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ABSTRACT Knowledge Graphs (KG) are efficient auxiliary information in recommender systems.
However, in knowledge graph feature learning, a major objective is improvement for recommendation
performance. One of the problems in the existing methods is that they cannot uncover the deep interaction
information of users in a simple way, and this motivates effective learning of the potential embedded
information through the knowledge graph. The Graph Convolutional Network (GCN) can be useful for
learning information about graph structured data. This paper proposes a method that fuses higher order
feature interactions and knowledge graphs and uses them for recommendation. For users, they uses Gated
Recurrent Units (GRU) to focus on their preferences so that the ability of convolutional neural networks
in processing user preference features is enhanced; for items, the cross-learning module is adopted to
learn higher order features between items and entities; for users and entities, KG and user-item interaction
information are combined followed by feature extraction of graph structured data by Light GCN, allowing
the model to learn potential user-entity associations from the graph structured data. Current experiments on
two real datasets show that the proposed model performs better than some recently developed models.

INDEX TERMS Recommendation systems, knowledge graphs, convolutional neural networks.

I. INTRODUCTION
Online information browsing has permeated people’s daily
lives as the Internet era has progressed [1]. The information
overload is becoming an issue due to the growth of the
Internet, making it difficult for users to sift through the mass
of information to find their truly interests. Recommendation
systems have been developed as a result of the urgent require-
ment for an effective information filtering mechanism [2].
The aim of recommendation system is to extract the user’s

The associate editor coordinating the review of this manuscript and
approving it for publication was Alireza Sadeghian.

needs and interests from their previous interactions with the
items and then provide the findings to the user. Content-
based recommendation [24], [25], [26], [37], collaborative
filtering-based recommendation [24], [38], and their com-
binations [27], [28], [40], [41] are three primary types of
recommendation algorithms. The recommendation accuracy
keeps increasing from the initial periods of machine learning
to the present day of deep learning [8]. Aiming to address
the sufferings from data sparsity [43] and cold-start issues,
a common solution is to incorporate different auxiliary infor-
mation[40] into recommendationmodels, including user/item
attributes, social networks or contextual information.
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Knowledge graphs could offer logical justifications for the
recommendation outcomes since they have structured seman-
tic knowledge of auxiliary information.For the cold start
problem, most of the existing solutions are achieved by
enhancing knowledge embedding, adopting heterogeneous
graphs to enrich data representation or using Graph Neural
Networks (GCN). In this paper, we focus on alleviating the
cold start problem by introducing graph convolutional neural
networks to explore users’ potential interests.

Major types of knowledge graph-based recommendation
systems include the embedding-based method and the path
based approach. In embedding-based techniques, Knowledge
graph embedding is carried out to preprocess KG, and the
item embedding representation is subsequently used in rec-
ommendations. In order to obtain an embedding representa-
tion, Collaborative Knowledge Base Embedding (CKE) [6]
analyzes the structural data of KG using TransR [3], while
Deep Knowledge-aware Network (DKN) [11] builds a
knowledge graph by extracting text data and fusing the word
vectors of news with the entities of the knowledge graph.
The path-based approach involves constructing a user-item
graph and using the connectivity of entities in the graph
to make recommendations. The recommendation results are
improved by the similarity of connections between users
and/or items, but this approach heavily depends on manu-
ally created meta-paths. The ‘‘matrix factorization (MF) +
factorization machine (FM)’’ method is used by Meta-Graph
Based Recommendation Fusion [12] to integrate meta-graph
into the Heterogeneous Information Network (HIN) based
recommendation system and address the information fusion
issues. TheMF technique is used to produce potential features
of users and possible elements of items for each meta-graph
similarity. A group lasso regularization-based FM approach
is presented to automatically choose the appropriate meta-
graph method from the observed data for various meta-
graph attributes. When coding a given entity representation,
Wang et al. [29] proposes a model Knowledge Graph Convo-
lutional Networks (KGCN) that fuses KG features and graph
convolutional neural networks to integrate neighbour infor-
mation and deviations to acquire neighbourhood structure
more effectively. This model enables users to receive more
personalized interest recommendations.

In recent years, deep learning has been increasingly applied
to recommendation algorithms owing to the widespread use
of these techniques in image processing, machine trans-
lation, and intelligent questioning and answering systems.
The enhanced efficiency of recommendations originates
from neural networks’ effective access to deep semantic
information among data. Yang et al. [14] introduces a
novel Knowledge-enhanced Deep recommendation frame-
work incorporating Generative and Adversarial Network
(KTGAN), which is a GAN-based model with two stages.
The first stage is to learn KG embedding in combination
with Metapath2Vec [36] and tag embedding in combination
with Word2Vec [35], while the second stage uses a gen-
erator G and a discriminator D to refine the user’s initial

representation. The knowledge-enhanced Sequential Recom-
mender (KSR) [15] framework combines Gated Recurrent
Units (GRU) network with a Key-Value memory network,
where the GRU network is used to capture the serialized
preferences of the user, and the Key-Value memory network
models the attribute-level preferences of the user through
Trans E [34]. In this work, we introduce knowledge graphs
as auxiliary information into the recommendation model and
apply deep learning techniques to learn user-item interaction
information from the supplementary data. The main contri-
butions of this paper are as follow:

(1) The cross-learning module is proposed for mining
explicit and implicit higher-order interactions between items,
which provides auxiliary information for recommendations.

(2) To enrich the relationship between users and entities,
a user-item-entity graph is constructed, and a graph feature
learning module is used to explore the semantic relationships
in the graph structure data to better improve the recommen-
dation performance.

(3) We conduct extensive experiments on two benchmark
datasets, and the results show that the proposed model out-
performs the other benchmark models.

II. RELATED WORK
A. RECOMMENDER SYSTEM
With the development and application of deep learning tech-
nology, neural networks have been applied to all aspects
of recommendation systems, and the recommendation algo-
rithms have experienced from content-based recommen-
dations to collaborative filtering-based recommendations,
which are further developed from user- and item-based
collaborative filtering to model-based Collaborative Filter-
ing (CF). Since deep learning can effectively mine data
features, researchers have introduced large amount of aux-
iliary information, such as text, tags, social relationships,
etc., to extract favorable features for recommendations.
ConvMF [18] model embeds convolutional neural networks
into maximum likelihood estimation to generate recommen-
dations based on review text analysis. Zhou et al. proposes
Deep Interest Network (DIN) [19], presenting a deep learning
method based on mini-batch regularization and data-adaptive
activation function, which adds an attention mechanism after
the embedding layer, aiming to generate user features from
the recommended items. TheWide&Deep [20]modelmerged
linear models and Deep Neural Network (DNN) models,
which utilize the memory capability of the shallow model
and the generalization capability of the deep model in a
comprehensive way, enabling the proposedmodel to combine
the features of accuracy and scalability, and thus achieving
improved feature extraction capabilities. Knowledge-aware
Path Recurrent Network (KPRN) [21], which uses knowl-
edge graphs as auxiliary information for recommendation,
employs Recurrent Neural Networks (RNN) to learn users’
preferences, and finally uses path information to enhance
the interpretability of recommendations. MKR [22] is
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a multi-task learning recommendation framework that com-
bines the knowledge graph learning task with the recom-
mendation task well for training, resulting in improved
performance of the final recommendation.

B. KNOWLEDGE GRAPH-BASED RECOMMENDATION
Knowledge graph has powerful semantic expression capa-
bility and is essentially a knowledge base of semantic net-
work. Google proposed the knowledge graph concept in
2012, aiming to use the knowledge base to improve the
performance of search engines and enhance the user’s search
efficiency [44]. With the development and application of
artificial intelligence, knowledge graph has been widely used
in intelligent search, intelligent Q&A and personalized rec-
ommendation [44]. Presently, the application of knowledge
graph feature learning to recommender systems is mainly
through three methods, i.e. sequential learning, joint learn-
ing, and multi-task learning, with typical DKN, CKE, and
MKR models, respectively. In this study, we will conduct
modeling by using a multi-task learning strategy.

The embedding-based approaches [6], [7], [9], [10], [11],
[13], [15] characterize entities and relationships by knowl-
edge graph embedding (KGE) [3], [4], [34], which in turn
obtains additional semantic information. Relations provide
additional information for knowledge graph-based recom-
mendations that can use inter-node reasoning to discover new
connections [45]. DKFM [7] is proposed for points of interest
(POI) recommendation, using TransE [34] to train urban
data for enriching the representation of destinations as well
as for improving the relevant recommendation performance.
BEM [10] uses two types of graph data, i.e. knowledge-
related graphs and behavioral graphs, for firstly learning
the initial embedding representation from the graph using
TransE and Graph Neural Networks (GNN), respectively.
After that, a Bayesian framework is used to extract the two
types of embeddings. KTUP [9] uses TransH [4] to jointly
learn the enhanced item-preference embeddings and the
entity-relationship embeddings. Path-based approaches [5],
[8], [17], [18] aim to uncover multiple connections between
users and items based on graphs to explore potential infor-
mation in knowledge graphs. McRec [5] designs a mutual
attention mechanism based on meta-paths for top-K recom-
mendations, extracts potential features of meta-paths, and
exploits connectivity between users and different types of
relational paths or items on graphs. The KPRN [17] exploits
the sequential dependencies in paths, making it possible to
reason effectively over the paths. Although the path-based
approachmakes more natural use of the knowledge graph, but
it relies heavily on the design of meta-paths, which require
specialized domain knowledge for effective meta-paths.

III. PROBLEM FORMULATION
In the study of knowledge graph-enhanced recommenda-
tions for a particular recommendation scenario, we have a
collection of users U = {u1, u2, . . . , um} and a group of
items V = {v1, v2, . . . , vn}; where m and n denote the

TABLE 1. Notations and explanations.

corresponding numbers. Typically, the user-item interaction
data is represented as a bipartite graph, and the user-item
interaction matrix Y ∈ Rm×n is established based on implicit
user feedback.

y =
{
1, if (u, i) is interact
0, otherwise

(1)

The presence of the yui = 1 here denotes user interaction
with the item, whichmay take actions like browsing, clicking,
purchasing, rating, etc; and yui = 0 indicates that the user
did not engage with the item, yet it does not imply that the
user disapproved of the item. It is also possible that the user
did not navigate to the item since no interaction took place.
The knowledge graph G is made up of entity-relationship-
entity triples (h, r, t), with h, r , and t standing for the head
entity, relationship, and tail entity, respectively. For example,
the triplet (Paul Kalanithi, book. written_work. author, When
Breath Becomes Air) identifies Paul Kalanithi as the writer
of ‘‘When Breath Becomes Air’’. Knowledge graphs provide
factual knowledge and rich semantic information about items.
In many recommendation scenarios, an item v ∈ V corre-
sponding to one or more entities, so that we could establish
item-entity alignments. Through the alignment of items and
knowledge graph entities, the knowledge graph can provide
complementary information for interaction information.

The challenge of our knowledge-aware recommendation is
to forecast the potential interest of a user u in an unobserved
item v given a user-item interactionmatrix Y and a knowledge
graph G. The aim is to train a prediction function ŷuv =
F (u, v | θ,Y ,G), where θ is the model parameter of the
function F, to calculate the chance of user u selecting item v.
Table 1 lists a description of each symbol used in this paper.

IV. METHODOLOGY
In this section, we provide an overview of the general
framework before detailing our proposed approach and pre-
senting the implementation details of the specific modules
individually.

A. AN OVERVIEW
The general framework of our model is shown in Figure 1,
which consists of three main tasks; that is, knowledge graph
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FIGURE 1. Overall framework of the proposed model.

embedding learning, feature learning of graph data, and
recommendation module. (a) Knowledge graph embedding
learning is a task that mainly focuses on learning the knowl-
edge graph tripple data and linking the knowledge graph
feature learning with the recommendation task through a
Cross Item-Feature Learning (CIFL) module for data sharing
and parameter transfer to achieve better recommendations.
For this task, the head h and relation r of the knowledge graph
are used as input, and h and r are obtained through processing
the CIFLmodule and Convolutional Neural Networks (CNN)
respectively. A Multilayer Perceptron (MLP) is implemented
to predict the tail, with the use of a similarity function as the
evaluation of the final result. (b) Graph data feature learn-
ing module, through combining the knowledge graph data
and user-item interaction data into a user-item-entity graph,
to process the user-item-entity graph by a Light GCN network
for extracting the fine-grained information of users and items.
(c) Recommendation module is linked with the knowledge
graph embedding learning module through the CIFL module.
The user and item embedding vectors obtained through the
graph data feature learning module are stitched together with
the current user and item embedding vectors, and finally the
final results are predicted using a multilayer perceptron.

B. GRAPH DATA FEATURE LEARNING
The items might be represented by how the users interact;
however, in the past, only the user-item graph was taken into
account. The representation of how information is interacted
with is too broad, so we wish to know the fine-grained char-
acteristics more thoroughly. In order to build the user-item-
entity graph, which preserves more comprehensive structural
information, we integrate the user-item interaction graph with

the knowledge graph. Therefore, in order to automatically
encode the route information within the nodes and maintain
the information of nearby nodes and the user-item-entity
path information, we would treat the structural information
using Light GCN, a graph encoder with path-awareness.
In general, graph data feature learning is to learn the rela-
tionship between users and entities in the graph, so as to
explore the deeper features of users. The light GCN is a
light yet efficient GCN network that forgoes nonlinear acti-
vation and typical feature transformation in favor of a simple
message transmission mechanism and the most fundamental
GCN aggregation formulation at the k layer, is illustrated in
Equation 2.

e(k+1)u =

∑
i∈Nu

1
√
|Nu| |N v|

e(k)v (2)

e(k+1)v =

∑
u∈Nv

1
√
|Nu‖N v|

e(k)u (3)

whereNu andNv represent the set of items that user u and item
v have interacted with, respectively, and e(k)v and e(k)u denote
the embeddings of user u and item v at the k th level. The
symmetric regularization term 1√

|Nu‖Nv|
follows the standard

GCN structure with the purpose of avoiding the size of the
embedding to increase with the graph convolution operation.
We then sum over them to obtain the most embedding repre-
sentations of the users and the items.

eu =
K∑
k=0

αke(k)u (4)

ev =
K∑
k=0

αke(k)v (5)
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C. CROSS ITEM-FEATURE LEARNING
Based on the user-item interaction information, we can infer
the user’s item preferences. To better learn the interaction
information between items and entities, we design a CIFL
module, which models the higher-order interactions between
items and their corresponding entity features. We utilize the
main module of XDeepFM [23], a Compressed Interaction
Network (CIN), for item preference extraction with explicit
higher-order features. The idea of CIN is to achieve automatic
explicative learning of higher-order feature interactions so
that the feature interactions occur between individual fea-
ture vectors, i.e., feature interactions at the vector level. The
CIN network includes CNN and RNN, which can adjust
the feature order by controlling the number of layers of the
neural network so that feature interactions occur vector-wise,
effectively avoiding the defect that the number of model
parameters increases exponentially with the number of layers,
thus achieving the purpose of efficient extraction. In the CIN
module, the output of each layer is used as the input of the
next layer, and the neurons of each layer are calculated based
on the hidden layer of the previous layer and the original
feature vector is calculated as shown below.

Xk
h,∗ =

Hk−1∑
i=1

m∑
j=1

Wk,h
ij

(
Xk−1
i,∗ ◦ X

0
j,∗

)
(6)

The original features of the input and hidden layers of the
neural network are converted into matrices denoted as X0 and
X k , respectively, where the i-layer embedded feature vector is
presented byX0

i,∗ = ei,Hk is the i-row ofX0,Hk is the number
of feature vectors in the k layer, xk−1i,∗ is the i layer row of the
output matrix of the k − 1 layer in the CIN, X0

j,∗is the j-layer
row feature vector of the original feature, andwk,h ∈ RHk−1∗m

denotes the parameter matrix of the hth feature vector. Equa-
tion 6 allows us to divide the CIN model computation into
three stages. The output state X k of the preceding hidden
layer and the output matrix X0 of the embedding layer is
used to compute X k−1i,∗ ◦ X

0
j,∗ so as to provide an intermediate

result of Zk+1, which is the first stage. The output of the next
hidden layer is produced in the second stage by performing a
layer-by-layer feature mapping operation on the intermediate
result of the first stage and using a convolution kernel of
mH vectors at Hk+1 positions. Each feature mapping matrix
created in the second stage is added together and merged
in the third stage to produce Pki =

∑D
j=1 X

k
i,j. A DNN is

used to facilitate feature interactions created in the bit-wise
level, allowing each feature to interact implicitly with other
features and thereby satisfying the higher-order feature inter-
actions between various components. This allows collecting
of more data regarding the implicit interaction of items. The
following equations are used to calculated implicit interaction
information.

xl = σ
(
W(l)e+ bl

)
(7)

xk = σ
(
W(k)x(k−1) + bk

)
(8)

where W k stands for the weight between the k-layer and
(k+1)-layer, and bk represents for the bias of the (k+1)-layer.
xk is the output of the k-layer, σ is the activation function.
That is, the higher-order features are implicit higher-order
interactions at the element level.

D. KNOWLEDGE GRAPH EMBEDDING MODULE
The knowledge graph, as a powerful knowledge network
structure, mainly consists of the triad {(h, r, t) | h, t ∈ E,
r ∈ R}, where E is the set of entities in the knowledge graph
and R is the set of relations. The knowledge graph represen-
tation learning refers to embedding the entities and relations
composing knowledge into a low-dimensional vector space
while preserving the structural and semantic information of
KG. In this work, a semantic matching-based knowledge
graph learning model is used to mine the attribute features of
items so as to find out the potential connections among items,
connecting the knowledge graph feature learning module and
the recommendation module through the CIFL module, and
then obtaining the vector representation of items using the
training method of multi-task learning. Firstly, the head h
in the knowledge graph triple is processed using the CIFL
module; secondly, the relationship r is processed using the
convolution module; thirdly, h and r are stitched together;
its dimensionality is reduced by an l-layer MLP, to obtain a
prediction (t̂). The similarity function is used to evaluate the
prediction results.

h = F(V , h)[h] (9)

r = C(r) (10)

t = MLP
([

h
r

])
(11)

where C stands for the convolutional neural network, and
F for the CIFL module. Equation 12 illustrates how a sim-
ilarity function may be used to get the highest similarity of
the triplet (h, r, t). σ is the sigmoid activation function and
t̂ is the prediction vector for tail t.

simility(t, t̂) = fkg(t, t̂) = −σ
(
t>t
)

(12)

E. RECOMMENDATION MODULE
The inputs for the model are the original feature vectors of
users and items, which are fed into the embedding layer of
users and items to obtain the low-dimensional dense vector
representations of users and items. The user embedding set is
U ∈ R and the item embedding set is V ∈ R. The embedding
vectors of users and items are represented as u ∈ R, v ∈ R.
For different users, the items in the current sequence have
different attention levels. Therefore, we use the gated cyclic
unit based on the attention mechanism to obtain the item
preferences for the current user in the sequence. We use CNN
to obtain its preference feature distribution for the refined
current preferences. For a given user’s original feature vector
u, the ugru and ucnn after GRU and CNN processing are
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as follows:

ugru = GRU (u) (13)

ucnn = CNN
(
ugru

)
(14)

For item v, we processed it using the CIFL module to obtain:

vl = F(V , h)[h] (15)

The eu and ev obtained by the graph data feature learning
process are stitched together with the ucnn and vl received
by the recommendation module to obtain the final u and v.
Finally, the u and v are stitched together by an l-layer MLP
for user u click-through rate prediction.

F. PARAMETER LEARNING
The loss function of our model is as follows:

L = LRS + LKG
=

∑
u∈U ,v∈V

J
(
ŷuv − yuv

)
+

∑
(h,r,t)∈G

Similarity(t, t̂)

+ λ‖W‖22 (16)

where LRS is a measure of the loss value of the recommended
model, LKG is the loss in the computed knowledge embed-
ding, with J being the cross-entropy loss function, while the
last term is a regularization term to prevent overfitting, with
λ being the regularization term.
The learning parameters of this model are composed of

two parts, i.e., the recommendation module and the KG
module, and the training algorithm of our model is given in
Algorithm 1. The parameters are shared and influence each
other between these two parts. In our experiments, the model
parameters are trained in a joint learning manner, i.e., joint
training. The joint training optimizes the parameters of both
the KG embedding part and the recommendation part during
the training process, in such a way that the two parts can
interact with each other to learn amore reliable representation
of the final prediction. We also use alternate calls to the
optimizer for multi-task learning, where in each iteration we
first learn the features in the user-item-entity graph, then learn
the knowledge embedding, and finally connect the two parts
by a cross-learning module that performs gradient descent for
parameter updating.

V. EXPERIMENTS
In this work, several experiments are carried out to assess the
efficacy of our proposed models. In this section, we present
the experimental data collection, assessmentmetrics, baseline
approach, and implementation details. The experiments and
results are then analyzed.

A. EXPERIMENT SETTINGS
For the purpose of evaluating the recommendation perfor-
mance of our proposed model, we performed experiments on
two benchmark datasets to answer the following questions.

Algorithm 1 The Training Algorithm for Our Model
Input: Interaction Matrix Y , Knowledge Graph G
Output: F (u, v | θ,Y ,G)
1: Initialize model parameters
2: Build a user-item-entity graph
3: for Number of training iterations do
4: // Recommendation task
5: while i+batchSize < len(Y) do
6: Pass the miniBatch from Y into the recommenda-

tion module
7: Using the Adam optimizer, update the F parame-

ter according to Eq.(2)-(5), (9)-(12)
8: i+ = batchSize
9: while i+batchSize < len(G) do
10: Pass the miniBatch from G into the recommenda-

tion module
11: Using the SGD optimizer, update the F parameter

according to Eq.(6)-(8), (13)-(15)
12: return result

RQ1: How well does our suggested model do com-
pared to contemporary knowledge-aware recommendation
techniques?

RQ2:Do the key components really have an impact in
improving the performance of the model?

RQ3: How does our suggested method perform when the
hyperparameters are changed?

1) DATASETS DESCRIPTION
We evaluate this model using two benchmark datasets, Book-
Crossing and Last.FM. These two datasets are from open
source and differ in size and sparsity, making our experi-
mental results more convincing using this dataset from two
different domains.

Book-Crossing1: Book-Crossing is a dataset containing
more than 1 million displayed ratings of books, ranging
from 1 to 10.

Last.FM2: This collection of user preferences data is from
the online music service Last. FM, with each user’s top artists
and play counts included in the dataset.

Because of the interactions in Book-Crossing and Last.FM
are explicit feedback, we transform them into implicit feed-
back according to RippleNet [8]; where 1 denotes a positive
sample, and we do not set a positive scoring threshold for
Book-Crossing and Last.FM data due to their sparsity. For
the construction of sub-KG, we used Microsoft Satori where
each sub-KG follows a triple. Each sub-KG follows a triple
format and is a subset of thewholeKGwith a confidence level
greater than 0.9. For a given sub-KG, we filter the triple with
a good match from the sub-KG by comparing the name of the
dataset with the head entity of the triple. The basic statistics
of these two datasets are shown in Table 2.

1http://www2.informatik.uni-freiburg.de/ cziegler/BX/
2https://grouplens.org/datasets/hetrec-2011/
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TABLE 2. Statistics of the dataset.

2) EVALUATION METRICS
We assess our method in various experimental scenarios:
(1) The threshold for a favorable rating in click-through-
rate (CTR) prediction is set at 0.5. We would recommend
item v to user u if yuv > = 0.5. We choose AUC and ACC
(area under the ROC curve) as methods to evaluate CTR as
we apply the training model to each interaction in the test
sets. (2) In top-K recommendations, we pick Recall@K and
Precision@K to assess the recommendation list and apply the
trained model to choose the k items with the highest predicted
click-through rate for each user in the test set. Equation 17
shows Recall is evaluated by the proportion of appropriate
items recommended for the target user to the total number
of relevant items. According to Equation 18, precision is the
proportion of accurate item predictions to all item guesses.

Recall =
Number of correct prediction
Number of total relevant Items

(17)

Precision =
Number of Correct Predictions
Number of Total Predictions

(18)

3) BASELINES
In this work, we employ CKE, Neural Factorization Machine
(NFM), Bayesian Personalized Ranking (BPR), Knowl-
edge Graph Attention Network (KGAT), Explainable CF
over Knowledge Graph (ECFKG), MKR, Collaborative
Knowledge-aware Attentive Network (CKAN) and Knowl-
edge Graph-based Intent Network (KGIN) as baselines; and
the details are discussed as below.

CKE [6] is a typical embedding-based recommendation
method that uses structured, textual and visual contents to
make recommendations.

NFM [30] is a DNN structure introduced on the basis
of FM model to learn more data information using nonlin-
ear structure. NFM uses bi-linear interaction structure for
second-order cross information, which makes DNN structure
able to learn cross feature information better and reduces
the difficulty of DNN to learn higher-order cross feature
information.

BPR [31] is a Bayesian personalized ranking matrix
decomposition framework which proposes a general opti-
mization criterion for personalized ranking, BPR-Opt.
In order to maximize BPR-Opt, a general learning algorithm
based on stochastic gradient descent, Learn BPR, is utilized.

KGAT [32] is a knowledge graph-based model which
applies attention mechanism to knowledge graph convolution
to construct higher-order relationships.

TABLE 3. Performance comparison of different recommender systems.

ECFKG [33] constructs a user-item knowledge graph.
In this KG, users, items and their related attributes are treated
as entities, and users’ historical behaviors such as purchase
and mention are regarded as a type of relationship between
entities.

MKR [22] is a recommendation algorithm based on multi-
task learning, which utilizes the recommendation module and
the knowledge graph characterization module for alternate
learning as a way to combine the user-item matching and
knowledge graph embedding tasks.

CKAN [39] is built on the basis of KGNN-LS with inde-
pendent collaboration propagation and knowledge signals on
CF and KG, respectively, using a heterogeneous propagation
strategy to encode both types of information and applying
a knowledge-aware attention mechanism to distinguish the
contributions of different knowledge neighbors.

KGIN [42] is to reveal user-item interactions at the intent
granularity by aiding item knowledge, which models each
intent as an attentional combination of KG relationships,
enhances different intent independence, considering more
fine-grained user-item relationships and remote semantics of
relationship paths.

4) IMPLEMENTATION DETAILS
We train all our models on an NVIDIA GeForce RTX 2080
Ti with 11Gb of video memory; and for each dataset we
divide it into training set, validation set, and testing set
in a 6:2:2 ratio. We repeat each experiment 10 times and
report the average results for tuning the key parameters.
For comparisons, we have fixed the batch size of data for
all of models as 128, initialized the embedding parameters
using the Xavier method, and optimized our approach using
the Adam optimizer. The optimal parameter settings were
determined by grid search, adjusting the learning rate in{
10−6, 10−5, 10−4, 10−3, 10−2

}
and the aggregation depth

of the user-item-entity graph in {1,2,3,4}. The optimal hyper-
parameter settings for the comparison experiments are either
from the actual study or follow the original paper.

B. EXPERIMENTAL RESULTS
1) PERFORMANCE COMPARISON (RQ1)
We show the results of our proposed model and some
state-of-the-art methods for CTR prediction experiments and
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FIGURE 2. Result of Precision@K in top-K recommendation. The left
graph shows the precision results of Book-Crossing dataset with different
K values, and the right graph is from Last.FM.

FIGURE 3. Result of Recall@K in top-K recommendation. The left graph
shows the recall results of Book-Crossing dataset with different K values,
and the right graph is from Last.FM.

top-K experiments on two real datasets in Table 3, Figure 2
and Figure 3. From the table, we can see that our proposed
model outperforms all baselines on top-K and shows excel-
lent performance on the CTR task. Knowledge-aware based
models can obtain better performance, and we can observe
from the experimental results that most of the knowledge
graph based models outperform the traditional models, which
indicates the introduction of knowledge graph can effectively
enrich the relational information and effectively improve
the recommendation. However, the simple integration of
KG does not ensure the performance improvement, and the
CF-based BPRMF approach is better than the embedding-
based CKE approach, which indicates that the imbalance
of the knowledge graph may lead to the degradation of the
model performance. From the experimental results, we can
demonstrate that our approach obtains better performance
than the method only based on collaborative knowledge
graphs and proves the effectiveness of extracting higher-
order interaction feature information using deep learning.
The hybrid methods KGAT and MKR based on knowledge
graphs obtain better performance compared to other methods.
MKR outperforms the matrix decomposition-based model,
showing the power of neural network models in recommen-
dation systems. Compared with KGAT, our model makes
a new attempt to capture fine-grained information in graph
data using GCN and to obtain the higher-order user-item
interaction information using DNN. While KGNN-LS shows
better performance, indicating the power of GNN in graph
data processing, further suggesting that richer KG factual
information can improve model performance. For Last.FM
and Book-Crossing, we consider positive implicit feedback
when the user’s score for the item is greater than 0.5.

TABLE 4. Comparison of the recommended performance of the ablation
models for the two datasets. The two methods lack graph structure data
and DNN structure, respectively.

FIGURE 4. Trend of model performance with embedding dimension.

2) ABLATION ANALYSIS (RQ2)
To investigate whether both the graph feature learning mod-
ule and the cross-learning module proposed in this method
contribute to the performance of the model, we propose two
simplified methods for comparison and set up the following
comparison scenarios: 1) not using the user-item-entity graph
structure in the recommendation module and using only the
interaction graph of user-item information. 2) using only CIN
for item preference extraction in the cross-learning module,
and not using DNN. As can be seen from the table 4, remov-
ing the graph feature learning and cross-learning modules
degrades the performance of the model. Specifically, in the
top-K task, using the graph feature learning module outper-
forms the case when it is not used, indicating that a higher-
order connected graph structure is effective in improving
model performance and providing more feature descriptions.
In the case without DNN, the model performance decreases
compared to when it is used, as seen in the figure and table,
indicating the importance of implicit higher-order features for
inter-item connectivity.

3) HYPERPARAMETER SENSITIVITY (RQ3)
Embedding Size: in the neural network recommendation
model, the embedding dimension as an important hyperpa-
rameter affects the model performance. Therefore, we verify
the impact of different embedding dimensions on the per-
formance of this model while ensuring that other parameters
consistent with those mentioned in the previous section. The
effects of varying embedding dimensions on the models AUC
and ACC under the Book-Crossing dataset are shown in
Figure 4. It can be seen from the figure that the performance
of themodel improves with the increase of embedding dimen-
sions, and the best embedding dimension is 64. However, the
performance of the model start to decrease at 64, which might
be attributed to the overfitting and other problems brought
by the increase of embedding dimensions, resulting in the
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FIGURE 5. Trend of model performance with aggregation depth.

FIGURE 6. Trend of model performance with learning rate.

decrease of the generalization ability of the model. Therefore,
we choose 64 as the embedding dimension of the model.

Aggregation depth: to investigate the effect of different
aggregation depths on the user-item-entity graph, we stud-
ied the impact of depths on the model performance on the
Book-Crossing and Last.FM datasets, taking values in the
range {1, 2, 3, 4}. The empirical results show that the model
works best on both datasets at L= 1, indicating that the aggre-
gated information of the user-item-entity graph is expressed
by first-order neighbors.

Learning rate: the learning rate as an important parameter
affects the recommended performance, shown in Figure 6.
From the figure, it is shown that the AUC and ACC perfor-
mance of themodel improveswhen the learning rate increases
from 10−4 to 10−3, and the performance decreases when it
increases further. Therefore, a setting of 10−3 is considered
optimal.

VI. CONCLUSION AND FUTURE WORK
In this work, we propose a novel recommendation frame-
work that incorporates higher-order feature interactions and
knowledge graph feature learning, which jointly acts on the
knowledge graph structure and user-item interaction infor-
mation in a unified neural network model to achieve recom-
mendations. Specifically, this paper proposes a knowledge
graph feature learning module based on a combination of
convolutional networks and cross-learning, which exploits
the higher-order structural similarity between entities and
items in the knowledge graph to enhance the embedding
learning of items. We design a cross-learning module that
uses CIN and DNN to learn both explicit and implicit higher-
order feature interactions, which is used to link the knowl-
edge graph feature learning and recommendation modules to
enhance the recommendation performance. The parameters
of the framework are all optimized by means of union, and
the experimental results show that the framework can capture

rich semantic information as well as the complex hidden
relationships between users and recommended items well.
The graph convolutionmethod is also used tomine the higher-
order connectivity of graph data to this recommendation
framework. Finally, by conducting extensive experiments on
two real datasets, the results demonstrate the effectiveness
of our proposed model. In future work, we will work on
top-K prediction, and deal with sparse data more effec-
tively, using knowledge graph data, heterogeneous graphs
and graph convolution to solve the cold start problem, and
extending the framework proposed in this paper for article
recommendation.
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