
Received 17 October 2022, accepted 2 November 2022, date of publication 7 November 2022, date of current version 10 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3220239

Multi-Swarm PSO Algorithm for Static Workflow
Scheduling in Cloud-Fog Environments
DINESHAN SUBRAMONEY AND CLEMENT N. NYIRENDA
Department of Computer Science, University of the Western Cape, Cape Town 7535, South Africa

Corresponding author: Clement N. Nyirenda (cnyirenda@uwc.ac.za)

This work was supported in part by Telkom South Africa through the Centre of Excellence Program at the University of the Western Cape.

ABSTRACT Scientific workflow scheduling involves the allocation of workflow tasks to particular
computational resources. The generation of optimal solutions to reduce run-time, cost, and energy
consumption, as well as ensuring proper load balancing, remains a major challenge. Therefore, this work
presents a Multi-Swarm Particle Swarm Optimization (MS-PSO) algorithm to improve the scheduling of
scientific workflows in cloud-fog environments. MS-PSO seeks to address the canonical PSO’s problem
of premature convergence, which leads it to suboptimal solutions. In MS-PSO, particles are divided into
several swarms, with each swarm having its own cognitive and social learning coefficients. This work also
develops a weighted sum objective function for the workflow scheduling problem, based on four objectives:
makespan, cost, energy and load balancing for cloud and fog tiers. The FogWorkflowSim Toolkit is used
in the evaluation process, with the objectives serving as performance metrics. The MS-PSO approach is
compared with the canonical PSO, Genetic Algorithm (GA), Differential Evolution (DE) and GA-PSO. The
following scientific workflows are used in the simulations: Montage, Cybershake, Epigenomics, LIGO and
SIPHT. MS-PSO outperforms the canonical PSO on all scientific workflows and under all performance
metrics. It competes fairly well against the other approaches and it is more stable and reliable. It only ranks
second to PSO, in terms of execution time. In future, multiple species, incorporating population update
mechanisms from several algorithmic frameworks (MS-PSO, DE, GA), will be used for scientific workflow
scheduling. Hybdridization of the realized algorithm with dynamic approaches will also be investigated.

INDEX TERMS Scientific workflows, cloud computing, fog computing, particle swarm optimization,
evolutionary algorithms.

I. INTRODUCTION
A scientific workflow is the description of a process for
accomplishing a scientific objective, which is expressed in
terms of tasks and their dependencies [1]. These depen-
dencies occur at various stages and the tasks are executed
in a predefined order, in order to achieve the scientific
objective [2]. Scientific workflows are typically described as
a directed acyclic graph (DAG), where the nodes are denoted
as tasks and the edges, as task dependencies [3]. The concept
of scientific workflows has largely been triggered by the
emergence of data-intensive and computationally complex

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

methods in the natural sciences and the need for techniques
for the automation of recurring computational tasks [4].

Early efforts on scientific workflows were implemented
on High Performance Computing (HPC) [5] and distributed
systems [6], [7]. In most of these early implementations, the
systems and the applications were considered as black boxes;
the main focus was on distributed resource management,
workload, and execution management [6]. In recent decades,
scientific workflows are being implemented on cloud
computing infrastructure [8], [9], [10]. Unlike distributed
systems, cloud computing is client-server based architecture,
where resources are utilized in a centralized manner on a
pay-as-you-go model [11]. Cloud computing has become the
platform of choice for the execution of computation-intensive
scientific workflows [3], [9], [10], because it avails the

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 117199

https://orcid.org/0000-0002-4181-0478
https://orcid.org/0000-0001-5067-858X


D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

following positive attributes: cost efficiency, high speed,
excellent accessibility, manageability, elasticity, virtualisa-
tion capabilities and sporadic batch processing.

Scheduling workflows for execution on cloud resources
involves the mapping of the tasks in the workflows to the
available virtual machines in the cloud infrastructure. This
process is, generally, hindered by high computation and
communication costs [12]. As a result, population-based
algorithms such as such as Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO) have been proposed
for scheduling tasks or workflows on the cloud infrastruc-
ture [12], [13], [14], [15]. These approaches can be generally
described as static workflow scheduling mechanisms because
they do the mapping process in an a priori manner.
The major optimization objectives in these approaches are
maximization of the execution finishing time, commonly
known as makespan, and minimization of the cost. Other
quality of service (QoS) requirements such as deadline and
budget are usually incorporated as constraints.

Two recent surveys on PSO-based scheduling techniques
for scientific workflows clearly show that PSO is the
most popular population-based optimization approach in this
field [15], [16]. The PSO technique is preferred because
of its fast convergence and short run time. Most of the
PSO-based works use the canonical PSO [17], which suffers
from premature convergence [18], [19], [20]. In recent years,
new PSO variants known as multi-swarm PSOs, that divide
the population into sub-swarms in the search space, have
been proposed and evaluated on standard test functions.
These new techniques have exhibited better performance
than the canonical approach due to their superior exploration
capabilities [19], [20], [21], [22], [23], [24], [25], [26], [27].
It, therefore, naturally follows that there is a high likelihood
for a multi-swarm PSO to exhibit better performance even in
the scientific workflow scheduling problem. This forms the
motivation behind the work presented in this paper.

Another important observation is that most of the scientific
scheduling approaches in literature are implemented on the
traditional two-tier architecture, with the cloud servers at the
top and the end devices at the low level. WorkflowSim [28]
has been the dominant simulation platform. Nevertheless,
workflow execution on the cloud is hampered by increased
latency and low QoS [29], [30]. In order to address these
limitations, a three-tier network that incorporates the fog
layer between cloud servers and end devices has been
proposed as the demand for cloud services grows. In this
new network, fog devices extend the cloud computing model
by executing some tasks thereby reducing the execution
overhead on the cloud infrastructure. This helps to reduce
latency, improve user experience, enhance data security, and
improve energy efficiency. Currently, very few works in
scientific workflow scheduling [18], [31], [32] have focused
on this emerging paradigm.

This paper adopts the three-tier network. The preliminary
version of this work was presented and published at a
conference [32]. This work is implemented on the recently

proposed FogWorkflowSim [33]. The major contributions of
the work proposed in this paper are as follows:

1) The addition of load balancing to the weighted sum
objective function that already incorporates makespan,
cost, and energy consumption, as presented in [32].

2) A review of the state-of-the-art multi-swarm PSO
algorithms and techniques.

3) The proposal for Multi-Swarm PSO algorithm for
scientific workflow scheduling and its implementation
in FogWorkflowSim [33].

4) A comparative evaluation of MS-PSO, GA, PSO, GA-
PSO and DE as scheduling algorithms for scientific
workflows is conducted with makespan, cost, load
balancing, and energy as performance metrics. The
number of tasks has been increased to a maximum of
500 in each case.

The rest of this paper is organized as follows. Section II
presents the state-of-the art on multi-swarm PSO algo-
rithms. Section III presents concept of scientific workflows.
Section IV outlines the workflow optimization process
while section V presents the proposed MS-PSO algorithm.
Section VI presents the simulation environment and the
performance evaluation. Finally, section VII concludes the
paper.

II. STATE OF THE ART ON MULTI-SWARM PSO
APPROACHES
Before making a brief presentation on some of the most
prominent multi-swarm PSO algorithms, the canonical PSO
is presented briefly.

A. THE CANONICAL PARTICLE SWARM OPTIMIZATION
ALGORITHM
Particle Swarm Optimization (PSO) is a population-based
stochastic optimization algorithm introduced byKennedy and
Eberhart [17]. The technique is used to solve optimization
problems by emulating the social behavior of bird flocking,
fish schooling and other animal societies that cooperate and
share information to improve their position without relying
on a leader. The PSO algorithm has received more and more
attention from many researchers due to its relative simplicity
and fast convergence [18]. Over the years, the PSO algorithm
has been successfully applied in a variety of fields, such as
constrained mixed-variable optimization problems [34] and
wireless sensor networks [35].

This technique uses a population of N individuals,
represented as particles in the H -dimensional solution
space.The current position of the i-th particle is represented
as xi = (xi,1, xi,2, . . . , xi,H ) and it’s velocity is represented
as vi = (vi,1, vi,2, . . . , vi,H ). The quality of each particle
is measured using a defined fitness function depending on
the optimization problem. Each particle’s movement is based
on its best known personal position pBesti, and also moves
towards the best known global position gBest for the entire
swarm. This process leads the swarm to the best position
over a number of iterations in the search process. At the k-th

117200 VOLUME 10, 2022



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

iteration, the elements of the particle’s velocity and position
are updated by using

vi,h = ωvi,h + c1r1(pBesti,h − xi,h)

+ c2r2(gBesth − xi,h) (1)

xi,h = xi,h + vi,h, (2)

where h = 1, 2, . . . ,H ; ω is the inertia weight; r1 and r2 are
random numbers between (0,1); and c1 and c2 are the learning
factors.

B. MULTI-SWARM PSO APPROACHES
In recent years, there have been many efforts to break down
the PSO algorithm into sub-swarms, and a brief overview of
some of the most notable ones is presented as follows.

a) Dynamic multi-swarm PSO [21]: This is arguably the
first highly notable multi-swarm PSO approach. It divides
the population into many small dynamic swarms which are
evolved in a similar fashion; these swarms are regrouped fre-
quently thereby exchanging information among the swarms.
This multi-swarm PSO exhibited better performance than
several PSO variants on a set of shifted rotated benchmark
functions.

b) The Socio-Cognitively Inspired PSO [22]: This
approach divides the PSO swarm into sub-swarms, called
species because they have unique evolution mechanisms. The
particles get inspired by the global and the local optima,
but they also share their knowledge of optimal locations
with neighboring particles belonging to other species.
Experiments were conducted with various proportions of
different species in the population to find the best setting.

c) HCLDMS-PSO [23]: The heterogeneous comprehen-
sive learning and dynamic multi-swarm particle swarm
optimizer with two mutation operators (HCLDMS-PSO)
modifies the traditional dynamic multi-swarm PSO [21]
by adding a comprehensive learning (CL) strategy, where
the global optimal experience of the whole population
is conducted to generate an exploitation sub-population
exemplar.

d) HIDMS-PSO [24]: The Heterogeneous Improved
Dynamic Multi-Swarm PSO (HIDMS-PSO) is also an
extension of the traditional dynamic multi-swarm PSO [21].
The population is initially divided into two sub-populations,
with the first one being further divided into sub-swarms. The
particles in these sub-swarms are guided heterogeneously.
On the other hand, the second sub-population is guided homo-
geneously by using the classical PSO update mechanism.

e) DMS-GPSO [25]: The dynamic multi-swarm global
particle swarm optimization (DMS-GPSO) segments the
evolutionary process into an initial stage and a final stage.
In the initial stage, the population is divided into a global
sub-swarm and multiple dynamic sub-swarms. The global
sub-swarm focuses on exploitation, guided by the globally
optimal particle. On the other hand, multiple sub-swarms
focus on exploration, guided by the best particle in the
neighborhood. In the final stage, the elite particles stored in

an archive are combined with the DMS sub-swarms to form
a single population with the aim of improving exploitation
capabilities.

f) DMS-PSO-GD [19]: The Dynamic Multi-Swarm
Particle Swarm Optimization with Global Detection Mech-
anism (DMS-PSO-GD) has some similarities to the DMS-
GPSO [25] in the sense that it also divides the population into
two kinds of sub-swarms: several same-sized dynamic sub-
swarms and a global sub-swarm. This algorithm, however,
uses the variances and average fitness values of dynamic
sub-swarms to measure the distribution of the particles,
in order to detect the dominant and the optimal particle.

g)PSOMAS [26]: In the Particle SwarmOptimization with
Multiple Adaptive Sub-swarms (PSOMAS) algorithm, each
sub-swarm is evolved by a completely different variant of
the single swarm PSO algorithm, such as Comprehensive
Learning PSO [36] and Cooperative PSO [37]. This work also
uses an adaptive strategy to reduce usage of computational
resources.

h) Chain and Hypercube Communication Topologies for
multiswarm-PSOs [27]: The chain and hypercube topologies
have been proposed with the aim of limiting communication
between swarms in order to increase per-swarm exploration
over different parts of the search space. A comparison of these
techniques with the simple cross-over strategy showed that
the chain topology exhibited a better error performance. The
computational complexities of these techniques is, however,
not discussed.

The multi-swarm PSO proposed in this work is generally
inspired by the Socio-Cognitively Inspired PSO [22]. This
algorithm will be presented in detail in Section V. The next
couple of sections will focus on the application domain - the
scientific workflow scheduling, with the aim of developing
the objective function that will be used in the multi-swarm
PSO scheduling algorithm.

III. THE CONCEPT OF WORKFLOWS
The workflow application is modelled as a Direct Acyclic
Graph (DAG), defined by G = (T ,E), where T refers to the
vertices and represents the set of n tasks {t1, t2, . . . , tn} and E
is the set of directed edges, which indicates the dependencies
or precedence constraints between tasks in the workflow [13],
[14], [18], [32]. An edge can also be illustrated in terms of
inter-task data, di,j =< ti, tj >∈ E , where di,j is a positive
value representing the length of the output data from task ti
to be used as input for task tj. Therefore, the execution of tj
can only begin after the execution of task ti has completed.
A task ti with no parent is known as a start task and a task tj
with no child is known as an end task. Fig. 1 shows a sample
structure of a workflow model. The tasks of the workflow
placed horizontally on the same level can execute in parallel
order on the cloud-fog system. In this example, tasks t2, t3 and
t4 can execute in a parallel order.
Workflow application scheduling in a cloud-fog envi-

ronment is defined here as the problem of assigning
computing resources with different characteristics to tasks

VOLUME 10, 2022 117201



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 1. Sample workflow model with seven tasks.

of the workflow application, in order to minimize the total
completion time, cost and energy of the workflow execution
while ensuring that the overall load assigned to each VM is
also balanced.

IV. THE PROPOSED WORKFLOW SCHEDULING
MULTI-OBJECTIVE FUNCTION FOR THE
CLOUD-FOG MODEL
In the cloud-fog environment setup presented in this work,
computational resources are of three types, namely cloud
servers, fog servers and end devices, as illustrated in Fig. 2.
Each of these resources consists of computing and storage
capabilities along with memory, bandwidth and power
requirements. Computational resources in the cloud and fog
are represented as virtual machines (VMs). The end device
is included because for some small tasks, transferring them
to the fog and cloud servers does not make sense from an
economic and resource utilization perspective.

In this work, the selection of the optimal resource is
determined by four objectives for optimization process:
makespan, cost, energy consumption and load of a VM on
the respective cloud and fog layers.

A. MAKESPAN
The makespan of a workflow can be defined as the total
execution time for the completion of an entire workflow.
Thus, makespan MS is calculated as follows:

MS = max{FTti , ti ∈ T } −min{STti , ti ∈ T } (3)

FIGURE 2. Cloud-fog paradigm for workflow scheduling.

where STti and FTti are the starting time and finishing time
respectively for task ti in a particular workflow.

B. COST
This consists of computation and communication costs.
Computation costs apply for all the three computational
resource types while communication costs are not included
when the tasks are executed on the end device. The
computational cost [18] when using computing resource r is
defined as

CEri = pr · (FTti − STti ), (4)

where pr is the unit processing cost. The communication cost,
which denotes the data transfer cost of a task output of size di,j
from the resource processing task i to the resource allocated
to process task j, is determined by

CCi,j = trci,j · di,j, (5)

where trci,j is the unit cost of communication from the
resource, where task i is mapped, to the resource, where task
j is mapped; trci,j = 0 when the two tasks are executed on the
same resource. Therefore, form computational resources and
n tasks, the total cost TC is

TC =
n∑
i=1

n∑
j=1

CCi,j +
m∑
r=1

n∑
i=1

CEri . (6)

C. ENERGY CONSUMPTION
The energy consumption model [38] is constructed using
active and idle components, which are denoted byEactive and

117202 VOLUME 10, 2022



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

Eidle respectively. The former refers to the energy consumed
when a task is being executed while the latter is the energy
used when a resource is idling. The active energy is calculated
by

Eactive =
n∑
i=1

αfiv2i (FTti − STti ), (7)

where α is a constant; fi and vi are the frequency and supply
voltage for the resource on which task i is being executed.
During the idle period, the resource goes into sleep mode,
where the voltage supply level and the relative frequency are
at the lowest level. Therefore, the energy consumed during
the idle period is determined by using [32] and [38]:

Eidle =
m∑
j=1

∑
idlej,k∈IDLEj,k

αfmin jv2min jLj,k , (8)

where IDLEj,k is a set of idling slots on resource j, fmin j
and vmin j refer to the frequency and lowest supply voltage
on resource j respectively; Lj,k is the duration of idling time
for idlej,k . The total energy TE consumed on the cloud-fog
system for the execution of the entire workflow is

TE = Eactive + Eidle. (9)

D. LOAD BALANCING
Load balancing of the respective cloud and fog layers is
considered in this work. Load balancing can be defined as
the calculation of the standard deviation of the load of all
the VMs. The aim is to ensure that all the VMs have almost
equal loads. So, minimizing the standard deviation of the
VMs produces improved load management among the VMs.
The load of a VM is determined by the ratio between the
length or size of the tasks executed by a VM and capacity
of the VM. The fog layer VM characteristics are different
compared to the cloud. Therefore to ensure fair overall load
distribution, the standard deviation of the load is calculated
independently for the cloud and fog layers. The end device
is excluded when balancing the load on the cloud-fog
environment.

Let c and f denote the number of VMs in the cloud and
fog layers respectively. Hence, load balancing on the cloud is
defined by

LBC =

√∑c
i=1(LCi − ALC)2

c
(10)

where LCi refers to the load of the i-th VM on the cloud, and
ALC is the average load of all the VMs on the cloud layer.
Similarly, the load balancing on the fog is defined by

LBF =

√∑f
i=1(LFi − ALF)2

f
(11)

where LFi refers to the load of the i-th VM on the fog,
and ALF is the average load of all the VMs on the fog

layer. Therefore, using the four aforementioned objectives,
the weighted sum objective function is defined by:

F(p) = w1 ·MSnorm+ w2 · TCnorm+ w3 · TEnorm

+w4 · LBCnorm+ w5 · LBFnorm (12)

where p is the assignment of the n tasks of a workflow to them
available computing resources. In PSO parlance, p is referred
to as a particle, while in the Genetic Algorithm (GA), it is
referred to as the chromosome and in Differential Evolution
(DE), it is a vector. Parameters MSnorm, TCnorm, TEnorm,
LBCnorm, and LBFnorm are the normalized makespan,
total cost, energy consumption, load balancing among cloud
VMs, and load balancing among fog nodes respectively;
w∗ is the coefficient weight. Equal weights are used in the
performance evaluations to obtain an equal contribution of
each objective i.e. w∗ = 0.2. Normalization removes any
biases in the objective function and also ensures that there is a
balanced contribution from all the objectives [32]. To obtain
the normalized objective function parameters in equation
(12), objective function values MSi, TCi, TEi, LBCi and
LBFi are defined for the ith potential solution. The normalized
objectives are defined by

MSnorm =
MSi −MSmin

MSmax −MSmin

TCnorm =
TCi − TCmin

TCmax − TCmin

TEnorm =
TEi − TEmin

TEmax − TEmin

LBCnorm =
LBCi − LBCmin

LBCmax − LBCmin

LBFnorm =
LBFi − LBFmin

LBFmax − LBFmin
(13)

where the max and min values represent the maximum and
minimum of the objectives; these are determined from the
initial population of the algorithms.

Now that this section has defined the objective function
(Eq. (12)), the next section presents the multi-objective
workflow scheduling based on the proposed multi-swarm
PSO optimization algorithm.

V. MULTI-OBJECTIVE WORKFLOW SCHEDULING BASED
ON MULTI-SWARM PSO OPTIMIZATION ALGORITHM
Before delving into the philosophy of the proposed multi-
swarm PSO, the particle p, which has been introduced in
multi-objective function (Eq. (12)) is formally presented in
the first subsection. Thereafter, the proposed multi-swarm
PSO is presented and illustrated in the second subsection.

A. REPRESENTATION OF THE PARTICLE
As mentioned in previous sections, the workflows in this
work can be scheduled for execution at the source end device,
at a fog VM or at a cloud VM. The end devices do not
offload their tasks to fellow end devices; they can only

VOLUME 10, 2022 117203



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 3. Example of a task-resource mapping on the cloud-fog
environment.

offload their tasks to fog and cloud resources. Therefore,
in the scheduling of workflows, only one representative
end device is incorporated in the encoding process. As the
scheduling of workflow tasks in a cloud-fog environment is
a discrete problem, natural numbers are used to encode the
individuals for the proposed Multi-Swarm PSO algorithm.
The individuals, referred to as particles, are mappings of task-
resource schedules. The dimension or length of each particle
p is n; this is the total number of tasks in the workflow. Each
position of the particle is a positive integer representing the
task number. The value assigned to this position is a VM
ID that is assigned to execute the task. The ID numbers
are selected from the VMs available on the respective
architecture tier. Fig. 3 shows a graphical illustration of an
example workflow with 10 tasks to be mapped to a cloud-fog
setup with 3 cloud VMs and 2 fog VMs. In this example the
particle is denoted as p = (4, 5, 1, 6, 2, 3, 4, 5, 1, 6).

B. THE PROPOSED MS-PSO FOR SCIENTIFIC WORKFLOW
SCHEDULING
Scientific workflow scheduling is a computationally complex
exercise. Therefore, the multi-swarm PSO optimization
algorithm tailored for this problem must be simple and
characterized by a low computational complexity. In light of
this understanding, this work adopts the Socio-Cognitively
Inspired PSO [22] due to its apparent simplicity. Furthermore,
in this approach, the swarms or species are evolved differ-
ently from each other. The particles’ position and velocity
are updated by the different rules specific to a swarm.
They, however, exchange information with the neighboring
swarms.This behavior is very intuitive from natural point
of view because in the real world, a variety of different
species of a particular animal usually exist in an ecosystem
simultaneously.

The competition for territory and survival creates the need
for inter-swarm communication. Therefore, the evolution
of the individuals is affected by other swarms’ rules
thereby promoting information sharing among swarms and
cooperative development of the all species. In the proposed
MS-PSO algorithm, each swarm is initialized with particles
that belong to a particular type of species. The species in

TABLE 1. Settings of the cognitive and social learning coefficients for
different species.

each swarm has its own algorithm for calculating the velocity.
In stead of using the neighborhood’s best position in the
third term as in [22], entire swarm’s best position is used.
Therefore, at every k-th iteration, the elements of velocity vsi
of the i-th particle in the s-th swarm are updated by using

vsi,h = ωvsi,h + A(pBest
s
i,h − xi,h)

+B(sBestsh − xi,h)+ C(gBesth − xi,h), (14)

where pBestsi is known as the personal best position for the i-
th particle in the s-th swarm; sBests is the best position in the
s-th swarm and gBest is the global best position found across
all swarms. A, B and C are the learning factor coefficients in
the range [0,1] which are different for each swarm according
to its class of species. The elements of position xsi of the i-th
particle are updated by using

xsi,h = xsi,h + v
s
i,h, (15)

The five types of species, considered in this work, are
presented as follows:
• Normal Species: This species represents the canonical
PSO, where the particle’s decisions are affected by the
particle’s best solution and a swarm’s best solution, with
each given the same weighted coefficient.

• Local and Global Species: This species is influenced
only by its own best and global best position for all
swarms.

• Swarm only Species: This species is influenced only by
the swarm’s best position.

• Global only species: This species is influenced only by
the global best position for all swarms.

• Random species: This species employs randomness,
where all three parameters in the PSO velocity function
(Eq. (14)) are taken into consideration. For each
iteration, the coefficient weights of the parameters are
uniformly distributed random number in the range (0,1).

Table 1 shows the parameters for the five species. Once the
position of a particle in the swarm has been updated according
to equations (14) and (15), it’s fitness value is determined
according to equation (12). If the new fitness value is better
than the previous one, then the respective best values are
updated by the current values.

Algorithm 1 illustrates the Multi-Swarm PSO-based opti-
mization process. The input to the algorithm is the workflow
wf and all the available cloud-fog VMs, while the output
is the task-VM mapping schedule - gBest and F(gBest).
Parameters N , S and G denote the number of particles,

117204 VOLUME 10, 2022



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

Algorithm 1 The Proposed Multi-Swarm PSO-Based
Algorithm

1 Input:Workflow wf composed of t tasks and all
available cloud-fog VMs;

2 Output: Task-VM mapping schedule - gBest and
F(gBest);

3 Initialize N , S, A, B, C , ω, and G;
4 Randomly generate N particles;
5 Divide the N particles into S subswarms of equal sizes;
6 F(gBest)← 0;
7 for s← 1, S do
8 F(sBests)← 0 ;
9 for i← 1,N/S do
10 Invoke the Fogworkflowsim workflow

scheduler;
11 Compute the fitness function value, F(xsi ), for

particle i in swarm s, by using equation (12) in
Section IV;

12 pBestsi ← xsi ;
13 F(pBestsi )← F(xsi ) ;
14 if F(xsi ) > F(sBests) then
15 sBests← xsi ;
16 F(sBests)← F(xsi );

17 if F(xsi ) > F(gBest) then
18 gBest← xsi ;
19 F(gBest)← F(xsi );

20 k ← 0;
21 while k ≤ G do
22 for s← 1, S do
23 for i← 1,N/S do
24 (1) Update vsi and x

s
i by using equations (14)

and (15), and species-specific parameters
from Table 1;

25 (2) Invoke the Fogworkflowsim workflow
scheduler;

26 (3) Compute the fitness function value,
F(xsi ), by using the Weighted Sum
Objective Function (equation (12) in
Section IV);

27 if F(xsi ) > F(pBestsi ) then
28 pBestsi ← xsi ;
29 F(pBestsi )← F(xsi );

30 if F(xsi ) > F(sBests) then
31 sBests← xsi ;
32 F(sBests)← F(xsi );

33 if F(xsi ) > F(gBest) then
34 gBest← xsi ;
35 F(gBest)← F(xsi );

36 k ← k + 1;

the number of swarms, and the number of generations
respectively, while the other parameters have already been
defined in Section IV.

The algorithm starts with the initialization of the values of
the following parameters: N , S, A, B, C , ω, andG. In the next
step, N particles are created and divided into S swarms of
equal sizes and the fitness value of the best global position
F(gBest) is initialized to 0.

Between line 7 and line 19, the fitness values of
the particles in each swarm are determined according to
equation (12), by running the respective workflow scheduling
simulation on Fogworkflowsim [33]. The pBestsi , sBest

s and
gBest values are determined among all the swarms. Once this
process is completed, each of the swarms/species is evolved
by swarm/species-specific parameter settings presented in
Table 1 in an iterative process untilG generations are reached.
This happens from 21 to line 36. At every iteration, the
computation goes through two loops: 1) the outer loop for
the swarms; 2) the inner loop for the individual particles in a
particular swarm. Within the inner loop, there are three steps:

1) The update of the particle’s velocity and position by
using equations (14) and (15), and species-specific
parameters from Table 1.

2) The invokation of the Fogworkflowsim workflow
scheduler to determine the fitness of the particle
determined in the first step.

3) The calculation of the fitness function value, F(xsi ),
by using the Weighted Sum Objective Function (equa-
tion (12), in Section IV).

From line 27 to line 35, the newly determined fitness value
F(xsi ) for a particle i in swarm s is compared with the three
best fitness values associated with the particle at personal,
swarm, and global levels F(pBestsi ), F(sBest

s) and F(gBest)
respectively). The values for pBestsi , F(pBest

s
i ), sBests,

F(sBests), gBest, and F(gBest) are updated, whenever better
values are found in each case.

VI. PERFORMANCE EVALUATION
This section begins by describing the workflowmodels along
with the simulation environment setup on the FogWork-
flowSim Toolkit [33]. These preliminaries are followed by
the experimental results and discussion.

A. WORKFLOW MODELS
This study uses five well-known scientific workflows [39]
from various scientific domains for effective evaluation of the
proposed algorithm. These scientificworkflows are published
by the Pegasus project [40], where the DAG XML file
representations for the respective workflows are used as
input for the simulations. These workflows are composed
of a number of tasks, dependencies, run-times and data
required to be transferred between different tasks. Fig. 4
shows a simplified graphical structure of the workflows.
These workflows are described as follows:

1) Montage workflow: This represents an astronomy
application that creates custom mosaics of the sky with
multiple input images.

2) CyberShake workflow: Thus is used to characterize
earthquake hazards threatening a region.

VOLUME 10, 2022 117205



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 4. Structure of scientific workflows: (a) Montage, (b) CyberShake, (c) Epigenomics, (d) LIGO and (e) SIPHT.

3) Epigenomics workflow: This is used in the field of
bioinformatics to automate the different operations in
genome sequence processing.

4) LIGO Inspiral Analysis workflow: This is for the
detection of gravitational waves

5) Sipht workflow: This is for automating the search
for sRNA encoding-genes of all of the bacterial
replications.

B. SIMULATION ENVIRONMENT
The overall setup of the experiments and the simulation
environment is described in this subsection. The simula-
tions are conducted using FogWorkflowSim [33], which is
executed on a computer with 64-bit Windows 10 operating
system, Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
and 16 GB RAM. The performance of the proposed MS-PSO
is evaluated on five scientific workflow types, as described
previously and the results are compared with four other
population-based algorithms, namely, standard GA, PSO,
DE and GA-PSO proposed in [14]. The final parameter
settings for all the experiments are based on preliminary runs.
The population size = 50 for each algorithm.

TABLE 2. Parameter settings of cloud-fog environment.

The MS-PSO learning factors A, B and C are set according
to Table 1, with S = 5 and each containing 10 particles.
The inertia weight ω = 1. The classical PSO learning factors
C1 = C2 = 2, with inertia weight ω = 1. The GA algorithm’s
crossover and mutation rates are 0.8 and 0.1, respectively.
The DE crossover probability = 0.9 and the differential
weight = 0.8. The number of iterations for all algorithms
is 100. The simulations are executed 10 times for each
workflow and task volume to get the average performance of
the algorithms. The simulator is setup with one end device,
six fog VMs and ten cloud VMs. The characteristics for each
VM on the three cloud-fog layers along with the environment
settings are shown in Table 2.

117206 VOLUME 10, 2022



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 5. Comparison of fitness value evolution.

C. SIMULATION RESULTS
The performance of the proposed algorithm is compared with
the canonical PSO and the GA, DE and GA-PSO, which are
the three other population-search based algorithms for cloud
based workflow scheduling. All the algorithms are executed
on the same simulation environment setup. The respective
fitness evolution graphs and run-times for each algorithm are
recorded and presented. Finally, the comparison of the results
is presented in terms of the following performance metrics:
makespan, cost, energy and load balancing on the cloud and
fog respectively.

Fig. 5 shows the evolution of the fitness value for
each scientific workflow with 300 tasks and the overall
quality of the task schedule produced by the algorithms
considering all the performance metrics. For the Montage
workflow, as shown in Fig. 5(a), the MS-PSO approach
closely follows the DE approach, which achieves the best

fitness value. On the other hand the canonical PSO approach
exhibits the worst performance closely followed by the GA
approach. In the case of Cybershake (Fig. 5(b)), the rest
of the algorithms apart from the PSO approach achieve
the similar fitness value. The GA and the DE approaches
seem to converge faster than the rest of the algorithms. The
Epigenomics workflow, in Fig. 5(c), exhibits a similar pattern
to the Montage workflow (see Fig. 5(a)) in the sense that
MS-PSO and DE achieve the lowest fitness values, while
GA and PSO achieves the highest values. In Fig. 5(d), the
MS-PSO again follows the DE, GA-PSO and GA algorithms,
which are the best performing approaches, closely. The
SIPHT workflow, Fig. 5(e), shows a similar pattern. In all
these cases, all algorithms seem to converge by the 30th
iteration.

From the results in Fig. 5, it can clearly be seen that
the final fitness value of the proposed MS-PSO is much

VOLUME 10, 2022 117207



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 6. Comparison of makespan for the different algorithms.

smaller than the canonical PSO and very similar to the other
algorithms. This indicates that the MS-PSO has the ability to
find near-optimal solutions, while the canonical PSO easily
falls into a local optima. The MS-PSO benefits from the
multi-species approach where the particle’s velocity update
in each swarm is calculated differently, enabling a more
exploratory global search with the capability to easily jump
local optima.

Fig. 6 - Fig. 10 shows the average performance metric
results of the task schedules realized by the five algorithms
for five workflow types under 100, 300, and 500 tasks.
Fig. 6 shows that the Montage workflow achieves the shortest
makespan of the five workflows. At 100 tasks, all the
algorithms exhibit a similar performance. At 300 tasks, PSO
is the worst while DE is the best approach. The rest of the
algorithms lie in between. At 500 tasks, DE joins PSO as
the worst performing algorithms, while GA and GA-PSO
achieve the best performance. The MS-PSO shows stability
and reliability.

In the Cybershake workflow, the PSO algorithm is the
worst at 100 and 300 tasks, and it is joined by PSO, GA-
PSO and GA at 500 tasks. At the other end, the rest of the
algorithms perform equally at 100 tasks. The DE is the best
at 300 tasks and it is joined by the MS-PSO at 500 tasks.
Again, the proposed MS-PSO exhibits a better performance

than the canonical PSO and it is more stable than the rest of
the algorithms. In the Epigenomics workflow, performance
is more or less the same at 100 tasks. At 300 tasks, PSO is
the worst, while DE is the best. At 500 tasks, PSO is still the
worst while the rest of the algorithms perform more or less in
a similar manner.

In the LIGO workflow, DE is the best, while the rest of
the approaches exhibit similar performance, at 100 tasks. At
300 tasks, the DE is the worst, while the MS-PSO is the best.
At 500 tasks, PSO is theworst, while the rest of the algorithms
exhibit similar performance. Finally, in the SIPHT workflow,
PSO has worst makespan at 100 tasks, while the rest of the
algorithms exhibit a similar performance. At 300 tasks, PSO
is joined by DE with the worst makespan. The MS-PSO and
GA-PSO achieve the best makespan values. At 500 tasks,
PSO still performs poorly, while the rest of the algorithms
perform similarly.

The proposed MS-PSO approach clearly outperforms the
canonical PSO approach, while competing fairly well with
the other approaches. It comes out on top in several instances,
while performing closer to the top in many cases. Amongst
the competitors, DE and GA-PSO produce the best results
on several instances, but they also register the worst results
in a number of cases. The proposed MS-PSO approach is,
therefore, stable and more reliable. This can be attributed

117208 VOLUME 10, 2022



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 7. Comparison of cost for the different algorithms.

to the use of different velocity update mechanisms in the
sub-swarms. This helps to guarantee efficiency in times of
when some sub-swarms become unstable or are stuck in the
local minima. The MS-PSO generally achieves better results
than the GA-PSO. This suggests that the parallel approach of
combining algorithms might probably generate good results,
as opposed to the serial approach in the GA-PSO approach.

Fig. 7 illustrates a comparative evaluation based on cost.
The Montage workflow yields the lowest makespan and as
a result, it also registers the lowest cost. At 100 tasks, MS-
PSO, PSO and GA-PSO achieve the lowest cost, while GA
and DE are the worst in terms of cost. There is, however,
similar performance among the algorithms when the tasks
are increased to 300 and 500. For the Cybershake workflow,
MS-PSO has the lowest cost at 100 tasks, while PSO has the
highest cost. When the number of tasks is increased to 300,
DE yields the lowest cost, while PSO still has the highest cost.
The proposed MS-PSO ranks between the two extremes. At
500 tasks, PSO remains with the highest cost, while the rest of
the algorithms have similar cost values. For the Epigenomics
workflow, the performance is more or less the same for
all algorithms for all tasks. The same applies to the LIGO
workflow. For the SIPHT workflow, all algorithms register
similar costs for 100 and 500 tasks. For 300 tasks, only the
PSO yields a high cost while the rest of the algorithms have

similar costs. On the overall cost analysis, the PSO gives
the highest cost, while the proposed MS-PSO still competes
fairly well with the rest of the algorithms. MS-PSO and DE
come out on top once.

Fig. 8 illustrates a comparative evaluation based on energy
consumption. As expected, the Montage workflow consumes
the lowest amount of energy under all tasks. At 100 tasks,
all algorithms have similar energy consumption, while PSO
and the DE are the worst and the best performing algorithms
when the number of tasks is increased to 300. At 500 tasks,
the DE becomes the worst algorithm while GA and GA-PSO
are the best; MS-PSO and PSO exhibit similar performance.
For the Cybershakeworkflow,MS-PSO has the lowest energy
consumption at 100 tasks, while the rest of the algorithms
exhibit similar performance. At 300 tasks, DE yields the
lowest energy consumption, while PSO still has the highest
energy consumption. The proposed MS-PSO ranks between
the two extremes. At 500 tasks, MS-PSO gives the best
performance, closely followed by DE. The rest of the
algorithms have similar energy values.

For the Epigenomics workflow, PSO consumes the highest
amount of energy while the rest of the algorithms show
similar energy consumption for 100 and 500 tasks. At
300 tasks, the trend is the same, but DE yields slightly
better performance than the other algorithms. For the LIGO

VOLUME 10, 2022 117209



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 8. Comparison of energy consumption for the different algorithms.

workflow, DE slightly outperforms the rest of the algorithms
for 100 tasks. On the other hand, PSO consumes the highest
energy, while the rest of the algorithms yield similar energy
consumption values for 300 and 500 tasks. For the SIPHT
workflow, all algorithms register similar costs for 100 and
500 tasks. For 300 tasks, only the PSO yields the highest
energy consumption while DE has a slightly lower energy
consumption than the other three competitors.

On the overall energy analysis, the proposed MS-PSO
and DE yield the lowest energy consumption on several
instances. Ironically, DE also registers the highest energy
consumption on one instance. This further confirms the fact
that the DE algorithm is unstable and unreliable. This stems
from the fact that it uses one homogeneous population.
Therefore, the possibility of premature convergence is always
there.

Fig. 9 illustrates a comparative evaluation based on load
balancing on the cloud resources. For the Montage workflow,
all algorithms register similar load balancing performance
for 100 tasks. At 300 tasks, PSO and the DE are the
worst and the best performing algorithms, respectively.
On the other hand, GA performs best at 500 tasks, with
PSO, GA-PSO and DE exhibiting the worst performance.
MS-PSO’s load balancing performance is in between the
two extremes. For the Cybershake workflow, MS-PSO and
PSO have the best and worst performance for 100 tasks,

respectively. At 300 tasks, DE and PSO have the best and
worst performance, while at 500 tasks DE and MS-PSO have
the best performance. For the Epigenomics workflow, PSO
has the worst performance while the rest of the algorithms
show similar performance for 100 tasks. The DE yields better
performance than the other algorithms for 300 and 500 tasks.
For the LIGO workflow, all algorithms except PSO, exhibit
similar performance for all tasks. For the SIPHT workflow,
PSO and MS-PSO have the worst performance while the rest
of the algorithms register similar costs for 100 tasks. For
300 tasks, PSO and DE have the best and worst performance,
while at 500 tasks, only PSO performs badly.

In the overall analysis on load balancing on the cloud,
DE yields the best performance on most instances while
MS-PSO ranks second. Nevertheless DE yields the worst
performance on one instance. This further confirms the
problem of instability as previously explained.

Fig. 10 illustrates a comparative evaluation based on load
balancing on the fog resources. For the Montage workflow,
when the number of workflow tasks is set to 100, MS-PSO
achieves the best load balancing performance, with the GA
giving the worst performance. PSO performs slightly poorly,
while the rest of the algorithms perform similarly for 300 and
500 tasks. For the Cybershake workflow, DE and PSO have
the best and worst performance for 100 tasks. At 300 tasks,
all algorithms have similar performance, while DE and GA

117210 VOLUME 10, 2022



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 9. Comparison of load balancing on the cloud for the different algorithms.

have the best and worst performance for 500 tasks. For the
Epigenomics workflow, GA-PSO and PSO have the best
and worst performance for 100 and 500 tasks. On the other
hand, DE and PSO have the best and worst performance
for 300 tasks. For the LIGO workflow, GA-PSO and PSO
have the best and worst performance for 100 tasks. At
300 tasks, DE slightly outperforms GA-PSO to emerge as the
best performing algorithm, while ony PSO performs badly
at 500 tasks. For the SIPHT workflow, PSO has the worst
performance; the MS-PSO follows PSO closely, while the
rest of the algorithms register similar costs for 100 tasks. For
300 tasks, PSO and DE have the best and worst performance,
while at 500 tasks, just like in the case of cloud-based load
balancing, only PSO performs badly.

In the overall analysis on load balancing on the fog devices,
DE yields the best performance on most instances while
GA-PSO and MS-PSO rank second and third respectively.

Having compared the algorithms based on various per-
formance metrics, it is also important to consider the
computational times of the algorithms. Therefore, Table 3
shows a comparison of the average execution times of the
algorithms for the five scientific workflows using different
number of tasks. GA and DE have the worst execution
times. On the other hand, the approaches that incorporate
PSO have much better execution times, with the canonical
PSO clearly outperforming the rest of the algorithms in all

cases. This highlights the computational and implementation
simplicity of the canonical PSO technique. The proposed
MS-PSO algorithm inherits those attributes, albeit at a
slightly increased computational cost due to the addition
of the third term that captures the contribution of the best
position for each swarm and determining each swarms’
best performing particle for every iteration. However, the
canonical PSO produced the lowest quality of solutions as
shown in Fig. 5 - Fig. 10. It is noteworthy that as the workflow
size increases, the MS-PSO offers a good trade-off between
algorithm execution time and quality of solutions produced.
This is crucial especially for large-scale scientific workflow
applications where long running times can have a significant
impact on financial cost and energy when generating task
schedules for a cloud-fog environment.

These results show that the canonical PSO algorithm
performs the worst on all the workflow instances due to
PSO’s well-known problem of premature convergence, which
leads it to getting trapped in a local optima. The MS-PSO
algorithm, on the other hand, outperforms the canonical
PSO for the five scientific workflows and competes fairly
well with the other algorithms. The MS-PSO also exhibits
stability; it has rarely offered the worst performance. This
demonstrates the high reliability of the MS-PSO approach.
The MS-PSO benefits from the variety of cognitive and
social learning coefficients of the different swarms when

VOLUME 10, 2022 117211



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

FIGURE 10. Comparison of load balancing on the fog for the different algorithms.

TABLE 3. The average execution time of the algorithms.

determining the velocity for each particle, hence the algo-
rithm is able to escape local optima. The results are affected
by the characteristics of the workflow instances. When the
number of tasks for the respective workflow instance is
higher, the metric values are also generally higher as the run
times and data sizes of the workflow DAG are significantly
higher.

VII. CONCLUSION
This work has proposed a Multi-Swarm Particle Swarm
Optimisation (MS-PSO) approach for scientific workflow
scheduling in cloud-fog environments. This approach is
motivated by the problem of premature convergence in the
PSO technique, an algorithm that has largely been used
for scientific workflow scheduling due to its simplicity and

117212 VOLUME 10, 2022



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

ease of implementation. This work has also developed the
concept of load balancing, both for the fog and the cloud
resources, and incorporated it in the weighted multi-objective
mechanism, initially presented in [32]. The state-of-the-art
multi-swarm PSO algorithms have also been reviewed with
the aim of determining the best approach for implementing
a multi-swarm PSO technique for scientific workflow
scheduling. The socio-cognitively inspired PSO [22] has,
therefore, been adopted and adapted for this work. The
resulting MS-PSO uses multiple swarms of different species
of particles to improve the exploration of the search space
and avoid premature convergence. Finally, simulations have
been performed with five scientific workflows using the
FogWorkflowSim Toolkit [33]. The proposed algorithm has
been compared with the canonical PSO, GA, DE and
GA-PSO based on the following scientific workflows:
Montage, Cybershake, Epigenomics, LIGO and SIPHT. The
following performance metrics were used: makespan, cost,
energy consumption, and load balancing on the fog as well as
on the cloud resources.

Results have shown that the proposed MS-PSO generally
outperforms the canonical PSO on all scientific workflows
and under all performance metrics. The proposed MS-PSO
generally performs better than GA and GA-PSO. It competes
fairly well against DE and more importantly it is more stable
and reliable than DE. In terms of computational complexity,
the proposed MS-PSO only ranks second to PSO, while DE
has the worst execution time. These results show that the
proposed MS-PSO technique is exhibiting far much better
overall performance compared to the competitors.

As part of future work, multiple species that utilize
population update mechanisms from completely different
algorithmic frameworks such as DE, MS-PSO, and GA
will be explored for scientific workflow scheduling. Fur-
thermore, a framework that hybridizes the proposed multi-
swarm PSO-based scheduling mechanism with concepts
drawn from dynamic scientific workflow scheduling [41]
and multi-objective reinforcement learning-based scientific
workflow scheduling [42] will be investigated based on the
cloud-fog environment and the four objectives, as proposed
in this work.

REFERENCES
[1] B. Ludäscher, ‘‘What makes scientific workflows scientific?’’ in Scientific

and Statistical Database Management, M. Winslett, Ed. Berlin, Germany:
Springer, 2009, p. 217.

[2] Z. Ahmad, A. I. Jehangiri, M. A. Alaanzy, M. Othman, R. Latip,
S. K. U. Zaman, and A. I. Umar, ‘‘Scientific workflows management and
scheduling in cloud computing: Taxonomy, prospects, and challenges,’’
IEEE Access, vol. 9, pp. 53491–53508, 2021.

[3] M. A. Rodriguez and R. Buyya, ‘‘A taxonomy and survey on scheduling
algorithms for scientific workflows in IaaS cloud computing environ-
ments,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 8, p. e4041,
Apr. 2017.

[4] B. Ludäscher, M. Weske, T. McPhillips, and S. Bowers, ‘‘Scientific
workflows: Business as usual?’’ in Proc. Int. Conf. Bus. Process Manage.
Berlin, Germany: Springer, 2009, pp. 31–47.

[5] M. A.Miller, W. Pfeiffer, and T. Schwartz, ‘‘The CIPRES science gateway:
A community resource for phylogenetic analyses,’’ in Proc. TeraGrid
Conf., Extreme Digit. Discovery. ACM, 2011, pp. 1–8.

[6] S. Jha, S. Lathrop, J. Nabrzyski, and L. Ramakrishnan, ‘‘Incorporating
scientific workflows in computing research processes,’’Comput. Sci. Eng.,
vol. 21, no. 4, pp. 4–6, Jul. 2019.

[7] J. Yu and R. Buyya, ‘‘A taxonomy of workflow management systems
for grid computing,’’ J. Grid Comput., vol. 3, nos. 3–4, pp. 171–200,
Sep. 2005.

[8] R. Duan, R. Prodan, and X. Li, ‘‘Multi-objective game theoretic scheduling
of bag-of-tasks workflows on hybrid clouds,’’ IEEE Trans. Cloud Comput.,
vol. 2, no. 1, pp. 29–42, Jan./Mar. 2014.

[9] Y. Zhao, Y. Li, I. Raicu, S. Lu, C. Lin, Y. Zhang, W. Tian, and R. Xue,
‘‘A service framework for scientific workflow management in the cloud,’’
IEEE Trans. Services Comput., vol. 8, no. 6, pp. 930–944, Nov. 2015.

[10] W. Song, F. Chen, H. Jacobsen, X. Xia, C. Ye, and X. Ma, ‘‘Scientific
workflow mining in clouds,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 10, pp. 2979–2992, Oct. 2017.

[11] R. Buyya, S. Pandey, and C. Vecchiola, ‘‘Cloudbus toolkit for marketori-
ented cloud computing,’’ in Proc. 1st Int. Conf. Cloud Comput., vol. 5931,
2009, pp. 24–44.

[12] A. Verma and S. Kaushal, ‘‘A hybrid multi-objective particle swarm
optimization for scientific workflow scheduling,’’ Parallel Comput.,
vol. 62, pp. 1–19, Feb. 2017.

[13] Y. Kothyari and A. Singh, ‘‘A multi-objective workflow scheduling
algorithm for cloud environment,’’ in Proc. 3rd Int. Conf. Internet Things,
Smart Innov. Usages (IoT-SIU), Feb. 2018, pp. 1–6.

[14] A. M. Manasrah and H. Ba Ali, ‘‘Workflow scheduling using hybrid
GA-PSO algorithm in cloud computing,’’ Wireless Commun. Mobile
Comput., vol. 2018, pp. 1–16, Jan. 2018.

[15] M. Farid, R. Latip, M. Hussin, and N. A. W. A. Hamid, ‘‘A survey on QoS
requirements based on particle swarm optimization scheduling techniques
for workflow scheduling in cloud computing,’’ Symmetry, vol. 12, no. 4,
p. 551, Apr. 2020.

[16] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, ‘‘A survey of pso-
based scheduling algorithms in cloud computing,’’ J. Netw. Syst. Manage.,
vol. 25, no. 1, pp. 122–158, Jan. 2017.

[17] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization in: Neural
networks,’’ in Proc. IEEE Int. Conf., Nov. 1942, pp. 1942–1948.

[18] Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu, A. S. Sani, D. Yuan, and
Y. Yang, ‘‘A novel directional and non-local-convergent particle swarm
optimization based workflow scheduling in cloud–edge environment,’’
Future Gener. Comput. Syst., vol. 97, pp. 361–378, Aug. 2019.

[19] B. Wei, Y. Tang, X. Jin, M. Jiang, Z. Ding, and Y. Huang, ‘‘A
dynamic multi-swarm particle swarm optimization with global detection
mechanism,’’ Int. J. Cognit. Informat. Natural Intell., vol. 15, no. 4,
pp. 1–23, Oct. 2021.

[20] J. Lu, J. Zhang, and J. Sheng, ‘‘Enhanced multi-swarm cooperative
particle swarm optimizer,’’ Swarm Evol. Comput., vol. 69, Mar. 2022,
Art. no. 100989.

[21] J.-J. Liang and P. N. Suganthan, ‘‘Dynamic multi-swarm particle swarm
optimizer,’’ in Proc. IEEE Swarm Intell. Symp., Jun. 2005, pp. 124–129.

[22] I. Bugajski, P. Listkiewicz, A. Byrski, M. Kisiel-Dorohinicki, W. Korczyn-
ski, T. Lenaerts, D. Samson, B. Indurkhya, and A. Nowé, ‘‘Enhancing
particle swarm optimization with socio-cognitive inspirations,’’ Proc.
Comput. Sci., vol. 80, pp. 804–813, Jan. 2016.

[23] S. Wang, G. Liu, M. Gao, S. Cao, A. Guo, and J. Wang, ‘‘Heteroge-
neous comprehensive learning and dynamic multi-swarm particle swarm
optimizer with two mutation operators,’’ Inf. Sci., vol. 540, pp. 175–201,
Nov. 2020.

[24] F. T. Varna and P. Husbands, ‘‘HIDMS-PSO: A new heterogeneous
improved dynamic multi-swarm PSO algorithm,’’ in Proc. IEEE Symp. Ser.
Comput. Intell. (SSCI), Dec. 2020, pp. 473–480.

[25] X. Xia, Y. Tang, B. Wei, Y. Zhang, L. Gui, and X. Li, ‘‘Dynamic multi-
swarm global particle swarm optimization,’’ Computing, vol. 102, no. 7,
pp. 1587–1626, Jul. 2020.

[26] X. Jiang, Y. Yue, Y. Min, Q. Zhang, and X. Gui, ‘‘Particle swarm optimiza-
tion with multiple adaptive subswarms,’’ J. Phys., Conf., vol. 1757, no. 1,
Jan. 2021, Art. no. 012024.

[27] J. Guzmán, M. García-Valdez, and J. J. Merelo-Guervós, ‘‘Can commu-
nication topology improve a multi-swarm PSO algorithms?’’ in Proc.
Workshop Eng. Appl. Cham, Switzerland: Springer, 2021, pp. 3–12.

[28] W. Chen and E. Deelman, ‘‘WorkflowSim: A toolkit for simulating
scientific workflows in distributed environments,’’ in Proc. IEEE 8th Int.
Conf. E-Science, Oct. 2012, pp. 1–8.

VOLUME 10, 2022 117213



D. Subramoney, C. N. Nyirenda: Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments

[29] H. F. Atlam, R. J. Walters, and G. B. Wills, ‘‘Fog computing and the
Internet of Things: A review,’’ Big Data Cogn. Comput., vol. 2, no. 2, p. 10,
2018.

[30] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue, ‘‘All one needs to know about fog computing and
related edge computing paradigms: A complete survey,’’ J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019.

[31] V. De Maio and D. Kimovski, ‘‘Multi-objective scheduling of extreme
data scientific workflows in fog,’’ Future Gener. Comput. Syst., vol. 106,
pp. 171–184, May 2020.

[32] D. Subramoney and C. N. Nyirenda, ‘‘A comparative evaluation of
population-based optimization algorithms for workflow scheduling in
cloud-fog environments,’’ in Proc. IEEE Symp. Comput. Intell. (SSCI),
Dec. 2020, pp. 760–767.

[33] X. Liu, L. Fan, J. Xu, X. Li, L. Gong, J. Grundy, and Y. Yang,
‘‘FogWorkflowSim: An automated simulation toolkit for workflow
performance evaluation in fog computing,’’ in Proc. 34th IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Nov. 2019, pp. 1114–1117.

[34] F. Wang, H. Zhang, and A. Zhou, ‘‘A particle swarm optimization
algorithm for mixed-variable optimization problems,’’ Swarm Evol.
Comput., vol. 60, Feb. 2021, Art. no. 100808.

[35] H. J. Na and S. Yoo, ‘‘PSO-based dynamic UAV positioning algorithm
for sensing information acquisition in wireless sensor networks,’’ IEEE
Access, vol. 7, pp. 77499–77513, 2019.

[36] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, ‘‘Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,’’ IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[37] F. van den Bergh and A. P. Engelbrecht, ‘‘A cooperative approach to
particle swarm optimization,’’ IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[38] S. Yassa, R. Chelouah, H. Kadima, and B. Granado, ‘‘Multi-objective
approach for energy-aware workflow scheduling in cloud computing
environments,’’ Sci. World J., vol. 2013, pp. 1–13, Sep. 2013.

[39] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, ‘‘Characterization of scientific workflows,’’ in Proc. 3rd
Workshop Workflows Support Large-Scale Sci., Nov. 2008, pp. 1–10.

[40] The Pegasus Website. Accessed: Jan. 10, 2022. [Online]. Available:
https://pegasus.isi.edu/

[41] J. Sahni and D. P. Vidyarthi, ‘‘A cost-effective deadline-constrained
dynamic scheduling algorithm for scientific workflows in a cloud
environment,’’ IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 2–18,
Mar. 2015.

[42] Y. Qin, H. Wang, S. Yi, X. Li, and L. Zhai, ‘‘A multi-objective
reinforcement learning algorithm for deadline constrained scientific
workflow scheduling in clouds,’’ Frontiers Comput. Sci., vol. 15, no. 5,
pp. 1–12, Oct. 2021.

DINESHAN SUBRAMONEY received the bach-
elor’s degree (Hons.) in computer science from
the University of KwaZulu-Natal, South Africa,
in 2014. He is currently pursuing the M.Sc.
degree in computer science with the University
of the Western Cape, South Africa. He has been
working in the IT industry, since 2015. His
research interests include workflow scheduling,
cloud computing, and fog computing.

CLEMENT N. NYIRENDA received the B.Sc.
degree in electrical engineering from the Uni-
versity of Malawi, in 2000, the M.Sc. degree
in computer engineering from the University of
KwaZulu-Natal, South Africa, in 2007, and the
Ph.D. degree in computational intelligence from
the Tokyo Institute of Technology, Japan, in 2017.
From 2011 to 2012, he was a Specially Appointed
Assistant Professor at Keio University, Japan.
From 2012 to 2018, he was a Lecturer/a Senior

Lecturer at University Namibia. Since 2018, he has been a Senior Lecturer
in computer science at the University of the Western Cape. He has published
more than 50 articles in computational intelligence paradigms, such as fuzzy
systems, evolutionary computation and artificial neural networks and their
applications in communication networks, and smart environments.

He was a recipient of the Journal of Advanced Computational Intelligence
and Intelligent Informatics (JACIII) Young Researcher Award, in 2013.

117214 VOLUME 10, 2022


