at the execution time of the
block memory.
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FIGURE 5. Hard macro on Xilinx Spartan3 (XC3S400) FPGA.

C. HARD MACRO-BASED ASYNCHORNOUS
CONTROLLER IMPLEMENTATION
The optimization process normally changes the placement
and routing (P&R) result according to modifications in the
design information, such as the logic size and types of
resources used, with an optimization strategy for the design
tool. However, because the changes in the P&R result are
related to timing, this optimization process can incur a timing
difference between the matched delay cells and the respective
data path modules implementing an asynchronous controller.
In the case of a timing-critical control signal in the asyn-
chronous controller, as it is sensitive to timing changes due to
P&R, the location of the logic gates and wires of the timing-
critical control signal must be fixed in the P&R process in
the FPGA.

A hard macro-based design is a method that can maintain
P&R. As the designer directly executes the P&R in small
module units, it is possible to design an asynchronous con-
troller optimally and maintain its timing, which is one of
the constraints in asynchronous controller implementation in
FPGA. Designers generate hard macro cells using an FPGA
schematic editing tool during the mapping process after the
synthesis.

In general, when the targeted design has a relatively larger
size of hard macro blocks, from the perspective of the imple-
mentation time, it could have benefited [20]. However, the
functionality and optimization of implemented design with
hard macro blocks are guaranteed by the designer rather than
a design tool.

The left part of Fig. 5 shows the P&R results of the asyn-
chronousMSP430 core, which is explained in the next section
using hard macro-based logic provided by the Xilinx FPGA
design tool. As shown on the right side of Fig. 5, the timing-
critical modules are implemented using hard-macro logic to
fix the P&R of the internal logic. Otherwise, in the case of
other modules that are not implemented by the hard-macro,
the P&R results are changed.

IV. MSP430 ARCHITECTURE AND IMPLIMENTATION
MSP430 is a 16-bit low-power processor for sensing and
measurement applications [21], [22], [23]. To design an

FIGURE 6. Data path for AMSP430.

MSP430 in an asynchronous circuit design methodology
on FPGAs, we apply the design techniques addressed in
Section III. This section describes the architecture of the
asynchronous MSP430 (AMSP430) and its implementation
on a commercial Xilinx FPGA.

A. ASYNCHRONOUS MSP430 ARCHITECTURE
The instruction set architecture of MSP430 has 27 core
instructions and supports 24 emulated instructions [9]. The
core instructions have a dedicated opcode that is directly
decoded by the core. The core instructions are categorized
into three groups according to the number of operands: dual-
operand, single-operand, and jumps. In addition, MSP430
supports seven addressing modes, and all instructions can
be used in any of the seven addressing modes without any
restrictions. This flexible addressing mode is advantageous
in the edge device environment because restrictions on the
program memory size are frequent in the application for
the edge device sphere. Depicted in Fig. 6, depending on
the addressing mode for a given instruction, the instruction
can flow flexibly to different data paths. Hence, it is more
efficient to design a single pipelined data path rather than a
multistage pipelined architecture.

Fig. 7 shows the architecture of the proposed AMSP430.
The left part of the figure shows the designed data path
of AMSP430. The control path shown on the right side of
Fig. 7 is based on the AFSM [24] with 4-phase signaling.
The control path consists of an IFID module for instruc-
tion fetching and decoding, an OF1 module for fetching the
source operands, an OF2 module for fetching the destination
operands, a JUMP module for processing the jump instruc-
tions, and an EXWBmodule for executing the instruction and
interfacing memory.

To apply the asynchronous design methodology based on
the bounded delay model, each control module has a delay
element on the path from the Req signal to the Ack signal
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FIGURE 7. Proposed architecture of AMSP430.

FIGURE 8. Boolean logic and LUT mapping structure. (a) Example of
boolean equation for AFSM controller and logic gate schematic and
(b) LUT mapping structure.

that is matched with the time for the critical path in each
combinational block in the data path.

Furthermore, to execute the application on the core, the
block memory interworks with the designed data path and

the AFSM-based control path for passing the data (operation
code) and controlling the memory interface timing described
in Section III. B, respectively. This memory interface module
also has a handshake signal. Therefore, the IFID, OF1, OF2,
and EXWB modules, which cooperate with block memory,
should synchronize the control signal between other control
modules and thememory interfacemodule. Consequently, the
c-elements should be implemented in the designed control
path to synchronize the Ack signal locally.

B. IMPLEMENTATION OF AMSP430 ON FPGA
TheAMSP430 core and blockmemories shown in Fig. 7were
implemented in commercial Xilinx FPGAs (Spartan3:
XC3S400 [25] and Virtex-5: XC5VLX110T [26]).

The data path for AMSP430 was implemented using
normal synchronous circuit design methodology. The
AFSM-based control modules were synthesized using the
gate-level Boolean equation with a 3D [11] tool and their
outputs were implemented by adapting the LUT-based coding
style proposed in Section III. A, using an FPGA design
environment (Xilinx ISE).

The delay elements in the control path were implemented
using the method proposed in Section III. A. Additionally,
some of the timing-critical control logics (e.g., internal feed-
back logics) in the control module were implemented using
hard macro to ensure the timing of each signal, as described
in Section III. C.

Fig. 8 shows an example of the implementation of a
Boolean equation for an AFSM-based control module by
applying LUT-based designs. Fig. 8 (a) shows the 1:1 map-
ping for the Boolean equation from the 3D tool to the gate
level. With LUT-based designs, the equation of a gate with
multiple inputs can be implemented by breaking it down into
LUTs with few inputs, as shown in Fig. 8 (b).

Each controlmodulewas also verified through a simulation
tool for FPGA, Xilinx ISim, at the post P&R level. Fig. 9 (a)
shows the captured waveforms, and Fig. 9 (b) shows the con-
trol flows of the IFID module based on the AFSM controller
with 4-phase signaling. Fig. 10 represents the abstracted level
of the delay path for the IFID module that has five different
paths. As shown in Fig. 9 (a) and (b), a nextIFID signal,
which is generated by the EXWB module, is excited to fetch
the instruction from the memory. Subsequently, as shown in
Fig. 10, after around 8 ns, a nextIFIDOK signal is asserted
as an ACK to notify the arrival of a control signal. Then, the
falling nextIFID signal causes the readinstruction signal to
rise. Subsequently, a MemoryReadAck signal is propagated
from the memory interface around 30 ns (the maximum delay
of memory block) later to represent the arrival of instruction
at the core. ThisMemoryReadAck signal causes the controller
to generate an instruction register write signal, which is
IRwrite. The IFID module then generates signals to increase
the program counter (PC) and decode the fetched instructions.
Accessing the register files takes around 10 ns, as described
in Fig. 10. Finally, according to the given instruction, the
IFID module generates OF1 Req or OF2 Req to invoke the
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FIGURE 9. IFID partial simulation waveform capture & AFSM control flow.

FIGURE 10. Abstracted level of delay path for the IFID module.

TABLE 1. Memory map.

respective modules. These invoking processes take around
5 ns as shown in Fig. 10.

C. INTERFACING WITH COMPILER
MSP430 provides open compiling environments. Utiliza-
tion of the asynchronous core implemented in FPGA at the
system level necessitates the analysis of the memory map,
bootloader, and header file of a commercial MSP430.

Table 1 contains the memory map created by Texas Instru-
ments CSS v.7.1 with an MSP430 Linker v.16.9.1 [27],
which targets the MSP430G2001 version. The provision of
congeniality with the implemented asynchronous core and
commercial compiler requires a memory map for the block
memory to be configured, as shown in Table 1.

In our system, the address from 16’hFE00 to 16’hFE32 is
dedicated to read-only memory (ROM) for a user application.
Because our system is implemented on an FPGA with block
memory, the application is initialized during the synthesis
process using the Xilinx Core Generator.

Commercialized MSP430 typically has a bootloader for
user application fetching and initialization of the device.
However, in our design, as the user application can be
stored in block memory, during the implementation process,

a specified boot sequence is not required. Therefore,
we directly write the application binary code into the ROM
and RAM to ensure functional compatibility. The application
binary code includes the header file, which contains the sym-
bolic address of each I/O pin in the application code from the
output of the commercial compiler.

V. EXPERIMENTS AND COMPARISONS
In this section, we address the experimental results of running
an actual application on the AMSP430, which was imple-
mented above, and its synchronous counterpart (SMSP430).
Furthermore, the experimental results also cover the reli-
ability of each group under an unstable voltage condition
that is faced by numerous edge devices. Finally, we describe
the measurement results for each experimental group of
electromagnetic wave emission characteristics, which is an
emerging concern in wearable devices.

A. RUNNING A REAL APPLICATION ON THE
ASYNCHRONOUS MSP430
To verify the interworking between a commercial compiler
and AMSP430, the timer program, which is frequently used
in edge devices, was emulated, as shown in Fig. 11 (a).
The codes in Fig. 11 (a) are translated to assembly code in
Fig. 11 (b) by the MSP430 assembler, and compiled into a
binary code as represented in Fig. 11 (c) using TI CSS v.7.1.
The binary code is directly input to the block memory in
AMSP430.

To monitor the functionalities of the timer application
on the AMSP430 in the Xilinx Virtex-5 evaluation board,
we mapped the I/O from the application code to the data
output. The data output from the core is connected to an LED
on the evaluation board to act as an indicator. If the timer
application is properly operated, the indicator blinks during
the specified period.

As shown in Fig. 12, the AMSP430 indicator blinks peri-
odically, according to the sensing time determined in the
application code. In conclusion, by performing this experi-
ment, we confirmed the congeniality between AMSP430 and
a commercial compiler.

B. EXPERIMENTATION AND COMPARISON OF AMSP430
AND SMSP430
Based on the feasibility of AMSP430 on a Xilinx FPGA as
shown in the previous section, we evaluated its operational
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FIGURE 11. Real application code.

stability in an unstable supply voltage scenario and with low
power consumption characteristics by comparing it with an
SMSP430 version.

To verify the functionality of both AMSP430 and
SMSP430 on FPGA, we modeled the behavioral model of
the MSP430 core, which was executed on an AVR XMEGA
processor [28], to extract the reference data for both versions.
The extracted reference data included the operation codes
described in internal register values, and timing information
of the interface signals. Using the reference data, we moni-
tored the operation code as data input for each version of the
block memory.

We also checked the continuous changes in the value in the
program counters of each version as an address bus, according
to the given operation code. Therefore, in all cases, it was
confirmed that the behavior of the two versions and that of
the reference model were identical.

Fig. 13 shows the experimentation environment for veri-
fying the performance of AMSP430 and SMSP430 under an
unstable supply voltage scenario. An oscilloscope was used
to monitor the instruction and data fetch cycle to measure the
performance of both versions.

A power supply was used to change the input voltage
into the targeted evaluation board. The AVR was used for
verifying the functionality of the targeted system. In these
experiments, the benchmark program [29] was executed on
the Xilinx Spartan3 (XC3S400) FPGA evaluation board for
both AMSP430 and SMSP430.

Fig. 14 depicts the operational frequency curves for both
AMSP430 and SMPS430 depending on the unstable input
power, which was less than the normal supply voltage
of 5 V.

When the targeted system passed the functional verifica-
tion, which was performed by AVR, the average frequency
of the end signal at the EXWB stage was verified with an
oscilloscope, with the supply voltage decreasing by 0.2 V
from 5 V.

FIGURE 12. Program running result on the Xilinx Virtex-5(XC5VLX110T)
FPGA.

FIGURE 13. Experimentation environment.

FIGURE 14. Operational frequency.

Through this experiment, we observed that AMSP430
and SMSP430 maintain their performance at 17.6 MHz and
16.9 MHz, respectively, up to 3.8 V.

When the supply voltage drops below 3.8 V, the opera-
tional frequency of SMSP430 degrades significantly. This
is because the digital clock manager (DCM) [30], a circuit
for generating a global clock inside the FPGA, malfunctions
owing to a low operating voltage.

AMSP430 operates at maximum performance up to a sup-
ply voltage of 3.2 V. In addition, AMSP430 shows a 2.8 to
6.3 times better performance than SMSP430 even when the
supply voltage decreases from 3.2 V to 2.8 V. The reason
for this result is that AMSP430 does not have any global-
ized control signal such as a clock, and hence, DCM cannot
affect the functionality of the data path and control path in
AMSP430. Thus, under unstable power supply conditions,
AMSP430 had more fault-tolerant capability than SMSP430.
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FIGURE 15. Environment for the EMI measurement.

FIGURE 16. EMI emission spectrum.

We also obtained more detailed information on the power
consumption of AMSP430 and SMP430 by performing a
power simulation using Xilinx ISim [31]. The power simula-
tion revealed that AMSP430 and SMSP430 consume power
of 59.79mW and 97.04mW, respectively, both under typical
conditions. This means that AMSP430 consumes 62.3% less
power than SMSP430. Because AMSP430 does not have
a globally distributed clock network, it can have a lower
switching power than SMSP430.

C. MEASUREMENT OF ELECTROMAGNETIC
INTERFERENCE AND COMPARISONS
As edge devices evolve into wearable devices, there are
a number of issues regarding Electromagnetic Interference
(EMI) that can affect the human body [32]. Nonetheless,
because most commercialized edge devices are designed as
synchronous systems, the platform generates EMI peaks pur-
suant to the global and periodic control signal, that is, a

clock signal. In contrast, asynchronous processors have the
advantage of superior EMI emission characteristics compared
with synchronous processors because the global clock is
fundamentally eliminated.

We measured EMI emission, which is normally mea-
sured on a supply voltage pin to measure the power-ground
noise, by setting up the test environment as shown in
Fig. 15 and AMSP430 and SMSP430 operated at 17.6 MHz
and 16.9 MHz, respectively, at 5 V.

Fig. 16 presents the results of the EMI emission measure-
ments. The maximum EMI emission of AMSP430 was mea-
sured to be 52.7 dBuV, which was less than the 60.3 dBuV
of SMSP430. Moreover, the EMI emission characteristic of
AMSP430 also shows that in the 250 MHz area (the region
inside the red box in Fig. 16), the EMI emission is signifi-
cantly degraded compared to SMSP430.

This means that if a wireless edge device operating at a
specific frequency exists, a peripheral circuit designed asyn-
chronously would emit fewer electromagnetic waves that
cause malfunctions at the frequency of the wireless device
than a peripheral circuit designed synchronously.

VI. CONCLUSION AND FUTURE WORK
In this study, we proposed design techniques for an AFSM
controller in a commercial FPGA to overcome the draw-
backs of conventional synchronous circuit designs for the
applications of edge devices. To verify the proposed design
techniques, we designed and implemented asynchronous
MSP430 for a platform for an edge device. In addition,
we designed an interfacingmodule between the asynchronous
core and the synchronous block memory. We also ana-
lyzed the commercial compiler and adapted its results to
achieve congeniality with the implemented core and the
commercial MSP430.

In an experiment that assumes the running environment of
an edge device, the external input power is not usually stable
at 5 V.

Under such conditions, the asynchronous MSP430 was
found to function until the supply voltage dropped to 3.0 V.
Conversely, the synchronous MSP430 started to malfunction
at 3.6 V. Moreover, the asynchronous MSP430 was found to
consume 62.3% less power than its synchronous counterpart.
The EMI measurement also indicated that at working fre-
quency, the asynchronous MSP430 emits 7.6 dBuV less EMI
than the synchronous MSP430.

In the future, to provide functionality equivalent to that of
commercial MSP430, various I/O devices, and their interfac-
ing modules will be added.

Moreover, to verify the scalability of the proposed design
techniques, an asynchronous RISC-V [33] core, for edge
devices, will also be designed and implemented.
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