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ABSTRACT Community Energy Storage Systems (CESSs) emerge as an innovative way to integrate
batteries into Low Voltage (LV) and Medium Voltage (MV) distribution networks to provide ancillary
services and improve the quality of energy received by the end user. However, since CESSs are still emerging
technologies, there is much research space in this field for proposing innovative and economic control
algorithms for such devices. Thus, this paper presents a study of four control strategies applied to an MV
distribution network, i.e., peak shaving, line losses control, line congestion reduction, and system voltage
control, through an Aggregated Community Energy Storage System (ACESS), which is represented as the
sum of multiple CESSs connected in LV systems, viewed from MV side. The proposed strategies are based
on Model Predictive Control (MPC), a technique that, using the future demand forecast data, calculates
the dispatch of ACESS. The results show, with respect to the base case, an improvement between 12.8%
and 15.1% for the line losses control strategy, a reduction of 31.5% on the maximum demand for the peak
shaving control strategy, a maximum lowering of 12% on the currents of some lines for the congestion
control strategy, and an enhancement of 0.15% for the voltage control strategy. Moreover, for estimating
the service lifetime of the ACESS after applying the control algorithms, the Rainflow Counting Algorithm
(RCA) is used, exhibiting that, regardless of the control strategy, the degradation is inversely proportional to
the storage capacity.

INDEX TERMS Ancillary services, batteries, community energy storage systems (CESSs), degradation,
model predictive control (MPC).

NOMENCLATURE
Acronyms

BESS Battery Energy Storage System.
CESS Community Energy Storage System.
DoD Depth of Discharge.
ESS Energy Storage System.
LV Low Voltage.
MPC Model Predictive Control.
MV Medium Voltage.
OPF Optimal Power Flow.
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PV Photovoltaic.
RCA Rainflow Counting Algorithm.
SoC State of Charge.

Sub- and Super-Indices

bat Battery.
c Charge.
d Discharge.
DoD Depth of discharge.
G Generated energy.
grid Network equivalent.
j Control strategy equation weight index.
k Time step.
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L Consumed energy.
m Limit iteration index.
net Energy grid and energy battery difference.
psl Peak shaving limit.
SoC State of charge.

Parameters

1t Time difference between iterations.
ηc Charge efficiency.
ηd Discharge efficiency.
a Control strategy equation weight.
Ac,Ad , ac, ad , ai Weight matrices of DoD calculation.

C Iteration counter limit.
Cap CESS capacity.
Load System load.
umaxbat Maximum battery output or input.
umaxgrid Maximum grid output.

Variables

L Grid participation limit.
ubat Battery power.
ugrid Grid power.
unet Grid and Load power difference.
xDoD DoD value.
xSoC SoC value.

I. INTRODUCTION
Battery Energy Storage Systems (BESSs) are emerging as a
solution to multiple problems within electric power systems.
They offer great flexibility, provide numerous applications
in the form of ancillary services, and serve as an interface
for various renewable generation technologies. Community
Energy Storage Systems (CESSs) appear as part of this group
of distributed energy resources, being a set of variable storage
capacity BESSs and an inverter that are installed near a
group of end users [1], [2], [3]. This characteristic implies,
among other things, that its applications are restricted to
Medium Voltage (MV) and, more commonly, Low Voltage
(LV) grids [4]. Additionaly, advances in research, develop-
ment, and production of lithium-ion batteries have allowed a
significant decrease in acquisition cost for CESS. According
to EIA, the cost per kWh between 2015 and 2019 went from
$20,000 USD to approximately $500 USD [5]. These figures
indicate that CESSs may represent a cost-effective opportu-
nity for improving the operation of MV and LV distribution
systems.

The cost reduction in lithium-ion batteries has allowed the
introduction of the Aggregated Community Energy Storage
Systems (ACESSs), whose function is to combine and coor-
dinate multiple CESS working on LV networks to improve
the performance of the upstream MV systems. This allows
the existence of groups of CESS that, summed up, reach
capacities of the order of MWh of storage capacity that are
able to provide multiple ancillary services in distribution

systems [6]. However, very few applications found in the
literature for CESS consider the figure of the aggrega-
tor, and most of the proposed solutions with CESS are
focused on peak shaving algorithms for household loads
in LV networks. Hence, there is an opportunity to evalu-
ate different control strategies for providing ancillary ser-
vices with ACESSs in MV distribution networks, focused on
other phenomena such as losses, line congestion or voltage
deviations.

The ancillary services that can be provided by ACESSs,
and more generally by Battery Energy Storage Systems
(BESSs), can be divided into energy applications and power
applications. The former contains services such as energy
arbitrage, renewable energy time shift, demand charge reduc-
tion, time of use charge reduction, transmission and distribu-
tion upgrade deferral, and grid resiliency, and the latter con-
siders the provision of frequency regulation, voltage support,
damping of power system oscillations, synthetic inertia, and
ramp rate control in renewable sources [7]. Each of these
applications requires a different control strategy; however,
most of the control strategies applied to BESS aim to control
the delivery and consumption of active and reactive power
through the inverter connected to the grid. Additionally, it is
also possible to classify the control strategies with BESSs
based on the size of the storage system in MWh, the required
discharge duration, the charging and discharging cycles of the
storage system, and the required response time to execute the
control action [8].

With respect to energy applications, an example of a peak
shaving strategy, based on Model Predictive Control and
focused on reducing the degradation of the BESS, is proposed
in [9]. This strategy solves the dispatch of a battery during
a 48-hour period in a single-node system with a network
equivalent, a variable load, a Photovoltaic (PV) generation
system and a BESS. The constraints associated with the
dispatch are the balancing condition, i.e., that all the power
consumed is equal to all the power delivered, and the grid
participation limit, i.e., above a certain limit, the energy
demanded by the load must be supplied by a BESS or a PV
generator. The rest of the constraints are directly associated
with the behavior of the BESS within the system, e.gr., the
lower and upper limits of the SoC, or the maximum power
deliverable by the batteries. The results obtained are satis-
factory for the configured test system; however, this model
can be improved for applications in three-phase, multi-node
systems using complementary control strategies with MPC.
Another example of peak shaving is found in [10], wheremul-
tiple control strategies (losses control, peak shaving, voltage
regulation, and reduction of the cost of implementation and
maintenance of storage systems) are proposed and applied
to a series of BESSs located along a power system. Even
though the individual application of each of these control
strategies works successfully, the paper proposes their joined
application, without evaluating whether this improves their
effectiveness or reduces their computational cost for real-time
operation.
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Among control strategies proposed for congestion reduc-
tion in power systems using BESS, [11] and [12] describe the
reduction of congestion in lines with two different control
strategies. In [11], the aim is to find an optimal economic
dispatch for the BESS taking into account PV generation
systems with stochastic behavior, achieving the reduction
of line losses and congestion. In [12], the control strategy
calculates the optimal dispatch of the generation and BESS
units, considering the maximum power transfer and the ther-
mal limits of the lines as constraints. In both [11] and [12],
the results are based on a single power flow for a modified
test system (IEEE 24-bus and 30-bus test systems), which
leaves out the variability of loads throughout the day, making
it impossible for the algorithms to prevent future variations.
Moreover, authors in [13] propose a control strategy to reduce
line losses and improve the voltage profile of a distribution
system using an Optimal Power Flow (OPF) and testing the
BESS at the end of a radial distribution network. The results
only show a scenario of a single power flow in which a
significant decrease in losses is observed; however, this paper
makes no attempt to test other load conditions that may occur
throughout the day, and other configuration such as non-
radial systems.

Several works describe control strategies for power appli-
cations using BESSs. A first example is presented in [14].,
where a voltage control scheme is performed at a multi-node,
three-phase system using a series of PQ curves to estimate
the DC voltage at the battery output, taking into account
measurements of grid parameters, State of Charge (SoC),
and battery terminal voltage at each time step. Based on
these PQ curves, the algorithm decides how to correct under-
and over-voltages within the grid using BESSs. However,
this strategy is limited by the number of PQ curves that are
initially loaded into the algorithm, reducing its effectiveness.
Another voltage control scheme is described in [15], where
a consesus algorithm is implemented for distributed BESSs
connected to a distribution network. This method assigns
weights to the existing connections among nodes to share the
participation of each BESS in reducing or increasing the volt-
age at each node as required at each time step. Although this
approach presents satisfactory results for compensating over-
and under-voltages in a wide variety of scenarios, it might
be expensive as it requires a large communication system for
BESS coordination in real-time applications.

Most of the aforementioned solutions are applied without
taking into account future load variations, so that the input
data do not include the demand forecast, i.e., their input is
fed only by the present and past variables of the system.
Therefore, the main contribution of this work is the modifi-
cation of the MPC presented in [9], by proposing four control
strategies for ACESSs, i.e., peak shaving, line loss reduction,
voltage control and line congestion reduction. At each 15-
min time step over a 24-h horizon, theMPC strategy performs
the dispatch of an ACESS connected to a three-phase multi-
node system, which is obtained by adding a future demand
forecast that allows estimating whether the battery will need

to be charged or discharged before peak demand arrives,
as compared to the initial model that was intended for a
single-node and single-phase system. Also, according to the
selected control strategy, some constraints are added to the
MPC approach. Finally, the degradation suffered by multi-
ple size ACESSs is estimated through a Rainflow Counting
Algorithm (RCA) whose input is the resulting SoC from each
dispatch.

The rest of this paper is organized as follows: Section II
presents the methodology and describes the proposed MPC
algorithm with ACESSs, and Section III discusses the imple-
mentation of the models and describes the case studies. Then,
Section IV provides the results for each case study and control
strategies, as well as a discussion of the results. Finally,
Section V shows the conclusions of this work.

II. METHODOLOGY
The proposed algorithm, whose operation is depicted in
Fig. 1, is responsible of performing the ACESS dispatch
in order to provide simultaneously peak shaving and other
services such as voltage control, line losses reduction, and
congestion control in a distribution system.

Figure 1 is divided into 5 boxes that describe each process-
ing stage of the proposed method. Box 1 shows the external
packages that are necessary for coding and operating the
MPC algorithm in Python. These are Pyomo [16], which is
an optimization modeling language; Matplotlib, for plotting
results; and Pandas, for importing and exporting information
from and to files in.csv, .xls or .xlsx format. Box 2 indi-
cates the actions that need to be performed according to
the iteration number, i.e., if zero, the algorithm creates the
optimization model for the new initial conditions, otherwise,
it employs the result of the previous iteration as the initial
value for the new step. Box 3 presents which control strat-
egy will be applied among peak shaving, losses reduction,
voltage control or congestion reduction, as explained later in
Section II-A. Box 4 introduces the optimization problem that
is solved using CPLEX [17], and how the results are plotted in
the form of a forecast of the SoC and the corresponding power
dispatch. Finally, box 5 describes how the initial variables of
the next iteration are updated, and how the cycle is repeated
unless the demand forecast data is finished, in which case, the
algorithm finishes its run and exports all the information of
the response variables that were calculated in each iteration.

A. MPC DISPATCH ALGORITHM
The MPC model described in [9] is characterized by having
prediction and control horizons of 24 hours and 15 minutes,
respectively, so that 72-hour forecast data with 15-minute
steps is necessary for a 48-hour implementation of this algo-
rithm, as seen in Fig. 6. Thus, the objective function and the
constraints of the proposedMPCmodel for ACESS, modified
from [9], are described as follows:

• Objective function: The objective function described in
(1) is a quadratic cost function aimed to minimize the
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FIGURE 1. Flowchart of the proposed ACESS control algorithm.

participation of ACESS in the system dispatch, by keep-
ing the SoC as close as possible to a reference value
of 0.45 because, according to [9], it is the point of
minimum degradation induced to a BESS at idle state.
Then, the objective function consists of the summation
of costs associated to charging and discharging Depth of
Discharge (DoD), ubat , charging and discharging com-
mitment, and CESS SoC. The particular cost coeffi-
cients associated to each of these variables are extracted
from [9].

z =
96∑
k=1

[(1.6xDoD,ck )2 + 1.2 ∗ 10−7(xDoD,dk )2

+ 1.2 ∗ 10−7 (ubat,ck )2 + 1.6(ubat,dk )2

+ 2 ∗ ((xSoCk )2 − 0.9 ∗ (xSoCk )+ 0.452)] (1)

• Power balance: Equation (2) describes the power bal-
ance conditions between generation and demand for
each time step. Note in (3)-(4) that, depending of the
charge or discharge phase of the battery, the correspond-
ing power will be seen in the equation as a load or a
generator∑

uGk −
∑

uLk = 0 ∀k ∈ {1, . . . , 96} (2)

uGk = ubat,dk + ugridk ∀k ∈ {1, . . . , 96} (3)

uLk = Loadk + u
bat,c
k ∀k ∈ {1, . . . , 96} (4)

• Battery constraints: These constraints are divided into
SoC constraints and DoD constraints. The former com-
prises (5) to (7), which describe the SoC calculation
and its limits, and the latter includes (8) to (9), which
define the corresponding DoD depending on the CESS
charging or discharging.

xSoCk+1 = xSoCk +1xSoCk+1 ∀k = {1, . . . , 95} (5)

1xSoCk+1 =
1t(ηLuLk − η

−1
G uGk )

Cap
∀k = {1, . . . , 95} (6)

SoC lower and upper limits, depicted in (7), are defined
as 0.2 and 0.85 as per in [18] and [19] since these are
typical values considered in practical applications that
guarantee a safe battery operation.

0.2 ≤ xSoCk ≤ 0.85 ∀k = {1, . . . , 96} (7)

DoD is estimated in (8) and (9) as a piecewise-linear
function that depends on SoC and DoD, according to
the case selected in box 5 of Fig.1. In these equations,
the parameters Ac,Ad , ac, ad , and ai are weight matri-
ces that serve to estimate the next value of the DoD,
as described in (9) and (9).

xDoDk =

xDoD,ck

xDoD,dk

 ∀k ∈ {1, . . . , 96} (8)
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xDoDk+1 =

 AcxDoDk + ac1xSoC , ∀unet > 0
AdxDoDk − ad1xSoC , ∀unet < 0

ai, ∀unet = 0
∀k = {1, . . . , 95}

Ac =
[
1 0
0 0

]
, Ad =

[
0 0
0 1

]
ac =

(
1
0

)
, ad =

(
0
1

)
, ai =

(
0
0

)
(9)

Moreover, (10)-(13) represent the maximum charging
and discharging power limits of the CESS, and (14) indi-
cates the complementarity constraint that prevents the
CESS from charging and discharging simultaneously.

ubat,dk ≥ 0 ∀k = {1, . . . , 96} (10)

ubat,dk ≤ ubat,max ∀k = {1, . . . , 96} (11)

ubat,ck ≤ 0 ∀k = {1, . . . , 96} (12)

ubat,ck ≥ −ubat,max ∀k = {1, . . . , 96} (13)

ubat,ck ∗ ubat,dk = 0 ∀k = {1, . . . , 96} (14)

• Grid constraints: Finally, the constraints presented in
(15)-(17) describe the behavior of the external network
equivalent, including the net energy calculation, and
energy limits for generation and loads.

unetk = ugridk − uLk ∀k = {1, . . . , 96} (15)

0 ≤ uG,gridk ≤ ugrid,max ∀k = {1, . . . , 96} (16)

0 ≤ uL,batk ≤ ugrid,max ∀k = {1, . . . , 96} (17)

B. CESS CONTROL STRATEGIES
The following subsections describe the details of the four con-
trol strategies that can be selected for the ACESS, as indicated
in box 3 of Fig. 1.

1) PEAK SHAVING CONTROL STRATEGY
The peak shaving control strategy is a variation of the general
optimization problem explained in Section II-A. In this case,
the main modification consists of adding constraints that
impose a participation limits to the grid for both charging and
discharging. Thus, if the load exceeds the discharge participa-
tion limit Lgrid,d , the missing energy will be supplied by the
ACESS, whereas if the demand is lower than the charging
participation limit Lgrid,c, and the ACESS can or requires
to store energy, then it will be charged. Both charging and
discharging constraints are defined in (18) and (19).

Lgrid,c = Lpslgrid (18)

Lgrid,d = Lpslgrid (19)

2) LINE LOSSES CONTROL STRATEGY
The line losses control strategy, depicted in Fig. 2, modifies
the network participation constraints (18) and (19) through
a parameter that describes the difference between the line
losses in the base case without the ACESS and the losses

FIGURE 2. Flowchart of the losses control algorithm.

FIGURE 3. Flowchart of the congestion control algorithm.

with the ACESS installed, as per (20). This information is
extracted directly from the power flow calculated in each
iteration. When the losses remain the same or increase with
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FIGURE 4. Flowchart of the voltage control algorithm.

respect to the case without the ACESS, the algorithm repeats
the iteration that generates the error by gradually decreasing
the grid participation limits to force a larger power con-
tribution of the ACESS in the dispatch until reaching the
point where the losses are decreased, or until the storage sys-
tem cannot deliver more power. At this point, the algorithm
advances to the next iteration having reduced the error as
much as possible.

LossError = 100% ∗
LossBase − LossPresent

LossBase
(20)

3) CONGESTION REDUCTION CONTROL STRATEGY
The congestion control strategy, shown in Fig. 3, works in
a similar way as the losses control strategy, but instead of
focusing on the total losses of the system, it analyzes the
currents flowing through the lines, always trying to reduce the
highest current detected in any line of the system, as long as
it is higher than the value calculated in the base case. Thus,
the error parameter that modifies (18) and (19), calculated
in (21), is the maximum current flowing through a system’s
line with respect to the current of the same line in the base
case. By the nature of the ACESS, the moments when the
batteries are charging are perceived by the network as a load.
Therefore, the algorithm charges the ACESSs at times of low
demand, so that the increase in current does not significantly
affect the loading of the lines and, at times of high demand,
the algorithm discharges the ACESS to achieve a congestion
reduction.

IError = 100% ∗
IBase − IPresent

IBase
(21)

4) VOLTAGE CONTROL STRATEGY
The voltage control strategy implies several changes to the
MPC described in Section II-A, because it requires modifying

the objective function, includying a new constraint for reac-
tive power, and modifying the network participation limits
(18) and (19) using the voltage error in (22). These modi-
fications and the details of the voltage control strategy are
described in the flowchart of Fig. 4

VError = 100% ∗
VBase − VPresent

VBase
(22)

The voltage control algorithm in Fig. 4 attempts to keep
the voltage at all nodes of the system, for each iteration of the
power flow, between 0.95 and 1.05 p.u. If the voltage error
calculated in each iterationwith respect to 1 p.u. is higher than
5%, the algorithm tries the following actions: first, it changes
the weights of the objective function; second, it injects or
absorbs reactive power using the ACESS; and third, it varies
the limits of network participation in the dispatch. After this,
the iteration with the best performance is saved and passed
to the next step.

III. ALGORITHM IMPLEMENTATION
A. STUDY CASES: CONTROL STRATEGIES APPLIED TO THE
IEEE 34-BUS FEEDER
The IEEE 34-bus feeder [20] in Fig. 5 is proposed as a
test system for the different control strategies described in
Section II. Since this is a system with static demand values,
it was decided to apply the residential demand curve for
MV systems provided by CIGRE [21], where 24 hours of
energy consumption are shown as a function of a percentage
of nominal apparent power. Additionally, the peak power
of this system was reduced to one-fifth, since the original
load of this system did not allow the correct operation of the
proposed ACESS sizes. Since theMPC has a forecast horizon
of 24 hours, the original 24-hour CIGRE curve was repeated
to complete a 48-hour load curve, as shown in Fig. 6.
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FIGURE 5. IEEE 34-node test system.

FIGURE 6. Demand curve used in the study cases.

In order to have a comparative basis for each control strat-
egy, a power flow is run for each time step with no ACESS
connected to the system, modifying the total system’s loading
to 80%, 100% and 120%, and extracting voltages, currents
and losses at each node and line. Then, this base case is
compared with three ACESS of 500 kWh, 1000 kWh and
1500 kWh following the peak saving, losses control and con-
gestion reduction strategies. All these results set up Scenario
1. However, since the calculated dispatch for the proposed
conditions in Scenario 1 is the same for the peak shaving,
losses control and congestion reduction strategies, a second
scenario is proposed for the last two strategies, assuming a
total system’s loading of 130% for an ACESS of 1500 kWh.
Moreover, for the voltage control scheme, a total system’s
loading of 120% and a 2000 kWh ACESS is assumed. These
parameters configure Scenario 2.

The parameters that are used in each control strategy are
defined as follows: in the case of peak shaving, Lpslgrid in (18)
and (19) is set to 240 kW. Also, for the losses and congestion
control strategies depicted in Figs. 2 and 3, counter limit c1 =
15, and a1 = 1.25. Finally, for the voltage control algorithm
of Fig. 4, c1 = 15, c2 = 30, c3 = 50, a1 = 1.25, a2 = c2 =
30, and a3 = 2.

Furthermore, since the complementarity constraint (14)
cannot be solved initially by a linear solver, theMPEC (Math-
ematical Programs with Equilibrium Constraint) extension
for Pyomo [16] is used to convert this constraint to a simple
disjunctive form by applying the Big-M or Convex Hull
method, which can be easily interpreted by a linear solver.

FIGURE 7. Power dispatch for different ACESSs following the peak
shaving control strategy.

Finally, as a way to solve the power flows in each itera-
tion, the py-dss-interface package [22] is used, which serves
to execute and modify any OpenDSS script from the main
Python code and extract the relevant results (currents, volt-
ages, or losses), allowing to apply the control strategies to
multinode systems and check their effect in each iteration.

B. HARDWARE AND SOFTWARE SPECIFICATIONS
The control strategies explained previously were imple-
mented in Python 3.8.5 and were run on a laptop PC with
Intel Core i5 9300H processor and 16 GB RAM. Power flow
simulations were obtained from OpenDSS 9.3.0.1 [23], and
the optimization problems described in Section II were coded
in Pyomo 5.7.3 [16] and solved with CPLEX 20.1.0 [17].
Finally, for the ease of interfacing the optimization rou-
tines and power flow calculations in OpenDSS, the py-dss-
interface 1.0.2 [22] was used, which allowed modifying
existing scripts and extracting power flow results.

IV. RESULTS AND DISCUSSION
A. PEAK SHAVING CONTROL STRATEGY
Figure 7 presents the dispatch results of the peak shaving
algorithm applied to three different ACESS, located at node
838, with capacities of 500 kWh, 1000 kWh and 1500 kWh.
In Fig. 7, the yellow and purple bars represent the charging
and discharging of the ACESS, respectively, the red bars
denote the total system’s demand, and the blue bars describe
the network contribution to the system. The peak shaving
algorithm flattens the grid participation curve by discharging
the battery when the demand is over the 240 kW threshold,
contributing to feed the surplus of peak consumption. From
the point of view of energy demand, it can be observed in
Fig. 7 that, when the load is below the 240 kW threshold,
the ACESS is charged at the difference between 240 kW
and the current load if the MPC considers it necessary. This
means that, in those time intervals, the ACESS is recharged,
achieving the effect of flattening the demand curve from the
grid point of view.

Figure 8 shows the effect of the peak shaving strategy on
SoC for the 500 kWh, 1000 kWh, and 1500 kWh ACESSs
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FIGURE 8. SoC reconstruction by RCA for different ACESS capacities
following the peak shaving control strategy: (a) 500 kWh, (b) 1000 kWh,
and (c) 1500 kWh.

FIGURE 9. Power dispatch for a 1500 kWh ACESS following the losses
control strategy.

and the reconstruction carried out by the RCA, corresponding
to A, B and C, respectively. In can be seen that, at a lower
storage capacity, the variation in the SoC is higher. This result
is expected because the 500 kWh ACESS, compared to the
1000 kWh and 1500 kWh ACESSs, has to deliver a higher
proportion of its stored energy to cover the peak demand.
Considering that SoC limits were set between 0.2 p.u. and
0.85 p.u., the maximum energy that can be delivered contin-
uously, in this case, is 65% of the total storage capacity [24].
Note that the 500 kWh system reaches the upper bounds at

FIGURE 10. SoC reconstruction by RCA for a 1500 kWh ACESS following
the losses control strategy.

TABLE 1. Losses control strategy results for Scenario 1.

the times of the highest demand, while the other two ACESSs
remain closer to their initial SoC value of 0.45 p.u.

B. LOSSES CONTROL STRATEGY
Tests were carried out by placing the ACESS in all the
nodes of the system for the three available storage capacities,
i.e., 500 kWh, 1000 kWh, and 1500 kWh, and with three
percentages of total system’s loading, i.e., 80%, 100%, and
120%. The summary of the results of the line losses control
algorithm for these tests is shown in Table 1. Note that, in the
case of the IEEE 34 node system, neither the location nor
the capacity of the ACESS affects significantly the reduction
in losses. In the case of the location of the ACESS, a stan-
dard deviation of 0.01% in losses reduction was obtained for
all tests, which means that the results of this table can be
extrapolated to all the nodes of the system. In the case of
the storage capacity, the losses reduction is the same for each
loading condition, as expected, since the energy dispatch is
the same for all ACESS capacities and only the SoC varies,
as explained in Section IV-A. It was also observed that the
only factor that affects the losses control strategy is the total
loading, since in all cases the losses in the system are reduced,
and this reduction is higher as loading increases, going from
12.78% to 15.1% losses reduction for the 80% and 120%
loading cases.
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FIGURE 11. Summary of congestion control algorithm results on IEEE 34-bus feeder lines for 80%, 100% and 120% system’s loading in
Scenario 1.

FIGURE 12. Power dispatch for a 1500 kWh ACESS following the
congestion control strategy in Scenario 2.

As the dispatch for the given conditions did not change,
a second scenario is proposed in order to see how the change
of the constraints (18) and (19) affects the dispatch. In this
scenario, a total loading of 130% is applied for the 1500 kWh
ACESS. The dispatch results can be seen in Fig. 9, and the
corresponding SoC in Fig. 10. In this case, it is observed that
constraint (19) is decreased down to 170 kW, and constraint
(18) is increased up to 334 kW. This brings the effect of
charging the ACESS between 0 h to 5 h, and from 24 h to
29 h, allowing to cover part of the peak that occurs from 21 h
to 24 h, and from 45 h to 46 h, by discharging the ACESS.
The net effect of these control actions is a reduction of losses
for the total dispatch of 15.41%.

C. CONGESTION CONTROL STRATEGY
Figure 11 shows the summary of congestion results on each
of the IEEE 34-bus test system lines for the calculated 48-
hour window. In this case, the BESS is located at node
838 because of its distant position with respect to the header
node. Thus, Fig. 11 shows the average percentage of improve-
ment for the 48 hours of the calculated dispatch. This is
because the ACESS needs to consume or deliver energy in
different moments, which means that at some times of the
day, when the ACESS consumes energy, some lines will be

more congested. However, after 48 hours of ACESS charging
and discharging, it is observed a decrease in congestion
at times when the battery delivers stored energy, which is
more significant than the congestion it generates at times
of low demand. This occurs because the MPC algorithm is
programmed to encourage battery charging at low demand
times, even if congestion increases, as it does not have a
significant effect on the system. The opposite occurs at times
of higher demand, when the ACESS is discharged, which
is perceived from the header node as a reduction in the
demand.

Since the initial dispatch with the proposed conditions is
the same as the obtained in the peak shaving control strategy,
an additional scenario is proposed for the losses control
strategy in order to see the change in constraints (18) and
(19), and the dispatch. In this new scenario, a total system
loading of 130% is applied to the system, and an ACESS of
1500 kWh is used for reducing line congestions. The dispatch
results of this new scenario can be found in Fig. 12, and the
corresponding SoC in Fig. 14. In this case, it is observed
that the constraint (19) is decreased down to 166 kW, and
the constraint (18) increased up to 307 kW, which allows
charging the battery between 0 h to 6.25 h, and from 24 h
to 30.25 h. This dispatch fully covers the peak demand from
16.5 h to 24 h, and between 40.5 h and 47 h, resulting in the
current reduction presented in Fig. 13. This figure shows a
current’s decrease of 0.5% with respect to the total system’s
loading of 120%; however, this case also shows that the
higher the system’s loading, the better the effectiveness of the
losses control strategy.

D. VOLTAGE CONTROL STRATEGY
In the case of the voltage control strategy, tests carried out
without the ACESS determined that the largest voltage drops
occurred at node 890, where the storage system was finally
located to assess this algorithm. Moreover, the system was
overloaded to 120% of the nominal value to increase voltage
deviations so that the strategy could be easily tested. Finally,
the storage capacity of the ACESS for this case is 2000 kWh.
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FIGURE 13. Summary of congestion control algorithm results on IEEE 34-bus feeder lines for 150% loading in Scenario 2.

TABLE 2. Degradation results for SoCs in Fig. 8.

FIGURE 14. SoC reconstruction by RCA for a 1500 kWh ACESS following
the congestion control strategy in Scenario 2.

FIGURE 15. Power dispatch for a 2000 kWh ACESS following the voltage
control strategy.

The resulting dispatch for the voltage control strategy is
shown in Fig. 15, where variations can be observed in the

FIGURE 16. SoC reconstruction by RCA for a 2000 kWh ACESS following
the voltage control strategy.

grid contributions from 5 h to 23 h, and from 30 h to 47 h.
This is due to overvoltages during those periods that cannot
be corrected through the change in the objective function
coefficients or reactive power consumption, so that the grid
limits are changed to allow the ACESS delivering a greater
amount of energy in those specific moments. This means
a grid participation that varies from 180 kW to 275 kW,
so that the difference between these values and the demand is
supplied by the ACESS, as seen in the variation of the ACESS
SoC in Fig. 16. Note that the peaks observed in the dispatch
correspond to the peaks existing in the SoC, which implies
that the ACESS assumes such variations to try to improve the
voltage.

Figure 17 shows the overvoltage values that were improved
by more than 0.1% with respect to the initial voltage value
and the 15-min sample at which these overvoltages occurred.
Only these values are shown since there are 187 time steps
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TABLE 3. Degradation results for SoC reconstructed in Figs. 10, 14, 16.

FIGURE 17. Voltage behavior at node 890 in selected samples.

recorded, and in most of them there are no voltage problems.
Note that in most cases, the voltage manages to drop to a
value equal or close to 1.05 p.u. However, for points such as
32, 36, 68 or 72, even though the improvement in voltage is
around 0.15%, it is not enough to drop the voltage to 1.05 p.u.
The algorithm continues because another modification on the
conditions of the optimization problem ends up leading to the
non-convergence of the power flow.

E. DEGRADATION RESULTS
To estimate the degradation of the different ACESSs that were
used in the previous study cases, the RCA proposed in [25]
and implemented for other ACESS in [26] was applied.
In order to run the RCA algorithm, the ACESS SoC resulting
from the MPC was used as input. Table 2 describes the
results of the RCA sorted by control strategy, ACESS capac-
ity, degradation percentage, and remaining service lifetime
in cycles according to the SoCs in Fig. 8. Also, Table 3
shows the results corresponding to the RCA reconstructions
in Figs. 10, 14 and 16. In some cases, negative degrada-
tion percentages are obtained, which is interpreted as the
remaining service lifetime if the usage is higher than the one
originally indicated by the manufacturer. By contrast, posi-
tive degradation percentages indicate a reduction in service
lifetime and a lower number of remaining cycles compared
to manufacturer’s specifications if that usage pattern is main-
tained.

From the results listed in Table 2, it is possible to observe
that, for most of the control strategies, the degradation of the
storage system decreases as the storage capacity increases.
This is expected because, as observed in Fig. 8, for the same

dispatch, a higher storage capacity implies a lower variation
of SoC, and therefore, a lower degradation estimated with
RCA. However, Table 3 shows that, even though there is
1500 kWh storage capacity, it is possible to degrade the
battery if the input SoC presents high variations, as it is
the case in Figs. 10, 14 and 16, where average degradation
values of 24.5%, 16.3%, and 32.4% are found for the losses,
congestion and voltage control strategies, respectively.

V. CONCLUSION
This study presented the conceptual approach and simula-
tion of four control strategies (peak shaving, losses control,
congestion control, and local voltage control) applied to an
ACESS in a modified IEEE 34-bus feeder. The study was
based on the use of anMPC as a way to estimate the necessary
battery charging and discharging actions, taking into account
the future conditions of the demand and the system in a 24-
hour prediction window. In the case of the peak shaving algo-
rithm, successful dispatch was obtained for three different
ACESS capacities, showing a maximum peak reduction of
31.54%. For the losses and congestion control algorithms,
the reduction of losses and currents was estimated in terms
of the base case without ACESS in the system, obtaining a
maximum reduction of 15.4% and 12.44% of losses and con-
gestion, respectively. In the case of voltage control algorithm,
improvements between 0.1% and 0.15% were obtained with
respect to the voltage increases seen in the base case, although
several times the ACESS failed to place the voltage within
the 0.95-1.05 p.u. band because of an insufficient active and
reactive power control capacity. Finally, the degradation of
the 3ACESSs under different control strategies was estimated
with the RCA, showing that voltage control strategy produces
the highest degradation, reaching a service lifetime reduction
of up to 63.4% in the worst case scenario and, in the best
case scenario for the rest of control strategies, a service
lifetime extension of up to 35.3%. Future work will focus
on improving the local voltage control strategy and analyzing
other ancillary services with ACESSs that are typically seen
in BESSs of high capacity, such as primary frequency control.
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