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ABSTRACT This paper proposes a finite-time output controller to realize the tracking control of n degrees of
freedom (n-DOF)manipulator, which can address the time-varying output constraints and uncertainties, such
as modeling error, unknown frictions, and external disturbance. A nonlinear mapping is conducted to convert
the constrained manipulator dynamics into unconstrained dynamics. Based on the unconstrained dynamics,
a finite-time output controller is established based on the output-feedback control scheme and nonlinear
extended state observer (NESO). Fractional order terms are exploited to obtain finite-time convergence, and
the switching law is developed for the NESO to estimate both the unmeasured states and uncertainties. The
superiority of the NESO and the stability of the overall system are theoretically demonstrated by using the
Lyapunov approach. The effectiveness of the proposed controller is illustrated by conducting simulations
and experiments with robot manipulators and comparing the obtained results with those of the existing
techniques.

INDEX TERMS Robotic manipulator, output-feedback control, nonlinear extended state observer, nonlinear
mapping, Lyapunov approach, time-varying output constraint.

I. INTRODUCTION
In modern industry, the physical interaction of humans and
robotic systems is a critical aspect in robotic applications
such as the rehabilitation of humans [1], exoskeletons [2], and
cooperative manipulations [3]. Consequently, robotic manip-
ulators are subject to strict regulations involving physical
output constraints to ensure safe operation. These constraints
partly originate from the intrinsic system specifications and
state variables corresponding to the dead zone, hystere-
sis, saturation, and output performance [4]. Furthermore,
the robotic outputs are critically regulated in predefined
time-varying boundaries depending on the requirements of

The associate editor coordinating the review of this manuscript and

approving it for publication was Bidyadhar Subudhi .

the applications, environmental information, or physical lim-
itations [5]. Any violation of the constraints may lead to
control performance degradation, system instability, and
even system malfunction [6]. Recently, in the robot con-
troller design, ensuring the system output performance while
addressing the issues causing the transgression of the con-
straints has attracted considerable research attention.

To overcome the output constraints, the barrier Lyapunov
function (BLF) [7] and the transformation technique [8] have
been employed. The BLF was first proposed to address the
constant output constraint issue in a nonlinear system [7].
Later, the time-varying output constraints were managed
using the BLF [9]. In addition, the BLF has been used in com-
binations with some superior methods, such as fuzzy logic
systems (FLSs) [10], and neural networks (NNs) [11], [12]
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to guarantee that the control requirements are obtained under
the presence of the uncertainties and output constraints. It is
difficult to apply this method for designing advanced con-
trollers with finite time convergence expectation because
of the complication in the BLF. A transformation method
based on prescribed performance control was proposed [13].
The main idea is to convert the constrained system into an
unconstrained one through the transformation of the output
constrained errors. The output constrained functions were
defined based on the transient and steady state of the out-
put errors. Additionally, the transformed system owns the
potential properties for developing advanced controllers to
achieve the finite-time convergent goal. This technique has
been conducted in many nonlinear systems, such as a flexible
beam system [14], a single-link flexible joint robotic manip-
ulator [15], a half-car active suspension system [16], and a
small nonlinear UAV system [17]. Like the BLF, this method
was also used in combinations with approximation structures,
such as the FLS [18] and NN [19], to increase the position
precision in the nonlinear system and avoid the contravention
of the output constraints. Zhou et al. [20] developed an adap-
tive fuzzy backstepping control based on the transformation
technique, which included the fuzzy approximator and back-
stepping technique, to control a non-strict feedback stochastic
nonlinear system with uncertainties and output constraints.
Moreover, an adaptive neural control was presented for an
n-link robotmanipulator subjected to uncertainties and output
constraints [21]. The advanced control was realized based on
an NN approximator and transformation technique.

Nevertheless, the NN and FLS implementation requires the
practitioners to have considerable knowledge to select the
parameters [22], such as the number of layers, number of
nodes in a layer, learning rates, and initial weighting vector in
the NN, or membership functions and fuzzy laws in the FLS,
and intensive computations must be performed [23]. There-
fore, this implementation is highly challenging. Notably, the
extended state observer (ESO), proposed by Han [24], can be
used to estimate both the unmeasured state and lumped uncer-
tainties in nonlinear systems [25], in which the estimated
errors converge in an infinite time. Lately, several nonlinear
ESOs [26] have been investigated to enhance the estimation
results and speed responses. In Yang et al. [27] developed
the linear ESO to estimate the nonlinearities and unmeasured
states of two flexible links manipulators. In Tran et al. [28]
investigated a nonlinear ESO to estimate an unknown pay-
load in a manipulator. The barrier Lyapunov function was
used in the control design to manage the time-varying output
constraints in the manipulator. In Nguyen et al. [29] derived
a nonlinear ESO to handle the unknown uncertainties in
the parallel manipulator. The nonsingular fast terminal slid-
ing mode control guaranteed the finite convergence of the
output tracking error in the controlled system. However,
the aforementioned techniques [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]
provide asymptotical convergence in infinite time. Consid-
ering these aspects, this paper proposes a solution that is

easy to implement and can ensure finite-time convergence.
The proposed solution guarantees that the output responses
accomplish the time-varying output constraints with high
accuracy and prompt convergence.

In particular, we first establish a finite-time output control
to track the problem of an uncertain manipulator with time-
varying output constraints. Then, the transforming technique
is employed to convert the constrained dynamics system into
an unconstrained one. Subsequently, a switching NESO is
utilized to approximate a lumped uncertainty containing the
modeling error, unknown friction, and external disturbance.
This NESO is constructed by swapping a conventional linear
ESO and a nonlinear ESO. The change event is specified by
comparing the estimated error with the predefined positive
value. This technique allows the NESO to yield enhanced
estimation responses and avoid the singular issue. In the final
step, the proposed control is developed using the transformed
dynamics, switching NESO, and fractional auxiliaries in the
control laws. The use of the auxiliaries helps increase the
convergence rate of the output responses. Some simulation
and experiment results were obtained by using 3 degrees of
freedom (DOF) manipulator to exhibit the efficiency of the
proposed control.

The main contributions of this work can be summarized as:
1) This paper first studies a finite-time output control for

an n-DOF manipulator under the presence of modeling error,
unknown frictions, external disturbance, and output con-
straint. The finite-time convergence of the output response in
the manipulator is ensured by integrating the fraction order
auxiliary in the full-state feedback control, which is designed
from the transformed dynamics to overcome the time-varying
output constraints. The stability, finite-time convergence, and
constraint adherence of the proposed control over the n-DOF
manipulator are theoretically analyzed by using the Lyapunov
approach.

2) A switching NESO is used to estimate both the unmea-
sured states and lumped uncertainties in the n-DOF manip-
ulator. Only the output feedback is required when using the
estimated unmeasured states, and thus, the proposed control
emerges as a finite-time output control scheme.

The remaining paper is constructed as follows. Section II
describes the problem formulation and preliminaries. The
NESO, finite-time full-state feedback control, and proposed
control are elaborated in Section III. Section IV describes
the numerical simulations conducted for a 3-DOF manip-
ulator. Section V reports the experimental analysis con-
ducted using a 3-DOF hydraulic manipulator test bench.
Finally, Section VI presents some conclusions and future
works.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
A. PROBLEM DESCRIPTION
This study considers an n-DOFmanipulator in the joint space
whose dynamics can be presented as [30]

M(q)q̈+ C(q, q̇)q̇+G(q)+ JT (q) f+ τ fric = τ (1)
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where q, q̇, q̈ ∈ Rn×1 represent the position, angular velocity,
and angular acceleration vectors of each joint, respectively;
M(q) ∈ Rn×n is the uniformly positive definite symmetric
matrix of inertia; C(q, q̇) ∈ Rn×n presents the Coriolis and
centrifugal term matrix; G(q) ∈ Rn×1 derives the gravity
vector; τ is the torque acting on the joints; J (q) presents
a nonsingular Jacobian matrix; τ fric represents the unknown
frictions; and f represents the external disturbance.
In practice, it is difficult to determine the dynamics param-

eters of the robot. Thus, we define (.) = (.)0+1(.), where (.)
indicates M (q), C (q, q̇), or G (q); (.)0 represents the nom-
inal matrix or vector; and 1(.) indicates the uncertainties.
Assumption 1: Assume that the unknown frictions

and external disturbances are differentiable and bounded
functions.
Property 1 [30]: Ṁ ( q) − 2C (q, q̇) is a skew-symmetric

matrix, defined as xT
[
Ṁ (q)− 2C (q, q̇)

]
x = 0.

Property 2 [31]: The inequality ‖G (q)‖ ≤ κg is satisfied,
where κg is a known positive constant.
Property 3 [31]: The inequality ‖C (q, q̇)‖ ≤ κC ‖q̇‖ holds

where κC is a known positive constant.
Property 4 [31]: The inequality m1 ≤ ‖M (x1)‖ ≤ m2 is

satisfied where mi (i = 1, 2) are the positive constants.
Let x1 = q ∈ Rn, and x2 ∈ q̇ ∈ Rn. The robotic

dynamics (1) can be described in the state space form as

ẋ1 = x2
ẋ2 = M−10 (x1) (u− C0 (x1, x2) x2 −G0 (x1)−1 (t))

(2)

where xi = [xi1, xi2, . . . , xin]T , (i = 1, 2); and 1 (t) =
1M (x1) ẋ2 +1C (x1, x2) x2 +1G (x1)+ JT ( x1) f+ τ fric
presents a lumped disturbance, which consists of the model-
ing error, unknown friction, and external disturbance. u cor-
responds to the input torque τ .

The control goal is to track a reference xd =

[xd1, xd2, . . . , xdn]T while guaranteeing the satisfaction of
the system output constraints x1i (t) < x1i (t) < x1i (t),

where x1 (t) =
[
x11 (t) , . . . , x1n (t)

]T and x1 (t) =
[x11 (t) , . . . , x1n (t)]T express lower boundary and upper
boundary function vector.
Assumption 2: The trajectory signals xdi, i = 1, 2, . . . , n

are assumed to be bounded and known, satisfying |xdi| ≤ X̄di,
where X̄di is a positive constant.

B. PRELIMINARIES
Notation 1:

yc = |y|c sign (y), where c > 0 (3)

It can be computed that
d
dt
yc = c |y|c−1 ẏ (4)

The power of the vector is defined as follows

yc =
[
yc1, . . . , y

c
n
]T
∈ Rn

|y|c = diag
([
yc1, . . . , y

c
n
])
∈ Rn×n (5)

Nonlinear Transformation: The tracking error vectors in
the state space system (2) are defined as follows:

e1 = x1 − xd (6)

This error is bounded by the lower and upper boundaries:

e1i (t) < e1i (t) < e1i (t) (7)

where e1i (t) and e1i (t) are the lower and upper boundaries of
the error constraints, respectively, which are stated as follows:

e1i (t) = x1i (t)− xdi (t) > 0

e1i (t) = x1i (t)− xdi (t) < 0 (8)

where x1i (t) and x1i (t) are the upper and lower boundaries
of the output constraints, respectively.

To combine the errors e1i (t) with the constraints, a non-
linear transformation technique is adopted to incorporate the
constrained tracking error in the system dynamics. The trans-
formation equation [9] can be expressed as follows:

e1i (t) = e1i (t)Ti (zi (t) , ηi (t)) (9)

where ηi (t) = e1i (t)
/
e1i (t), zi is the new error variable, and

Ti (.) is an invertible and increasing function with respect to
zi (t), which fulfills the bellow conditions:

lim
zi(t)→−∞

(Ti (zi (t) , ηi (t))) = ηi (t)

lim
zi(t)→+∞

(Ti (zi (t) , ηi (t))) = 1 (10)

The new error variable, zi (t), can be rewritten as

zi (t) = T−1i

(
e1i (t)
e1i (t)

, ηi (t)
)

(11)

The following inequality holds:

ηi (t) < Ti (zi (t) , ηi (t)) < 1 (12)

when the new variable zi (t) is bounded.
By substituting (8) and (9) into (12), we can derive the

inequality as follows:

e1i (t) < e1i (t)Ti (zi (t) , ηi (t)) = e1i (t) < e1i (t) (13)

which indicates that the output responses are bounded by the
time-varying output constraints, as presented in (7). In other
words, the new variable zi (t) can be used to derive an
unconstrained model from the constrained one with the error
variable e1i. zi (t) can be differentiated with time as follows:

żi =
∂T−1i

∂
(
e1i(t)
e1i(t)

) 1
e1i (t)

(
ė1i (t)−

e1i (t) ė1i (t)
e1i (t)

)

+
∂T−1i

∂ηi (t)
η̇i (t) (14)

This expression is substituted in the first equation of (2)
to achieve the unconstrained manipulator dynamics for the
control design in the subsequent procedure.
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III. CONTROL DESIGN
In this study, the lumped uncertainty M−10 (x1)1 (t), of the
manipulator dynamics (2) are considered and expanded to
a state expressed as x3 ∈ Rn×1. The state variable is then
described as x =

[
xT1 , x

T
2 , xT3

]T
∈ R3n×1. In order to

design and analyze the NESO, the manipulator dynamics (2)
is rewritten as follows [32]:

ẋ1 = x2
ẋ2 = F (x1, x2)+H (x1)u+ x3
ẋ3 = δ (t) (15)

where x3 = −M−10 (x1)1 (t); δ (t) is the differential state
of ẋ3;F ( x1, x2) =M−10 (x1) (C0 (x1, x2) x2 +G0 (x1)); and
H (x1) =M−10 (x1).
Assumption 3 [33]: According to Assumption 1, Prop-

erty 2, Property 3, Property 4, and equation (11) in [34],
the lumped uncertainties of the system are bounded by the
function, ‖x3‖ ≤ b0+b1 ‖x1‖+b2 ‖x2‖2 with bi (i = 0, 1, 2)
are constants. Because of the limited bandwidth of actuators
in practice, the differentiation of the state x3 is supposed to
be bounded, i.e., ‖δ (t)‖∞ ≤ δ, where δ presents a positive
constant.
Assumption 4: The functions F ( x1, x2) are assumed as

a local Lipschitz function with respect to x2 in the practical
range.

A. NONLINEAR EXTENDED STATE OBSERVER
The NESO technique is adopted to address the unmeasured
state vector x2 and estimate the lumped disturbance x3,
thereby enhancing the real-time controller performance.
To this end, the manipulator dynamics (11) are represented
as

ẋ = Anx+ Bnu+ ϕ (x)+ D ( x)

y = x1 (16)

where An=

 0n×n In×n 0n×n
0n×n 0n×n In×n
0n×n 0n×n 0n×n

 ∈ R3n×3n; Bn = 0n×n
H (x1)
0n×n

 ∈ R3n×n; ϕ (x) =

 0n×1
F (x)
0n×1

 ∈ R3n×1;

D (x) =

 0n×1
0n×1
δ (t)

 ∈ R3n×1; and In×n and 0n×n rep-

resent a unit matrix and zero matrices sized n × n,
respectively.

The following NESO is implemented,

˙̂x = Anx̂+ Bnu+ ϕ
(
x̂
)
+ 0Gfal

(
x̃1, λ

)
(17)

where x̂ is derived from the estimated system state of
x, x̃ shows the estimation error, derived as x̃ =

x − x̂, ϕ
(
x̂
)
=

[
0n×n F

(
x1, x̂2

)
0n×n

]T , 0 =[
3γ In×n 3γ 2In×n γ 3In×n

]T
∈ R3n×n is the observer gain

matrix; γ > 0 is adapted to enhance the observer perfor-
mances; Gfal

(
x̃1, λ

)
=
[
gfal (x̃11, λ) . . . gfal (x̃1n, λ)

]T
∈

Rn×1;
Remark 1: The switching observer vector, Gfal (x̃1, λ),

in the NESO is used to enhance the estimation performance
and avoid the singular issue.

The nonlinear function, gfal (x̃1i, λ, ε), can be defined as

gfal (x̃1i, λ) =

{
0.5

(
x̃1i + (x̃1i)

λ
)
‖x̃1i‖2 > εx̃

x̃1i otherwise
(18)

where λ = λ1
/
λ2

is a positive constant; 0 < λ1 < λ2 are odd
constants; and εx̃ is a positive constant.
From (16) and (17), the state estimation error dynamics can

be obtained as follows:

˙̃x = Anx̃+ ϕ̃ (x)− 0Gfal
(
x̃1, λ

)
+ D (x) (19)

where ϕ̃ , ϕ (x)− ϕ
(
x̂
)
.

Based on Assumption 4, the following inequality holds
with a known positive constant c.

|ϕ̃| =
∣∣ϕ (x2)− ϕ (x̂2)∣∣ ≤ c |σ | (20)

If σ 1 = Gfal
(
x̃1, λ

)
∈ Rn×1, σ i =

x̃i
γ i−1
∈ Rn×1 (i = 2, 3),

the corresponding derivatives with respect to time are
presented as

σ̇ 1 = diag (µ) ẋ1 = γ diag (µ) σ 2 − 3γ diag (µ) σ 1

σ̇ 2 =
1
γ
˙̃x2 = γ σ3 +

F̃ (x1, x2)
γ

− 3γσ 1

σ̇ 3 =
1
γ 2
˙̃x3 =

δ (t)
γ 2 − γσ 1 (21)

where µ = [µ1, . . . , µn]T =
[
∂gfal (x̃11,λ)

∂ x̃11
, . . . ,

∂gfal (x̃1n,λ)
∂ x̃1n

]
.

Furthermore, the NESO (19) is rewritten as follows:

σ̇ = γAn1σ +
ϕ̃

γ
+

D (x)
γ 2 (22)

where An1 =

−3diag (µ) diag (µ) 0n×n−3In×n 0n×n In×n
−In×n 0n×n 0n×n

 ∈ R3n×3n is a
negative definite matrix.

In the first condition, ‖x̃1i‖2 > εx̃ , the differential gfal
function (18)with respect to time can be computed as follows:

ġfal (x̃1i, λ) = 0.5 ˙̃x1i
(
1+ λ |x̃1i|

λ−1
)
= µi ˙̃x1i (23)

where µi = 0.5
(
1+ λ |x̃1i|

λ−1
)
(i = 1, . . . , n) are positive

bounded functions.
Remark 2: The εx̃ is selected how the µi is positive func-

tions and the matrix An1 is a negative definite matrix.
In the second condition, ‖x̃1i‖2 ≤ εx̃ ,the differential gfal

function (18) with respect to time is represented as follows:
ġfal (x̃1i, λ) = ˙̃x1i and µi = 1.
Theorem 1: When the inequality (20) and Assumption 2

hold in the switching NESO (17), the estimation errors are
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expected to reach and remain in a predefined region with
finite time by a suitable constant γ .
This theorem is proven and expressed in Appendix A.

B. FINITE FULL STATE FEEDBACK CONTROL WITH THE
TIME-VARYING OUTPUT CONSTRAINT
According to Section II. B, the manipulator dynamics with
the output constraint in (2) can be transformed to the follow-
ing unconstrained system:

ż1 = 8x2 +9

ẋ2 = M−10 (x1) (u− C0 (x1, x2) x2 −G0(x1)−1)

(24)

where

8 =



∂T−11

∂

(
e11
e11

) 1
e11

· · · 0

...
. . .

...

0 · · ·
∂T−1n

∂

(
e1n
e1n

) 1
e1n


∈ Rn×n

(25)

9 = −Hẋd −



∂T−11

∂

(
e11 (t)
e11 (t)

) 1
e11 (t)

e11 (t) ˙e11 (t)
e11 (t)

...

∂T−1n

∂

(
e1n (t)
e1n (t)

) 1
e1n (t)

e1n (t) ˙e1n (t)
e1n (t)



+


∂T−11

∂ (η1 (t))
η̇1 (t)

...

∂T−12

∂ (η2 (t))
η̇2 (t)

 (26)

Ti (zi (t) , ηi (t))

=
ezi(t) + ηi (t) e−z1(t)

ezi(t) + e−z1(t)
(27)

Remark 3: In this case study, we assume that all state
variables in the manipulator consist of position and velocity
variables are measured by the respective sensors.

The tracking errors in the system (24) are presented as the
following:

ez = z1; e2 = x2 − α1 ∈ Rn×1 (28)

where α1 is the virtual control vector.
This virtual control is selected to be:

α1 = 8
−1
(
−K10ez −K11e

β2
z −9

)
(29)

where K1i ∈ Rn×n (i = 0, 1) are positive diagonal matrices;
and 0 < β2 < 1 is a positive constant.

The control law of the finite full-state feedback con-
trol with the time-varying output constraint is presented as
follows:

u = −8ez −K20e2 −K21e
β2
2 + C0 (x1, x2)α1 +G0 (x1)

+M0 (x1) α̇1 (30)

where K2i ∈ Rn×n (i = 0, 1) presents a positive diagonal
matrix.
Theorem 2:When control laws (29) and (30) are conducted

for the manipulator whose dynamics is presented in (24),
they will guarantee the finite-time stability and the output
constraint satisfaction for the manipulator. The residual set
of the manipulator is derived as follows:

lim
t−Tr

V (e) ≤ min

{
δ0

(1− ϕ0) κ1
,

(
δ0

(1− ϕ0) κ2

) 2
1+β2

}
(31)

where 0 <ϕ0 <1; κ2 = min(λmin(K11), λmin(K21 M−
1+β2
2 ));

κ1 = min(λmin(K10), λmin((K20 −1C( x1, x2)− 1
2 In×n)

M−1)); δ0 = 1
2 max(1T (t)1(t)+ α̇T11MT1Mα̇1); and e =[

eTz eT2
]T . The finite time is

Tr

≤ max


t0+

2
ϕ0 (1−β2)

ln
ϕ0κ1V

1+β2
2 (e (t0))+κ2
κ2

,

t0+
2

κ1 (1−β2)
ln
κ1V 1−β2 (e (t0))+ϕ0κ2

ϕ0κ2


(32)

Theorem 2 is proven and described in Appendix B.

FIGURE 1. Schematic of the proposed control with the uncertain
manipulator.

C. PROPOSED CONTROL
This Section describes the finite-time output controller. The
proposed control consists of a finite full-state feedback
control scheme and a switching NESO, as presented in
FIGURE 1. In this study, the proposed control must face the
challenges of unknown payload, frictions, modeling error,
and output constraints. Therefore, the observer estimates both
the unmeasured states and lumped uncertainty. The finite
full state feedback control is developed from the free con-
strained system dynamics to manage the varying time output

VOLUME 10, 2022 119123



D. T. Tran et al.: Finite-Time Output Control for Uncertain Robotic Manipulators With Time-Varying Output Constraints

constraint and ensure the finite-time convergence of the out-
put response, as shown in Section III-B. Consequently, the
proposed control only requires the output angle and can be
considered as a type of output feedback control.

Based on (29), (30), and (17), the proposed control law can
be expressed as follows:

α1 = 8
−1
(
−K10ez −K11e

β2
z −9

)
(33)

u = −8ez −K20ê2 − K21ê
β2
2 + C0

(
x1, x̂2

)
α1

+G0 (x1)+M0 (x1) α̇1 − M0 (x1) x̂3 (34)

where ê2 = x̂2 − α1 ∈ Rn×1.
Theorem 3: When the proposed control laws (33), (34)

and NESO (17) are implemented on an uncertain manipulator
with time-varying output constraints, they will guarantee the
uniformly ultimately bounded of the entire controlled system
and the satisfaction of the time-varying constraints.

Theorem 3 is proven and presented in Appendix C.

IV. NUMERICAL SIMULATIONS
A. SIMULATION DESCRIPTION
To exhibit the advantages of the proposed control, several
simulations are implemented on a 3-DOF manipulator whose
structure is illustrated in FIGURE 2. The detailed dynam-
ics [35] and parameters are presented as follows l1 = 0.1,
l2 = 0.5, l3 = 0.2, mi (i = 1, 2, 3) = 0.5, and g = 9.81.

FIGURE 2. Schematic of the 3-DOF robotic manipulator.

The challenges associated with the manipulator control,
such as the unknown friction, measurement noise, and
external disturbance, are considered in the simulation. The
unknown friction model is derived as τ fric = bx2 +
c tanh

(
x2
ψ

)
, where b = 5I3×3 and c = 5 I3×3represent vis-

cous and static diagonal matrices, respectively;ψ = 50I3×1is
a positive matrix. The measurement noise is a white noise
with a power of 57 × 10−8 and a sampling time of 0.1 s.
An external disturbance along the z-axis of the Cartesian
coordinates is considered, with a value of 0 and 100 N in
the first and last 15 s, respectively. It is assumed that loss-
efficiency-fault arises in three actuators. The remained effi-
ciency of the actuators is 80%.

The initial states of the robot manipulator are set
asx1 (0) =

[
0 22.9 28.6

]
(deg .), and x2 (0) = [0, 0, 0]T .

The reference signal in the joint space is set as
xd =

[
45 sin

(
2π ffret

)
, 22.5 sin

(
2π ffret + 0.5

)
+ 30, 30 sin

(
2π ffret + 0.5

)
+45] (deg .) where ffre is the frequency of

the reference.
Remark 4: Because of the physical limitations of the

mechanical or electronic components in practice, the input
controls of the manipulator are bounded. To ensure the sim-
ulation mimics a real test rig, the control signals of the
controlled are limited as follows:

u = sat (uin) =


ū if uin ≥ ū
u if uin ≤ u
uin otherwise

(35)

where u = −2 × 103N .mand u = 2 × 103N .m denote the
minimum and maximum outputs, respectively.

B. SIMULATION RESULTS
To evaluate the superiority of the proposed control, we con-
sider two other controllers: the first controller is a backstep-
ping controller (BC) derived as α1 = x2d −K1e1; u (t) = −
K2e2 + C0 (x1, x2)α1 (t) + G0 (x1) + M0 (x1) α̇1 − e1,
and the second controller pertains to the finite backstepping
control based new state transformation (FBCST) expressed
in (29) and (30). The working frequency is 0.5 Hz. The
parameters of the controllers are selected as follows:BCK1 =

15diag ([3, 5, 4]) ,K2 = 75diag ([1, 1, 1]); FBCST β =

7
/
9, K10 = 5diag ([3, 5, 4]) ; ,K11 = 10diag ([3, 5, 4]),

K20 = 15diag ([1, 1, 1]), K21 = 60diag ([1, 1, 1]);
Proposed controller K10 = 5diag ([3, 5, 4]) ; ,K11 =

10diag ([3, 5, 4]), K20 = 15diag ([1, 1, 1]), K21 =

60diag ([1, 1, 1]), β = 7
/
9, e1 (t) = −ē1 (t), εx̃ = 2.8,

λ = 0.91, ē1 (t) =
(
0.8e−0.4t + 5.10−3

) [
1 1 1

]T
(rad),

κ0 = 180diag ([1, 1, 1]). The controllers are implemented in
MATLAB 2019a with an automatic solver and sampling time
of 10−3 s.
Remark 5: To ensure a fair in comparison between the

proposed control, FBCST, and BC, the FBCST parameters
are extracted from the BC, and the proposed control param-
eters are inherited from the FBCST. These parameters are
chosen by the trial-error method. The output constraints are
provided based on the requirements for the initial and steady-
state errors.
Remark 6: The controls are tuned considering the associ-

ated tradeoffs. The control gains K10 and K20 are selected to
maintain the system stability. Additionally, the control gains
K11 and K21 are selected to ensure the system stability and
finite-time convergence of the output responses. Because of
the physical restrictions in actuators, an excessively high K11
andK21 may lead to the chattering effect in the control signal,
which may result in instability. Consequently, we implement
the control gains K10 and K20 in control laws. Furthermore,
β2 is selected as a positive value smaller than 1.
FIGURE 3 describes the angular position responses in

three joints of the manipulator with three controllers, with
those of the BC, FBCST, and proposed control represented
as a blue dashed line, a pink dot-dashed line, and a red
line, respectively. The initial outputs of the manipulator with

119124 VOLUME 10, 2022



D. T. Tran et al.: Finite-Time Output Control for Uncertain Robotic Manipulators With Time-Varying Output Constraints

the three controllers are set between the upper and lower
boundaries, and the output responses track the references.

FIGURE 3. Output performance of the 3-DOF manipulator in three joints
with reference at 0.5hz.

In addition, the errors between the output performances
and references in FIGURE 4 indicate that the lumped uncer-
tainty in the robotic manipulator causes significant errors
in the case of BC (black line) in the first 15 s. Never-
theless, these errors belong to the predefined constraints,
ē1i (t) , e1i (t) , (i = 1, 2, 3) (black dashed-dot line), in this
period. In the last 15 s, an external disturbance suddenly
arises at the end-effector. Therefore, the errors exceed the
predefined performances, as shown in FIGURE 4b and c.
In the case of the FBCST (dot-dashed blue line) and pro-
posed control (red line), the errors remain in the predefined
constraints owing to the new state transformation, and the
transient responses are faster than those of the BC due to

TABLE 1. RMS Tracking Error of Three Controllers in the joints (from
0.1 to 30 s).

the fractional terms in the controllers. The accuracy of the
proposed control is higher than that of the FBCST because of
the NESO utilization. The root mean square (RMS) values of
the tracking errors of three controllers in the joints, as listed
in TABLE 1, highlight the efficiency of the proposed control.

FIGURE 4. Tracking errors of the 3-DOF manipulator in three joints with
reference at 0.5Hz.

FIGURE 5 presents the estimations of the unmeasured
states in the 1st, 2nd, and 3rd joints of the manipulator, with
the black and red lines indicating the unmeasured velocities
and estimation results, respectively. The NESO successfully
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estimates and reduces the measurement noises. The band-
width of the NESO can be adjusted by selecting γ suit-
ably. FIGURE 6 shows the estimated lumped disturbance
responses of the NESO in the 1st, 2nd, and 3rd joints, rep-
resented as the blue dashed line, black dotted-dashed line,
and red dashed line, respectively. In the first 15 s, the esti-
mated disturbances are non-zero, although the external force
has not emerged at the end-effector. These results are influ-
enced by the presence of unknown frictions and measure-
ment noise. In the last 15 s, an external force of 100 N
is applied at the end-effector along the z-axis in the Carte-
sian coordinate. According to the geometric structure of the
robotic manipulator, the external force impacts the 2nd and
3rd joints. Consequently, the estimated auxiliary variables
in the 2nd and 3rd joints change considerably more than
for the 1st Joint, as shown in FIGURE 6.

FIGURE 5. Estimated results of the velocity states in the NESO in three
joints with references at 0.5 Hz.

In order to exhibit the effectiveness of the NESO, the esti-
mated results in FIGURE 6 are converted into the estimated
uncertainties in each joint and compared with the lumped
ones, respectively. FIGURE 7 shows that the NESO well
approximated the lumped uncertainties, including modeling

FIGURE 6. Estimated disturbance responses of the NESO in three joints
with references at 0.5 Hz.

error, external disturbance, unknown frictions, and loss effi-
ciency fault of three actuators.

V. EXPERIMENTAL STUDIES
A. EXPERIMENTAL DESCRIPTIONS
To further demonstrate the efficiency of the proposed con-
trol methodology, comparative experiments are conducted.
The platform consists of a system analysis framework and
a practical test bench, as presented in FIGURE 8. The test
bench includes a hydraulic unit to supply power and the
3-DOF hydraulic manipulator. As mentioned previously, the
hydraulic manipulator is constructed to have two rotary actu-
ators to control the first and second joints. The third Joint
is manipulated using a cylinder. Each joint is equipped with
rotary incremental encoders (E40H6-5000-3-V-5) to mea-
sure real-time angle position. The practical testbench syn-
chronously communicates with the system analysis through
the Terminal 68LPR set up inside the control box and DAQ
card (PCIe-6363) istalled in the PC. The control algorithms
are implemented onMATLAB by using the real-time window
target tool with a sample time of 10−3 s.
The desired trajectories for the hydraulic manipulator

are chosen as xd = [25 sin (π t) ,−20 cos (π t)+ 30,
20 sin (π t)+ 40]T (deg .). The upper and lower boundaries
are selected as ē1 (t) =

(
85e−0.9t + 1.1

) [
1 1 1

]T
(deg .),

and e1 (t) = −ē1 (t), respectively. The initial val-
ues are x1 (0) =

[
−55 −17 3

]T
(deg .) and x2 (0) =

[0, 0, 0]T (deg /s).

B. EXPERIMENTAL RESULTS
The experimental results of the proposed control are com-
pared with those of the BC to prove the superiority of
the proposed approach in satisfying the time-varying output
constraints, compensating for the lumped disturbance, and
enhancing the transient responses. The relationship between
the output torque and input voltage in the hydraulic manipula-
tor is a nonlinear function due to the nonlinear functions in the
servo valves. In this study, we consider that this relationship
is a linear function. In this case, the modeling error includes
the actuator and manipulator dynamics, which pertain to the
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FIGURE 7. Comparison of the lumped uncertainties and the estimated
ones in a) joint 1, b) joint 2, c) joint 3.

FIGURE 8. Experimental platform for the hydraulic manipulator.

identification methods. In the simulation section, the friction
models are unknown functions, which are considered to be
modeling errors. The parameters of themanipulator dynamics
are the same as those specified in the simulation section.

The results presented in FIGURE 9. indicate that the error
responses of the proposed control (red line) are bounded
in the time-varying output constraints (dashed black line),

FIGURE 9. Tracking error responses of the BC and proposed control in
three joints.

FIGURE 10. Control signals for the proposed control scheme.

with a steady-state value of 1.9◦. The error responses of
the BC (black line) do not satisfy the output constraints.
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Additionally, the NESO in the proposed control estimated
and compensated well for the lumped uncertainties in the real
model. Consequently, the accuracy of the controlled system
with the proposed control is better than the BC. The control
signals, as electronic signals, are depicted in FIGURE 10. The
experimental results validate the advantages of the proposed
control.

VI. CONCLUSION AND FUTURE WORKS
This study proposed an advanced finite-time output control
for uncertain robot manipulators with time-varying output
constraints. A transformation technique was utilized to con-
vert the constrained system into an unconstrained one to
prevent the violation of the output constraint. A switching
NESO, constructed by swapping the nonlinear ESO and
traditional ESO, was utilized to estimate the unmeasured
states and approximate the lumped uncertainty, including the
unknown friction and external disturbance. The proposed
control was developed by combining the transformed dynam-
ics, switching NESO, and fractional auxiliaries in the con-
trol laws. The use of the auxiliaries ensured the finite-time
convergence of the output responses. Then, the advantages
of the proposed controller are satisfying the time-varying
output constraints, achieving high accuracy, and prompt con-
vergence. The stability and robustness of the proposed control
are demonstrated based on the Lyapunov theory. The effec-
tiveness of the proposed controller was demonstrated through
both simulations and experiments.

For future work, the accuracy of the robotic manipulator
can be improved when the advanced controller is developed
according to the approach in [36]. The manipulator dynamics
will be analyzed, including actuator dynamics, and the adap-
tive neural network will be used to approximate the modeling
errors of the manipulator.

APPENDIX A
To demonstrate Theorem 1, we consider a Lyapunov function
as follows:

V0 =
1
2
σ TPσ (36)

where P presents a positive definite matrix. The matrix, P,
is chosen to satisfy the below qualification

AT
n1P+ PAn1 = −2I3n×3n (37)

From (22), the time derivative of the Lyapunov func-
tion (36) is depicted as

V̇0 =
1
2
γσ T

(
AT
n1 P+ PAn1

)
σ +

1
2

(
ϕ̃

γ
+

D (x)
γ 2

)T
Pσ

+
1
2
σ TP

(
ϕ̃

γ
+

D (x)
γ 2

)
= −γ σ Tσ +

(
ϕ̃

γ
+

D (x)
γ 2

)T
Pσ

≤

(
−

(
γ −

cλmax (P)
γ

)
‖σ‖2 +

δ̄

γ 2 λmax (P)

)
‖σ‖2

(38)

The differential Lyapunov function (38) with respect to
time is a negative function when −

(
γ −

cλmax(P)
γ

)
‖σ‖2 +

δ̄
γ 2
λmax (P) ≤ 0 that means ‖σ‖2 ≥

δ̄
γ (γ 2−cλmax(P))

λmax (P).

When the bandwidth γ is increased, the estimation errors
in NESO are decreased, and the stability of the NESO is
guaranteed [37].

APPENDIX B
In the first step, the virtual control is designed such that
the new error approaches zero in a finite time. A candidate
Lyapunov function is chosen as follows:

V1 =
1
2
eTz ez (39)

By taking the time derivative of the Lyapunov func-
tion (39), and combining it with the first equation in (24). Its
result is presented as follows:

V̇1 = eTz ėz = eTz (8x2 (t)+9) (40)

From (28) and (29), the equation (40) is represented as:

V̇1 = eTz (8 (e2 + α1)+9)

= −eTz K10ez − eTz K11eβ2z + eTz 8e2 (41)

In the next step, the control law is constructed to guarantee
that the velocity vector will approach zero in finite time. Now
the Lyapunov function is selected as follows:

V2 = V1 +
1
2
eT2Me2 (42)

Differentiating V2 with respect to time shows as

V̇2 = V̇1 + eT2Mė2 +
1
2
eT2 Ṁe2 (43)

When we apply Property 1 to (43), its result yields

V̇2 = V̇1 + eT2 (M ( x1) ė2 + C (x1, x2) e2) (44)

Replacing (24), and (30) into (44), we get

V̇2 = V̇1+eT2 (u (t)− C0 (x1, x2) x2 (t)−G0 (x1)−1(t)

−M (x1) α̇1 + C (x1, x2) e2)

= −eTz K10ez − eTz K11eβ2z − eT2K20 e2 − eT2K21e
β2
2

+ eT2C0 (x1, x2)α1 + eT2G0 ( x1)+ eT2M0 (x1) α̇1
− eT2C0 (x1, x2) x2 − eT2G0 (x1)− eT21 (t)

− eT2 M (x1) α̇1 + eT2C (x1, x2) e2
= −eTz K10ez − eT2 (K20 −1C (x1, x2)) e2 − eTz K11 eβ2z
− eT2K21e

β2
2 − eT2 (1 (t)+1M (x1) α̇1) (45)

Based on Young’s inequality, −eT21 (t) ≤
1
2e

T
2 e2 +

1
21

T (t)1 (t),−eT21M (x1) α̇1 ≤ 1
2e

T
2 e2+

1
2 α̇

T
11MT1Mα̇1

and the Lemma 2 in [38], the differential Lyapunov function
is represented as follows:

V̇2 ≤ −eTz K10ez − eT2 (K20 −1C (x1, x2)− In×n) e2
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− eTz K11eβ2z − eT2K21e
β2
2 +

1
2
1T (t)1 (t)

+
1
2
α̇T11MT1Mα̇1 ≤ −κ1V2 − κ2V

1+β2
2

2 + δ0

(46)

where

κ1 = min
(
λmin (K10) , λmin

((
K20 −1C (x1, x2)

−
1
2
In×n

)
M−1

))
;

κ2 = min
(
λmin (K11) , λmin

(
K21M−

1+β2
2

))
;

δ0 =
1
2
max

(
1T (t)1 (t)+ α̇T11MT1Mα̇1

)
.

There exists a scalar 0 < ϕ0 < 1 so that the differential
Lyapunov function (46) can be represented in two cases.
In the first case, V2 >

δ0
(1−ϕ0)κ1

, its result yields

V̇2 ≤ −ϕ0κ1V2 − (1− ϕ0) κ1V2 − κ2V
1+β2
2

2 + δ0

≤ −ϕ0κ1V2 − κ2V
1+β2
2

2 (47)

Based on Lemma 1 in [39], the errors are driven into the
region e =

[
eTz eT2

]T
∈

{
V2 ≤

δ0
(1−ϕ0)κ1

}
in a finite time

given as

Tr ≤ t0 +
2

ϕ0 (1− β2)
ln
ϕ0κ1V

1+β2
2

2 (e (t0))+ κ2
κ2

(48)

In the second case, V
1+β
2

2 >
δ0

(1−ϕ0)κ2
, its result is presented

as

V̇2 ≤ 2 − κ1V2 − ϕ0κ2V
1+β2
2

2 − (1− ϕ0) κ2V
1+β2
2

2 + δ0

≤ −κ1V2 − ϕ0κ2V
1+β2
2

2 (49)

By a similar analysis, the errors are driven into the region

e ∈
{
V

1+β
2

2 ≤
δ0

(1−ϕ0)κ2

}
within a finite time which is pre-

sented as

Tr ≤ t0 +
2

κ1 (1− β2)
ln
κ1V

1+β2
2

2 (e (t0))+ ϕ0κ2
ϕ0κ2

(50)

From (46), (48) and (50), Theorem 2 is proven.

APPENDIX C
In order to prove theorem 3, the Lyapunov function is selected
based on (36) and (42) as follows:

V = V0 + V2 =
1
2
σ TPσ +

1
2
eTz ez +

1
2
eT2Me2 (51)

The differential Lyapunov function is presented as

V̇ = σ TPσ̇ + eTz ėz + eT2Mė2 +
1
2
eT2 Ṁ (x1) e2

≤ −eTz K10ez − eTz K11eβ2z

+ eTz 8e2 +
(
−

(
γ −

cλmax (P)
γ

)
‖σ‖2

+
δ̄

γ 2 λmax (P)
)
‖σ‖2 + eT2 (u (t)

−C0 ( x1, x2) x2 −G0( x1 −1 (t)−M0 (x1) α̇1
+C (x1, x2) e2)

≤

(
−

(
γ −

cλmax (P)
γ

)
‖σ‖2 +

δ̄

γ 2 λmax (P)
)
‖σ‖2

− eTz K10ez − eTz K11 eβ2z − eT2K20ê2 − eT2K21ê
β2
2

+ ceT2 |σ | + eT2M0 (x1) x̃3 − eT21M (x1) α̇1 (52)

Based on Young’s inequality, eT2 |σ | ≤
1
2e

T
2 e2 +

1
2σ

Tσ ,
eT2 M0 (x1) x̃3 ≤ 1

2 eT2M
T
0 (x1)M0 (x1) e2 + 1

2 x̃
T
3 x̃3, the dif-

ferential Lyapunov function (51) is rewritten as follows

V̇ ≤ −
(
γ −

cλmax (P)
γ

−
c
2

)
‖σ‖22 − eTz K10ez

− eTz K11eβ2z − eT2K21ê
β2
2

− eT2

(
K20 −

cIn×n + λmax
(
MT

0 (x1)M0 (x1)
)

2

)
e2

+
δ̄

γ 2 λmax (P) ‖σ‖2 +
1
2
x̃T3 x̃3

≤ −

(
γ −

cλmax (P)
γ

−
c
2

)
‖σ‖22 − eTz K10ez

+
δ̄

γ 2 λmax (P) ‖σ‖2

+
1
2
x̃T3 x̃3

− eT2

(
K20 −

cIn×n + λmax
(
MT (x1)M (x1)

)
2

)
e2

≤ −κV +1V (53)

where κ = min(
λmin

((
K20 −

c In×n+λmax
(
MT

0 (x1)M0(x1)
)

2

)
M−1

)
,

K10,
(
γ −

cλmax(P)
γ
−

c
2

)
λmax

(
P−1

))
,

1V = max
(
δ̄

γ 2
λmax (P) ‖σ‖2 +

1
2 x̃

T
3 x̃3

)
.

From (53), the parameters of the observer and control
should be selected to satisfy the below conditions:

γ −
cλmax (P)

γ
−
c
2
> 0

× λmin

((
K20 −

c2In×n + λmax
(
MT

0 (x1) M0 (x1)
)

2

)

× M−1
)
> 0 (54)
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Then, we can affirm that the system (24) is uniformly ulti-
mately bounded [40] with the control laws in (33) and (34),
and the observer in (17). Furthermore, based on non-
linear transformation in Section II. B, the output perfor-
mances are bounded by predefined constraints. Theorem 3 is
proven.

REFERENCES

[1] H. I. Krebs, M. Ferraro, S. P. Buerger, M. J. Newbery, A. Makiyama,
M. Sandmann, D. Lynch, B. T. Volpe, and N. Hogan, ‘‘Rehabilitation
robotics: Pilot trial of a spatial extension for MIT-MANUS,’’ J. NeuroEng.
Rehabil., vol. 1, no. 1, p. 5, 2004.

[2] B. Whitsell and P. Artemiadis, ‘‘Physical human–robot interaction
(pHRI) in 6 DOF with asymmetric cooperation,’’ IEEE Access, vol. 5,
pp. 10834–10845, 2017.

[3] Z. Chen, F. Huang, W. Chen, J. Zhang, W. Sun, J. Chen, J. Gu, and
S. Zhu, ‘‘RBFNN-based adaptive sliding mode control design for delayed
nonlinear multilateral telerobotic system with cooperative manipulation,’’
IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1236–1247, Feb. 2020.

[4] L. Edalatia, A. Khaki,M. Aliyari, andA.Moarefianpoura, ‘‘Adaptive fuzzy
dynamic surface control of nonlinear systems with input saturation and
time-varying output constraints,’’ Mech. Syst. Signal Process., vol. 100,
pp. 311–329, Feb. 2018.

[5] Y. Zhang, S. Li, S. Kadry, and B. Liao, ‘‘Recurrent neural network for
kinematic control of redundant manipulators with periodic input distur-
bance and physical constraints,’’ IEEE Trans. Cybern., vol. 49, no. 12,
pp. 4194–4205, Dec. 2019.

[6] Y. Qiu, X. Liang, Z. Dai, J. Cao, and Y. Chen, ‘‘Backstepping dynamic
surface control for a class of non-linear systems with time-varying output
constraints,’’ IET Control Theory Appl., vol. 9, no. 15, pp. 2312–2319,
Oct. 2015.

[7] K. P. Tee, S. S. Ge, and E. H. Tay, ‘‘Barrier Lyapunov functions for the
control of output-constrained nonlinear systems,’’ Automatica, vol. 45,
no. 4, pp. 918–927, Apr. 2009.

[8] W. C. Meng, Q. M. Yang, and Y. X. Sun, ‘‘Adaptive neural control of
nonlinear MIMO systems with time-varying output constraints,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 5, pp. 1074–1085, May 2015.

[9] K. P. Tee, B. Ren, and S. S. Ge, ‘‘Control of nonlinear systems with time-
varying output constraints,’’ Automatica, vol. 47, no. 11, pp. 2511–2516,
Nov. 2011.

[10] W. Wang and S. Tong, ‘‘Adaptive fuzzy containment control of nonlinear
strict-feedback systems with full state constraints,’’ IEEE Trans. Fuzzy
Syst., vol. 27, no. 10, pp. 2024–2038, Oct. 2019.

[11] Y. Wu, R. Huang, X. Li, and S. Liu, ‘‘Adaptive neural network control of
uncertain robotic manipulators with external disturbance and time-varying
output constraints,’’ Neurocomputing, vol. 323, pp. 108–116, Jan. 2019.

[12] Y.-J. Liu, S. Lu, and S. Tong, ‘‘Neural network controller design for an
uncertain robot with time-varying output constraint,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 47, no. 8, pp. 2060–2068, Aug. 2017.

[13] C. P. Bechlioulis and G. A. Rovithakis, ‘‘Robust adaptive control of feed-
back linearizable MIMO nonlinear systems with prescribed performance,’’
IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2090–2099, Oct. 2008.

[14] Z. Zhao and C. K. Ahn, ‘‘Boundary output constrained control for a
flexible beam system with prescribed performance,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 51, no. 8, pp. 4650–4658, Aug. 2021.

[15] H. Ma, Q. Zhou, H. Li, and R. Lu, ‘‘Adaptive prescribed perfor-
mance control of a flexible-joint robotic manipulator with dynamic
uncertainties,’’ IEEE Trans. Cybern., early access, Aug. 16, 2021, doi:
10.1109/TCYB.2021.3091531.

[16] Y.-J. Liu and H. Chen, ‘‘Adaptive sliding mode control for uncertain active
suspension systems with prescribed performance,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 51, no. 10, pp. 6414–6422, Oct. 2021.

[17] J. Gu, R. Sun, and J. Chen, ‘‘Improved back-stepping control for nonlinear
small UAV systems with transient prescribed performance design,’’ IEEE
Access, vol. 9, pp. 128786–128798, 2021.

[18] J.-X. Zhang and G.-H. Yang, ‘‘Fuzzy adaptive output feedback control of
uncertain nonlinear systems with prescribed performance,’’ IEEE Trans.
Cybern., vol. 48, no. 5, pp. 1342–1354, May 2018.

[19] C.-C. Wang and G.-H. Yang, ‘‘Neural network-based adaptive
output feedback fault-tolerant control for nonlinear systems with
prescribed performance,’’ Neurocomputing, vol. 329, pp. 457–467,
Feb. 2019.

[20] Q. Zhou, H. Li, L. Wang, and R. Lu, ‘‘Prescribed performance observer-
based adaptive fuzzy control for nonstrict-feedback stochastic nonlin-
ear systems,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 10,
pp. 1747–1758, Oct. 2018.

[21] M. Wang and A. Yang, ‘‘Dynamic learning from adaptive neural
control of robot manipulators with prescribed performance,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 2244–2255,
Aug. 2017.

[22] J. Lee, P. H. Chang, and M. Jin, ‘‘Adaptive integral sliding mode control
with time-delay estimation for robot manipulators,’’ IEEE Trans. Ind.
Electron., vol. 64, no. 8, pp. 6796–6804, Aug. 2017.

[23] J. Na, Y. Li, Y. Huang, G. Gao, and Q. Chen, ‘‘Output feedback control
of uncertain hydraulic servo systems,’’ IEEE Trans. Ind. Electron., vol. 67,
no. 1, pp. 490–500, Jan. 2020.

[24] J. Han, ‘‘From PID to active disturbance rejection control,’’ IEEE Trans.
Ind. Electron., vol. 56, no. 3, pp. 900–906, Mar. 2009.

[25] D.-T. Tran, T.-C. Do, and K.-K. Ahn, ‘‘Extended high gain observer-
based sliding mode control for an electro-hydraulic system with a variant
payload,’’ Int. J. Precis. Eng. Manuf., vol. 20, no. 12, pp. 2089–2100,
Dec. 2019.

[26] L. Zhao, X. Liu, and T. Wang, ‘‘Trajectory tracking control for double-
joint manipulator systems driven by pneumatic artificial muscles based on
a nonlinear extended state observer,’’Mech. Syst. Signal Process., vol. 122,
pp. 307–320, May 2019.

[27] H. Yang, Y. Yu, Y. Yuan, and X. Fan, ‘‘Back-stepping control of two-link
flexiblemanipulator based on an extended state observer,’’Adv. Space Res.,
vol. 56, no. 10, pp. 2312–2322, 2015.

[28] D. T. Tran, M. Jin, and K. K. Ahn, ‘‘Nonlinear extended state observer
based on output feedback control for a manipulator with time-varying
output constraints and external disturbance,’’ IEEE Access, vol. 7,
pp. 156860–156870, 2019.

[29] V. Nguyen, C. Lin, S. Su, W. Sun, and M. J. Er, ‘‘Global finite time
active disturbance rejection control for parallel manipulators with unknown
bounded uncertainties,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 51,
no. 12, pp. 7838–7849, Dec. 2021.

[30] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A Mathematical
Introduction to Robotic Manipulation. Boca Raton, FL, USA: CRC Press,
1994.

[31] F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Robot Manipulator
Control: Theory and Practice. Boca Raton, FL, USA: CRC Press, 2003.

[32] D. T. Tran and K. K. Ahn, ‘‘Finite-time fault-tolerant control for a robotic
manipulator with output constraint and uncertainties,’’ IEEE Access, vol. 9,
pp. 146771–146782, 2021.

[33] Z.-L. Zhao and B.-Z. Guo, ‘‘A novel extended state observer for output
tracking of MIMO systems with mismatched uncertainty,’’ IEEE Trans.
Autom. Control, vol. 63, no. 1, pp. 211–218, Jan. 2018.

[34] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, ‘‘Continuous finite-time control
for robotic manipulators with terminal sliding mode,’’ Automatica, vol. 41,
no. 11, pp. 1957–1964, Nov. 2005.

[35] D.-T. Tran, H.-V.-A. Truong, and K. K. Ahn, ‘‘Adaptive backstepping
sliding mode control based RBFNN for a hydraulic manipulator including
actuator dynamics,’’ Appl. Sci., vol. 9, no. 6, p. 1265, 2019.

[36] G. Yang, J. Yao, and N. Ullah, ‘‘Neuroadaptive control of saturated
nonlinear systems with disturbance compensation,’’ ISA Trans., vol. 122,
pp. 49–62, Mar. 2022.

[37] Q. Guo, Y. Zhang, B. Celler, and S. Su, ‘‘Backstepping control of electro-
hydraulic system based on extended-state-observer with plant dynam-
ics largely unknown,’’ IEEE Trans. Ind. Electron., vol. 63, no. 11,
pp. 6909–6920, Nov. 2016.

[38] X. Huang, W. Lin, and B. Yang, ‘‘Global finite-time stabilization of a class
of uncertain nonlinear systems,’’ Automatica, vol. 41, no. 5, pp. 881–888,
May 2005.

[39] J. Yu, P. Shi, and L. Zhao, ‘‘Finite-time command filtered backstepping
control for a class of nonlinear systems,’’Automatica, vol. 92, pp. 173–180,
Jun. 2018.

[40] A.-C. Huang and M.-C. Chien, Adaptive Control of Robot Manipulators:
A Unified Regressor-Free Approach. Singapore: World Scientific, 2010.

119130 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCYB.2021.3091531


D. T. Tran et al.: Finite-Time Output Control for Uncertain Robotic Manipulators With Time-Varying Output Constraints

DUC THIEN TRAN (Member, IEEE) received the
B.S and M.S. degrees from the Department of
Electrical Engineering, Ho Chi Minh City Univer-
sity of Technology, Vietnam, in 2010 and 2013,
respectively, and the Ph.D. degree from the Uni-
versity of Ulsan, in 2020.

He works as a Lecturer with the Department
of Automatic Control, Ho Chi Minh City Uni-
versity of Technology and Education (HCMUTE),
Vietnam. His research interests include robotics,

variable stiffness systems, fluid power control, disturbance observer, nonlin-
ear control, adaptive control, fault tolerant control, and intelligent technique.

HOAI VU ANH TRUONG received the B.S.
degree in mechanical engineering from the Ho Chi
Minh City University of Technology, Ho ChiMinh
City, Vietnam, in 2015, and the Ph.D. degree in
mechanical and automotive engineering from the
University of Ulsan, Ulsan, South Korea, in 2021.

He is currently a Postdoctoral Researcher with
the mechanical and automotive engineering, Uni-
versity of Ulsan. His research interests include
renewable energy, energy conversion systems,

energy management for hybrid power sources, advanced control and intelli-
gent control for nonlinear systems, nonlinear observer, fault-tolerant control,
electro-hydraulic systems, and robotic manipulator.

MAOLIN JIN (Senior Member, IEEE) received
the B.S. degree in material science and mechanical
engineering from the Yanbian University of Sci-
ence and Technology, Jilin, China, in 1999, and the
M.S. and Ph.D. degrees in mechanical engineering
from KAIST, Daejeon, South Korea, in 2004 and
2008, respectively.

He was a Postdoctoral Researcher at the
Mechanical Engineering Research Institute,
KAIST, in 2008. From November 2008 to Febru-

ary 2016, he was a Senior Researcher with the Research Institute of Industrial
Science and Technology, Pohang, South Korea. He is currently a Director
and a Chief Researcher with the Human-Centered Robotics Center of the
KIRO, Pohang. His research interests include robust control of nonlinear
plants, time-delay control, robot motion control, electro-hydraulic actua-
tors, winding machines, collaborative robots, disaster robotics, and factory
automation.

KYOUNG KWAN AHN (Senior Member, IEEE)
received the B.S. degree from the Department
of Mechanical Engineering, Seoul National Uni-
versity, in 1990, the M.Sc. degree in mechanical
engineering from the Korea Advanced Institute of
Science and Technology, in 1992, and the Ph.D.
degree from the Tokyo Institute of Technology,
in 1999.

He is currently a Professor with the School
of Mechanical Engineering, University of Ulsan,

Ulsan, South Korea. His research interests include the design and control
of smart actuator using the smart material, fluid power control and active
damping control, and renewable energy. He is an Editor of IJCAS, an Edito-
rial Board of Renewable Energy, Actuators, and Journal of Engineering.

VOLUME 10, 2022 119131


