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ABSTRACT The illegal exploitation of protected marine environments has consistently threatened the
biodiversity and economic development of coastal regions. Extensive monitoring in these — often remote
— areas is challenging. Machine learning methods are useful in object detection and classification tasks and
have the potential to underpin techniques for the development of robust monitoring systems to overcome
this problem. However, development is hindered due to the limited number of publicly available labelled
and curated datasets. Furthermore, there are relatively few open-source state-of-the-art methods to be used
for evaluation. This paper presents an investigation of automated classification methods using underwater
acoustic signals to infer the presence and type of vessels navigating in coastal regions. Various combinations
of deep convolutional neural network architectures, and preprocessing filter layers, were evaluated using a
new dataset based on a subset of the extensive open-source Ocean Networks Canada hydrophone data. Tests
were conducted in which VGGNet and ResNet networks were applied to classify the input data. The data was
preprocessed using either Constant Q Transform (CQT), Gammatone, Mel spectrogram, or a combination of
these filters. With over 97% accuracy, using all three preprocessing representations simultaneously yielded
the most reliable result. However, high accuracies of 94.95% were achieved using CQT as the preprocessing
filter for a ResNet-based convolutional neural network, providing a trade-off between model complexity
and accuracy; a result that is more than 10% higher than previously reported approaches. This more accurate
classifier for underwater acoustics could be used as a reliable autonomous monitoring system in maritime
environments.

INDEX TERMS Deep learning, hydrophones, marine environment, ship type, sound.

I. INTRODUCTION
Illegal fishing represents a serious problem for society in

Nowadays, there is a large number of applications that involve
maritime classification tasks, such as the identification of

general, affecting not only the marine life through destructive
trawling but also the local economy of coastal areas, which
depends economically on this ecosystem for subsistence.
Therefore, the detection and classification of illegal vessels
situated in law-protected areas represent a poignant need
for the surveillance and protection of the coastal ecosystem.
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underwater archaeological remains [1], the inspection of
underwater structures for the offshore industry [2], [3], the
surveillance of shorelines [4], the identification of vessels [5],
as well as applications in environmental sciences, like count-
ing and classifying the various marine species for biological
research [6]. Also worth mentioning are studies relating the
acoustic signals in the sea to environmental pollution, affect-
ing not only the marine life [7], [8], [9], but also the human
activities in port areas [10], [11], [12]. In this context, the
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identification of vessels from acoustic data is selected as the
domain of interest for this paper.

Some technologies, such as the Automatic Identification
System (AIS), which contain Global Positioning System
(GPS) data, and satellite images, can be applied in the surveil-
lance of the marine environment. However, these approaches
have limitations. For instance, the high costs and maintain-
ing accurate instrument calibration are still challenges for
satellite imagery [13]. GPS signals, on the other hand, can
be masked or defrauded to limit the system capabilities or
even to hide illegal activities. In contrast, the acoustic signals
emitted by vessels captured using hydrophones provide a
low-cost and fraud-resistant data source to be used in surveil-
lance tasks, as acoustic signals can be difficult to omit or
mask. Efforts in this area can also be the initial step towards
determining how such signals can be analysed, becoming
the gateway to understanding of how acoustic environmental
pollution is affecting marine life.

As the classification of underwater acoustic signals gained
importance, this task became unfeasible to be solved by
traditional (time-frequency) methods, which were primarily
conducted by humans operators, due to the complexity of the
data. Time-frequency representations, such as those based on
the Fourier transform or on temporal data segments [14], can
be applied in different forms, such as a linear scale (e.g., short
time Fourier transforms) or a logarithmic scale (e.g., Mel fil-
ter banks). Both strategies produce a two-dimensional time-
frequency representation of the signal, which can be used to
analyse the features of the sound. However, the underwater
acoustic signal is a mixture of environmental, biological, and
human-generated sounds. Therefore, it has a low signal-to-
noise ratio (SNR) and a high degree of variability for the same
source [15], [16], raising the difficulty of the recognition task.
In order to cope with this issue, recent studies, mostly based
on the application of Deep Learning (DL) methods [17], [18],
[19], have shown promise in automatic data classification
tasks.

Many DL methods for object detection and classification
have been successfully developed in the past few years for
computer vision applications [20]. The use-case presented
in this paper allows for the application of these methods to
other data domains, which could inherit from the solutions
developed in the visual domain. In this context, as the time-
frequency representations are two-dimensional representa-
tions of the acoustic signal, an opportunity arises to apply
the DL strategies, originally developed for computer vision,
to acoustic analysis. Numerous DL solutions for the acoustic
domain are now based on Convolutional Neural Networks
(CNNs) [21], [22]. Although they can be applied to raw
audio, they are often applied to two-dimensional audio rep-
resentations, such as spectrograms. The most recent studies
have used VGGNet [23] or ResNet [24] models as base
algorithms for this development, owing to the models’ high
accuracy in complex classification tasks. Despite the use
of time-frequency representations as inputs to CNNs being
an interesting approach, its future development depends on
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the representation used as input and the model which will
receive it. Also, as the sound generated by sources in the
underwater domain is dependent on the environment, it is of
extreme importance that not only the type of two-dimensional
representation matches the problem, but also its parameters
must be optimised for the task.

This paper describes an investigation into the automated
classification of four distinct classes of vessels in marine
environments using DL. Single channel underwater acoustic
signals obtained by research-grade hydrophones were used as
input, and the impact of the application of distinct preprocess-
ing methods on the DL classification task was explored. Clas-
sification results from two key state-of-the-art DL methods,
VGGNet and ResNet, were compared. The impact of apply-
ing three distinct preprocessing filters, Mel Spectrogram,
Constant Q Transform (CQT), and the Gammatone-like spec-
trograms (or just Gammatone), was also evaluated, as was the
impact of a combination of these three filters into a three-
channel representation. The complete pipeline was trained
and tested on three scenarios characterised by the distance
between the objects of interest and the hydrophone.

In order to better monitor and protect marine environments,
there is a need for an autonomous monitoring system that
can generate an alert whenever a particular class of vessel is
detected in an area. Towards that end, the main contributions
of this paper can be summarised as follows:

« Creation of an open-source pipeline for the classifica-
tion of vessels from underwater acoustic signals using
Machine Learning1 ;

o Comparison of the Adam and Stochastic Gradient
Descent (SGD) optimisers for spectrogram analysis;

« Evaluation of two different neural network architectures
for acoustic classification (VGGNet and ResNet);

o Comparison of three different preprocessing filters
(CQT, Mel Spectrogram, and Gammatone);

o Investigation into combining CQT, Mel Spectrogram,
and Gammatone representations into a three-channel
signal, generating a higher dimensional input signal to
the network;

o Analysis of the relation between the distance of the
object of interest to the hydrophone and the accuracy of
classification methods;

« Presentation of a new open-source curated dataset con-
taining underwater acoustic signals classified into dif-
ferent scenarios based on the distance from the vessel to
the sensor.”>

Il. RELATED WORK

The task of underwater acoustic target classification is chal-
lenging due to the complex nature of the sound produced
by vessels [25]. Usually, this sound is produced by the set
of mechanical components in the vessel’s propulsion system,

]https://github.com/lucascesarfd/underwaterisnd
2https://github.com/lucascesarfd/onc_dataset
3http://ieeefdataport.org/9778
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such as its engine, as well as by hydrodynamic interactions
of the propeller. The former typically produces a broadband
continuous spectrum, while the latter generates narrow band
components whose spectrum consists of power at discrete
frequencies [26]. As there are different types of vessels,
in diverse states of upkeep, the sound produced by them is
fundamentally distinct from one another, depending on the
vessel’s speed, the state of its mechanical parts, and the hydro-
dynamics of its design. Also, additional complexity exists
due to the background sound produced by the region and the
complexity of sound propagation in shallow waters, which
causes multi-path reflections [27]. Environmental conditions,
such as temperature, depth, salinity, pressure, and even pre-
cipitation, can directly influence how the signal travels from
emitter to receiver [28]. In this context, some classical sig-
nal processing methods, such as Cepstral analysis [14], can
improve the quality of the processed sound by reducing the
effects of the reflections interference and scattering losses,
but only if applied on signals for short ranges with a high
SNR [29].

Early developments in the analysis and classification of
underwater acoustic signals focused on time-frequency anal-
yses, such as the use of Fourier transforms [14]. However,
recent state-of-the-art methods are largely based on the appli-
cation of deep-learning algorithms to solve similar tasks [17],
[18], [19]. Advances in machine learning techniques mean
CNNs are now being considered for underwater acoustic
classification applications [25]. Consistent with this trend,
the trade-off between the accuracy and model size of various
CNN models for mine-like object detection from side-scan
sonar images was investigated [30]. The comparative results
reported suggest that deeper models (i.e., models with mul-
tiple layers) achieved less than 1% of accuracy improve-
ment when compared with shallow models, at the cost of
a 17x increase of computational requirements. This proved
that smaller models can have a beneficial trade-off between
processing time and accuracy. Similarly, the impact caused
by distinct network topologies on the problem of underwa-
ter acoustic target classification is an important issue that
has been recently considered [31]. A properly tuned model
is capable of outperforming recent DL methods, such as a
CNN-extreme learning machine [32], ResNetl8 [24], and
SqueezeNet [33]. The strong results presented in [30], [31]
suggest that the search for the most suitable network topol-
ogy, and the optimisation of its parameters, are essential
tasks that should be considered in the development of any
CNN-based classification system.

Although CNNs can be applied directly to the audio sig-
nal [31], [34], [35], acoustic filters are frequently used as
preprocessing layers to improve the quality of the result-
ing audio representations [25]. Therefore, not only should
the CNN parameters be investigated, but also which fil-
ters and features best contribute to the development of
effective DL methods for the underwater acoustic domain.
To this end, recent work has investigated the effect of var-
ious preprocessing methods on the original audio signal,
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including magnitude Short-time Fourier transform (STFT)
spectrum, complex-valued STFT spectrum, Mel-log spec-
trum, and Mel-frequency cepstral coefficients (MFCCs),
as inputs to real-valued and complex-valued ResNet and
DenseNet CNNs [36]. The results obtained using prepro-
cessing filters were considerably better than the baseline
approach where a CNN was directly applied to classify the
raw audio signal. Similarly, Mel-log spectrograms, delta, and
delta-delta features were also used as acoustic filters in a
ship detection task using a CNN, where high accuracy in the
detection and localisation of vessels was reported [37]. Other
studies in the literature also successfully applied filters to the
DL inputs, showing a consistent improvement in underwater
audio classification tasks [38], [39], [40], [41]. This strongly
suggests that, although CNNs are capable of learning distinct
filters in their convolutional layers, there may be insufficient
training time or data for the network to converge on the best
solution. Therefore, superior results, in addition to smaller
networks and reduced training time, are obtained with the
use of appropriate preprocessing filters in the classification
pipeline.

Analogous to the research described in the present paper,
recent work has been driven by the advantage of using
preprocessing filters to extract optimised features from the
audio, also using stacks of multiple filters as inputs to the
CNN models [42], [43]. The rationale behind this approach
is to take advantage of the strengths of each method, feed-
ing the network with different representations of the sound.
For instance, a joint learning framework was developed to
address the underwater acoustic target classification using
MFCC, CQT, Gammatone, and Log-Mel feature extraction
methods to feed a CNN-based architecture [42]. The com-
parison of the results obtained with individual approaches
and their combination showed that superior outcomes could
be achieved with the latter. Another relevant work used
a fusion of the Mel-spectrogram, MFCC, chromatogram,
spectral contrast, and Tonnetz filters, resulting in a one-
dimensional representation, to improve the performance of
a CNN model for the classification of underwater acoustic
signals [43].

A summary of the classification methods cited in this
section is shown in Table 1 which relates, for each method,
the preprocessing applied (if any), the model architecture,
the dataset used, the best reported accuracy, and the main
contributions. A more complete up-to-date survey of this field
can be found elsewhere [25].

There are a number of recent papers concentrating on the
classification of underwater acoustic data. However, there
is a pertinent need for a complete investigation into the
application of DL algorithms for the task, an investigation
that considers the optimisation of the DL model parameters,
and the comparison between different preprocessing filters.
Additionally, the impact of environmental variables on vessel
classification is virtually non-existent in the related literature.
These issues are taken into account in the research reported
in this paper.
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TABLE 1. An overview of the DL methods for classification of underwater acoustic signals.

Ref. Preprocessing Network Dataset Accuracy Main contributions
[30] Not Applicable CNN Mine-Like Objects  98.90% The analysis of the trade-off between accuracy and
images model size of CNN models.
[31] Not Applicable UATC-DenseNet Real-world passive ~ 98.85% The analysis of the use of a number of convolutional
sonar data® blocks and layers, and different layer configurations
and input features.
[34] Not Applicable Auditory Deep Ocean  Network  81.96% The use of a bank of multi-scale deep convolutional
CNN Canada signals? filters as a first processing stage, making possible
the creation of an end-to-end NN.
[35] Not Applicable MSRDN Ocean  Network  83.15% The development of a deep residual network using
Canada signals?® the soft-thresholding proposed in [44] and the con-
volution kernel proposed in [45].
[36] STFT; Mel-log; MFCCs ResNet and  ShipsEar [27] 97.49% The classification of synthetic mixed multitarget
DenseNet signals using CNNs.
[37] Mel-log; delta; delta- ResNext101 Shallow water  85.00% Direction-of-arrival prediction based on acoustic
delta Data® signals.
[38] MFCC Fully-Connected Sonar dataset® 97.12% The accuracy comparison of meta-heuristic algo-
rithms and the use of a fully connected NN.
[39] GFCC; MFCC Fully-Connected Six class dataset® 94.3% A combination of MFCC and GFCC was used as

[40] Cochlea model Auditory Inspired  Ocean

[41] MFCC; CQT; GFCC; SCAE

Mel-log; Cepstros;
Wavelets

[42] MFCC; CQT; Gamma- CNN+DNN Hydrophone
tone; Mel-log datasets?

[43] Mel-log; MFCC; chro- CNN+LSTM ShipsEar [27]

matogram; spectral con-
trast; Tonnetz

Network  87.2%
CNN Canada signals®
DeepShip [41]

feature extraction showing time performance im-
provement.

The use of Gabor filter layers inspired on the a
Cochlea model.

77.53% The proposal of a new open source dataset and the
comparison of various preprocessing strategies.

89.9% The generation of a pipeline with the combination
of the preprocessed features for acoustic target clas-
sification.

92.17% The proposal of a hybrid neural network composed

of CNN and LSTM, having a combination of the
preprocessing strategies as input.

a Dataset composed of public data with nonpublic preprocessing techniques. P Dataset is proprietary and unavailable for reproduction.

IIl. DATASET

The data used in this work consisted of signals obtained from
the Ocean Network Canada initiative,* captured during the
deployment at the Strait of Georgia, Canada, from June 24 to
November 3, 2017, representing typical pre-pandemic opera-
tions during the Summer and Autumn seasons. An icListen
AF Hydrophone, located 147 meters below sea level, was
used to obtain the acoustic signals. In addition, the positional
information about the vessels was obtained using Automatic
Identification System (AIS) data.

The first part of the annotation process focused on the
translation and filtering of the AIS signals. These signals con-
tained position, identification, speed, course, and other infor-
mation about active maritime traffic. Some of the information
contained in AIS data is not necessary for vessel classifica-
tion tasks. Only messages related to position report, as well
as static and voyage related data, were used. Duplicated
messages, and messages that did not have positional argu-
ments, were filtered out. The vessel’s class was then inferred
from the type of ship and cargo fields of the AIS messages,
generating four categories: Tug, Passengership, Cargo, and
Tanker. Using the positional coordinates, a geodesic distance
calculation was performed to estimate the distance from the
vessels in the area of interest to the hydrophone. As the
update rate of AIS data is related to the vessel’s size, cargo,

4https://www.oceannetworks.ca/
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velocity, etc., there are intervals where gaps appear in the AIS
reports. It was deemed safe to linearly interpolate between
these sparse data points to provide greater resolution of the
vessel’s distance to the hydrophone.

Different subsets of data were generated from the orig-
inal data considering the distance from the vessel to the
hydrophone picking up the vessel’s sound. These subsets,
or scenarios, were created considering inclusion and exclu-
sion radii. The inclusion radius was defined as the radial dis-
tance when only one vessel was present at a specific moment,
whereas the exclusion radius was the region in which there
was no vessel within a fixed radial distance. To isolate a
single vessel as much as possible, scenarios were generated as
illustrated in Figure 1, where a vessel was within the inclusion
radius while no other vessels were within the wider exclusion
radius.

These scenarios facilitated the analysis of the classifica-
tion accuracy concerning the distance between the object of
interest and the sensor. As the problem of vessel classification
using machine learning depends on the quality of the input
data, it was expected that the sound emitted by distant sources
would have a lower SNR and, thus, lower classification accu-
racy. The three scenarios considered in this work were created
based on the available data: the first had an inclusion radius
of 2 km and an exclusion radius of 3 km; the second had
3 km and 4 km as the inclusion and exclusion radii; and the
third had radii of 4 km and 6 km. Table 2 summarises the
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FIGURE 1. Diagram representing a scenario. Data was isolated where
only a single vessel was within the inclusion zone while no other vessels
were within the exclusion zone. This ensured a more reliable acoustic
signature without interference from other vessels.

scenario descriptions. The background class for each scenario
was then generated based on the absence of vessels within
the inclusion and exclusion radii combined. The final stage
of the dataset formulation was the combination of every
AIS instance, defined as the period that matched a specific
scenario, with the acoustic data.

This automatic annotation procedure could generate misla-
belling in the dataset, therefore the results were further anal-
ysed and filtered to avoid this issue. A data cleaning process
was performed, noting that the variation of the time domain
amplitude of a vessel was greater than that of the background
sound. First, a median filter (med()) was used to de-noise the
original signal (a(z), where ¢ represents time). The resulting
audio was subtracted from the original signal (Equation (1))
producing an audio signal (g(¢)) free of DC offset. The stan-
dard deviation of g(¢) (represented as g, as shown in Equation
(2)) was used to generate a scalar value of the amplitude
variation for each 1-second signal segment. The mean and
standard deviation of the o values were obtained from the ves-
sel and background sounds, respectively (1o —vessel, Oo—vessel)
and (io—back> Op—back)- As expected, this analysis showed
that the tagged vessel data delivered higher variation (o)
when compared with the background audio (i.e., tto—vessel >
Mo—back)-

Individual segments tagged to contain a vessel, but with a
o value that was less than the overall standard deviation of the
background increased by the mean (14, —back + 0o —back), Were
removed from the collection as they represented potentially
mislabelled signals in the dataset.

g(t) = a(t) — med (a(r)) . ey

[ _
0= |32 G6n-" )

t=1

In the equations above g represents the mean value of the
signal with the median removed, and N is the number of audio
recordings.

The final version of the dataset was composed of the three
scenarios, summarised in Table 2, each one with audio files
saved as raw, uncompressed, WAV files. Also, a Comma-
Separated Value (CSV) file was generated with the annotation
of the vessel type for each scenario. In this work, each audio
file was divided into 1-second segments, which were used
as inputs to the preprocessing filters. The complete data was
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TABLE 2. The different scenarios considered for the dataset generation.

Scenario Inclusion Radius (km) Exclusion Radius (km)
First 2 4
Second 3 5
Third 4 6

divided into Training, Validation, and Test subsets, following
the proportion of 85%, 10%, and 5%, respectively. As there
was a class imbalance problem, only the Training subset was
balanced using an oversampling strategy. An oversampling
factor, Equation (3), was used to define the size of each class
based on the class with the smallest length.

. L
factor = min (2, T) . 3)

In Equation (3), L represents the size in seconds of the class
with the most data points, and 1 represents the size in seconds
of the class with the fewest data points.

For each category, the audios were selected randomly to
compose the dataset. If the size of the class did not reach the
minimum size defined by factor (Equation (3)), the selection
started again, gathering repeated audios until the desired
length was achieved. However, uniqueness of each recording
was enforced. Table 3 contains the duration of each subset
for the dataset scenarios.

The next section introduces the concepts of each of the
preprocessing filters used in this work, and the preprocessing
pipeline is described in Section V-A.

IV. PREPROCESSING FILTERS

Two-dimensional representations of audio files can take the
form of spectrograms, which represent the frequency distri-
bution of the original signal over time. One of the possible
ways to formulate such representations is using a window
function applied along the length of the one-dimensional
signal, dividing it into smaller (fixed) chunks. These chunks
are then processed, generating the information about the fre-
quencies in that period. Therefore, the horizontal axis of the
resulting two-dimensional representation is highly dependent
on the chosen initial time window. The vertical axis repre-
sents the frequency distribution of the sound and it is com-
monly represented either linearly, or logarithmically. For the
problem of sound classification, the logarithm representation
of the frequency is preferred over the linear representation,
following the analogy with the human auditory system [46].
In this context, the present work focused on the application
of three common methods for spectrogram generation based
on non-linear frequency scales: Mel Spectrograms, Con-
stant Q Transform (CQT), and Gammatone Spectrograms (as
described below). These methods were used here to enhance
features of the original signal, and their output served as input
to the CNN models investigated in this work.

A. MEL SPECTROGRAMS
The Mel spectrogram is a representation of the short-term
sound power spectrum. Mel’s scale is empirically based
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TABLE 3. The length, in seconds, of each dataset class for each of the three scenarios’ subsets.

Scenario  Subset Tug (s) Passengership (s) Cargo (s) Tanker (s) Background (s) TOTAL (s)
Training 7302 7302 7302 7302 7302 36510
First Validation 902 74 1257 165 1362 3760
Test 445 35 627 94 679 1880
Training 13010 13010 13010 13010 13010 65050
Second Validation 1253 1093 1919 180 2335 6780
Test 689 551 931 95 1124 3390
Training 10150 10150 10150 10150 10150 50750
Third Validation 1249 647 1217 107 2010 5230
Test 632 318 681 48 936 2615

on the way humans perceive sound [47]. The formulation
of this scale consisted of submitting observers to differ-
ent frequencies of sounds, while recording their perception
and sensitivity to the stimulus. There are different math-
ematical formulations for the conversion between the fre-
quency f in Hertz to m in Mels, such as that represented in
Equation (4) [48].

f
= 25951 14+ =—. 4
m 0g10 < + 700 )
Mel Spectrograms are commonly used in speech recogni-
tion analysis and music processing, where human perception
is extremely relevant [49].

B. CQT

The Constant Q Transform (CQT) [50] uses a constant base
scale (Q) to create a representation. This improves the res-
olution between frequencies of interest, while providing the
means to solve the problem of fundamental frequency identi-
fication. In contrast with the classic Fourier transform, CQT
is a bank of geometrically-spaced filters in which, for the k-th
filter, the central frequencies are evaluated with Equation (5),

Sk =fo x 26 (3)

where b represents the number of filters per octave. Thus, the
relation between the distance of two adjacent filters is given
by Equation (6),

Ak =fip1 —fi =fi@F — 1). ©6)

The quality factor Q (or constant Q) is defined as the ratio
of frequency to resolution, as stated by Equation (7).

Ji 1 -1
Q_Ak_(2b ) )

The correct tuning of the quality factor Q can supply the
needed information for the acoustic analysis, with resolution
to distinguish adjacent musical notes, where a sound with
harmonic frequency components will produce a constant pat-
tern in the log frequency domain [50]. This representation
also increases time resolution towards higher frequencies,
resembling the human auditory system, while emphasising
lower frequencies.
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C. GAMMATONE SPECTROGRAMS

The gammatone filter was first defined as a filter bank capable
of representing the shape of the impulse response function
of the human auditory system [51]. A gammatone function
can be obtained with the mathematical formulation shown in
Equation (8),

g(t) = 1"V exp (=27 bit) cos 2nf; + ;) 8)

where n is the filter order, i is the filter order number (ranging
from 1 to the total number of filters), b is a bandwidth
parameter, f is the filter centre frequency, and « is the phase
of the impulse response.

The function defined on Equation (8) was used by [51]
to summarise the RevCor, a representation of the correlation
between a sound stimulus on the human ear and the response
of a primary auditory fibre [52]. The first term of Equation (8)
represents a gamma function, and the second term represents
the tone of the stimulus. This representation has an amplitude
characteristic that can be used to predict the human audi-
tory response. It also has a minimum-phase characteristic,
which is a preferred feature for an auditory filter bank [52].
Gammatone filter-banks facilitate the representation of the
signal’s time domain response, as gamma filters are broader
on lower frequencies and narrow on higher ones, emphasising
the lower spectrum.

The raw signal and its processed representations (CQT,
Gammatone, and Mel spectrograms) are shown in Figure 2.

In this work, the three preprocessing methods described
herein were used on the underwater acoustic signals to extract
relevant features from the acoustic signal, generating the
two-dimensional representations used as inputs to CNNs.
Section V describes the successive stages of the implemen-
tation of this work.

V. DEVELOPMENT STEPS

This section describes the development steps performed to
address the classification of underwater acoustic signals using
preprocessing filters and CNNs, detailing the procedures and
experimental setup.

A. PREPROCESSING FILTERS
Each entry in the original dataset was divided into one-second
segments. Segments smaller than one second were padded

117587



IEEE Access

L. C. F. Domingos et al.: Investigation of Preprocessing Filters and Deep Learning Methods

Raw Audio CQT Spectrogram
0.2 —~
*
g 01 £
E Q
3 3
0.04 2
E g
g
-0.1 &
T T T T T T 0 T T
00 02 04 06 08 1.0 0 60 120
Time (s) Frame (#)

Gammatone Spectrogram

Mel Spectrogram

Frequency bins (#)
Frequency bins (#)

i
T
60
Frame (#)

T
60
Frame (#)

FIGURE 2. An example of audio used on this experiment. The image
shows the raw audio signal in the time domain and its three
preprocessed versions: the CQT, Gammatone, and Mel spectrograms.

TABLE 4. Description of the Version 1 and Version 2 sets of parameters
used on the preprocessing generation.

Version 1 Version 2
Mel Gamma CQT Mel Gamma CQT
Hop Length 512 512 512 256 256 256

Parameter

Window hann hann hann hann hann hann
No. of bins 64 64 64 95 95 95
Min. Freq. 0 20 32.7 18 18 18
Max. Freq. Auto Auto Auto 4186 4186 4186
Bins p. Oct. - - 12 - - 12

with zeros. After that, the three proposed preprocessing meth-
ods, CQT, Gammatone, and Mel spectrogram, were applied
to each audio file. Initially, to establish a baseline for the
audio classification based on standard values found in the
literature, the window chosen to generate the spectrograms
had 1024 samples, with a hop length of 512, resulting in
64 frequency bins over 63-time intervals per data segment.
This resulted in each method producing 64 x 63 element
images. This set of parameters is referred to as Version 1.

A second set of parameters (Version 2) was obtained by
means of an optimisation process. The majority of the power
in the underwater acoustic signal was predominantly focused
on the low-frequency band, below 3 kHz. To maintain a
safe range above the maximum frequency, spectrograms were
generated from 18 Hz (the minimum acceptable for the
CQT representation for 1 second audios) to the frequency
of 4186 Hz (C8 note and ~ 1 kHz above the 3 kHz exper-
imentally observed maximum value). Using a hop length
of 256, which represented half of the value proposed on
Version 1, the resulting representation (Version 2) had a size
of 95 x 126. The values for the two versions of parameter sets
are summarised in Table 4, where the values not related to a
particular representation are marked with “—".

Inspired by the large variety of machine learning meth-
ods applied to three-channel images, such as colour images
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FIGURE 3. The VGG-based model architecture.

in, e.g., RGB (Red-Green-Blue) or HSV (Hue-Saturation-
Value) colour spaces, the three preprocessing methods cited
previously were combined into a single three-dimensional
representation, which was then used as the input to the CNNs.
This was motivated by providing the Neural Network with
more complete representations, aiming to take advantage of
the strengths of each of the preprocessing methods. Com-
bining CQT, Gammatone, and Mel spectra resulted in data
samples with dimensions of 64 x 63 x 3 for Version I and
95 x 128 x 3 for Version 2. This representation is called
Complete.

The next section presents the Deep Learning methods used
to classify the representations obtained with the preprocess-
ing filters described above.

B. DEEP LEARNING MODEL DESIGN
As mentioned previously, this work used two distinct CNN
models: VGGNet [23] and ResNet [24].

VGG-based methods can perceive granular spatial rela-
tions on images due their use of a 3 x 3 kernel size, the
smallest possible size to capture the four cardinal directions
(up, down, left, and right). This reduced kernel size also
produces a good trade-off between classification accuracy
and hyperparameter complexity. The implementation of this
model in the present work contained two main modifications
from the original VGGNet: 1) A Leaky ReLu was used as the
activation function instead of a normal ReLu; and 2) A Batch
Normalisation layer was added. Both changes aimed at reduc-
ing overfitting. The resulting model architecture is shown
in Figure 3 and was composed of four feature extracting
convolutional layers. The signal then passed through a Batch
Normalisation and a Leaky ReLu activation layer associated
with a Max Pooling layer, which resized the image by a factor
of 2. Lastly, the classification weights were delivered by a
fully connected layer.

The universal approximation theorem [53] states that a
deep enough neural network is capable of approximating any
complex function, although the vanishing gradient and the
accuracy degradation problems become problematic as more
layers are added to the models. ResNet addresses these issues
by introducing the identity shortcut connection, bypassing
one or more layers in a forward pass, defining Residual
Blocks. These blocks facilitate the learning ability of the
intermediary layers, reducing the vanishing gradient prob-
lem, and penalising the ones that could potentially degrade
accuracy [24]. This work used ResNet18, with modifications
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FIGURE 4. The ResNet18 model architecture.

to the input layer to match the preprocessed images. The
ResNet18 architecture, shown in Figure 4, is composed of
a convolutional layer followed by 8 Residual Blocks, each
one formed by two other convolutional layers. As usual,
the classification weights are generated by the final fully
connected layers.

After the model definition, an optimiser had to be chosen,
aiming to minimise the error in the training procedure. This
work investigated the use of the Stochastic Gradient Descent
(SGD) [54] and the Adam [55] optimisers. SGD is an iterative
method that starts randomly and seeks the minimum value
in the input function. It is the most common optimiser used
in the literature. Adam, on the other hand, is an extension
of SGD based on the combination of the Adaptive Gradient
Algorithm (AdaGrad) and the Root Mean Square Propagation
(RMSP). The use of SGD and Adam was compared in the
tests executed in this work, where a learning rate of 0.001,
decreasing exponentially, and a gamma value of 0.95, over
40 epochs, was used.

The resulting architecture was then composed of the
preprocessed acoustic signals, produced by the four strate-
gies described in Section V-A, applied to both CNN mod-
els (VGG-based and ResNetl18). Each model was trained
with batches of 8 images over 40 epochs using the Cat-
egorical Cross-Entropy loss function. The block diagram
of the complete pipeline is shown in Figure 5. The pre-
processing block is the representation of CQT, Gamma-
tone, Mel, or the combination of all three preprocessing
filters (Complete). The model block represents VGGNet or
ResNet18.

VI. RESULTS

All training sessions were executed for the three chosen pre-
processing filters in addition to the complete representation.
Results are reported using micro-average accuracy, which
measures the correct classifications of the classes combined.
This provides a global overview of the model performance
in realistic scenarios, i.e., with real observed class imbal-
ances. Three additional metrics were used, providing com-
plementary information: Precision, which represents the rate
of correct positive predictions over the total positive predic-
tions; Recall, which measures the rate of correct positive
predictions over the real positive instances; and F1-score,
which represents the weighted harmonic mean between pre-
cision and recall. These three additional metrics were eval-
uated using macro-averaging, which evaluates the classes
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separately before taking the average, aiming to obtain a
balanced evaluation across the classes. The metrics were
obtained using Equations (9), (10), (11), and (12), where K
represents the number of classes in the dataset, TP stands for
True Positive, TN for True Negative, FP for False Positive,
and FN for False Negative.

TP + TN
Accuracy = . O]
TP+ TN + FP+ FN
K
1 TP,
Precision = — x Z —k. (10)
K P TPy + FPy
K
1 TP,
Recall = — x Yt (11)
K P TPy + FNg
K ..
2 P Recall,
Fl-score = — x Z rec%s?onk X eea k. (12)
K Precision; + Recallg

~
Il
—_

All work was performed using an Intel(R) Core(TM)
i7-1065G7 machine, and implemented using PyTorch frame-
work (version 1.11.0).

A. OPTIMISER SELECTION

SGD and Adam are two of the most common optimisers used
in DL. However, their performances are domain dependent.
This adds to the difficulty of selecting a standard approach
for any classification problem. Therefore, the choice of a
suitable optimiser is an essential step in the development of
DL solutions. Table 5 presents the results of applying SGD
and Adam to train a VGG-based classifier on the first dataset
scenario described in Section III. This scenario provides the
best SNR since the signals were collected at a short distance
from the sensor. Also, the three preprocessing filters were
applied using the Version I parameters to maintain the same
comparison basis.

The results represented in Table 5 show that SGD outper-
formed Adam for CQT, Mel, and the Complete representa-
tion, where the latter had the highest values (as shown in
bold font in Table 5). Adam performed marginally better than
SGD in the test where the Gammatone filter was used as
the preprocessing method. In addition, the training session
using Adam and the Mel spectrogram did not converge to a
global minimum as the model predicted that almost every-
thing belonged to the same class, as per the class-normalised
confusion matrix shown in Figure 6.
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FIGURE 5. The block diagram of the complete solution. Preprocessing was performed either with CQT, Gammatone, or Mel spectrograms, or as a
combination of all three. Either VGG or ResNet was used as the classification model, depending on the test condition.

TABLE 5. Comparison of SGD and Adam optimiser, showing accuracy,
precision, recall, and F1-Score (F1). Using all three preprocessing methods
(Complete) with the SGD optimiser produced the best results on all
performance metrics.

TABLE 6. Comparison of Version 1 and Version 2 preprocessing
representations, showing accuracy, precision, recall, and F1-Score (F1).
The best performing condition was when the CQT method of
preprocessing was used on the Version 2 representation of the data. Note:
VGG with SGD optimisation was used as the model classifier in this test.

Method Accuracy%  Precision% Recall% F1%
CQT 79.10 66.51 82.89 68.01 Method Accuracy%  Precision% Recall% F1%
Gamma 53.30 47.71 58.47 43.91
SGD el 54.47 51.23 6174 44.40 cQt .10 66.31 82.89 6801
Complete  84.46 71.48 85.56  75.42 Vers,] oamma 5329 4771 847 4391
: : : : €rs. 1 Mel 54.46 51.23 61.74  44.40
CQT 77.39 65.25 81.04 65.30 Complete 84.46 71.48 85.56 75.42
Gamma 56.59 52.32 59.51 44.94
Adam 3 56 21.00 20.16 293 CQT 86.32 73.97 88.34 7791
Gamma 62.28 53.88 65.08 52.14
Complete 73.08 60.75 72.72 61.14 Vers.2 e 4186 53.85 4541 2792
Complete 82.92 73.06 83.12 75.26
1.0
Confusion matrix
) 00 ° 00 o larger accuracy than the best result obtained with Adam
(77.39%). Also, the SGD approach was more stable during
. o oo . the training procedure.
0.6
- B. PREPROCESSING OPTIMISATION
; e oo o0 o0 As mentioned in Section V-A, the Version I parameters
oa for the preprocessing filters were generated based on the
- 0o 0o 0o information from the related literature, resulting in a 64 x
63 image. Version 2 had images of dimensions 95 X
" 126, which were generated according to underwater acous-
backgrouna | 0.0 00 00 00 tics features. An experiment was conducted to establish a
comparison between these two representations, where the
&> & S & same baseline setup used in Section VI-A was applied: the
&

Predicted label

FIGURE 6. The confusion matrix for the execution of the Adam optimiser
using the Mel spectrogram as the preprocessing filter, which produced
erroneous predictions for the test dataset. In this case, all the input
signals were considered as belonging to the Tanker class. For a confusion
matrix showing the results for a more accurate classifier, see Figure 9.

Comparing the best results for SGD and Adam, with CQT
and Complete inputs, the higher accuracy was obtained with
the SGD optimiser (84.46%), which is 7 percentage points
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VGG-based model trained on data from the first dataset sce-
nario. As the results obtained in Section VI-A showed that the
SGD optimiser produced better results, the experiments were
only performed using this optimiser. The results of this test
are summarised in Table 6.

Both Gammatone and Mel Spectrogram methods pre-
sented lower accuracy values when compared with CQT
and Complete representations, as shown in Table 6. The
worst CQT result, obtained with Version I, was 17 percent-
age points better than the best result for Gammatone filter,
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TABLE 7. Comparison of VGG-based and ResNet 18 models, showing
accuracy, precision, recall, and F1-Score (F1). The ResNet model with all
three preprocessing channels (Complete) yielded the best results in all
analysis metrics.

Method Accuracy%  Precision% Recall% F1%
CQT 86.86 73.97 8834 7791
VGG Complete  82.92 73.06 83.12 7526
CQT 94.95 89.21 9560  91.92
ResNet  complete  97.07 94.57 9761  96.00

obtained with Version 2. The Mel Spectrogram and Com-
plete representations did not produce improvements with the
Version 2 parameters. However, even using the Version I
Mel Spectrogram results show an accuracy value that was
25 percentage points below that of CQT for the same param-
eters, representing a 31.15% drop in accuracy. Additionally,
despite the accuracy drop of 1.54 percentage points between
Version 1 and Version 2 for the Complete scenario, the
precision improved 1.58 percentage points, showing a very
close result for both versions of the Complete representation.
On the other hand, when using the CQT method, Version
2 had an accuracy improvement of 9.13% (7.22 percentage
points) over Version 1. This improvement was likely due to
the parameter optimisation process, which led to an increase
in the temporal scale with the shorter hop length, and an
improvement of the frequency representation with optimised
frequency boundaries. These results suggest that the VGG-
model, using Version 2 of the preprocessing parameters, out-
performed the results obtained with Version 1. Thus, Version 2
was considered as the baseline setting in the remainder of this
work.

C. MODEL EVALUATION

Following optimiser and preprocessing parameters selection,
the next step in the development of the underwater acoustic
signal classifier was the selection of the DL model. Train-
ing sessions were performed using both VGG-based and
ResNet18 models. As the results obtained in the previous
experiments suggested a better performance using the com-
bination of SGD optimiser, with either CQT or the Complete
representation (generated using Version 2 parameters), this
setup was selected for model evaluation. Table 7 shows the
results obtained from these tests.

The results showed that the ResNet18 model outperformed
VGG for both CQT and Complete preprocessing filters, pre-
senting an improvement of 8.09 percentage points for the
CQT, and 14.15 for the Complete, the latter being the best
result obtained for this dataset scenario overall. The ResNet’s
capacity to have more intermediate layers proved to be suit-
able for the feature extraction stage, as it gave the model the
ability to generalise the problem function better, thus result-
ing in higher classification performance. The loss obtained
during the training stage (represented in Figure 7 and
Figure 8) showed similar convergence behaviours for both
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FIGURE 7. The loss obtained during the VGG-based model training stage,
using CQT and Complete preprocessing filters.
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FIGURE 8. The loss obtained during the ResNet18 model training stage,
using CQT and Complete preprocessing filters.

models. Figure 8 also shows that the loss curves for CQT
and Complete preprocessing methods (feeding a ResNet18
classifier) are almost identical. This contrasts with the curves
shown in Figure 7 that represents a better performance for
the CQT than Complete when applied to a VGG-based
model.

Although the Complete representation, combined with the
ResNet model, presented an improvement of 2.12 percentage
points in accuracy, the CQT was able to obtain a similar
value using only one-third of the input size and preprocessing,
since Complete is a three-channel representation. This result
suggests that a fair trade off between accuracy and model size
is obtained when using the CQT as a single preprocessing
method.

D. SCENARIOS VALIDATION

The final test executed in this work evaluated how the dis-
tance from the sensor to the target vessel influenced the clas-
sification results. Tests were conducted with the combination
of methods that produced the best results, as reported in
previous sections. The architecture, composed of the CQT
preprocessing filter applied to the ResNet18 model, was used
to compare the results obtained in training and testing on the
three scenarios described in Section III. Also, a test using all
of the data from the three dataset scenarios combined was
performed, aiming to evaluate if the distance impacted the
accuracy, or if the generalisation ability of the architecture
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TABLE 8. Comparison of the final architecture (CQT preprocessing
feeding into ResNet) on the proposed dataset scenarios, showing
accuracy, precision, recall, and F1-Score (F1).

Scenario Accuracy% Precision%  Recall% F1%
First 94.95 89.21 95.60 91.92
Second 94.45 94.57 93.89 94.17
Third 93.11 89.36 93.82 91.30
Combined 84.13 79.46 86.51 81.78

was capable of dealing with this variable. The results obtained
from these tests are shown in Table 8.

As the different scenarios do not contain the same number
of instances (or the same vessels), they are not directly com-
parable, making it difficult to precisely state which situation
allowed the best outputs. However, these results suggest that
there is no practical difference in accuracy between the indi-
vidual scenarios. This means that range to target had minimal
impact on system accuracy, at least up to the tested 6 km dis-
tance boundary. One explanation for this could be the depth
and ocean temperature where the hydrophone was located,
which provided the best context for underwater sound prop-
agation [25], thereby not degrading the SNR sufficiently to
invalidate the signal representation. However, combining all
of the data from the three scenarios caused an accuracy drop
of between 8.98 and 10.82 percentage points compared to
the individual scenarios alone. The confusion matrix for the
Combined scenario is shown in Figure 9. This suggests there
is a negative influence in the data from the different scenarios
that confused the model during training. In particular, results
with the Combined scenario show a higher confusion rate
between background and tug than when the scenarios were
trained separately. This was probably due to the similar range
of frequencies from these two classes, that may have been
enhanced due to the combination of SNR from the various
scenarios.

VII. DISCUSSION

This paper has reported experimental evaluations of the main
aspects related to the development of a DL-based classifier
for vessel types using underwater acoustic data.

The first tests reported focused on the selection of the
most suitable elements to compose the classifier architecture,
such as the optimiser and preprocessing methods. Initially, the
two most commonly used optimisers, SGD and Adam, were
tested and compared. The results reported in Section VI-A
showed that Adam’s performance was not satisfactory in
this domain, owing to lower accuracy rates as a result of its
inefficient treatment of local minima. In comparison, SGD
produced higher accuracy and a more stable performance.
This agrees with other studies (e.g., [56], [57]) that argue
adaptive optimisation methods, like Adam, often generalise
significantly worse than stochastic methods, such as SGD,
since the strategy used by the former to escape saddle points
causes difficulties in achieving flat global minima. In con-
trast, the momentum-based strategy of the latter provides a
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FIGURE 9. The confusion matrix for the execution of the Combined
scenario using CQT as the preprocessing filter feeding into the ResNet18
model.

drift effect to escape saddle points without affecting the flat
minima selection [57]. The tests performed herein seem to
corroborate this hypothesis, as the best results obtained for
SGD (using CQT) were 11.38 percentage points better than
the performance (for the same preprocessing filters) obtained
when using the Adam optimiser.

A second issue considered in this work was the selec-
tion of the most suitable representation of the signal to be
used by the CNN. In our dataset, the CQT representation
presented better performance, with an accuracy of around
86%, when compared with Gammatone and Mel spectro-
grams, with best accuracies of 62% and 54%, respectively,
a minimum of 24 percentage points improvement. There are
various possible explanations for this finding. One is that the
acoustic signals generated by the vessels are predominantly
composed of lower frequencies. However, the Gammatone
filter does not emphasise low frequencies sufficiently, result-
ing in a lower classification performance. Mel spectrogram,
on the other hand, does emphasise the lower frequencies,
by mapping the frequency axis to the logarithmic Mel scale.
However, it maintains the conversion from time-domain using
fixed time windows, which negatively affects the temporal
resolution. In contrast, CQT increases the time resolution
towards higher frequencies while reducing the frequency
resolution; this results in emphasising the lower-frequencies,
which is akin to the human aural perception [50]. This fea-
ture makes the CQT spectrogram the most suitable represen-
tation for automated classifications of underwater acoustic
data using CNN, owing to the nature of the convolutional
layers.

The tests conducted with the Complete representation
(all three preprocessing filters combined) aimed to obtain
a preprocessing method that includes the advantages of
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each of the methods considered in this work. The results
obtained showed that the classification accuracy obtained
using this three-channel representation was marginally better
than the best single filter (CQT) for ResNet, but not the VGG
model. As the Complete representation combines multiple
preprocessing methods, its generation and processing is more
computationally expensive than applying each preprocessing
method individually. Even in the cases where the Complete
representation showed the best results (ResNet model), its
performance was similar to that obtained using only the
CQT spectrograms as input. This indicates that the Complete
preprocessing method should only be used in situations
requiring the highest possible accuracy or where computa-
tional cost is essentially irrelevant.

With respect to the DL model selection, the ResNet
approach outperformed the VGG-based model for both
CQT and Complete data representation methods by at least
8.09 percentage points in accuracy. This superior perfor-
mance was likely due to the existence of residual blocks
in the ResNet model, which reduce the probability of over-
fitting. It is worth mentioning that the ResNet model used
had 17 convolutional layers, in contrast to four compos-
ing the VGGNet. Considering the relative complexity and
accuracy results of both models tested in this work, we can
conclude that, although ResNet18 produced the best classifi-
cation results, VGG-based classifiers are still suitable mod-
els to be used in applications with limited computational
resources.

The final test executed in this work evaluated the influence
of the distance between the sensor to the targets with respect
to the classification performance. Despite the fact that a minor
degradation in accuracy was observed with respect to an
increase in the distance to the sensor, the results obtained for
the three scenarios showed similar figures. The tests using
the combination of the data points from all three scenarios
presented the worst results compared with the performance
values obtained for each of its constituent scenarios. This
was probably due to the fact that, although a minor varia-
tion in the SNR (resulted from the distance between target
and sensor) did not affect the results obtained in each of
the individual scenarios, this difference was large enough
to increase the complexity of the audio patterns contained
in the combined dataset, thus hindering the capacity of a
simple classifier to find a suitable generalisation that rep-
resented accurately the distinct classes. It should be noted
that the largest (by far) point of confusion in the Combined
dataset was the classifier detecting the presence of a tug when
there was no vessel present. While additional data could help
overcome this error, another option for future investigation
is a two-stage detect and classify process. A computation-
ally simple detection algorithm could be used to determine
the possible presence of a vessel and then the classifier
used to determine what sort of vessel it is. This has the
potential to both improve the error rate when no vessels are
present, while reducing the computational resources as the
classification network would not have to run continuously.
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TABLE 9. Comparison of the ResNet classification results obtained in the
present work with the results reported in [41] obtained on the DeepShip
dataset, showing accuracy (Acc.), precision (Prec.), recall (Rec.), and
F1-Score (F1).

Model Dataset Acc.% Prec.% Rec.% Fl1%
1st Scenario 94.95 89.21 95.60 91.92
2nd Scenario 94.45 94.57 93.89 94.17
ResNet 3rd Scenario  93.11 8936 9382  91.30
Combined 84.13 79.46 86.51 81.78
Scenarios
SCAE 77.53 78 77 77
Residual 76.98 77 77 77
CNN DeepShip 76.35 76 76 76
Inception 76.16 76 76 76
DNN 73.11 73 73 73
[41]
SVM 72.24 72 72 72
RF . 69.71 70 70 69
KNN DeepShip 62.71 64 63 63
Naive Bayes 53.97 57 53 52

[41]

It is likely that a detection algorithm of sufficient sensitiv-
ity will detect a vessel before sufficient structure is present
for a classification algorithm to accurately classify said
vessel.

Considering related work developed with data from the
ONC initiative, accuracy values of the order of 80% were pre-
viously reported using raw audio data, where time-frequency
filter dependency was not considered in DL pipelines [34],
[35]. An accuracy value of around 87% was reported as
a result of the application of a bio-inspired cochlea model
preprocessing filter to a CNN-based classification [40]. In
addition, a comparison of various deep learning methods
was conducted in [41] using an analogous set of ONC raw
data that was used in the present paper. However, it was
reported that 77.53% was the highest accuracy obtained in
that work. That work was developed on a dataset called
DeepShip, whose recordings were divided into 613 files,
which varies from about 6 seconds to 1530 seconds. Only
the identification of a single vessel within a range of 2 km
from the hydrophone was used to generate the data, and
the background noise recordings were added from a distinct
source. Table 9 shows a summary of the best results obtained
in the present work (first block), against the results reported
in [41].

Although it is virtually impossible to faithfully reproduce
the results reported in [41] (as the code used to generate them
is not publicly available) it is possible to observe that the
results reported in that paper are similar to those obtained
in the present work for the Combined dataset (84%). This
already places the baseline results obtained in the present
work within the state-of-the-art of the field. However, the
research reported here achieved superior results when distinct
scenarios were considered with respect to the distance to the
sensor, obtaining an accuracy of 95% or 97% depending on
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the preprocessing filtering method used (CQT or Complete,
respectively), as shown in Table 9.

VIil. CONCLUSION

This paper presented a machine learning approach for ves-
sel type classification using underwater acoustic data. CQT,
Gammatone, and Mel Spectrogram filters were used to pre-
process the acoustic data, aiming to extract relevant features
of the signals. Striving to achieve a better representation of the
signal, the combination of the three outputs into three-channel
data was also investigated. The results showed that the CQT
and the Combined approaches achieved the highest accuracy
results for the dataset used in this paper. This study also com-
pared the SGD and Adam optimiser performance applied to
the vessel type classification problem, showing that the SGD
optimiser is more stable and presents a better generalisation
than Adam. Concerning the deep learning model, results
showed that ResNet18 yielded the highest evaluation metrics
when compared to the VGGNet model.

A new dataset was defined, using the raw data from Ocean
Networks Canada, which include the underwater acoustic
signals annotated with the related vessel types. Three distinct
scenarios were defined with respect to the distance between
the target vessel to the hydrophone used to capture the signal.
These three scenarios were compared using the proposed
pipeline, achieving a maximum accuracy of 94.95% when
CQT was used to preprocess the data fed into a ResNet
classification model. Higher accuracy (97%) was achieved
if all three preprocessing methods (CQT, Gammatone, and
Mel Spectrogram) were used simultaneously. However, the
increase in computational costs may not be worth the slight
accuracy improvement. Furthermore, a test was conducted
combining the three distance scenarios into a single dataset,
resulting in a classification accuracy of 84.13% for the CQT
preprocessed data.

A complete pipeline for the classification of underwater
acoustic signals was proposed in this paper, whose source
code and data are publicly available. However, some issues
were not addressed and will be considered in future work.
Despite the promising results obtained in classification using
the isolated distance scenarios, the results for the combined
approach have a large scope for improvement, since the accu-
racy across distinct scenarios had a variation of 10 percentage
points. Future work will also consider the application of other
machine learning models, combined with novel biologically
inspired filters, to the task of classification of vessels from
acoustic data, in order to investigate better trade offs between
accuracy and model size in image classification tasks for the
classification of acoustic data.
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