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ABSTRACT The number and density of airspace decompositions in course prediction are often fixed,
resulting in large evaluation errors or low search efficiency of sub-regions, which makes it difficult to take
into account the accuracy and real-time performance of course prediction. Aiming at this problem, a model
based on the dynamic divide and conquer in sub-regions has been built. Firstly, a new airspace decomposition
rule is proposed to adaptively decompose according to the complexity of the environment. Secondly, a
state-distance bivariate weight function is constructed. The weights of course prediction index system are
dynamically adjusted to improve the evaluation reliability of the selection possibilities of sub-regions. Then,
to realize a comprehensive course prediction, the quality function of the course sequence is constructed
from length, tortuosity, and selection possibility. Finally, a heuristic function based on possibility factor
and distance factor and a pheromone update rule based on positive and negative feedback mechanism are
constructed to improve the convergence speed and quality of course prediction. Compared with the airspace
uniform decomposition strategy, course evaluation quality function, and ant colony algorithm experiment,
the proposed method has a faster convergence speed and a higher sequence quality.

INDEX TERMS Course prediction, direction sequence, dynamic divide and conquer, search algorithm,
variable weight theory.

I. INTRODUCTION
With the improvement in anti-jamming and concealment
technology [1], it is difficult to obtain the movement state of
the enemy target in real time. Therefore, predicting the course
of an air target based on the macroscopic situation in advance
plays an important role in determining the deployment of air
defense forces and seizing battle opportunities [2]. However,
the course prediction of aerial targets faces challenges owing
to the large combat airspace, high environmental uncertainty,
and complex interaction of course influencing factors [3].
The efficient and accurate prediction of the global course of
aerial targets in complex environments has become an urgent
problem to be solved.
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Based on the conceptual model of Situation Awareness
(SA) [4] defined from the perspective of people in the
‘‘OODA loop’’ of the American psychologist M. Endsley,
some scholars regard course prediction of long-term domain
as a multi-attribute decision-making problem and divide the
direction prediction into three steps. (1) Build a course pre-
diction index system. Song et al. [5] established a course
prediction index system for air targets by analyzing situa-
tional information, such as terrain, meteorology, electromag-
netics, and air defense forces. (2) Decompose the airspace
and calculate the index attributes of sub-regions. For example,
Ren et al. [6] and Zhu et al. [7] studied the deployment charac-
teristics of an air defense network, and respectively proposed
to uniform decomposition of the airspace into fan-shaped
or annular regions. (3) The multi-attribute decision-making
methods [8], [9], [10], [11] are used to calculate the
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possibility of each sub-region, and the sub-regions with the
largest possibility are selected as the most likely flight direc-
tion. Such as Yang et al. proposed to use the TOPSIS algo-
rithm to analyze the course prediction index values and rank
the selection possibilities of each direction [12]. Ma et al.
constructed a convolutional neural network and predicted the
main selection directions for an air target [13]. At present,
scholars focus on building a complete course forecasting
index system and studying multi-attribute decision-making
methods to improve the reliability of flight selection in sub-
regions, but ignore the impact of the airspace decomposition
strategy on course prediction. The methods proposed in the
aforementioned divide the airspace into fan-shaped or annu-
lar regions at equal intervals. The coverage of sub-region is
large, not only is the evaluation error of the course prediction
indicator large, but also the result is a single-angle range,
which provides limited information for combat auxiliary
decision-making.

Similar to predicting global course based onmulti-attribute
decision making, the path planning problem under macro-
modality constraints is the optimal choice of accessible sub-
region sets [14]. The research idea is to evenly decompose the
motion region into a large number of sub-regions [15], [16],
and search for the sub-regions set that satisfies the objec-
tive function in the passable regions to achieve the opti-
mal path planning. Scholars from various countries focus
on improving the search-path time, search-path integrity
and search-path optimality, and their research results are
mainly divided into heuristic algorithms,(such as A∗ algo-
rithm [17], D∗ algorithm [18]) evolutionary algorithms(such
as ant colony algorithm [19], particle swarm algorithm [20],
genetic algorithm [21]) and potential field algorithms (vec-
tor field [22], artificial potential field [23]). Among them,
the evolutionary algorithm has the characteristics of self-
organization, self-adaptation and self-learning. Compared
with PSO, GA and other evolutionary algorithms, ACO is
more suitable to solve the problem of searching the path on
the graph [24], [25], [26].

Inspired by the research idea of path planning, this
study combines the advantages of multi-attribute decision-
making and ACO, and proposes an efficient course prediction
method based on the dynamic division and conquer of sub-
regions. Using the idea of ‘‘dynamic divide and conquer’’
to adaptively decompose the airspace, not only can the sub-
regions be evaluated from multiple indicators to meet the
requirements of flight safety and concealment, but also the
decomposition of the sub-regions can dynamically change
according to the complexity of the environment, which can
meet the requirements of real-time and accurate course pre-
diction. The main contributions of this study are as follows.
(1) An adaptive airspace decomposition rule based on the
spatial distribution of flight obstruction factors is proposed.
(2) The state-distance variable weight function is constructed
by analyzing the characteristics of flight direction selec-
tion. (3) The quality function of the flight direction is con-
structed from the sequence length, tortuosity, and selection

probability. (4) In addition, a heuristic function based on
possibility factor and distance factor and a pheromone update
rule based on positive and negative feedback mechanism are
constructed, which improves the convergence speed and qual-
ity of prediction.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the relevant theories, Section 3
introduces themethod proposed in this paper. Section 4 shows
the simulation experiments and discussion. Section 5 presents
the conclusions of this study.

II. RELATED THEORIES
A. VARIABLE WEIGHT THEORY
To a certain extent, the synthesis of constant weights reflects
the relative importance order of various indicators and is
widely used because of its simplicity and certain rationality.
However, regardless of the value of each indicator, the weight
vector W remains fixed, which often leads to unreasonable
comprehensive results in practical problems, that is, the prob-
lem of ‘‘state imbalance’’. The idea of variable weight is to
dynamically adjust the weight vector, which not only con-
siders the relative importance order of each indicator, but
also considers the degree of state balance, thus solving the
problem of ‘‘state imbalance’’ to a certain extent [27].

In the paper [28], the zoning variable weight function (1)
is shown as follows:

Sj (p) =



c2−c1
λ−µ

µIn
µ

pj
+ c2, 0 ≤ pj ≤ µ

−
c2−c1
λ−µ

pj +
c2−c1
λ−µ

, µ < pj ≤ λ

C +
c2−c1

2 (λ−µ) (α−λ)

(
α−pj

)2
, λ < pj ≤ α

C, α < pj ≤ β

K (1−β) In
1−β
1−pj

+ C, β < pj ≤ 1

(1)

Sj (p) is smooth and continuous on the interval (0,1),
µ, λ, α, β represent the interval thresholds, xirepresents the
comment value i-th indicator, c1, c2,K ,C are constants
determined by the actual condition. 0 < µ < λ < α <

β < 1, 0 < C < c1 < c2 < 1. When µ = 0.2, λ = 0.4, α =
0.7, β = 0.9 and C = 0.4, c1 = 0.6, c2 = 0.8, the function
Sj (p) is shown in Fig.1.
The variable weight vector can be expressed as the normal-

ized product of the constant weight vector and the state vari-
able weight vector, and the calculation formula is as follows:

wp
j
(x1, · · · xm) =

w(0)j Sj (p1, · · · , pm)
m∑
j=1

w(0)j Sj (p1, · · · , pm)
(2)

B. ANT COLONY OPTIMIZATION
Ant colony optimization (ACO) is a bionic algorithm pro-
posed by Italian Dorigo et.al according to the law of the
overall foraging behavior of the ant colony [29]: the indi-
viduals in the ant colony will leave a chemical substance
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FIGURE 1. Variable weight function based on state value.

called ‘‘pheromone’’ on the walking path, and update the
pheromone [30] on each path as shown in Eq.(3):

τKP(t + n) = (1− ρ)× τKP(t)+ τKP(t) (3)

where ρ ∈ (0, 1) is the global pheromone volatilization coef-
ficient. τKP(t) is the positive change of the pheromone on the
path KP in the current iteration, as shown in Eq.(4):

τKP(t) =
m∑
A=1

τA
KP
(t) (4)

where τA
KP
(t) is the concentration of left pheromones by ant

A on path KP. If ant A has not passed the path KP, the value
is 0.

And other individuals have a keen perception of this
‘‘pheromone’’, in the face of different paths, they will actively
choose the path with more ‘‘pheromone’’, and leave the
same ‘‘pheromone’’ on the path, which will lead to the
‘‘pheromone’’ on a certain path more concentrated. Under
the premise that ‘‘pheromones’’ continue to grow positively,
the colony will gradually determine the optimal path, so as to
quickly find food [31].

PAK =


τK (t)α ξKP (t)β∑

c∈allowA
τK (t)α ξKc (t)β

, c ∈ allow A

0, c /∈ allow A

(5)

where ξ is the heuristic information, ξKP (t)β represents the
degree of transition expectation of ant A from node K to node
P, α is the pheromone concentration factor. β is the expected
heuristic factor. After ant A completes one iteration, the route
taken from the starting node to the target node is a feasible
solution.

Ant colony algorithm is constructed by pheromone positive
feedback effect and heuristic function, and has strong robust-
ness and adaptability.

III. METHOD
In view of the large airspace coverage and many factors
affecting the flight direction of the air target, it is difficult to
accurately evaluate the course prediction index of the entire

airspace, which affects the prediction accuracy. Themain idea
of the divide-conquer strategy is to divide a large problem that
is difficult to solve directly into some smaller-scale problems,
so as to conquer them down one by one [32]. The decompo-
sition of the problem and the combination of the decomposi-
tions have a significant impact on the quality and efficiency
of solving complex problems. Therefore, based on the uncer-
tain distribution of influencing factors in the airspace and
the demand of air target flight selection, this paper proposes
an efficient prediction method of flight direction based on a
dynamic divide and conquer strategy. The flow chart is shown
in Fig.2, which is divided into the following three steps.
(1) Airspace is adaptively decomposed based on the spa-
tial distribution of flight obstruction factors. (2) The weights
of the course prediction indicators are dynamically adjusted
according to the indicator state value and flight distance, and
the selection possibility of sub-regions from multiple indica-
tors can be calculated. (3) Construct a course quality assess-
ment function, and search for the sub-region set based on the
improved ant colony algorithm. Course sequence prediction
of air targets is realized. These three steps are described in
detail in Section III.A,B,C.

A. DIVIDE: ADAPTIVE DECOMPOSITION RULES
The reasonable decomposition of airspace has an impor-
tant impact on the accuracy and real-time performance of
direction prediction. When the number of sub-regions in the
airspace is too small, the coverage of sub-region is large,
and the accuracy of the prediction results is low. When the
number is too large, it is easy to cause poor real-time predic-
tion performance owing to the wide search range. Therefore,
an adaptive spatial decomposition rule based on distribution
of flight obstruction factors is proposed. The number and
density of sub-regions can change with the complexity of
the airspace environment, which can improve the accuracy
of evaluations and search efficiency in sub-regions and is of
great significance for timely and accurate direction predic-
tion. The specific steps are as follows.

(1) First-level decomposition. Obstructive factors refer to
those related to the flight safety of air targets, making it
necessary to change the direction, such as regions with dense
strong storms. The airspace from the flight start point to the
end point is divided into different ring layers according to
the spatial distribution information of obstacles. When the
number of obstacles is large and the distribution of obstacles
is relatively discrete, the number of divided ring layers is
large. Conversely, the number of divided ring layers is small.
As shown in Fig.3 (a), E is the starting position of the air tar-
get, T is the ending position, and o1, o2, and o3 are the three
flight obstacles in the flight airspace. Taking the flight end
point as the center, the distances between the three obstacles
and the flight end point are calculated, and the flight airspace
is divided into four ring layers with distances as the radius.

(2) Second -level decomposition. Because the distribution
of the obstacles in the outer layer is often discrete, to reduce
the large evaluation error of the sub-regions, the ring layers
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FIGURE 2. Flow chart of course prediction based on sub-regions divide and conquer.

FIGURE 3. Adaptive spatial decomposition rules.

are divided into 32, 16 and 8 sub-regions from the outside
to the inside in this paper. As shown in Fig.3 (b), the first
ring layer (o1-T ) is divided into 8 sub-regions, the second
ring layer (o2-o1) is divided into 16 sub-regions, the third ring
layer (o3-o2) and fourth ring layer (E-o3) are divided into
32 sub-regions.

Simultaneously, the connectivity relationship between sub-
regions has the following definitions:

a) There are two ways to describe subregions: region (i, j)
represents the relative position between sub-regions, that is,
the current sub-region is located in the j-th discrete region
of the i-th ring layer. i and j are the corresponding results of
the first-level and second-level decompositions.

(
x(i,j), y(i,j)

)
represents the relative position in the airspace, x represents
the distance from the flight end point in the x axis, and y
represents the distance from the flight end point in the y axis.
b) There is no connectivity between the innermost sub-

regions. The ring layers are unidirectionally connected. They
can only be connected from the outer ring to the inner ring
and cannot be connected in the reverse direction.

c) There are only three choices from the current sub-region
to the next sub-region. The connectivity of sub-regions is
shown in Fig.4. If the numbers of sub-regions of two adjacent
layers are same, the next possible sub-region are shown in

FIGURE 4. Connectivity relationship of sub-regions.

Fig.4 (a). But if the numbers of sub-regions of two adjacent
layers are different, the next optional sub-regions are shown
in Fig.4 (b). Therefore, there is the following mathematical
description:

next =


[(i+ 1, j− 1), (i+ 1, j+ 1), (i, j)],
if num(i) = num(i+ 1)

[(i+ 1, j− 1), (i+ 1, j+ 1), (i,
⌈
j
/
2
⌉
)],

if num(i) 6= num(i+ 1)

(6)

where num(Li) and num(Li+1) are the total numbers of sub-
regions in Li and Li+1 layer respectively.

⌈
n
/
2
⌉
is a ceiling

operation.

B. CONQUER: CALCULATION SELECTION PROBABILITY
OF SUB-REGION
1) STATE-DISTANCE VARIABLE WEIGHT FUNCTION
There are many factors that affect flight direction of air tar-
get. We calculate the probability of flight selection in each
region based on the six indicators in this paper [33]. Visibility
capability P1, probability of being interfered P2, probability
of being detected P3, minimum flight altitude P4, proba-
bility of being intercepted P5, shielding capability P6. The
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weight of the course prediction index system is not only
related to the state value, but also closely related to the flight
distance. For example, in the initial stage of the flight, the
air target pays more attention to the flight concealment when
choosing the direction, and in the final flight stage, it pays
more attention to the survivability. Therefore, it is necessary
to analyze the change in the weights of the course prediction
index with the flight distance and construct the distance vari-
able weight function.

Let the weight wd
j
(d1, · · · dm) be a function of the flying

distance vector D = (d1, · · · , dm). wdj (d1, · · · dm) is similar
to the state variable weight and also meets the requirements
of normality, continuity and hybrid property.

(1) Normality:
m∑
j=1

wd
j
(D) = 1.

(2) Continuity: wd
j
(D) ,j = 1, 2, · · · ,m is on the continu-

ous of independent variables.
(3) Hybrid property: wd

j
(d1, · · · , do) , o < m is monoton-

ically decreasing (increasing), wd
j
(d0+1, · · · , dm) is mono-

tonically increasing(decreasing).
According to the characteristic that the weights of course

prediction index changes with flight distance, the distance
variable weight function is divided into four intervals in this
paper, and the zonal hybrid distance variable weight vector
function is constructed as shown in Eq.(7). When the distance
is 0 ≤ dj

/
D ≤ d1, S (d) is a linear function, which presents

an ‘‘incentive’’ state to the weight, and the growth trend is
fixed. When the distance is d1 < dj

/
D ≤ d2, S (d) is an

exponential function, the weight is in the state of ‘‘strong
incentive’’, and the ‘‘incentive degree’’ shows an increasing
trend. When the flight distance is d2 < dj

/
D ≤ d3, S (d) is

a sin function, which is ‘‘punishment’’ to the weight, and its
penalty intensity is also changing. When the distance reaches
d3 < dj

/
D ≤ 1, the ‘‘punishment’’ of the distance weight

function will be zero, and the S (d) will tend to a stable
value k3.

Sj (d) =



k1 − k0
d1

dj
D
+ k0,

0 ≤
dj
D
≤ d1

k1 − k0
d1

(
exp

(
m
(
dj
D
− d1

))
− 1

)
+ k1,

d1 <
dj
D
≤ d2

k2 − k3
2

sin

(
dj
/
D− d2

d3 − d2
π +

π

2

)
+
k2 + k3

2
,

d2 <
dj
D
≤ d3

k3, d3 <
dj
D
≤ 1

(7)

where dj represents the distance between the current position
and the flight start point, D represents the distance between
the start point and the end point, and dj

/
D is the normalized

distance value. 0 ≤ d1 ≤ d2 ≤ d3 ≤ 1 are the distance

threshold values of the four intervals, and k0, k1, k2, k3 are
the distance ‘‘incentive’’ or ‘‘punishment’’ values of the cor-
responding interval.

The corresponding distance weight is calculated as shown
in Eq.(8):

wd
j
(d1, · · · , dm) =

w(0)j Sj (d1, · · · , dm)
m∑
j=1

w(0)j Sj (d1, · · · , dm)
(8)

Theminimumflight altitudeP4 measures the passable state
of the air target, and its importance does not change with
flight distance, but its relative weight changes with other
indicators. Visibility capability P1 determines the ability to
acquire situation information, which occupies a large weight
in the whole flight process and the degree of change is not
large. In the initial stage of flight, the air target should ensure
concealment of flight as much as possible, the weight of
shielding capability P6 is relatively high, the weight of the
probability of being interfered P2 and the probability of being
intercepted P5 are relatively low. Compared with the initial
stage, in the second stage of flight, the weights of P2 and P5
are also increased to varying degrees. And in order to gain the
time advantage, increasing the weight of the probability of
being detected P3 to avoid being discovered by the detector.
In the final flight process, in order to ensure the effect of
mission execution, the weights of P2 and P5 are relatively
high, and the growth rates are faster, but the weight of P6 is
relatively small.

Based on the above analysis, this paper sets the parameters
in S (d) of P1−P6, as shown in Fig.5(a). The relative distance
weights of P1 − P6 are shown in Fig.5(b).
In this paper, based on the classical sum-type equilibrium

function, a state-distance double variable weight function is
constructed, and its corresponding comprehensive variable
weight model is shown in Eq.(9):

w∗j (x1, · · · xm; d1, · · · dm)

=

w(0)j Sj (x1, · · · xm) Sj (d1, · · · dm)
m∑
j=1

w(0)j Sj (x1, · · · xm) Sj (d1, · · · dm)
(9)

where w(0)
j is the initial weight of the j-th index.

P1,P4,P6 are benefit-type indicators, the greater the
value, the greater the possibility of selecting the sub-region.
P2,P3,P5 are cost-type indicators, and the smaller the value,
the greater the possibility of selecting the sub-region. There-
fore, it is necessary to preprocess the index values when
calculating the state weight: Ṗ2 = 1 − P2, Ṗ3 = 1 − P3,
Ṗ5 = 1− P5.

The selection probability of sub-region is calculated as
shown in Eq.(10):

Pcs = w∗
1
P1 + w∗2 Ṗ2 + w

∗

3
Ṗ3 + w∗4P4 + w

∗

5
Ṗ5 + w∗6P6

(10)

VOLUME 10, 2022 117875



T. Yang et al.: Air Target Course Prediction Method

FIGURE 5. Variable weight function based distance.

2) EFFECTIVENESS ANALYSIS OF DOUBLE VARIABLE WEIGHT
The normalized distance is respectively
dis = [0.1, 0.3, 0.5, 0.7, 0.9]. Set the pre-processed state val-
ues of course prediction indicators as follows:

P1 Ṗ2 Ṗ3 P4 Ṗ5 P6
S1 0.5 0.5 0.5 0.5 0.1 0.5
S2 0.5 0.5 0.5 0.5 0.3 0.5
S3 0.5 0.5 0.5 0.5 0.5 0.5
S4 0.5 0.5 0.5 0.5 0.7 0.5
S5 0.5 0.5 0.5 0.5 0.9 0.5.

The distance variable weight function Eq.(8) and the state-
distance double variable weight function Eq.(9) are used to
calculate the course index weights. And the selection possi-
bility is calculated under different index state values at dif-
ferent distances according to Eq.(10). The calculation results
are shown in the Fig.6. Although there are some differences
between the possibilities in the two cases, the change trend of
possibility is the same.

FIGURE 6. Selection possibility based on different variable weight
functions.

According to the selection possibility in Fig.6, the aver-
age selection possibilities of two variable weight functions at
different normalized distances under the same course index
value are shown in Fig.7(a). The change trend of the selec-
tion probabilities under the two variable weight functions

is the same as that under the state variable weight, which
is consistent with the fact that the more favorable the state
value, the higher the selection probability. However, when
the selection probability is calculated based on the distance
variable weight function, the maximum difference value of
the average probability under different states is 0.125, and the
phenomenon of ‘‘state imbalance’’ still exists. The maximum
difference values in the average probability based on the state
variable weight and the state-distance variable weight are
0.1628, 0.1522.

According to the selection possibility in Fig.6, calculate
the standard deviation of the possibilities with two variable
weight functions at different state values under the same nor-
malized distance. As shown in Fig.7(b), basedonly on the
state variable weight function, the selection possibility does
not change with distance, and the standard deviation is 0.
However, based on the state-distance double variable weight,
the possibility of lower state values is lower, and the possi-
bility of higher state values is higher, which highlights the
difference in the selection possibility caused by the change in
state values. Especially when dis = 0.7 and dis = 0.9, the
standard deviations increase by 0.0115 and 0.0138 respec-
tively compared with those based on the distance variable
weight.

Based on the above analysis, the state-distance variable
weight function proposed in this paper can combine the char-
acteristics of course index weight changing with flight dis-
tance, and the advantages of the state variable weight to
reduce the ‘‘state imbalance’’, and improve the rationality of
course prediction weight allocation. Therefore, the proposed
double variable weight function is adopted in the simulation
experiment in Section 4.

FIGURE 7. Distribution of selection probability under different weight
functions.

C. MERGE: SEARCHING FOR A SET OF SUB-REGIONS
The set of sub-regions with greater possibility is often
selected as the flight direction. Owing to the limitations of
flight performance, the quality function of course sequence is
constructed from length, tortuosity and selection possibility.
ACO has shown good performance in searching the path on
the graph, such as strong robustness, distributed computing,
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and ease of combination with other methods. Its positive
information feedback mechanism enables it to find better
solutions quickly [34]. However, when the flight environ-
ment is complex, the ant colony has a large search space
when selecting the next region, and it takes a long time to
provide positive feedback, resulting in poor real-time perfor-
mance. And the solution speed of ACO needs to meet the
real-time requirements of situational awareness. Therefore,
an improved heuristic function and improved pheromone
updating rules of ACO are constructed to improve the speed
and quality of the solution.

Algorithm 1 Searching for a Set of Sub-Regions
1: Obtain sub area location information and select possibil-

ity;
2: Initialize the number of antsM , maximum iteration num-

ber Nmax, weights α, β, ρ,Q, initial sub-region S, flight
end T ;

3: FOR N=1 to Nmax do
4: Put all ants into S;
5: While ant k does not reach T do
6: allowedk←the set of reachable region for k
7: Choose the next sub-region by Equation(5)
8: End while
9: If ants have reached T then

10: Calculate the quality evaluation value of course
sequence Jk by Equations (11)-(15)

11: Jbest ← the best course sequence in this iteration;
12: update pheromone on all effective course sequence

by Equations (19), (20);
13: else if ants have not reached T then
14: update pheromone on all unreachable course

sequences by Equation (18);
15: end if
16: end for
17: Output the optimal subregion set

1) QUALITY FUNCTION OF COURSE SEQUENCE QUALITY
The course of air target is described by selecting the sub-
region sequence set: course = {region1, · · · , regionN }. The
course sequence quality of the feasible solution is evalu-
ated based on three aspects: sequence length, possibility and
sequence tortuosity. The length of course sequence is not only
limited by the flight range of air target, but also the shorter
the sequence length, the shorter the flight time, which has an
important impact on the completion of the flight task. The
higher the mean probability of the sequence, the lower the
risk. In addition, because of the limitations of flight maneu-
verability, the tortuosity of the sequence should be as smooth
as possible. We propose evaluating the direction sequence
quality according to Eq.(11).

Jcourse=wPLPL(course)+wPCSPcs(course)+wPθPθ (course)

(11)

where PL(course),Pcs(course),Pθ (course) ∈ (0, 1) rep-
resent the length ratio, mean probability, tortuosity of
sequence respectively. The convergence speed of IACO can
be improved by unifying each index to [0,1]. The calculation
formulas are given in Eq.(12) -Eq.(14). And wPL ,wPcs ,wPθ
are the corresponding weights.

PL(course) =
Lmax − Lcourse
Lmax − Lmin

(12)

where Lcourse represents the total length of the sequence sets:

Lcourse =
N−1∑
reg=1

√(
xreg − xreg+1

)2
+
(
yreg − yreg+1

)2. Lmin is

the straight-line distance from the flight start point to the end
point. Lmax = Lmin + 2πLmin.

Pcs(course) =
CScourse
N

(13)

where CScourse represents total probability of sequence sets:
CScourse =

∑N
reg Pcs (reg). N is the number of sub-regions in

the course sequence set.

Pθ (course) =
θmax − θcourse

θmax
(14)

where θmax is a constant that represents the maximum allow-
able direction tortuosity of the air target. θcourse is the cumu-
lative tortuosity of the sub-region sequence, as shown in
Eq.(15).

θcourse =

N−1∑
reg=2

∣∣∣∣atan(yreg+1 − yregxreg+1 − xreg

)

− atan
(
yreg − yreg−1
xreg − xreg−1

)∣∣∣∣ · 180π (15)

The quality value of course sequence is taken as the judg-
ment basis of course prediction accuracy. The higher the qual-
ity value of course sequence, the closer the predicted course
is to the actual course.

2) CONSTRUCTION OF NEW HEURISTIC FUNCTION
The heuristic factor is the key factor inspiring ants to select
nodes, which can directly affect solution quality. When
selecting sub-regions, only the selection possibility of sub-
region is considered in the heuristic information, which will
lead to slow convergence speed and long flight path. There-
fore, in order to improve the search efficiency, the influ-
ence of the distance between the position of the sub-region
and the flight end point is added to the heuristic func-
tion, thereby the convergence speed of the algorithm is
improved.

ηij =
(
w1Pcsij + w2Pdij

)
(16)

where ηij is the new heuristic function based on possibil-
ity factor and distance factor. PCSij is the selection possi-
bility of sub-region (i, j), and Pdij is the distance between
the center of the sub-region (i, j) and the flight end point,
Pcsij ,Pdij ∈ (0, 1) ,w1 and w2 are weights of two heuristic
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factors, and w1 +w2 = 1. The calculation of Pdij is shown in
Eq.(17).

Pdij =
Lmin − dij
Lmin + δ

(17)

When the flight start point and end point are known, Lmin

is constant, and dij =
√(

xij − xend
)2
+
(
yij − yend

)2 repre-
sents the distance between the selected sub-region and flight
end point. According to Eq.(17), the closer the last selected
sub-region is to the flight end point, the greater the selection
probability of sub-region, which reduces the search range and
improves the convergence speed.

3) CONSTRUCTION OF NEW PHEROMONE UPDATING
RULES
To solve the problem that the global pheromone update rule of
ACO cannot guide the ants to search for the optimal solution
in time [25], the pheromone update rule based on positive
and negative feedback is constructed. (1) The pheromone
update rule for the ants trapped in deadlock is shown in
Eq.(18). According to the distance between the last selected
sub-region and flight end point, the pheromone concentration
of selected sub- regions is weakened in different degrees,
so as to avoid the blind update of the global pheromone.
(2) The pheromone update rule for the ants searched for
feasible solutions (from the flight start point to the flight
end point) are shown in Eq.(19) and Eq.(20). The increase
of pheromone of selected sub-region is not only affected by
itself, but also by the optimal course sequence of the current
iteration, which effectively improves the convergence speed
and search quality of the algorithm.

τij (t + 1) = (1− ρ) τij (t)− ρ · Pdij (18)

where Pdij represents the distance between the last selected
sub-region of traversed by the deadlock ant and the flight end
point. When the last selected sub-region is farther from flight
end point, the attenuation of the pheromone of sub-regions
in the sequence is greater. On the contrary, when it is
closer to the flight end point, the pheromone of sub-regions
traversed are slightly reduced to avoid falling into local
optimization.

τij (t + 1) = (1− ρ) τij (t)+ ρ1τij (t) (19)

1τij (t) = Q
(
Jij
) Jij
Jbest (20)

where Jbest is the quality evaluation value of the optimal
sequence of current iteration. ρ is pheromone volatilization
factor.

IV. SIMULATION EXPERIMENT AND ANALYSIS
The applicability of the proposed method is verified by pre-
dicting the course of air targets in different scenes. As shown
in Fig.8(a), the index values of the course prediction in a
simple environment (Scene 1), where the flight airspace is
a circle with a radius of 800 km centered on the flight
end point. Fig.8(b) shows the attribute values of course

FIGURE 8. Distributions of course prediction index under different
simulation scenes.

prediction indicators in a complex environment (Scene 2),
in which the flight airspace is circular with a radius of
1000 km. In this paper, the following points are analyzed
separately:
(1) The influence of the weight selection of the quality

function Jcourse on the course prediction result is ana-
lyzed.

(2) The accuracy and convergence of the course prediction
result of different models in scene 1 are analyzed to
verify the effectiveness of the proposed method.

(3) In addition, the differences in the course prediction
results of different starting points under the same scene
are analyzed to verify the robustness of the proposed
method.

A. SELECTION OF COURSE QUALITY FUNCTION WEIGHTS
The flight starting point is set to (-518, 612) in scene 1, and
combined with the course prediction index, the course of
the air target is predicted according to the following three
steps.
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FIGURE 9. Result of adaptive airspace division based on obstacles.

FIGURE 10. Distributions of course prediction indicators in sub-regions
based on adaptive decomposition rules.

1) DIVISION RESULTS BASED ON ADAPTIVE
DECOMPOSITION RULES
According to the scene information in Fig.8(a), there are
11 flight obstacles in the airspace. In combination with the
adaptive decomposition strategy in Section III.B, the flight
airspace is divided into 7 ring layers at the first level decom-
position rule by taking the distance between the position
of each obstacle and the flight destination as the radius.
And the corresponding distances are 179.36 km, 274.49 km,
321.03 km, 362.17 km, 493.95 km, 544.06 km, 800 km. Each
ring layer is further decomposed according to the second-
level decomposition rule, and the airspace division result is
shown in Fig.9. And the distributions of 6 indicators in the
corresponding sub-regions are shown in Fig.10.

2) CALCULATE THE SELECTION PROBABILITY BASED ON
THE BIVARIATE WEIGHT FUNCTION
According to the distributions of course prediction indicators
in Fig.10, the weight distribution in each sub-region is calcu-
lated based on state variable weight, distance variable weight,
and state-distance variable weight. The distance weights of

TABLE 1. The distance weights of sub-regions in different ring layers.

FIGURE 11. Selection possibility distribution of sub-regions with different
variable weight functions.

FIGURE 12. Prediction results of different weight of course quality.

the course prediction indicators in different ring layers are
shown in Table 1.

The corresponding selection probability distribution
results of sub-regions under three different weights are shown
in Fig.11. For example, in 7th-6th layers, the corresponding
state values of P1,P4,P6 are low, and the weights of the
state value function Sj (p) are in the ‘‘punishment’’ stage,
the corresponding state values of P2,P3,P5 are high, and the
corresponding weights are in the ‘‘incentive’’ state. There-
fore, in Fig.11(a), the selection possibilities of sub-regions
in 7th-6th layers are still relatively high. But when the state
value of an indicator is lower than 0.2, the final selection
probability is obviously low. The results show that the state
variable weight theory can effectively solve the problem of
‘‘state imbalance’’.
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FIGURE 13. Course prediction results based on different models.

According to Table 1, under the influence of the distance
variable weight function S (d), the weights of P1,P4,P6 are
relatively high, and the corresponding state values of sub-
regions in 7th-6th layers are generally low, so the selection
probabilities of sub-regions in 7th-6th layers in Fig.11(b) are
lower than those in Fig.11(a). In the sub-regions of 2nd-1st
layers, the weights of P2,P5 are higher, and the selection
possibilities of sub-regions are mainly affected by the index
P2,P5. Therefore, the distance variable weight function S (d)
effectively considers the influence of flight distance on the
weight of the course index.

Fig.11(c) shows the result of the selection possibility based
on state-distance double variable weight. The result inte-
grates the effects of the two variable weights. Compared with
Fig.11(b), considering the influence of the index state value

on theweight, the degree of ‘‘state imbalance’’ is significantly
reduced, and the possibility difference values between sub-
regions are larger than that in Fig.11(b), which improves the
reliability of the sub-region evaluation.

3) SEARCHING FOR A SET OF SUB-REGIONS BASED ON
IACO
The search performance of ACO is affected by multiple
tightly coupled parameters, and there is a lack of theoretical
methods to select the best combination parameter [35]. In this
paper, the initial parameters are determined by experience
and repeated trial through many experiments [36]. The total
number of ants is 50, the maximum number of iterations is
set to 100, pheromone importance parameter α = 2, heuristic
factor importance parameter β = 5, pheromone evaporation
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FIGURE 14. Course prediction results in four models.

FIGURE 15. Course index evaluation error based on different airspace
decomposition rules.

coefficient ρ = 0.3 and pheromone increase intensity coef-
ficient Q = 20. The influence of the weights in the course
sequence quality function Eq.(11) on the flight course pre-
diction result is analyzed and discussed.

Set
[
wPL ,wPcs ,wPθ

]
to w1 = [1, 0, 0], w2 = [0, 1, 0],

w3 = [0, 0, 1], w4 = [0.4, 0.3, 0.3] respectively, the flight
course prediction results in scene 1 are shown in Fig.12.

When the weight wPcs is 1, the sum of the probabilities of
predicted course sequence is the largest, and the minimum
selection probability of the flying sub-regions is 0.65. In order
tomake the selected possibility of the course sequence as high
as possible, the sequence has the longest length and the high-
est tortuosity. It can be seen from Fig.12 that when the weight
is w1, the course sequence is significantly different from the
results under other weights. When the weight is w1, only
the sequence length of sub-regions is considered in course
prediction, so the sequence length is the shortest. When the
weight is w3, the sequence is relatively smooth. However, the
sums of sequence possibilities are relatively small under w1
and w3. According to the Fig.12, the minimum probabilities

FIGURE 16. Comparison of iterative convergence results.

TABLE 2. Course quality evaluation index in scene 1.

of selected sub-regions are 0.53 and 0.55 respectively, which
makes it difficult to ensure the flight safety of the target.

When the weight is w4, the sum of selection possibili-
ties of sub-region increases by 75.83% and 18.67% respec-
tively compared with w1 and w3, which effectively improves
flight safety. The average probability of sub-regions when the
weight is w4 is close to that when the weight is w2. And
according to Fig.12, when the weight is w4, the minimum
selection probability of the prediction sequence is 0.64. But
the sequence length and sequence tortuosity are reduced by
15.76% and 32.6% respectively compared with w2.

When the weights are [0.4,0.3,0.3], the result integrates the
advantages of three weights. After simulation experiments,
when the weight vector is [0.4, 0.3,0.3], the comprehen-
sive evaluation of the course sequence is optimal. Therefore,
in this paper, [0.4, 0.3, 0.3] is selected as the final weight of
the course sequence quality function.

B. COMPARATIVE ANALYSIS WITH OTHER METHODS
To further verify the accuracy and real-time performance of
the proposed method, we analyze the average error between
the assessed and real values of the course index AE, course
sequence quality J and convergence iteration times IT of
models. Taking scene 1 as an example, the proposed method
(AD-IACO) is compared with the other three models: uni-
form and dense decomposition-IACO (UDD-IACO), uniform
and evacuated decomposition-IACO (UED-IACO), adap-
tive decomposition-ACO (AD-ACO). The course prediction
results of different models in scene 1 are shown in Fig.13.
In UDD-IACO, the airspace is uniformly decomposed into
different ring layers at intervals of 50 km, and each ring layer
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FIGURE 17. Selection probability of sub-region within 150 km in scene 1.

is further decomposed into 32 sub-regions((a)-1 and (a)-2 are
the decomposition results of circular airspace within 300-800
km and 0-400 km respectively). In UED-IACO, the airspace
is uniformly decomposed at intervals of 200 km, and each
ring layer is decomposed into 8 sub-regions. In AD-ACO and
AD-IACO, the airspace is adaptively divided according to the
distribution of obstruction factors.

It can be seen from Fig.15 that the average error between
the assessed value and the real value of the course index in
UDD-IACO is the smallest, which is 0.0125. The reliability
of the result is the highest. However, according to Fig.16,
the initial course quality value J course and the convergence
speed are relatively slow. The main reason for this is that
UDD-IACO ignores the spatial distribution of obstacles dur-
ing flight. Taking the airspace of 0-150 km in Scene1 as an
example, it is uniformly decomposed into three ring layers in
UDD-IACO. There is a slight difference in the selection prob-
abilities between sub-regions of the first ring layer (the proba-
bilities are approximately 0.5). The change trend in selection
probability of sub-regions in the 2nd-3rd rings is consistent,
and the values are about 0.4-0.7. This shows that the spatial
decomposition rule in UDD-IACO increases the number of
su-bregions and unnecessarily increases the search space. The
first ring layer in AD-IACO is 179.36 km away from the flight
destination. Three rings in UDD-IACO are merged into one
ring layer, which can reduce the number of sub-regions under
the premise of maintaining the consistency of the difference
of possibility. Compared with UDD-IACO, the number of
iterations is reduced by 41.18%, the convergence speed is
greatly improved. In addition, Fig.18 shows the angle change
of different course sequences with flight distance. According
to Fig.18, it can be seen that the prediction result of AD-IACO
is closer to that of UDD-IACO. Therefore, it can be proven
that AD-IACO can reduce the number of sub-regions within
the range of the index evaluation error and has a faster con-
vergence speed.

FIGURE 18. Change of course angle in four models.

In UED-IACO, the airspace is uniformly decomposed into
evacuated sub-regions. According to the course prediction
results of different models in Fig.14, it can be seen that the
course prediction results of UED-IACO are quite different
from those of othermodels. Combinedwith the data in Fig.15,
it can be seen that the average evaluation error of course
prediction index in UED-IACO is relatively large, especially
the average error of P3 is 0.2084. Although Fig.16 shows
that the course prediction quality and convergence speed are
good, the reliability of the results is extremely low. UED-
IACO cannot provide a basis for decision support. Although
the quality of the course sequence of AD-IACO is reduced by
4.77% and the number of iterations is increased by 42.86%
owing to the more complex spatial decomposition results, the
average evaluation error of course prediction index is reduced
by 58.47%, which makes the results more reliable.

The errors of course prediction indicators in AD-ACO are
consistent with those in AD-IACO because of the adaptive
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TABLE 3. Comparison of course prediction results in scene 1.

FIGURE 19. Course prediction results in scene 2 based on AD-IACO.

spatial decomposition rules, but the former has a slightly
lower convergence quality than the latter. In particular, the
former has a slower convergence speed. On the one hand, the
heuristic function of AD-ACO only considers the selection
possibility of sub-regions when searching for a set of sub-
regions, which leads to that the target cannot approach the
destination in time, so its course sequence length is long, and
the course convergence quality is low. On the other hand,
AD-ACO uses global pheromone update rule, which takes a
long time to play the role of positive feedback, resulting in a
slow convergence speed. According to the results in Table 3,
compared with AD-ACO, the number of convergence itera-
tions of AD-IACO has decreased by 16.67%, which indicates
that it is effective to construct heuristic functions based on
distance factor and possibility factor and pheromone update
rules based on positive and negative feedback.

Based on the above analysis, the adaptive decomposition
rules can improve the convergence quality and convergence
speed of course prediction on the premise of ensuring the reli-
ability of the prediction results. In addition, the heuristic func-
tion and pheromone updating rules of ACO are improved,
which effectively solves the disadvantage of the slow conver-
gence speed of ACO and improves the real-time performance
of course prediction.

C. ROBUSTNESS ANALYSIS
To verify the robustness of the proposed AD-IACO model,
the flight starting points are set as Situation 1(S1) and Situa-
tion 2(S2) respectively in scene 2. The corresponding target

TABLE 4. Course sequence evaluation index in scene 2.

FIGURE 20. Course prediction results based on different models in
scene 2.

starting points are (480 km,870 km) and (−461 km,
−888 km) respectively. The predicted course sequences are
shown in Fig.19, and the corresponding course quality eval-
uation indicators are shown in Table 4. As shown, compared
with the course prediction results in scene 1, the length and
tortuosity of the course sequence are relatively large in scene
2.

Similarly, we compare the course prediction results of dif-
ferent models under the two situations in scene 2. According
to Fig.20, it can be seen that the course prediction results
of the models are more consistent. But combining the con-
vergence results of different models in Fig.21, the course
prediction results of AD-IACO still have high course quality
values and fast convergence speeds.
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FIGURE 21. Iterative convergence results based on different models in
scene2.

TABLE 5. Comparison of course prediction results in scene 2.

It can be seen from Table 5, UED-IACO has a large error
in course prediction indicators compared with other mod-
els, so the reliability of prediction results based on indica-
tor status values is low. The error of AD-IACO is reduced
by 0.123 compared with UED-IACO. At the same time, the
numbers of iterations are the same as those in UED-IACO.
In addition, compared with UDD-IACO and AD-ACO, the
numbers of convergence iterations of AD-IACO in scene
2 are significantly reduced. Especially in S2, the number of
iterations is reduced by 25% and 34.78% respectively. The
convergent course qualities of AD-IACO are the highest in
S1 and S2.

The results show that in complex situations such as scene 2,
the performance of AD-IACO model still takes into account
the reliability and real-time performance of course prediction
results, and the course prediction results at different starting
points of the path verify the robustness of the model.

V. CONCLUSION
In this paper, an air target course prediction method based on
sub-regions divide and conquer with double variable weight
is proposed and verified in different simulation environments.
The simulation results show that the adaptive decomposition
of airspace based on obstacle factors can reduce the number of
sub-region and improve the search efficiency of sub-regions
on the premise of ensuring the reliability of course prediction.
In addition, compared with ACO, the improved ant colony
algorithm is used to predict the course sequence of air targets,
and the course convergence speed is increased by 34.78% on
average.

The simulation results show that the proposed method
can take into account the accuracy and real-time of course
prediction, which is of great significance to the deployment

decision. In this study, the global course prediction method
based on macro modal constraints is studied. In the future,
the local 3D trajectory of air targets will be further studied
based on the global course sequence in combination with the
motion performance constraints of air targets.
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