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ABSTRACT The brain-inspired Spiking neural networks (SNN) claim to present advantages for visual
classification tasks in terms of energy efficiency and inherent robustness. In this work, we explore the
impact on network inter-layer sparsity through neural coding schemes and the intrinsic structural parameters
of Leaky Integrate-and-Fire (LIF) neurons, which can be a candidate metric for performance evaluation.
Towards this, we perform a comparative study of four critical neural coding schemes: rate coding (poisson
coding), latency coding, phase coding, and direct coding, as well as 6 LIF neuron intrinsic parameter options
for a total of 24 combined parameter schemes. Specifically, the models were trained using a supervised
training algorithmwith a surrogate gradient, and two adversarial attacks, Fast Gradient SignMethod (FGSM)
and Projected Gradient Descent (PGD) were applied on a CIFAR10 dataset. We identified the sources
of interlayer sparsity in SNN, and quantitatively analyzed the differences in sparsity caused by coding
schemes, neuron leakage factors and thresholds. Various aspects of network performance were thoroughly
considered in this paper, including inference accuracy, adversarial robustness, and energy efficiency. Our
results show that latency coding is the optimum choice in achieving the highest adversarial robustness and
energy efficient against low intensity attacks, while rate coding offers the best adversarial robustness against
medium and high intensity attacks. The maximum deviations of robustness and efficiency between different
coding schemes are 9.35% in VGG5 and 13.59% in VGG9. Increasing the sparsity of spike activity by
improving the threshold can bring a short-lived adversarial robustness sweet spot, while excessive sparsity
due to changes in threshold and leakage can instead reduce the adversarial robustness. The study reveals
the advantages and disadvantages, and design space of SNN in various dimensions, allowing researchers
to frame their neuromorphic systems in terms of the coding methods, neuron inherent structure, and model
learning capabilities.

INDEX TERMS Spiking neural network, accuracy, energy efficiency, adversarial robustness, sparsity.

I. INTRODUCTION
Spiking neural networks (SNN), which have spatio-temporal
spiking sparsity and biological-like properties, are increas-
ingly used to investigate more energy-efficient neural com-
puting circuits than artificial neural networks (ANN) [1], [2].
Numerous studies have begun to use biologically plausible
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learning methods to implement neuromorphic circuits [3],
[4], [5]. The SNN structure was discovered to have certain
robust advantages in resisting sample noise and adversar-
ial attacks due to its sparse inherent structure and discrete
encoding of the input [6], [7], [8], [9]. The main challenge
in optimizing SNN is the lack of a way to achieve reliable
metrics for their inference accuracy. Current performance
improving methods can be broadly classified into three types:
ANN-converted SNN [10], [11], surrogate gradient training
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FIGURE 1. Overview of our work and contributions.

methods [12], and unsupervised learning training methods
such as spike-timing dependent plasticity (STDP) or STDP
variants [13]. Unlike ANN, SNN requires a larger time win-
dow to ensure accuracy, resulting in a longer inference delay.
Unsupervised STDP produces good classification results for
shallow networks and simple datasets but fails for deep net-
works and complex datasets. The other studies using back
propagation (BP) and surrogate gradient fusion techniques to
train SNN, represent promising results and provide guidance
and references for neuromorphic hardware designers. Still,
some key issues remain to be addressed as follows.

How to choose an appropriate neural coding at the algo-
rithm level and determine the intrinsic parameters of neurons
to achieve hardware design accuracy, robustness, and energy
efficiency while reducing inference delay?

Since network structure and neuron parameters change
the spike-sparsity distribution of spiking neural networks,
what does this bring to the network’s accuracy, adversarial
robustness, and energy efficiency?

Spike sparsification has shown potential impacts on energy
reduction and improves robustness in previous studies but
lacks systematic research and more comprehensive analysis.
Thus, sparsity can be treated as a property to effectively
explain and investigate SNNperformances in different coding
styles and key structural parameter settings, which was this
work’s original intent and focus. The paper contributes in:

1) Re-model the LIF neuron dynamics equation to ana-
lyze the source of the sparsity of the SNN network,
then determine the relationships among the network
inner layer sparsity and the neuron leakage value λ, the
encoding scheme, and the threshold voltage θ .

2) For the first time, we propose to use sparsity as a metric
to quantitatively explain the effects of coding methods,
neuron leakage factors, and thresholds of LIF neurons.

3) Comprehensively compare and evaluate the network
performance and security of SNN from the view of

the sparseness of the network in three dimensions:
accuracy, adversarial robustness, and energy efficiency.

Fig. 1 shows our main work. The task of our work is to
evaluate spiking neural networks at three dimensions: infer-
ence accuracy, adversarial robustness and energy efficiency.
The network architecture consists of four data encoders and
spiking neural networks. The role of the encoders is to gen-
erate discrete data at each time step according to different
encoding schemes, and the encoded data are received at
different time steps by the LIF neurons in the input layer of
the SNN. the SNN architecture structure mainly consists of
neurons and neuron topological connections. In this paper,
we use LIF neurons, whose structure is shown in the gray
dashed box pointed by the blue arrow in Fig. 1, and the
mathematical theory in Eq. 3 and Eq. 4. The neuron topology
connection is adopted from the classical model of ANN neu-
ral network Visual Geometry Group(VGG). VGG network
mainly includes: convolutional layers, pooling layers and
fully connected layers, the specific connection is referred
to [14]. During the training of the network, the input encoding
method and the intrinsic structural parameters of LIF neurons
are changed to regulate the spike sparsity, and the training is
completed by generating adversarial samples to be injected
into the network to calculate the accuracy loss and compare
the inference accuracy, adversarial robustness and energy
efficiency.

In the following section, we first review the related stud-
ies on the intrinsic structure of SNN inference accuracy,
sparsity, and robustness (Section II). Next, we introduce the
models used, including encoding methods, training methods,
neuron models, and adversarial attack methods (SectionIII),
followed by implementation and discussion (SectionIV), and
finally, a summary of the implementation and conclusions
(SectionV).

II. RELATED WORK
Sharmin et al. [6] reviewed SNN adversarial robustness
research. They proposed a simple and practical framework to
construct adversarial attacks and also pointed out that input
discretization via poisson encoding and non-linear activa-
tions of LIF (or IF) neurons are sources of SNN robustness.
Rida et al. [7] investigated the robustness of SNN against
attackswith varying neuron firing voltage thresholds and time
window boundary values. They listed the network’s robust-
ness under various (V ,T ) combinations, where V refers to the
voltage of LIF neuron threshold, and T refers to the training
time step. Kundu et al. [15] assessed the robustness of the
VGG5 and VGG11 network structures. They discovered that
LIF can reduce input perturbation and that its impact should
consider the effect of combined parameters such as weight,
leakage, threshold, and time step. However, no quantitative
analysis was performed. Guo et al. [16] extensively com-
pared four neural coding schemes from the perspectives of
algorithms and hardware to find the best coding scheme.
Still, this comparison was limited to 2 Layer fully connected

VOLUME 10, 2022 117573



Y. Li et al.: Comparative Study on the Performance and Security Evaluation of Spiking Neural Networks

FIGURE 2. Sparse distribution of different coding methods.

network and STDP training, which cannot scale to deep SNN
networks, based on vision datasets but without considering
the critical metric of adversarial robustness. Kim et al. [17]
compared the robustness, energy efficiency, accuracy, and
other characteristics of the two encodings during low-latency
training but did not compare them to other encoding methods.

III. MODEL DESCRIPTION
A. SNN CODING SCHEMES
1) RATE CODING
Rate coding [6], [18] is the most widely used coding scheme
in neural network models, which treats each input pixel as a
trigger frequency and converts the pixel into a sequence of
poisson spiking with a firing frequency. A poisson encoder
encodes the input data as a spiking sequence whose firing
times distribution conforms to a poisson process. The spiking
firing probability p is set to x of a timestep, where x needs
to be normalized to a specific interval and compared with a
random number.

2) LATENCY CODING
Latency encoders delay spiking according to the size of the
input data. When the stimulus intensity is larger, the fir-

ing time is earlier, and there is a maximum spiking firing
time. [19] Therefore, for each input data x, a spike sequence
with a timestep of the maximum spike time can be obtained,
and each sequence has one and only one spike. The spike
emission time can be described as:

tf = (T − 1)(1− x) (1)

where x is input data and x ∈ [0, 1], after getting the spiking
firing time, the spiking sequence is fed to the neural network’s
input layer in time timesteps.

3) PHASE CODING
Weighted phase [19] coding spreads the input data into binary
bits, traversing the input from high to low for spiking coding.
Compared with rate coding, each bit carries more informa-
tion. When the number of encoding phases is K , the number
in the interval [0, 1 − 2(−k)] can be encoded. In this paper,
we set the timestep to 10 and the number of encoding phases
K to 10.

4) DIRECT CODING
Direct coding [15], [17] uses floating-point input directly in
the first layer of the spiking neural network. We normalize
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FIGURE 3. Overview of adversial attack. where, norm in red represents
the normal forward and backward propagation, and attack in red
represents the attack process. Training: SNNs are trained according to the
surrogate gradient formula. Adversarial input generation: adversarial
input for Xadv is produced from the clean input perturbed by the sign of
the gradient of the loss of norm process function.

the pixel value of the input image and send it directly to the
first layer of the spiking neural network. The floating-point
output value is processed by the SNN at T times repeat step
by step.

We randomly sampled single image samples from a por-
tion of the CIFAR10 dataset and plotted the distribution of
spikes issued at each time step for the three coding schemes,
rate, latency and weighted phase coding. We observe some
interesting patterns as shown in Fig. 2: latency coding has
fewer spikes issued at each time step and sparser distribution
at each time step within the same size time window compared
to rate coding and weighted phase coding. In order to gain
more insight into how this sparse distribution affects network
accuracy, robustness against and energy efficiency, we per-
formed experiments for quantitative estimation, the details of
which are shown in Section V.

B. TRAINING METHOD
Current SNN training methods can be divided into three cate-
gories, ANN-transformed SNN [10], STDP [13] and methods
based on BP and surrogate gradients [11], [12]. STDP does
not show good classification performance for deep neural
networks and complex datasets, and the method based on
ANN-to-SNN conversion requires a time window for reliable
inference, which leads to a huge inference delay. So we train

the SNNwith alternative gradients and spatio-temporal back-
propagation(STBP).

C. LIF NEURON MODEL
The LIF neuron model not only can capture the essential
characteristics of nervous system information but also takes
into account high computational efficiency, so it has become
the most popular neuron scheme for neuromorphic chips. The
model consists of a first-order linear differential equation,
which defines the dynamics of the membrane potential, and
a threshold condition, which determines the peak generation.
Synapses act as transmission media, passing signals from one
neuron to the target neuron. We use a variety of thresholds
and leakage parameters in our experiments to evaluate and
employ a soft reset approach, which resets the membrane
potential below the threshold after a trigger spiking after
charging.

They are modeled as conductances with time-varying
kinetics. The equation can be described as:

uit = λu
i
t−1 + (1− λ)

∑
j

wijo
j
t − θ (t − tk ) (2)

ojt =

{
0, uit < θ

1, uit ≥ θ
(3)

where λ = 1 − 1/tm, tm is the time constant of mem-
brane potential decay, uit and wij are output spikes and mem-
brane potential at timestep t for layer l, and θ is the neuron
membrane threshold voltage. When u exceeds the membrane
threshold θ (t = tk ), LIF neurons accumulate potential and
generate spiking output. Threshold θ and leakage factor λ
directly affect SNN interlayer spike sparsity.

To take advantage of standard backpropagation based
optimizers, we use the surrogate gradient technique. The
input-output characteristic of LIF neuron is a step function
whose gradient is discontinuous at the spiking point. In sur-
rogate gradient techniques, gradients are approximated by
pseudo-derivatives. Kim et al. [17] used a gradient approxi-
mation function that exploits the peak time information in the
derivative. The gradient for timestep t is calculated as follows:

∂ot
∂ut
= max

{
0, 1−

∣∣∣ut
θ
− 1

∣∣∣} (4)

where ut and ot are the output peak value and membrane
potential at timestep t . LIF neurons in the hidden layer
only generate spiking output when the membrane potential
exceeds the firing threshold.

D. ADVERSARIAL ATTACK
Determine a dataset (x, yture) and a classification model h,
where x is a clean image and yture is the corresponding correct
label. The concept of an adversarial attack is to find an
input xadv such that x and xadv are indistinguishable to the
human eye, but the model h misclassifies xadv, i.e. produces
a high probability output on the wrong label. In our work,
we consider the following two methods for generating xadv,
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FIGURE 4. The accuracy of the four coding methods when the threshold
parameter of VGG5, VGG9 network is (θ, λ) = ((0.4,1),0.5). The vertical
axis represents the coding scheme, and the vertical axis represents (θ, λ)
combination parameters. The scale on the color bar represents the
inference accuracy under that color, e.g., 86 means the inference accuracy
is 86%.

TABLE 1. model parameter.

FGSM and PGD.The attack generation steps are shown in
Fig. 3.

1) FGSM ATTACK
This is the basic and broadest way to generate an adversarial
attack, which takes the form:

xadv = x + εsign(∇xJ (x, yture)) (5)

where ε refers to the amount of disturbance, usually ε is much
smaller than x, and ∇xJ is the gradient of the loss function
relative to the original clean data [20].

2) PGD ATTACK
The PGD attack [21] is a multi-step method for generating
adversarial inputs with an iterative step size α ≥ ε/k , where
k is the number of iterations. In an untargeted PGD attack,
the loss is calculated according to the true label yture.

x0adv = x (6)

xNadv = Clipx,ε
{
xNadv + αsign(∇ xJ (x

N
adv, yture))

}
(7)

where xNadv is the adversarial example in the xadv iteration,
and α is the perturbation at each step. Clipx,ε means to clip

FIGURE 5. The spike activity of the four coding methods. The horizontal
axis represents the different layers of the neural network (e.g.,
convolutional layer for conv1) The vertical axis represents the number of
spike activities between layers. The different color lines in each figure
represent different coding methods (a) when the combination parameters
of VGG5 are (θ, λ) = ((0.4,1),0.5). (b) When the combination parameters
of VGG9 are (θ, λ) = ((0.4,1),0.5).

the parameters element-wise to the range [x − ε, x + ε], sign
is the sign function.

IV. EXPERIMENTS AND DISCUSSIONS
A. EXPERIMENTAL PARAMETER DEVICE
We used the image classification dataset CIFAR10 in
experiments and supplement the input with conventional
data. Various peak sequences are generated by different
encoding functions, which are then fed into the network’s
input. The VGG5 architecture is 32×32-c-p-c-c-p-f-f-o,
The VGG9 architecture is 32×32-c-c-p-c-c-p-c-c-c-p-f-f-o.
where 32×32 represents the input feature map size, c =
convolutional layer, p = pooling layer, fc = fully connected
layer and o = output layer. VGG5 and VGG9 were trained
for 200 epochs with an initial learning rate of 0.001. Other
hyperparameters differ for different encoding settings in
order to achieve reliable inference accuracy. All experiments
were carried out on an NVIDIA A5000 Graphic Processing
Unit (GPU) with 24 GB of memory, and the models were
built with PyTorch. The model hyperparameter shows in
Table 1.
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FIGURE 6. (a,b,c,d,e,f): A comparison of the loss in accuracy under adversarial attack of VGG5 and VGG9. we set different intensity Attack as
following: (a) Low intensity Attack_VGG5. (b) Middle intensity Attack_VGG5. (c) High intensity Attack_VGG5. (d) Low intensity Attack_VGG9.
(e)Middle intensity_Attack_VGG9. (f)High intensity Attack_VGG9. each of these cases, the amount of perturbation ε has been varied from
2_255 to 16_255, the number of iterations k has been varied from 7 to 40. FGSM_2 presents perturbation is 2, PGD_2_40 presents
perturbation is 2_255 and k is 40. Smaller adv_loss in accuracy implies more adversarial robustness. The difference between the red dashed
lines in figures a and d represents the largest difference in adv_loss among the four coding methods under low-intensity attacks.

B. INFLUENCE OF CODING METHOD ON NETWORK
ROBUSTNESS AND ACCURACY
We compare the accuracy and adversarial robustness of SNN
adversarial attacks under the four coding methods on VGG5
and VGG9 networks. In attack model, ε refer to the amount
of perturbation, is set to 2, 8, and 16, the perturbation step
size α is set to 2, and the number of iterations k is set to 40,
the threshold voltages of the convolutional layer and the fully
connected layer are set to 0.4, 1, respectively, The leakage
parameter λ is set to 0.5, the network time step T is set to 10,
in order to generate adversarial examples for SNN using rate
coding.

1) ACCURACY COMPARISON
Fig. 4 shows the variation of the accuracy of different network
coding architectures. For the VGG5 and VGG9 architectures,

the inference accuracy of direct coding is better than other
coding methods, followed by latency coding, rate coding
accuracy is lower than phase coding on VGG5, but higher
than phase coding on VGG9. Fig. 5 shows the spike activity
of the four coding methods when the threshold parameters of
VGG5 and VGG9 are (θ, λ) = ((0.4, 1), 0.5).

2) ROBUSTNESS COMPARISON
We performed FGSM, PGD attacks on the networks trained
with four coding methods and defined three attack intensi-
ties: low intensity attack, medium intensity attack, and high
intensity attack. The results of VGG5 andVGG9 are shown in
Fig. 6(a,b,c) and Fig. 6(e,f,g). The comparison results of the
adversarial robustness under low intensity attacks is: latency
coding > phase coding > rate coding > direct coding, and
themaximum deviation of robustness between latency coding
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FIGURE 7. Heatmap showing the accuracy of VGG9, SNN trained on
CIFAR10 dataset under different encoding schemes and (θ, λ) parameter
combinations. The vertical axis represents the coding scheme, and the
vertical axis represents (θ, λ) combination parameters. The scale on the
color bar represents the inference accuracy under that color, e.g.,
85 means the inference accuracy is 85%.

and direct coding is 9.35% on VGG5 network and 13.59%
on VGG9. Direct coding also shows the worst adversarial
robustness under medium and high intensity attacks due
to the greater network robustness for sparse coding inputs.
However, the similar conclusion cannot be obtained for the
other three coding schemes. For a deeper understanding,
we counted the number of spike activities per layer of the
VGG5 and VGG9 networks as shown in Fig. 5(a,b). It can be
seen that latency coding has less spike activities per layer of
the network compared to rate and phase coding, which should
get the best adversarial robustness under each attack, but
the phenomenon is not the case under high intensity attacks.
This is because, according to Eq. 2, the parameters affecting
the sparsity of the network via the coding method, training
weights, LIF neuron threshold voltage θ and leakage factor
λ, while according to Eq. 7, the generation of adversarial
samples is closely related to the convolutional 1 layer weights
and the hidden layer alternative gradient generation weights.
The distribution of training weights is inversely related to
the distribution of inter-layer spike activity. Therefore it is
more meaningful to study the effect of combined parameters
such as coding method, threshold, and leakage factor on
robustness.

C. EFFECT OF COMBINED PARAMETERS ON ACCURACY,
ADVERSARIAL ROBUSTNESS
Based on the above analysis, we observe that the spar-
sity of input coding methods affects obviously in VGG5
and VGG9 networks. In order to further investigate the
effect of combined parameters on the network, accuracy,
and robustness differences, we expand more experiments on
the VGG9 network. We firstly compare the training accu-
racy for different combinations of encoding, threshold θ ,
and leakage factor λ of a total of 24 combined parameter
schemes. To ensure that the experiments arewithin acceptable
accuracy, we choose the parameter combinations as shown
in Fig. 7.

1) ACCURACY COMPARISON
Fig. 7 shows the difference in inference accuracy of the
four coding schemes under different combined parameters.
Fig. 8 shows the spike activity of combined parameters of
VGG9 From the experimental results: (1) Under the same
threshold condition, direct coding has higher accuracy than
the other three coding schemes. (2) Threshold changes have
different effects on the accuracy of the four coding schemes.
Both direct coding and rate coding can show high accuracy
under the conditions of several thresholds and leakage values
we selected. Latency coding and phase coding show high
accuracy at low thresholds, and inference accuracy is low
after training with high thresholds. This low accuracy is
mainly caused by input coding schemes are too sparse and
difficult to train, resulting in fewer spike activities (SA) in the
convolutional layer, so the accuracy drops. (3) Latency coding
with sparser input coding shows an overall rising and then
decreasing trend of inter-layer spike activity, direct coding,
phase coding and rate coding show an overall decreasing
trend of inter-layer spike activity.

2) ADVERSARIAL ROBUSTNESS COMPARISON
We conducted PGD and FGSM attack experiments with dif-
ferent combinations of parameters. Where ε refers to the
perturbation amount set to 2, 16, the perturbation step size
α to 2, and the number of iterations k set to 7, 40, respec-
tively. As shown in Fig. 9: (1) With the same (θ, λ) com-
bination parameters, we obtain the consistent conclusion in
4.2 that direct coding has the worst robustness among the
four coding methods. Latency coding, on the other hand,
show the best robustness at low intensities, but does not stand
out against robustness under high-intensity attacks. Latency
coding input is relatively sparser, and the inter-layer weight
values and interval distributions become larger after training
in order to ensure that the number of post-layer spikes in
the deep network is more likely to affect the adversarial
samples. (2) Varying different combinations of (θ, λ) under
the same coding method, direct coding shows a tendency
of increased adversarial robustness as the threshold of the
convolutional layer increases, which can be attributed to the
fact that the succession of input coding methods makes it
easier to find the appropriate gradient during the adversar-
ial sample generation. (3) With the change of combination
parameters, the maximum difference of adv_loss is 6.65%
for direct coding at low intensity attacks and 18.11% at high
intensity attacks. Latency coding differed by a maximum of
1.23% on adv_loss for low-intensity attacks and 12.08% on
high-intensity attacks. Phase coding at low intensity attacks,
adv_loss differs by 1.7% at maximum and 10.86% at high
intensity attacks. The maximum difference in adv_loss for
rate coding is 1.14% for low-intensity attacks and 7.9%
for high-intensity attacks. Direct coding is more likely to
change drastically in robustness due to changes in combina-
tion parameters, and rate coding is not sensitive to changes in
combination parameters.
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FIGURE 8. The spike activity of combinated parameters of VGG9. The horizontal axis represents the different layers of the neural network
(e.g., convolutional layer for conv1) The vertical axis represents the number of spike activities between layers. Different colored lines in
each figure represent different combinated parameters of (θ, λ) (a) Latency coding in VGG9. (b) Phase coding in VGG9. (c) Rate coding in
VGG9. (d) Direct coding in VGG9.

3) ENERGY EFFICIENCY COMPARISON
Many different neuromorphic chips do not support sparse
mapping topology, the weights have different widths, and the
computational operation overhead is also different. There-
fore, a single standard operating procedure (SOP) operation
is used to evaluate the power consumption of the system
for hardware evaluation of power consumption. In order to
evaluate the energy efficiency of these four coding schemes
more fairly at the algorithm level, we use the statistical spik-
ing activity operand method for comparison. Table 2 shows
that under different training parameters on VGG5 and VGG9,
under the direct coding method (θ, λ) = ((0.4, 1), 0.5)
spiking activity number as the benchmark, and the calcu-
lated energy after data normalization is compared. Table 2
shows the specific differences. In general, direct coding has
the lowest energy efficiency, and Latency coding has the
highest energy efficiency. The other two coding methods
have slightly different energy efficiencies under different
threshold combinations. Energy efficiency of latency coding
and phase coding is 0 under the effect of some combined
parameters, which is due to the fact that those combined
parameter and coding scheme leads to excessive sparsity of

TABLE 2. Estimated energy costs for various operations in a 45 nm
ComplementaryMetal-Oxide-Semiconductor (CMOS) process at 0.9 V [22].

spike activity between network layers during the training pro-
cess, bringing down both inference accuracy and adversarial
robustness.

4) SUMMARY
Our results show that (1) on different architectures and
with different combination parameters, direct coding shows
the best inference accuracy, the worst robustness and high
energy efficiency, the accuracy variation is stable and easy
to train, but it is resistant to attacks has the highest intensity
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FIGURE 9. Adversarial robustness with different combination parameters.

sensitivity. (2) Latency coding shows the best energy effi-
ciency, the best robustness under low-intensity attacks,
is unstable to threshold and leakage accuracy changes and not
easy to train, but is relatively insensitive to attack intensity.
(3) Rate coding shows the best adversarial robustness under
medium and high intensity attacks, moderate performance
in inference accuracy and energy efficiency, and relatively
low sensitivity to attack intensity. (4) Phase coding is less
effective in every way. Each coding method has the opti-
mal threshold and leakage value interval, and the network
energy efficiency with better accuracy is close. (5) The input
encoding and inter-layer data sparsity show a negative cor-
relation with inference accuracy, a positive correlation with
energy efficiency, and a more ambiguous correlation with
adversarial robustness, where the most important influencing
factor is in the distribution of weights. In order to achieve
the same issuing condition with parameters that have lower
input encoding and inter-layer data sparsity during training,
larger weights of local neurons are needed. However, when
creating adversarial attack samples, the process works the
exact opposite way, and the result of too large weights and
perturbations superimposed on the original sample under the
same perturbation will reduce inference accuracy and exhibit
poor adversarial performance.

V. CONCLUSION
In this work we use the spiking activity sparsity among
SNN layers as a main clue to analyze the impact of differ-

ent neural coding schemes, threshold voltage, leakage fac-
tor, and other combined structural parameters of the SNN
based on STBP training through inference accuracy, adver-
sarial robustness and energy efficiency. Four coding schemes
are tested on two network architectures, VGG5 and VGG9.
We also compared and analyzed the influence of SNN inher-
ent structural parameters on the accuracy and robustness of
the network from the perspective of sparsity. Based on the
experimental results, while rate coding delivers the most
adversarial robustness against medium and high intensity
attacks, latency coding is the best option for achieving the
highest adversarial robustness and energy efficiency. A com-
prehensive comparison among these schemes was provided,
revealing that spike sparsification of the input data encoding
scheme can bring improvements in adversarial robustness,
but excessive sparsification of spike activity between net-
work layers brought about by the combination of thresh-
olds, leakage coefficients and combinatorial parameters can
instead reduce the inference accuracy and adversarial robust-
ness of the network. This study provides a reliable refer-
ence and insight for selecting and designing better neural
coding schemes in neuromorphic systems and training opti-
mal neural models. Neural network weight compression,
quantization further affects inter-layer sparsity. The future
research will focus on weight quantification for more accu-
rate comparisons to natural hardware environments, giv-
ing designers of neuromorphic hardware better theoretical
support.
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