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ABSTRACT Speaker recognition based on deep learning is currently the most advanced and mainstream
technology in the industry. Adversarial attacks, an emerging and powerful attack against neural network
models, also posing serious security problems for speaker recognition. Common gradient-based attack
methods such as FGSM (Fast Gradient Sign Method), PGD (Projected Gradient Descent), and MI-FGSM
(Momentum Iteration-FGSM) generate adversarial examples that are poorly stealthy and easily perceived
by the human ear. To improve the stealthiness of the adversarial examples, this paper proposes a new attack
method called the Adaptive Decay Attack (ADA), whose stealth is very close to the CW2(Carlini&Wagner)
method based on optimization attacks, with much less computation time than CW2. The method takes the set
number of iterations as the termination condition, automatically adjusts the size of themaximum perturbation
according to whether the attack is successful or not, and then uses the decay methods in learning rates such as
exponential decay and cosine annealing to continuously reduce the step size. The experimental results show
that under the two speaker recognition models x-vector, and i-vector, the proposed attack method improves
the stealthiness metrics such as SNR and PESQ by at least 30% and 39%, respectively, compared with
the best PGD attack under speaker identification of untargeted attacks. For the speaker identification task
with targeted attacks, the average improvement is at least 20% and 25% compared to PGD. For the speaker
verification task, the improvement is at least 29.5% and 33.4% compared to PGD. In addition, we also use
this attack method for adversarial training to enhance the robustness of the model. Experimental results show
that ADA-based adversarial training takes 28.31% less time than PGD-based adversarial training, and its
improved robustness is generally superior to PGD-based adversarial training. Specifically, the attack success
rate of PGD and ADA methods decreased from 50.88% to 36.47% and 64.74% to 45.82%, respectively.

INDEX TERMS Deep learning, adversarial attacks, speaker recognition, adaptive decay attack, adversarial
training.

I. INTRODUCTION
A speech contains the identity of the speaker, text content,
language information, etc. [1] Comparedwith other biometric
recognition technologies, a speech is easy to collect, low
cost, and the recognition process is contactless [2]. Speaker
recognition, as a technique to recognize or identify a person
from speech, is widely used in daily life and work, such as
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in controlling smart homes [3], financial transactions [4],
personalized services for electronic products [5], forensic
tests [6], etc.

Studies have shown that speaker recognition has been sub-
ject to malicious spoofing attacks, such as voice conversion
[7] and speech synthesis [8], which have existed in the past,
to a recent emerging type of attack called adversarial attacks.
Speech conversion aims to change the source speaker’s voice
to that of the targeted speaker’s tonewhile keeping the content
of the voice unchanged. Speech synthesis aims at converting
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any text into the corresponding speech. The main idea of
adversarial attacks is to add a small artificial perturbation to
a piece of original speaker utterances to form a new piece
of audio that still sounds like the original speaker, at least to
humans, and the model forces the identity of the new audio
to be someone else.

The powerful capabilities of neural networks have led to
their widespread use in various fields related to people’s daily
lives, yet recent studies have shown that neural networks are
vulnerable to adversarial attacks. Adversarial attacks, also
known as adversarial examples, have posed a significant
security threat to the currently widely used neural network
techniques since adversarial attacks were proposed. Regard-
ing the reason for adversarial examples, Goodfellow et al
[9] argued that the linear nature of deep neural networks
in high-dimensional space leads to the creation of adversar-
ial examples, which is believed that neural networks have
high-dimensional and linear characteristics so that the initial
perturbation values will be superimposed continuously when
passed backward in the neural network, which is eventually
sufficient to change the classification results of the model.
With the continuous development and improvement of adver-
sarial attacks, they have successfully deceived the current
neural network-based designs for autonomous driving [10],
face recognition [11], speech recognition [12], malicious
code detection [13], and other related tasks. In recent years,
adversarial attacks in speaker recognition scenarios have not
been extensively studied, and it has become significant to
understand the vulnerability of speaker recognition to adver-
sarial attacks and how to increase its robustness.

Our contributions are as follows:
•In the task of attacking speaker recognition, we provide

common gradient-based and optimization-based attack meth-
ods such as FGSM, PGD, MI-FGSM, and CW2. And we
propose a new attack method called the ADA, which can
be applied to different speaker recognition models and all
recognition tasks. The aim of the new method is to improve
the stealthy of the generated adversarial examples from being
easily perceived by humans. Experimental results show that
this method improves the stealthy significantly compared to
other gradient-based methods, and the stealthiness is very
close to that of the optimization-based CW2 method, and the
computation time is much faster than that of CW2.
•In addition, we consider the problem of how to

improve the robustness of the model. We compare the
proposed ADA-based method for adversarial training with
the FGSM-based and PGD-based adversarial training meth-
ods for analysis. Experiments demonstrate that ADA-based
adversarial training improves the robustness of the model
overall better than the other two methods and requires less
time for training.

The remainder of this paper is organized as follows:
Section II covers a basic introduction to speaker recog-
nition and adversarial attacks. Section III describes the
research related to adversarial attacks in speaker recognition.
In Section IV, we introduce some attack methods, reveal their

shortcomings, propose a new attack method called the ADA,
and then introduce the defensemethod of adversarial training.
Section V contains the experimental setup and experimental
environment, the models used, and the metrics measured.
Section VI presents the results of the attack and defense.
Finally, Section VII summarizes the overall contents of this
paper and proposes future research directions.

II. BACKGROUND
A. BASICS OF SPEAKER RECOGNITION
Speaker recognition [14], also known as voice recognition,
is a technology that distinguishes the voices of different
speakers according to the identity of the speaker. Speaker
recognition is fundamentally different from speech recogni-
tion technology. Speech recognition is a technology that con-
verts speech signals into text content, and in most cases does
not care whom the speaker is, hoping to filter out information
related to the speaker’s identity from the signal and retain
only the textual content information. Speaker recognition
technology, on the contrary, wants to filter out information
related to the text content from the signal and retain only
the speaker’s identity information, robustly identifying the
speaker’s identity among the different speech segments.

A complete speaker recognition system is shown in
Figure 1 below. Speaker recognition technologies are divided
into two main categories according to the task and applica-
tion scenario they are designed to recognize: speaker veri-
fication (SV) and speaker identification (SI). The question
to be solved by speaker verification technology is: ‘‘Is this
speech spoken by this particular person?’’ The recognition
result is either accepted or rejected, so the voice verification
technology can be seen as a 1-to-1, two-category problem.
At the registration stage, the speaker verification technique
first performs feature extraction based on all audio examples
provided by a particular speaker, and further aggregates the
audio features to generate a model with the ability to rep-
resent the identity of that speaker. In the recognition phase,
unidentified audio data is provided, which is then compared
with the model generated in the previous step, resulting in
a matching score. We compare this match score with a pre-
defined threshold to get the recognition result. If the match
score is greater than the threshold, it is recognized as accepted
by the model; conversely, it is recognized as rejected. The
higher the score, the more likely it is that the new audio is
spoken by the registrant.

The speaker identification technology needs to deal with
the question: ‘‘Who spoke the passage?’’ This is limited to a
particular speaker in a set containing N particular speakers,
which can be seen as a many-to-one, multi-classification
problem. Speaker identification can be subdivided into
closed-set speaker identification (CSI) and open-set speaker
identification (OSI). In closed-set speaker identification, The
recognition result is that the person with the highest match-
ing score in a set of N speakers; while in open-set speaker
identification, due to the role of impostor (i.e., not in the set
of speakers), our set size becomes N+1. And the recognition
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FIGURE 1. The framework of the speaker recognition system.

FIGURE 2. Adversarial attack on the speaker verification system.

result must satisfy two conditions, a): the highest score in the
set; b): the score must be greater than the threshold. If the
highest score is below the threshold, the audio is recognized
as an impostor.

Speaker recognition system can be classified according
to the recognition task, but also according to the content of
the recognition, into three categories: text-dependent recogni-
tion, text-independent recognition, and text-prompted recog-
nition. Text-dependent recognition, usually called ‘‘fixed
text’’ speaker recognition, requires restricting the text content
and duration of the speaker’s speech. Text-independent recog-
nition, on the contrary, can be recognized regardless of the
content and duration of the speaker’s speech. Text-prompted
recognition randomly selects one text from a set containing
multiple texts and then asks the speaker to say this text for
speaker recognition. The experiments conducted in this paper
all use text-independent recognition.

B. BASICS OF ADVERSARIAL ATTACKS
Adversarial attacks are an example generated by adding a
small perturbation to the original benign data that is imper-
ceptible to the human ear, which can effectively fool the
target model into giving a wrong prediction output with high
confidence. A satisfactory adversarial example often needs
to satisfy two conditions: firstly, it must be able to force the
model to classify errors and be imperceptible to humans after
adding small perturbations, i.e., it has a high success rate
of attack; secondly, the smaller the perturbations added, the
better, i.e., it has high stealthiness.

Figure 2 illustrates an example of adversarial attack on the
speaker verification task: adversarial audio formed by arti-
ficially adding subtle perturbation to the original audio that
the human ear cannot imperceptible. The adversarial example
causes the speaker verification model to give a different result
from the original example and then switch from rejection
to acceptance, but the human ear doesn’t sound different
from the two audios. If the attacker chooses to attack speaker
identification task, the impostor can be recognized as one of

the speakers in the registered set, or one of the speakers in
the registered set can be recognized as another person in the
set. From the above, it is seen that the presence of adversarial
attacks may expose the speaker recognition system to serious
security problems.

In the case of untargeted attacks, the attacker does not
need to specify a specific attack category when generating
the adversarial example, but only needs to make the target
model misclassify the adversarial example; whereas targeted
attacks not only require the target model to misclassify but
also require the adversarial example generated by the attack
algorithm to further fool the target model to identify as the
specified target category, which is more complicated than
untargeted attacks. The theoretical difference between the
two is that the untargeted attack maximizes the loss function
that is different from the original label of the example, and
the targeted attack minimizes the loss function of the original
label and the target label. The optimization equation for both
is as follows: {

min l(f (x + δ), t)
s.t. ‖δ‖ ≤ ε

(1){
min l(f (x + δ), y)
s.t. ‖δ‖ ≤ ε

(2)

where f (·) denotes the given model, x denotes the input
example, δ denotes the added perturbation, y is the true label
corresponding to the input example x, t is the label set by the
attacker, and ε is the set maximum perturbation.
Also, adversarial attacks can be classified into two types

of white-box [15] and black-box attacks [16], [17] according
to whether they know the specific details of the model. In a
white-box attack, the attacker knows all the information about
the target model, such as the network structure and model
parameters, and even the parameters and structure of the
defense, to effectively design attack algorithms; while in a
more sophisticated black-box attack, the attacker cannot get
any information about the model and can only iteratively
query the model and estimate the target model based on the
results returned by the model. The commonly used black-
box approach is to build an alternative model, aiming to train
a model with similar decision bounds to the target model,
perform a white-box attack on this model, and then migrate
the generated adversarial examples to the target model. Com-
pared with the black-box attack scheme, the white-box attack
scheme has the advantage of being easy to implement. In this
paper, we mainly consider the untargeted and targeted attacks
under the white-box attack and study the black-box attack in
the subsequent work.
The current adversarial examples generation algorithms

for white-box attacks mainly include two types: 1) gradient-
based attack methods; and 2) optimization-based methods.
Gradient-based attack methods are mainly designed for max-
imizing the target loss, solving the gradient according to the
loss value, and further adding adversarial perturbations in the
gradient direction, thus effectively fooling the target model
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to generate false prediction outputs. This type of attack algo-
rithms can often generate the adversarial examples quickly,
but the perturbation of the adversarial examples is more
obvious. Most of the attack algorithms belong to this type
of attack method, mainly including FGSM [9], PGD [18],
MI-FGSM [19], etc. The attack method proposed in this
paper is also based on the gradient attack, and the added
perturbation is guaranteed to be small and the stealthiness
of adversarial examples to be high. The optimization-based
attack method, on the other hand, views the adversarial
example generation process as an optimization problem, and
finally generates the adversarial examples by continuously
optimizing the target loss, and the representative of this type
of attack algorithm is the CW2 [20] algorithm. The adversar-
ial examples generated by this method tend to have smaller
adversarial perturbations but at the cost of the very low attack
efficiency of this algorithm.

With the continuous development of adversarial attacks,
the defense methods of adversarial attacks have also received
extensive attention and research. In the field of speech recog-
nition, it is mainly from two aspects of eliminating adver-
sarial perturbations and improving the robustness of models.
In eliminating adversarial perturbations, the main reference
is large to the methods in the image domain such as fea-
ture compression, JPEG compression, quantization, random
smoothing, and other input transformation-based defense
methods [21], [22], [23]. By combining the characteristics of
audio (e.g., temporality, etc.) and input transformation meth-
ods to eliminate adversarial perturbations, it is not yet known
whether this can be applied in the field of speaker recog-
nition. In terms of improving the robustness of the speaker
recognition model, the speaker recognition model based on
deep learning is trained using a dataset withmixed adversarial
examples and original examples by adversarial training [9]
to improve the sensitivity of the speaker recognition model
to the adversarial examples. In this paper, the adversarial
training approach is mainly adopted for an active defense to
improve the robustness of the model.

III. RELATED WORK
Jati et al. [24] used classical attack methods such as FGSM,
PGD, etc. for attack models, it is demonstrated that the
speaker recognition system is highly vulnerable to adversarial
attacks, then a series of ablation experiments are conducted
to find the best parameters for the attack methods, and finally,
adversarial training is performed by combining different
attack methods, and it is found that the adversarial training
based on PGD is the best defense method, which effectively
improves the robustness of the model. However, it lacks to
consider the security issues under targeted attacks and open
set identification scenarios.

Kreuk et al. [25] claimed that the vulnerability of the
end-to-end DNN-based speaker verification system against
FGSM attacks is first demonstrated. The authors also
experiment with the speaker verification system against
attacks in the cross-feature (MFCC and Mel-spectrum), and

cross-dataset cases. In this paper, no defense method is pro-
posed, and the attack method and recognition task scenario
are single.

Li et al. [26] shown that the traditional speaker verification
system based on the i-vector is vulnerable to adversarial
attacks, and the adversarial examples generated with the
FGSM attack method are migratory and can pose a threat
to different recognitional models such as x-vector systems
under cross-model and cross-feature conditions. However,
the attack method and recognition task are single, and no
defense method is proposed.

Chen et al. [27] performed a black-box targeted adver-
sarial attack on speaker recognition systems for the first
time and proposed a method based on the attack algorithm
BIM and the gradient estimation algorithm NES to gener-
ate adversarial examples to attack these traditional speaker
recognition models such as GMM-UBM and i-vector models,
and achieve close to 100% attack success rate on both open
source and commercial voice recognition systems (Tiancong
Intelligence), and can effectively migrate to the Microsoft
Azure voice recognition system, including API attacks and
over-the-air physical attacks in real-world scenarios. How-
ever, attacks under DNN-based speaker recognition models
are not considered.

Shamsabadi et al. [28] proposed awhite-box steganography-
based adversarial attack method that changes the previous
approach from optimizing adversarial loss to using a Gated
Convolutional Autoencoder (GCA) operating in the DCT
domain by the inter-frame cosine similarity between the
MFCC feature vectors extracted from the original audio
file and the adversarial audio file degree to take human
perception into account and is trained using a multi-objective
loss function (perceptual loss + adversarial loss) to generate
and hide the adversarial perturbations in the original audio
file. This approach reduces the perceptibility of noise to some
extent and has a high PESQ metric.

Wang et al. [29] Based on the psychoacoustic principle
of frequency masking, use a masking threshold instead of a
parametric number to limit the size of perturbations to gen-
erate perturbations inaudible to the human ear and perform a
targeted white-box attack on the speaker recognition system
x-vector, specifying any speaker target, with a success rate
of 98.5%. In addition, this attack method is also applied to
non-speech data such as music to perform the attack.

Wang et al. [30] used two types of attacks, FGSM and LDS
(local distributional smoothness), to generate adversarial
examples to attack the end-to-end speaker verification model,
respectively, and experimentally demonstrate the vulnerabil-
ity of the speaker verification model to adversarial attacks,
and then combine these two types of adversarial examples
for model regularization to improve model robustness.

IV. PROPOSED METHOD
A. ATTACK METHOD
In general, gradient-based untargeted attacks generate adver-
sarial examples mainly by solving the optimization problem
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for the following equation:{
argmaxx ′L

(
x ′, y

)
s.t‖x ′ − x‖p ≤ ε

(3)

Maximize the loss function L of the label corresponding to
the adversarial example with the true label y in the limit of
the maximum perturbation ε and p-parametrization.
FGSM: FGSM is a fast gradient-based untargeted attack

method, only one iteration to complete the attack, belongs to
the single-step attack, in the generation time is the shortest,
yet the success rate of the attack is very limited. The method
maximizes the loss concerning the original target label by
adding perturbations to the original example in the lp param-
eter limit and performing updates along the gradient direction
of the loss function. In this paper, the experiments are mainly
conducted under the l∞ paradigm. Its formula for generating
adversarial examples is as follows:

x ′ = x + ε · sign(∇xL(x, y)) (4)

where ε is the maximum perturbation allowed to be added
(hyperparameter), also the step size of the optimization,
∇xL(x, y) is the partial derivative of the loss function, in the
CSI task the cross-entropy loss function is used, while in the
OSI, SV task the margin loss is used due to the problem of
judging the threshold.

Under targeted attacks, it is required to minimize the loss
with a designated target, t is a designated target. Its formula
for generating the adversarial example is as follows:

x ′ = x − ε · sign(∇xL(x, t)) (5)

PGD: To solve the linearity assumption problem in FGSM,
PGD is proposed to solve the internal maximum prob-
lem. PGD is an improved version of FGSM by dividing the
perturbation size of one iteration of FGSM into a small frac-
tion of each iteration and then projecting the updated adver-
sarial example perturbation to a prescribed range, replacing
the overflow with a boundary value. Compared with FGSM,
PGD can find noise points more precisely and effectively and
belongs to a multi-step attack, which consumes much more
computational resources and time than a single-step attack,
and its worst effect of generating adversarial examples is also
comparable to FGSM. The adversarial example generation
algorithm for the projected gradient descent method is shown
in the following equation:{

x ′k = Clip{x ′k−1 + α · sign(∇xL(x
′

k−1, y))}
s.t.x ′0 = x

(6)

whereClip{∗} is used to crop the overflow value to ensure that
the adversarial example is within the domain of the original
example, α is the perturbation value that increases with each
iteration.

MI-FGSM: Also known as MIM. A method based on
momentum iterative gradient, which memorizes the gradient
of the loss function for each iteration based onBIM, i.e., when
performing iterations, the perturbation in each round is not

only related to the current gradient, but also to the previously
calculated gradient, which can stabilize the update direction
and avoid local maximum.

gk = µ · gk−1 +
∇xL(x ′k−1, y)

‖ ∇xL(x ′k−1, y) ‖1
(7)

x ′k = x ′k−1 + α · sign(gk ) (8)

gk indicates that the gradient of the previous k iterations is
stored, andµ is defined as the decay factor (hyperparameter).

CW2: Unlike the other above methods, CW2 uses L2 norm
to the optimization of Equation 3 to measure the difference
between the adversarial example x’ and the original example
x. Furthermore, the problem of optimizing δ is transformed
by introducing a new variable ω to optimize ω:

δi = 1/2(tanh(ωi)+ 1)− xi (9)

minimize‖ 1/2(tanh(ω)+ 1)− x ‖22 + c·f (1/2(tanh(ω)+1))

(10)

This turns the optimization problem into an unconstrained
minimization problem. By mapping to tanh space, the adver-
sarial examples can transform on (−∞,+∞), which is ben-
eficial for optimization. The following equation is generally
used for the loss function:

L(x ′, t) = max{max[Z (x ′) : i 6= t]i − [Z (x ′)]t ,−k} (11)

Z(∗) is the output of the logit layer. k is the preset con-
fidence, the larger k is, the higher the confidence of the
generated adversarial examples.

ADA: For CW2, although it is an attack method based on
finding the minimum perturbation, the generation efficiency
is extremely low, and the practicality is not high. There is no
doubt that PGD and MIM perform very powerfully in terms
of attack performance, yet the adversarial examples generated
using their attack ideas are not guaranteed to generate small
enough perturbations to create adversarial examples that are
easily perceived by humans to some extent. For PGD, the
attack success rate is closely related to the hyperparameter
maximum perturbation value ε and the step size α. If the
maximum perturbation value ε is set too large, the attack
success rate will always satisfy the attack demand with the
number of iterations, but the added perturbation is not the
most satisfying; Conversely, if the maximum perturbation
value ε is set too small, the increased perturbation, on the one
hand, will also be very small, which may make the generated
examples not adversarial. On the other hand, an unreasonable
step size α may cause the gradient optimization process to
fail to converge and oscillate back and forth between the
local optimum or the global optimum. For MIM, to ensure
the success rate of the attack, the information of previous
gradients is additionally added to each gradient update for
calculation, whichmakes the addition of a larger perturbation,
and the larger the hyperparameter µ is set, the larger the
perturbation is.
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Given the shortcomings of these two attack methods, the
ADA is proposed to find the minimum perturbation that satis-
fies the success of the attack, and the complete attack steps are
shown in Algorithm 1. First, input the original benign exam-
ple x, initialize the step size α, and indeed the attack type as an
untargeted attack or targeted attack. The optimal perturbation
is performed instead of setting a fixed size maximum per-
turbation value like FGSM, PGD, or MIM. Specifically, the
norm is constrained by projecting the adversarial perturbation
δ within the maximum perturbation range around the original
audio x. The perturbation size is then modified based on the
results of the two-category of judgments. And if the example
after adding the perturbation in the (k−1)th iteration if it is not
adversarial, expand the range of the maximum perturbation
value in the next iteration to (1+λ)εk−1; Conversely, after the
adversarial example is adversarial, the range of the maximum
perturbation value is narrowed down to (1−λ)εk−1 in the next
round of iterations. After each two-category of judgment, the
value of step size α is reduced, and the means of reduction
are exponential decay and cosine annealing in the learning
rate decay method. As many iterations pass, the maximum
perturbation value and step size become smaller and smaller,
and finally, an adversarial example that is both adversarial and
satisfies the added perturbation is small enough is returned.
We refer to the exponential decay function to reduce the
size of α as ADA-E and the cosine annealing function to
reduce the size of α as ADA-C. The following algorithm is
an example of the exponential decay function.

B. ADVERSARIAL TRAINING
As a typical active defense method, the idea of adversarial
training is very straightforward. The generated adversarial
examples are added to the training process, so that the model
learns the adversarial example data in advance, which can be
understood as a min-max optimization problem:

min
θ

E(x,y)∼D[max
δ∈S

L(θ, x + δ, y)] (12)

where θ is the weight parameter of the model, δ is the size of
the perturbation, S is the range of the perturbation, and D is
the data distribution.

The inner layer is a maximization that aims to find the
perturbation that maximizes the loss function, which simply
means that the added perturbation should try to cheat the
neural network. The outer layer is a minimization formula
that optimizes the neural network, i.e., when the perturbation
is fixed, we train the neural network model to minimize the
loss of the training data, i.e., to make the model robust to the
perturbation. Adversarial training is more time-consuming
than normal training, and the resulting model will be less
accurate for benign examples, yet it is still a powerful tool
to defend against adversarial attacks.

Taking ADA-based adversarial training as an example, the
adversarial training objective function can be expressed as:

L(θ, x, y) = cL(θ, x, y)

+ (1−c)L(θ, x+α ·sign(∇xL(θ, x, y)), y) (13)

Algorithm 1 ADA-E
Input: controlling with/without targeted attack m, number
of iterationsK , gradient information grad, benign example
x, label (untargeted) or preset label (targeted) y, loss func-
tion Lcross, modelf (∗), step size α, sign function sign(∗),
clipping function clip(∗), perturbation size ε, adjusting
the range of perturbations λ, Exponential decay function
ExponentialLR(∗)
Output: adversarial example x ′

1: Initialize
2: if targeted attack m←1 else m←−1 end if
3: fork ←1 in K do
4: grad ← m∇xk−1(Lcross(f (xk−1), y))
5: xk ← xk−1 − αk−1 · sign(grad)
6: xk ← clip (xk , xk − εk , xk + εk)
7: xk ← clip (xk ,−1, 1)
8: if xk−1 is y then
9: εk ← (1− λ) εk−1
10: else
11: εk ← (1+ λ)εk−1
12: end if
13: αk ← ExponentialLR(αk−1)
14: end for
15: return x ′

where x + α · sign(∇xL(θ, x, y) is the adversarial example
generated by the benign example x iteratively according to
the ADA method; c is used to balance the accuracy of the
benign and adversarial examples, i.e., the ratio taken by the
adversarial and benign examples.

V. EXPERIMENTAL SETUP
A. DATASETS AND EXPERIMENTAL ENVIRONMENT
Like [24] and [31], the datasets are taken from Librispeech
[32], the speech database Librispeech, which contains
1000 hours of 16 kHz recordings, cut and organized into text-
annotated audio files of about 10 seconds each. We provide
a total of 5 datasets, the first 3 datasets for the 3 types of
identification tasks, which are taken from ‘‘dev-other’’ and
‘‘train-other-500’’ in Librispeech named as enroll10, test10,
and imposter10. enroll10 has 10 people (5 men and 5 women),
and each person takes 10 random speech data for speaker
registration; test10 also has 10 people, but the 10 people
taken must be the same as enroll10, and each person takes
100 random speech data (no conflict with enroll10) for testing;
imposter10 denotes the impostor dataset mainly used for OSI,
SV tasks, where all 10 speakers in the dataset are different
from enroll10, and each speaker is randomly taken 100 voices.
The latter two datasets are used for adversarial training. The
datasets are taken from ‘‘train-clean-100’’ named train251,
test251, both of which contain 251 individuals (126 men and
125 women). The train251 is used for training and contains
25652 speech data, and test251 is used for testing and contains
2887 speech data.

118794 VOLUME 10, 2022



X. Zhang et al.: Highly Stealthy Adaptive Decay Attack Against Speaker Recognition

FIGURE 3. x-vector network architecture.

This experiment was implemented on an Ubuntu 20.04
system with an Intel i7-11700KF at 3.6GHz CPU,
an NVIDIA GeForce RTX 3070Ti with 8GB of video mem-
ory, and 32GB of RAM.

B. MODEL INTRODUCTION
Wewill use the two models i-vector [33], and x-vector [34] to
implement the attack on the three types of recognition tasks,
for the AudioNet [35] model is more biased toward doing
adversarial training.

The x-vector system is a speaker recognition system based
on DNN, which is the mainstream baseline model framework
in the current speaker recognition field. The DNN is trained
to extract the vocal features of the speaker, and the extracted
speaker embedding is called the x-vector. The whole sys-
tem can be divided into two modules, and the complete
architecture is shown in Figure 3 [36] below: the x-vector
system contains five frame-level TDNN layers, one statistical
pooling layer, two sentence-level fully connected layers, and
one SoftMax layer.

After the speaker model is trained, the back-end will use
the extracted speaker features x-vector to train a PLDA [37]
model for channel compensation to reduce the impact of
channel noise on the system and use the model for similarity
scoring.

Before the rise of deep learning-based speaker recognition,
i-vector, which belongs to the traditional speaker recognition
models, have been the most popular. I-vector is a simplified
version of joint factor analysis based on JFA [38], that is,
a Total factor matrix (T) is used to describe both speaker
information and channel information, and then the speech is
mapped to a fixed and low-dimensional vector. The existence
of channel information in matrix T will interfere with the
recognition system and even seriously affect the recognition
accuracy of the system. Therefore, channel compensation
for i-vector is required, so WCCN [39], Linear Discriminant
Analysis LDA [40] and Probabilistic Linear Discriminant
Analysis (PLDA) are usually used. The framework of i-vector
system is shown in Figure 4 below:

AudioNet is a one-dimensional convolutional neural
network model with a digital signal processing (DSP)

FIGURE 4. i-vector system framework.

TABLE 1. Structure of AudioNet network with DSP added.

front-end [24] added to the original model for extracting the
log-Mel spectrogram from the time-domain waveform of the
audio as an input to the convolutional layer. The neural net-
work consists of 8 convolutional layers and is mainly used to
transform the spectrogram into a single 32-dimensional vec-
tor of speaker embedding. BatchNorm and ReLU operations
are performed for all CNN layers, and only MaxPooling1D is
added at the end of the CNN layers in layers 1, 4, and 6. The
final fully connected layer maps the speaker embedding into
the class logits. The complete network architecture is shown
in Table 1.

C. METRICS
In this paper, we will evaluate the attack effect of each gen-
eration algorithm on speaker recognition models using attack
success rate (ASR), signal-to-noise ratio (SNR), perceptual
evaluation of speech quality (PESQ), and time for generating
adversarial examples.

The attack success rate is used to indicate the percentage of
generated adversarial examples that are misclassified by the
model, and the untargeted attack is defined as:

ASR =
Num(f (x ′) 6= y)
Num(f (x) = y)

(14)

Num(∗) represents the number, and if it is a targeted attack,
the numerator is changed to Num(f (x ′) = t).
For measuring the perceptibility of speech adversarial

examples, we use speech quality evaluation methods such
as signal-to-noise ratio (SNR) and speech quality perception
assessment (PESQ). The signal-to-noise ratio is the ratio of
the power of the signal to the power of noise, and the unit
of measurement is dB. The main measure of distortion in the
experiments is the size of the added perturbation relative to
the original audio, and then the difference between the adver-
sarial audio generated by the various generation algorithms is
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compared, which is calculated as follows:

SNR = 10lg(
Ps
Pn

) (15)

Ps represents the power of benign examples and Pn repre-
sents the power of perturbations. The larger the value of the
signal-to-noise ratio, the better.

The calculation of PESQ is more complicated, mainly by
extracting the difference between the input two signals in the
time-frequency domain or transform domain feature parame-
ters and then mapping the feature parameter differences by a
neural network model to obtain an objective sound quality
score. The PESQ score ranges from 0 to 5. Higher scores
indicate better voice quality.

The time to generate the adversarial examples is mainly
used to accurately compare the generation speed of various
attack algorithms in seconds.

VI. EXPERIMENTAL RESULTS
A. ALGORITHM PARAMETER SETTING
The step size of FGSM is ε = 0.002[24,31]. We also set
the maximum perturbation ε = 0.002, number of iterations
K = {10,20,30} for PGD, MIM, ADA-E, and ADA-C.
The step size α = 0.0004 for PGD and MIM, similarly
the initial step size α = 0.0004 in ADA. For CW2 we use
9 binary search steps to minimize adversarial perturbations,
run 60-600 iterations to converge, and vary the confidence k
from 0, 5, 10. In the experimental results, PGD-T, MIM-T,
ADA-E-T, and ADA-C-T are used to represent the number of
iterations of PGD, MIM, ADA-E, and ADA-C, e.g., PGD-10
means 10 iterations of PGD. CW2-k denotes CW2 when the
confidence is set to k .

The first thing we do is to perform a series of abla-
tion experiments in the x-vector model untargeted closed-set
speaker recognition with MIM and ADA-E as examples to
find the best parameters for the attack.

In the MIM experiment, its hyperparameter µ =

{0,0.2,0.4,0.6,0.8}, the λ = 0.2 that modifies the range of
perturbation size in the ADA-E experiment, and the decay
factor in the exponential decay that is the bottom γ =

{0.75,0.8,0.85,0.9,0.95}. After experiments, it is proved that
the success rate of the attack is always kept at 100%when the
hyperparameter µ takes any value, so we will choose the
value ofµwhen the perturbation is the smallest, i.e., the max-
imum value of SNR and PESQ, so we have the most suitable
u = 0 in this scenario. Similarly, it can be obtained that the
decay factor γ of ADA-E is most suitable to take 0.85 under
the premise of ensuring a high success rate. Figures 5 and
6 below show the graphs of the tuning results for the two
attack methods.

B. SPEAKER IDENTIFICATION FOR UNTARGETED ATTACK
Table 2 and Table 4 show the untargeted attacks under closed-
set identification and open-set identification, respectively.
In terms of attack success rate, no matter which identification
task or which identification model, or which test dataset, the

FIGURE 5. MIM tuning results.

FIGURE 6. ADA-E tuning results.

FGSM attack is the weakest attack among all attack methods,
for example, the success rate is only 32.37% in x-vector for
closed set recognition, while all other methods can achieve
100% attack success rate to deceive themodel because FGSM
is a single-step attack and does not need to perform iterations,
but its speed of generating adversarial examples is far from
that of other methods.

Other gradient-based attack methods stop finding adver-
sarial examples based on the number of iterations and are
close in generation time. In terms of the audio quality of
the generated adversarial examples, PGD is the stealthiest in
generating adversarial examples among the three compared
methods FGSM, PGD, and MIM. Specifically, the SNR and
PESQ values take the maximum value in PGD-10, yet the
maximum SNR does not exceed 35 dB and PESQ score does
not exceed 3 in both recognition models, and the perturbation
increases with the increase of the number of iterations, and
the SNR and PESQ values gradually decrease in PGD and
MIM. For CW2, the generated adversarial example has the
highest SNR metric among all experiments, thanks to its
optimization-based attack method, with the attendant prob-
lem that it consumes the most computational time of all
methods. As the confidence k is set larger, the higher the
success rate of CW2 and the lower the stealthiness.
The ADAmethod proposed in this paper guarantees a high

attack success rate and generation time very close to other
methods, the lowest SNR and PESQ indexes in the adversarial
examples generated by ADA-E and ADA-C methods are
42db and 4, which are 30% and 39% higher than those of
PGD-10 with the best comparative experimental results, and
the improved effect will continue to be enhanced with the
increase in the number of iterations, the smaller the generated
adversarial example perturbation will be, the more it can
escape the detection of the human ear, but the computation
time will also increase. Compared to CW2, ADA-C-30 has
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FIGURE 7. The speaker with id 127: Waveforms and spectrogram of FGSM generated adversarial audio.

FIGURE 8. The speaker with id 127: Waveforms and spectrogram of PGD generated adversarial audio.

higher PESQ than the former on datasets test10, with a greater
advantage in time consumption, reducing the time by at
least 94%.

C. SPEAKER IDENTIFICATION FOR TARGETED ATTACK
Table 3, Table 5, and Table 6 show the targeted attacks
under closed-set identification and open-set identification,
respectively. The targeted attacks are selected according to
the set difficulty level. Simple indicates that the label of the
most likely class other than the actual label of the normal
example is used as the targeted class label; Hard indicates
that the label of the least likely class other than the actual
label of the normal example is used as the targeted class
label. Under Simple difficulty, the success rate of FGSM
attack in closed-set identification is still the lowest among
all attack methods, but it is higher than that of untargeted
attack under the same condition, and the success rates of

targeted attack under x-vector of PGD-10 and MIM-10 are
99.88 and 99.89% respectively lower than that of untargeted
attack under the same condition, and the success rate of attack
can still reach 100% as the number of iterations increases.
The success rate of the attack can still reach 100% with an
increasing number of iterations, while the ADA can maintain
a 100% success rate. The adversarial examples generated
by all attack methods started equal or slightly improved in
SNR, and PESQ metrics compared to the untargeted attacks
under the same conditions. For open-set identification, the
adversarial examples generated by the imposter10 dataset are
more confusing to deceive both models than test10 for both
untargeted and targeted attacks, and the PESQ metric of the
adversarial examples generated by the imposter10 dataset is
greater than that of the adversarial examples generated by
test10 in terms of the stealthiness metric, while the opposite
occurs for the SNR metric.
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FIGURE 9. The speaker with id 127: Waveforms and spectrogram of CW2 generated adversarial audio.

FIGURE 10. The speaker with id 127: Waveforms and spectrogram of ADA-E generated adversarial audio.

The attack success rate of the FGSM method appears
extremely low under Hard difficulty, e.g., only 0.99% in
the closed set identification of the test10 test set under the
x-vector model, and other comparison methods including
the ADA cannot achieve 100% attack success rate at 10
iterations, yet the success rate of the ADA is higher than all
comparison methods. This is because the ADA sacrifices the
stealthiness of audio adversarial examples in exchange for an
increase in success rate. And the improvement in SNR and
PESQ is not as great as in the untargeted attack or Simple
difficulty, but it is still the attack method with the highest
stealthiness, which can be easily observed in the table.

Combining the experimental results of Simple and Hard,
without considering the CW2 success rate, the stealthiness
is slightly higher than the ADA method on the dataset

imposter10 and very close to the ADA method on dataset
test10. The computation time of CW2 is also the most and will
also increase with the difficulty of the attack. The lowest SNR
and PESQ values of ADA attack are 43db and 4.01 respec-
tively under the Simple difficulty of targeted attack; the
lowest SNR and PESQ indexes of ADA attack are 35db and
3.14 respectively under the Hard difficulty of targeted attack.
The stealthiness of the ADA method under targeted attack is
the highest among all methods, and the change in the number
of iterations has a significant positive correlation with the
change in SNR and PESQ metrics. The SNR and PESQ can
be improved by 20% and 25.4%, respectively, on average
for the ADA under the targeted attack compared to PGD-10.
In general, the targeted attack is more difficult compared to
the untargeted attack.
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FIGURE 11. The speaker with id 6227: Waveforms and spectrogram of FGSM generated adversarial audio.

FIGURE 12. The speaker with id 6227: Waveforms and spectrogram of PGD generated adversarial audio.

D. ATTACK FOR SPEAKER VERIFICATION
In the speaker verification experiments, we specifically
and mainly attack those 10 speaker verification models
in the registered enroll10 dataset separately as imposters
(i.e., the imposter10 dataset), which is more realistic, and
then calculate the average of each attack result to obtain
Table 7. Observation of Table 7 reveals that the ADA method
improves SNR and PESQ by at least 29.5% and 33.4% on
average compared to PGD-10 specifically, which is like the
improvement in untargeted speaker identification, proving
that this attack method is general and can be applied in
all speaker recognition tasks. To understand the adversarial
examples under the speaker recognition domain more intu-
itively, we take the speaker verification task as an example,
from the following Figure 7-14 show the waveform and
spectrogram after taking the original benign examples of two
different speakers at random using various attack methods to
generate the adversarial examples. After the comparison of

Figures 7-10 and 11-14, the human eye can intuitively find
that, through the comparison of waveform and spectrum, the
size of perturbation increased by the attack method proposed
in this paper is much smaller than other gradient attack
methods but slightly larger than CW2. This phenomenon is
reasonable, CW2 to find the minimum perturbation of the
sample at the cost of huge computation time, but according
to the experimental results ADA-C-30 and CW2 generated
examples of PESQ, SNR values are very close. Among these
the perturbations added by FGSM and PGD are not easily
distinguishable in the waveform, yet the perturbations added
by PGD are also superior to the FGSM method from the
comparison of the spectrogram.

E. ANALYSIS OF DIFFERENT MODELS
It is observed from Tables 2-7 that either the neural network-
based x-vector system or the GMM-UBM-based i-vector
system is vulnerable to adversarial attack spoofing and cannot
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FIGURE 13. The speaker with id 6227: Waveforms and spectrogram of CW2 generated adversarial audio.

FIGURE 14. The speaker with id 6227: Waveforms and spectrogram of ADA-E generated adversarial audio.

resist the adversarial attack. Among them, i-vector systems
are more threatened by adversarial attacks than x-vector sys-
tems, e.g., the success rate of FGSM attacks under i-vector
systems is higher than x-vector systems in all speaker recog-
nition tasks, etc. In terms of stealthiness, the SNRmetrics and
PESQ metrics of the adversarial examples generated by the
two systems are not significantly different. The SNR metrics
of the adversarial examples generated on the i-vector system
are equal to or higher than those generated on the x-vector
system, and the size of the PESQ metrics has advantages and
disadvantages for each of the two systems under different
recognition tasks. In terms of generation time, it is more
difficult and takesmore time to generate adversarial examples
on the i-vector system.

F. ANALYSIS OF ADVERSARIAL TRAINING
Table 8 presents the robustness of the trained model by
attacking it with different attack methods after we trained the

model separately in a specific way of adversarial training to
test the robustness of the model. Among them, we selected
three adversarial trainingmethods, using FGSM-based adver-
sarial training, PGD-10-based adversarial training, and
ADA-C-10-based adversarial training, denoted as FGSMAT,
PGD-10 AT, and ADA-C-10 AT, and the number of training
epochs set was 150, with 50% of the adversarial examples and
50% of the benign examples in the adversarial training, and
the maximum perturbation of all methods in the adversarial
training ε = 0.002.

The experimental results show that the neural network
AudioNet model without adversarial training is extremely
vulnerable to adversarial attacks, even the worst attack FGSM
has an 82.61% success rate, and the other three attack meth-
ods can achieve a 100% attack success rate. By comparing
the adversarial training based on the three different meth-
ods, first, we can find that the models after adversarial
training not only have a slight decrease in accuracy for
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TABLE 2. Experimental results of various attack algorithms under untargeted closed-set speaker identification with test 10 dataset.

TABLE 3. Experimental results of various attack algorithms under test 10 dataset with targeted closed-set speaker identification.

all benign examples but also add a lot of training time.
FGSM AT showed the least decrease in accuracy for benign

examples and the most decrease in adversarial training for
PGD-10 AT.
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TABLE 4. Experimental results of various attack algorithms under untargeted open-set speaker recognition.

TABLE 5. Experimental results of various attack algorithms under test 10 dataset with targeted open-set speaker identification.

Second, the training time consumed by FGSM AT is
the most time-efficient among these three approaches, yet

the improved model robustness is the weakest among these
three approaches, which cannot resist PGD-30, MIM-30,
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TABLE 6. Experimental results of various attack algorithms under imposter 10 dataset with targeted open-set speaker identification.

TABLE 7. Experimental results of various attack algorithms for speaker verification under imposter 10 dataset.

TABLE 8. Model robustness after adversarial training for various specific methods under untargeted speaker identification.

and ADA-C-30 attacks, and only improves the resistance
to FGSM attacks, which reduces the success rate of FGSM
attacks by about 68%.

PGD-10 AT takes the longest time, about three times
longer than FGSM AT and 1.5 times longer than ADA-C-10
AT, and its improved defensive effect is generally stronger
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than the counter training of FGSM AT, yet weaker than
ADA-C-10 AT, specifically reducing the FGSM, PGD-30,
and ADA-C-30 by about 67%, 50%, and 36%, respectively
method’s attack success rates.

And the proposed method for adversarial training in this
paper not only takes less time and improves the model robust-
ness overall the best among these three adversarial pieces of
training, only slightly lower than the other two adversarial
pieces of training in resisting FGSM attacks, yet the defense
effect is still efficient, specifically reducing the attack success
rate of FGSM, PGD-30, and ADA-C-30 methods by about
60%, 64%, and 55%, respectively, with significant improve-
ment in resisting PGD and ADA-C attacks.

Finally, despite the adversarial training of different meth-
ods, it was not possible to improve the defense against MIM
attack methods, and MIM was able to achieve a 100% attack
success rate. The possible reason is that the adversarial exam-
ples generated by FGSM, PGD, and ADA-C are completely
different from those generated by MIMmethods, so although
the adversarial training was performed to increase the diver-
sity of model recognition examples, it was still not able to
defend against MIM attack.

VII. CONCLUSION AND FUTURE DIRECTIONS
To explore the adversarial examples in the field of speaker
recognition, this paper attacks two different speaker recog-
nition models and reveals that there are serious security
problems in speaker models. The proposed attack method
compensates the shortcomings of traditional attack methods
FGSM, PGD, MIM, and CW2, greatly improves the stealth-
iness or reduces the generation time of adversarial examples
and is applicable to all recognition tasks and different models.
Finally, the proposed method is used for adversarial training,
and its improved model robustness is generally better than the
FGSM-based and PGD-based adversarial training.

The deficiency of this paper is that the research and exper-
iment are carried out under the assumption of white-box
attack, which has certain limitations. The next step will be
to study speaker recognition under black box attacks and
explore other defense methods besides adversarial training.

REFERENCES
[1] C. Zhang, K. Koishida, and J. H. L. Hansen, ‘‘Text-independent speaker

verification based on triplet convolutional neural network embeddings,’’
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26, no. 1,
pp. 11–23, Sep. 2018, doi: 10.1109/TASLP.2018.2831456.

[2] N. Maghsoodi, H. Sameti, H. Zeinali, and T. Stafylakis, ‘‘Speaker recogni-
tion with random digit strings using uncertainty normalized HMM-based
I-vectors,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 27,
no. 11, pp. 1815–1825, Nov. 2019, doi: 10.1109/TASLP.2019.2928143.

[3] H. Ren, Y. Song, S. Yang, and F. Situ, ‘‘Secure smart home: A voiceprint
and internet based authentication system for remote accessing,’’ in Proc.
11th Int. Conf. Comput. Sci. Educ. (ICCSE), Aug. 2016, pp. 247–251.

[4] L. Fan, Q.-Y. Jiang, Y.-Q. Yu, and W.-J. Li, ‘‘Deep hashing for
speaker identification and retrieval,’’ in Proc. Interspeech, Sep. 2019,
pp. 2908–2912.

[5] A. Q. Ohi, M. F. Mridha, M. A. Hamid, and M. M. Monowar, ‘‘Deep
speaker recognition: Process, progress, and challenges,’’ IEEE Access,
vol. 9, pp. 89619–89643, 2021, doi: 10.1109/ACCESS.2021.3090109.

[6] P. Univaso, ‘‘Forensic speaker identification: A tutorial,’’ IEEE
Latin Amer. Trans., vol. 15, no. 9, pp. 1754–1770, Sep. 2017, doi:
10.1109/TLA.2017.8015083.

[7] C.-Y. Huang, Y. Y. Lin, H.-Y. Lee, and L.-S. Lee, ‘‘Defending your
voice: Adversarial attack on voice conversion,’’ in Proc. IEEE Spo-
ken Lang. Technol. Workshop (SLT), Jan. 2021, pp. 552–559, doi:
10.1109/SLT48900.2021.9383529.

[8] R. J. Weiss, R. Skerry-Ryan, E. Battenberg, S. Mariooryad,
and D. P. Kingma, ‘‘Wave-tacotron: Spectrogram-free end-to-
end text-to-speech synthesis,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Jun. 2021, pp. 5679–5683, doi:
10.1109/ICASSP39728.2021.9413851.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2015.

[10] A. Liu, X. Liu, J. Fan, Y. Ma, A. Zhang, H. Xie, and D. Tao, ‘‘Perceptual-
sensitive GAN for generating adversarial patches,’’ in Proc. AAAI Conf.
Artif. Intell., Jul. 2019, vol. 33, no. 1, pp. 1028–1035.

[11] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, ‘‘Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face recogni-
tion,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Dec. 2016,
pp. 1528–1540.

[12] N. Carlini and D. Wagner, ‘‘Audio adversarial examples: Targeted attacks
on speech-to-text,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2018, pp. 1–7, doi: 10.1109/SPW.2018.00009.

[13] D. Park, H. Khan, and B. Yener, ‘‘Generation & evaluation of adver-
sarial examples for malware obfuscation,’’ in Proc. 18th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2019, pp. 1283–1290, doi:
10.1109/ICMLA.2019.00210.

[14] T. Kinnunen and H. Li, ‘‘An overview of text-independent speaker recog-
nition: From features to supervectors,’’ Speech Commun., vol. 52, no. 1,
pp. 12–40, 2010.

[15] X. Yuan, ‘‘CommanderSong: A systematic approach for practical adver-
sarial voice recognition,’’ in Proc. USENIX Secur. Symp., Jun. 2018,
pp. 49–64.

[16] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, ‘‘Targeted adversar-
ial examples for black box audio systems,’’ in Proc. IEEE Secur. Pri-
vacy Workshops (SPW), May 2019, pp. 15–20, doi: 10.1109/SPW.2019.
00016.

[17] S. Khare, R. Aralikatte, and S. Mani, ‘‘Adversarial black-box attacks on
automatic speech recognition systems using multi-objective evolutionary
optimization,’’ 2018, arXiv:1811.01312.

[18] A.Madry, ‘‘Towards deep learningmodels resistant to adversarial attacks,’’
in Proc. Int. Conf. Learn. Represent. (ICLR), 2018.

[19] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li,
‘‘Boosting adversarial attacks with momentum,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9185–9193, doi:
10.1109/CVPR.2018.00957.

[20] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ inProc. IEEE Symp. Secur. Privacy (SP),May 2017, pp. 39–57.

[21] C. Guo, ‘‘Countering adversarial images using input transformations,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), 2018.

[22] J. Lin, C. Gan, and S. Han, ‘‘Defensive quantization: When efficiency
me ETS robustness,’’ in Proc. Int. Conf. Learn. Represent. (ICLR),
2019.

[23] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X.Wang, ‘‘Detecting adversarial
image examples in deep neural networks with adaptive noise reduction,’’
IEEE Trans. Dependable Secure Comput., vol. 18, no. 1, pp. 72–85,
Jan. 2021, doi: 10.1109/TDSC.2018.2874243.

[24] A. Jati, C.-C. Hsu, M. Pal, R. Peri, W. Abdalmageed, and S. Narayanan,
‘‘Adversarial attack and defense strategies for deep speaker recognition
systems,’’ Comput. Speech Lang., vol. 68, Jul. 2021, Art. no. 101199, doi:
10.1016/J.CSL.2021.101199.

[25] F. Kreuk, Y. Adi, M. Cisse, and J. Keshet, ‘‘Fooling end-to-end
speaker verification with adversarial examples,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Apr. 2018, pp. 1962–1966, doi:
10.1109/ICASSP.2018.8462693.

[26] X. Li, J. Zhong, X. Wu, J. Yu, X. Liu, and H. Meng, ‘‘Adversarial
attacks on GMM I-vector based speaker verification systems,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020,
pp. 6579–6583, doi: 10.1109/ICASSP40776.2020.9053076.

[27] G. Chen, S. Chenb, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu,
‘‘Who is real bob? Adversarial attacks on speaker recognition systems,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2021, pp. 694–711, doi:
10.1109/SP40001.2021.00004.

118804 VOLUME 10, 2022

http://dx.doi.org/10.1109/TASLP.2018.2831456
http://dx.doi.org/10.1109/TASLP.2019.2928143
http://dx.doi.org/10.1109/ACCESS.2021.3090109
http://dx.doi.org/10.1109/TLA.2017.8015083
http://dx.doi.org/10.1109/SLT48900.2021.9383529
http://dx.doi.org/10.1109/ICASSP39728.2021.9413851
http://dx.doi.org/10.1109/SPW.2018.00009
http://dx.doi.org/10.1109/ICMLA.2019.00210
http://dx.doi.org/10.1109/SPW.2019.00016
http://dx.doi.org/10.1109/SPW.2019.00016
http://dx.doi.org/10.1109/CVPR.2018.00957
http://dx.doi.org/10.1109/TDSC.2018.2874243
http://dx.doi.org/10.1016/J.CSL.2021.101199
http://dx.doi.org/10.1109/ICASSP.2018.8462693
http://dx.doi.org/10.1109/ICASSP40776.2020.9053076
http://dx.doi.org/10.1109/SP40001.2021.00004


X. Zhang et al.: Highly Stealthy Adaptive Decay Attack Against Speaker Recognition

[28] A. S. Shamsabadi, F. S. Teixeira, A. Abad, B. Raj, A. Cavallaro, and
I. Trancoso, ‘‘FoolHD: Fooling speaker identification by highly imper-
ceptible adversarial disturbances,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Jun. 2021, pp. 6159–6163, doi:
10.1109/ICASSP39728.2021.9413760.

[29] Q. Wang, P. Guo, and L. Xie, ‘‘Inaudible adversarial perturbations for
targeted attack in speaker recognition,’’ in Proc. Interspeech, Oct. 2020,
pp. 4228–4232.

[30] Q.Wang, P. Guo, S. Sun, L. Xie, and J. H. L. Hansen, ‘‘Adversarial regular-
ization for End-to-End robust speaker verification,’’ in Proc. Interspeech,
Sep. 2019, pp. 4010–4014.

[31] G. Chen, Z. Zhao, F. Song, S. Chen, L. Fan, and Y. Liu, ‘‘SEC4SR: A secu-
rity analysis platform for speaker recognition,’’ 2021, arXiv:2109.01766.

[32] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, ‘‘Librispeech: An
ASR corpus based on public domain audio books,’’ inProc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Apr. 2015, pp. 5206–5210, doi:
10.1109/ICASSP.2015.7178964.

[33] N. Dehak, P. J. Kenny, R. Dehak, D. Pierre, and O. Pierre, ‘‘Front-
end factor analysis for speaker verification,’’ IEEE Trans. Audio, Speech,
Language Process., vol. 19, no. 4, pp. 788–798, May 2011, doi:
10.1109/TASL.2010.2064307.

[34] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
‘‘X-vectors: Robust DNN embeddings for speaker recognition,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 5329–5333, doi: 10.1109/ICASSP.2018.8461375.

[35] S. Becker, M. Ackermann, S. Lapuschkin, K.-R. Müller, and W. Samek,
‘‘Interpreting and explaining deep neural networks for classification of
audio signals,’’ 2018, arXiv:1807.03418.

[36] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, ‘‘Deep neural
network embeddings for text-independent speaker verification,’’ in Proc.
Interspeech, Aug. 2017, pp. 999–1003.

[37] S. J. D. Prince and J. H. Elder, ‘‘Probabilistic linear discriminant analysis
for inferences about identity,’’ in Proc. IEEE 11th Int. Conf. Comput. Vis.,
Jun. 2007, pp. 1–8, doi: 10.1109/ICCV.2007.4409052.

[38] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, ‘‘Joint factor
analysis versus eigenchannels in speaker recognition,’’ IEEE Trans. Audio,
Speech, Language Process., vol. 15, no. 4, pp. 1435–1447, May 2007, doi:
10.1109/TASL.2006.881693.

[39] Y. Long, W. Guo, and L. Dai, ‘‘An SIPCA-WCCN method for SVM-
based speaker verification system,’’ in Proc. Int. Conf. Audio, Lang. Image
Process., Jul. 2008, pp. 1295–1299, doi: 10.1109/ICALIP.2008.4589961.

[40] T. Hastie and R. Tibshirani, ‘‘Discriminant analysis by Gaussian mix-
tures,’’ J. Roy. Statist. Soc. B, Methodol., vol. 58, no. 1, pp. 155–176, 1996.

XINYU ZHANG was born in Zhejiang, China.
He received the B.E. degree in network engineer-
ing from Ningbo University of Technology. He is
currently pursuing the M.E. degree in cyberspace
security with Guizhou Normal University, China.
His research interest includes speaker recognition
based on deep learning.

YANG XU was born in Shandong, China.
He received the Ph.D. degree in computer software
and theory from Guizhou University. He is cur-
rently a Professor and a Postgraduate Supervisor
with the Key Laboratory of Information and
Computing Science Guizhou Province, Guizhou
Normal University, Guiyang, China. He is a Senior
Member of China Computer Federation (CCF).
His research interests include cybersecurity and
deep learning.

SICONG ZHANG was born in Chongqing, China.
He received the B.E. degree in electrical engi-
neering and automation from the Civil Aviation
University of China, the M.E. degree in computer
science and technology from Guizhou Normal
University, and the Ph.D. degree in software engi-
neering from Guizhou University. He is currently
a Lecturer and a Postgraduate Supervisor with the
Key Laboratory of Information and Computing
Science Guizhou Province, Guizhou Normal Uni-

versity, Guiyang, China. His research interests include cybersecurity and
deep learning.

XIAOJIAN LI was born in Guangxi, China.
He received the M.E. degree in computer science
and technology from Guizhou Normal University,
where he is currently pursing the Ph.D. degree.
His research interests include cybersecurity and
algorithm robustness.

VOLUME 10, 2022 118805

http://dx.doi.org/10.1109/ICASSP39728.2021.9413760
http://dx.doi.org/10.1109/ICASSP.2015.7178964
http://dx.doi.org/10.1109/TASL.2010.2064307
http://dx.doi.org/10.1109/ICASSP.2018.8461375
http://dx.doi.org/10.1109/ICCV.2007.4409052
http://dx.doi.org/10.1109/TASL.2006.881693
http://dx.doi.org/10.1109/ICALIP.2008.4589961

