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ABSTRACT The cold-start problem is one of the main challenges in recommender systems and
specifically in collaborative filtering methods. Such methods, albeit effective, typically can not handle new
items or users that do not have any prior interaction activity in the system. In this paper, we propose a
novel two-step approach to address the cold-start problem. First, we view the user-item interactions in a
positive unlabeled (PU) learning setting and reconstruct the interaction matrix between users and warm
items, detecting missing links and recommending warm items to existing users. Second, an inductive multi-
target regressor is trained on this reconstructed interaction matrix and subsequently predicts interactions for
new items that enter the system. To the best of our knowledge, this is the first time that such a two-step
PU learning method is proposed to address the cold-start problem in recommender systems. To evaluate the
proposed approach, we employed four benchmark datasets from movie and news recommendation domains
with explicit and implicit feedback. We compared our method against three other competitor approaches
that address the cold-start problem and showed that our proposed method significantly outperforms them,
achieving in a case an increase of 16.9% in terms of NDCG.

INDEX TERMS Recommender systems, collaborative filtering, cold-start problem, PU learning.

I. INTRODUCTION
In the era of digitization and e-commerce, people use online
platforms to find their desired products and services. Online
platforms can provide an enormous catalogue of items or
services to their users, nevertheless, usually each user is
interested in a very small fraction of such a catalogue. This
makes the role of personalization and recommender systems
pivotal. Recommender systems (RSs) are intelligent methods
that learn users’ preferences and recommend relevant items
to them. RSs use user-item interaction history data as well as
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other types of available information, such as item and user
side-information (i.e., features that describe the users/items
in the system), to infer users’ preferences. Generally, there
are two main categories of RSs: content-based (CB) and
collaborative filtering (CF) recommenders. CB RSs recom-
mend items whose attributes match the target user profile.
However, the main pitfall of CB RSs is that they typically
provide over-specified recommendations and are unable to
recommend any diverse content. On the other hand, CF RSs
use the interactions of other users to infer the preferences
of the target user. While CF RSs provide more surprising
and usually more accurate recommendations compared to CB
RSs [1], [2], they also suffer from some weaknesses. One of
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the main pitfalls of CF RSs is that they can not serve new
items or users that do not have any prior interaction data in the
system. This issue is denoted as the cold-start problem and it
is particularly challenging [3], hindering the performance of
many applications of RSs. For instance, e-commercewebsites
need to satisfy the new users in order to gain their trust.
Another example stems from the real-estate market where
an online platform should immediately recommend a newly
advertised property to the relevant users. Therefore, handling
the cold-start problem both effectively and efficiently is cru-
cial for RSs.

Two types of cold-start problems are distinguished. New
entities (users or items) are called hard cold-start entities
when no interactions exist for them or soft cold-start entities
when the number of known interactions is very limited [4].
In this paper we focus on hard cold-start entities as they
are the most challenging. Apart from cold-start entities, the
system cold-start problem may occur [5], where a new RS
is introduced to the users, which is not the focus of this
paper.

Different approaches have been applied over the years
to address the cold-start problem. The simplest way is to
serve the new entities (users or items) with non-personalized
recommendation such as popularity-based recommendations.
Another approach relies on the exploitation of the user or
item side-information to predict interactions between such
new entities and ones that already exist in the system. Thus,
the side-information is employed on top of the collaborative
information between users and items to enable a CF RS that
serves new items or new users. In this study, we focus on the
second approach, handling new items by utilizing the relevant
side-information.

Moreover, some approaches try to surpass the cold-start
problem by employing classification or regression mod-
els built on the side-information of users or items. Such
approaches handle missing user-item pairs (i.e. not recorded
interactions) as negative instances while training their mod-
els. This is denoted as the closed-world assumption [6] and
it is often applied as it allows for effective machine learn-
ing models to be utilized for solving the recommendation
problem. However, we argue against such an assumption,
as user-item pairs without any prior interactions are effec-
tively unlabeled data and should not be considered as negative
instances. To this end, we consider the recommendation prob-
lem as a positive unlabeled (PU) learning task [6]. PU learn-
ing is the setting where a learning model is trained on only
positive and unlabeled data [6]. This setting naturally fits
the recommendation problem, as a typical RS has access
to positive user-item interactions (e.g. clicks, likes, scores,
purchases) and the rest are unlabeled. The latter means that
albeit there are no recorded interactions between the user and
the item, the item might be interesting to the user if it was
presented to him/her.

Typical RSs are driven through inference models, such as
matrix completion (factorization) or graph learning methods.
Such methods are typically transductive, meaning that the

model requires the new items to be already present in the
training process. Whenever a new item arrives, the model
has to be re-trained (sometimes partly) in order to be able to
provide any predictions. This is a crucial bottleneck that often
impairs the performance of online RSs or even makes their
application impossible. Although there are a few approaches
that extend typical matrix completion or graph learning meth-
ods to incorporate side-information, most of them rely on
plain neighborhood information and they often underperform
when it comes to new items or users.

On the other hand, multi-target prediction (MTP) mod-
els can learn from the set of existing users or items and
their related features that are already available in the system
(i.e. training set). Next, the trained model can be used to
predict interactions (probabilities) between cold-start items
and the users of the platform. More specifically, multi-target
prediction (MTP), also referred to as multi-output predic-
tion, is an extension of standard classification or regression
tasks where models learn to predict multiple outputs at the
same time [7]. The fundamental assumption behind MTP is
that each instance is associated to multiple targets, which
are correlated with each other. Therefore, beyond the obvi-
ous computational advantages of such a methodology over
learning a separate model per target, the model can benefit
from existing correlations between the targets and therefore
improve its predictive performance. MTP can be divided into
multi-target classification (i.e., the targets have categorical
values) and multi-target regression (MTR). A special case is
multi-label classification where one has only binary values
for each target.

In this article, we address the recommendation task through
the scope of PU learning, proposing an effective two-step
approach to address the cold-start problem in CF. More
specifically, in the first step we reconstruct the user-item
interaction matrix via semi-supervised learning and collabo-
rative filtering. This way, we identify possible links between
users and warm items (items with previous interactions),
mitigating sparsity and class imbalance. This inferred set
of interactions consists of positive, reliable negative, and
predicted user-item interactions. In the second step we train a
multi-target regressor (MTR) using relevant side-information
of warm items as the features and the inferred user-item
interactions as the targets. Then we are able to handle cold-
start items using the trained MTR and the features of the
new items, thereby accurately and efficiently predicting the
user preferences for these new items. As it is known that
there is no single model that performs generally best on all
problems, we do not commit ourselves to a single algorithm
in the different steps of our approach. Instead, in each step we
use the model that performs the best among candidate models
in a validation set.

For evaluation purposes, in this paper, after having built
our two-step PU learning model, we compare it against other
methods from the literature, such methods address the cold-
start problem in recommendation using different approaches.
In this study we focus on cold-start items, as most benchmark
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datasets contain rich item related feature representations.
Nevertheless, cold-start users can be treated in the same way.

Our contributions can be summarized as follows:
• We propose a novel two-step learning approach to
address the cold start problem in recommendation. Our
method is the first approach that combines collaborative
filtering and multi-target prediction into a PU learning
framework.

• We conducted a thorough evaluation study testing our
method in the domains of both movie and news recom-
mendation, showing that our approach achieves superior
performance to all its competitors.

• We show to the RS community that recommendations
for new items (users) can benefit from prior user-item
matrix reconstruction.

This paper is organized as follows: in Section II studies
about addressing the cold-start problem in RSs are reviewed.
Next, in Section III, we discuss our proposed two-step
approach. In Section IV, we describe the datasets and the
experimental setup of our evaluation study. Next, the results
of comparing the proposed method to different methods
addressing the cold-start problem in the literature are reported
and discussed in Section V. Finally, we conclude and outline
some directions for future work in Section VI.

II. RELATED WORK
One way to address the cold-start problem is to serve the
new entities with non-personalized recommendations such
as random-based, recency-based or popularity-based recom-
mendations. Wang [8] proposed a non-personalized approach
called ‘‘ZeroMat’’ by using Zipf’s Law for the user-item
rating distribution which performs better compared to the
random-based RS w.r.t. relevance and fairness. In this paper
we exploit side-information to address the item cold-start
problem. To provide personalized recommendations, one can
use a hybrid approach that switches to CB or knowledge-
based RSs when there is no available interaction for the new
entities [9]. Kawai et al. [10] proposed two hybrid approaches
based on content-based filtering and Latent Dirichlet Allo-
cation (LDA) to address the cold-start problem. The differ-
ence between these two proposed approaches is whether the
topics of the side-information are independent of the topics
of the items. Tahmasebi et al. [11] proposed another hybrid
approach based on profile expansion to address the cold-
start problem. They used user’s demographic information to
augment the user neighborhoods and expanded the interaction
matrix with additional ratings using two heuristic strategies.
Feng et al. [12] proposed a hybrid approach which combines
Probabilistic Matrix Factorization (PMF) and Bayesian Per-
sonalized Ranking (BPR) to address the user soft cold-start
problem. Using this combination, their model is capable of
exploiting both explicit and implicit feedback from users.

Another direction to address the cold-start problem in CF
methods is to extend the CF methods, such as matrix fac-
torization, with side-information in order to serve new enti-
ties. Collective Matrix Factorization (CMF) [13], [14] is an

extension of matrix factorization where instead of factorizing
only the interaction matrix between users and items, it collec-
tively factorizes the interactionmatrix as well as the item/user
side-informationmatrix based on a common low-dimensional
feature space. Saveski and Mantrach [15] extended the CMF
optimization problem by adding non-negativity constraints
on the factorized matrices for the sake of interpretability of
the factors. They also considered the manifold assumption in
the objective function, i.e., if two items are close in the real
feature space they should be also close in the learned low-
dimensional feature space. They called this method Local
Collective Embeddings (LCE).

When it comes to PU learning, there have been many
approaches that employ a combination of clustering and clas-
sification techniques to treat PU learning tasks. For instance,
Liu and Peng [16] proposed a clustering-based method fol-
lowed by an extension of tf-idf to identify strong negative
samples prior to document categorization. In [17], k-means
was combined with Rocchio [18] to mine strong positive
as well as reliable negative examples. k-means was once
more employed in [19] to extract strong negative and positive
examples, employing SVM for the end task of classification.
PU learning for categorical data was addressed in [20] where
strong negative and positive samples were identified using
kNN and a distance measure denoted as DIstance Learning
for Categorical Attributes (DILCA) designed specifically for
categorical data. Most of these techniques were originally
designed for classification tasks without an extension to
more complex tasks such as recommendation. Last, most PU
learning methods focus on the detection of reliable negative
samples prior to the application of a classifier, discarding the
rest of the unlabeled data. In our approach, we discard no
information, instead we assign a fuzzy score to ambiguous
user-item pairs and let the multi-target prediction models
learn from the whole data corpus.

III. METHODOLOGY
In this section we explain the proposed approach. We use
the notations defined in Table 1. In recommendation tasks
usually there are two main sets of entities, the users and the
items. Let U = {u1, u2, . . . , um} and I = {i1, i2, . . . , in} be
two finite sets, representing users and items, respectively. The
already known interactions between such items and users are
stored in an interaction matrix Y ∈ Rm×n, which can contain
ratings when the user feedback is explicit or binary values
(y(ui, ij) ∈ {0, 1}) when the user feedback is implicit. In both
cases this interaction matrix is typically very sparse, i.e. there
is typically a tiny percentage of positive user-item interactions
while most of the pairs are marked as zero. This setting
inherently falls under the scope of PU data. This means that
user ui likes item ij if we have a positive rating but when
y(ui, ij) = 0 the result is inconclusive. Indeed, a zero value
is ambiguous and could mean that the user does not like the
corresponding item, but could also mean that the item has not
yet been presented to the user.
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More specifically, the task of a CF-based RS, given the
sparse interaction matrix between users and items, is model-
ing the user preferences over the unseen items and generating
ranked lists of recommendations. As it was mentioned, the
hard cold-start problem occurs when new entities enter the
system and there are no historical interactions for these new
entities in the interaction matrix Y. Therefore CF-based RSs
are unable to learn the preferences of these new entities.
In this paper we focus on the item cold-start problem, where
a set of new items IC = {ic1 , ic2 , . . . , icw} are entering the
system and the RS should recommend them to relevant users.
The only information that is given for these new items is their
side-information. For instance, in a movie recommendation
task, item-related side-information could be movie genres
and cast. For the warm items the feature matrix X ∈ Rn×f

and the interaction matrix Y ∈ Rm×n are given, while for
the cold-items only the feature matrix XC ∈ Rw×f is given
(w is the number of cold-start items and f is the number
of item features). The interaction matrix YC ∈ Rm×w is
not observed, i.e., it contains only zeros. In this paper we
propose a recommendation approach that recommends these
new items IC to most relevant users.

TABLE 1. Notations.

Our methodology is motivated by the profound link
between RSs and PU learning. More specifically, we propose
a new methodology that treats user-item interaction data
as PU data. Our approach first reconstructs the interaction
matrix Y, detecting any missing links between users and
items that are already present in the system. This way, our
approach forces matrix Y to become less sparse, mitigat-
ing class imbalance and removing part of the noise that
innately exists due to the limited user feedback. We subse-
quently tackle the cold-start problem by handling new items

FIGURE 1. Filling the sparse rating/interaction matrix between users and
warm items.

exploiting related side-information. More specifically,
we propose the training of multi-target prediction mod-
els, such as tree-ensembles, upon such a reconstructed and
information enriched interaction matrix. The underlying
assumption is that the multi-target prediction model would
learn from a substantially less sparse and more informative
interaction set.

A. RECONSTRUCTING THE SPARSE INTERACTION MATRIX
The first step of the proposed approach is to learn the users’
preferences on the warm items. As it is shown in Fig.1, we fit
a CF-based RS on the interaction matrix to learn the user
preferences. The fitted model (fCF ) is then used to reconstruct
the whole interaction matrix between users and warm items.
The elements of this reconstructed matrix (Ŷ) are:

ŷ(ui, ij) =

{
y(ui, ij), if y(ui, ij) > 0
fCF (ui, ij), otherwise.

(1)

Based on Eq.1 the reconstructed matrix Ŷ contains the
real feedback from users when it is available or the predicted
feedback when it is missing.

The choice of fCF only depends on the type of feedback.
Below, we illustrate for some example CF methods dealing
with explicit or implicit feedback, how they can be plugged
into our approach. In the absence of a priori preference,
we propose to compare multiple CF methods in a validation
set and then select the best performing one to reconstruct the
interaction matrix between users and warm items.

1) RECONSTRUCTING THE INTERACTION MATRIX
WITH EXPLICIT FEEDBACK
Pure Singular Value Decomposition (SVD) [21] and Non-
negative Matrix Factorization (NMF) [22] are CF methods
that decompose the interaction matrix to two low-rank matri-
ces for users and items. The learned user and item matrices
in NMF contain non-negative values. The interaction matrix
can be reconstructed with these two CF methods using Eq. 2:

ŷ(ui, ij) =

{
y(ui, ij), if y(ui, ij) > 0
pui · qij , otherwise.

(2)

where pui and qij are the learned latent features of user ui and
item ij respectively.
SLIM [23] is a linear method that learns the sparse aggre-

gation coefficient square matrix W using the optimization
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problem regularized with L1 and L2 norms. The interaction
matrix can be reconstructed with SLIM using Eq. 3:

ŷ(ui, ij) =

{
y(ui, ij), if y(ui, ij) > 0
xui · wij , otherwise.

(3)

where xui is the rating vector of user ui and wij is the learned
sparse size-n column vector of aggregation coefficients for
item ij.

User-based and item-based KNN (UKNN and IKNN) are
memory-based CF methods that predict the missing inter-
actions using the interactions of neighbor users/items. The
missing scores in the interaction matrix are predicted by
UKNN and IKNN using the weighted average of the scores
of neighbor users/items. The weight of each neighbor is the
similarity of its interaction vector with the interaction vector
of the target user/item.

2) RECONSTRUCTING THE INTERACTION MATRIX
WITH IMPLICIT FEEDBACK
Bayesian Personalized Ranking (BPR) [24], Weighted
Approximate-Rank Pairwise (WARP) [25] and Weighted
RegularizedMatrix Factorization (WRMF) [26] are CFmeth-
ods for implicit feedback. BPR is a learning-to-rank CF
method that uses pairwise preferences to learn users’ and
items’ latent features. (WARP) [25] is another CF method
for implicit feedback that was initially proposed for annotat-
ing images, but later on was used as a learning-to-rank RS.
Weighted Regularized Matrix Factorization (WRMF) [26]
uses the alternating-least-squares optimization approach to
learn parameters. All of these three methods learn users’ and
items’ latent features (q and p) and therefore the interaction
matrix can be reconstructed using Eq. 2.
MVAE [27] is a CF RS for implicit feedback based on

variational autoencoders with the assumption that the user
logs are from a multinomial distribution. Given a trained
MVAE recommender on X , the interaction matrix can be
reconstructed by:

ŷ(ui, ij) =

{
y(ui, ij), if y(ui, ij) > 0
fθ (pui )ij , otherwise.

(4)

where fθ is the decoder with the learned parameters θ , pui =
µφ(xui ) represents the learned latent features for user ui and
µφ is the learned encoder.
Last, the reconstructed matrix Ŷ with the mentioned meth-

ods or any other CF method may need re-scaling to have the
same scale as the original interaction matrix Y.

B. CASTING THE COLD-START RECOMMENDATION
PROBLEM AS MULTI-TARGET REGRESSION
The second step of the proposed approach is to fit a MTR
using warm items as training instances and users as targets
(See Figure 2). Features of the warm items X are considered
as inputs to the MTR and the reconstructed matrix Ŷ from the
previous step is used as target set:

Ŷᵀ←− fMTR(X) (5)

FIGURE 2. Predicting the targets (users) for new items using the fitted
multi-target regressor.

The trained MTR fMTR is then used to predict the scores of
the users for the cold-items XC:

ˆYᵀ
C = fMTR(XC) (6)

where ŶC is the predicted preferences of the users on the
cold-items. Then these predictions are used to decide for each
cold-item which users should receive it as a recommendation.

MTR versions of tree-ensemble algorithms, such as Ran-
dom Forests (RF) [28] or Extremely Randomized Trees
(ERT) [29], have been proved very effective. RF consists of
a collection of multiple decision trees. The tree growing pro-
cess is driven by a splitting criterion, selecting the best split.
Many such splitting criteria exist, with variance reduction
being the most typical one. A key factor of RF is the diversity
that is enforced among the trees by utilizing bootstrap repli-
cates of the training set as well as implementing a random
selection mechanism of the features during the tree learning
process. ERT is an extension of RF where, similar to RF, each
tree of the ensemble is trained using a random subset of the
features as split-candidates in each node. The difference in
ERT is that for every feature from the κ selected ones, one
split threshold is picked at random. Next, the best split from
the κ picked ones is selected.

Both RF and ERT have been innately extended to MTP by
transferring the splitting criterion to the multi-output space.
More specifically, the criterion is computed over the whole
set of outputs, typically as the sum of the variance of each
output.

Tree-ensemble learning algorithms are computationally
very efficient. They are inductive methods, naturally memory
efficient, and can be very easily parallelized, as every tree in
the ensemble can grow independently. Last, tree ensembles
are also known for their innate interpretability, since they can
first provide the user with a feature ranking, disclosing the
features that are crucial for a prediction, and second, provide
a set of rules that explain a specific prediction. The latter
can be further leveraged with existing tree-approximation
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strategies [30]. Other MTP models also exist, for example,
multi-target K-Nearest Neighbors Regressor (KNNR) is a
simple approach based on KNN, where the predictions are
based on averaging the outputs of the k nearest neighbors of
the test sample.

IV. EXPERIMENTAL SETUP
A. DATASET DESCRIPTION
In this paper we used 4 datasets from two different domains
with explicit and implicit feedback. In particular, we used
MovieLens-1m andMovieLens-20m datasets [31] (hereafter,
we refer to these datasets as ML-1m and ML-20m, respec-
tively), which contain users’ explicit ratings on movies and
Adressa [32] as well as Globo [33] datasets which contain
user implicit feedback on news articles. These datasets are
described in Table 2. In the movie datasets the genres and
cast of movies are available and used as item features. In the
Adressa dataset, for each news article the related keywords,
authors and topic are available and considered as features
describing the news articles. For theGlobo dataset, the gener-
ated article embeddings by a deep neural network model [34]
based on article text and tags are used as item features.

B. EXPERIMENT DESIGN
As mentioned in the previous section (Sec. III), we propose
to select the best CF model and the best MTR model among
candidate models before generating recommendations for the
cold-start items. Users and items with less interactions than
a threshold are dropped from the experiments.1 We use a
cross validation scheme to avoid any information leakage
between the model selection step and evaluation of the cold-
start recommendation task (See Fig. 3). We first randomly
split the dataset items to two disjoint parts, one for the model
selection step (Fig. 3a) and the other for evaluating the cold-
start recommendation task (Fig. 3b). In the first part, we select
the best CF model and the best MTR based on 5-fold cross
validation (CV). For selecting the best CF model five inter-
actions per item are considered as test interactions in the test
fold. For selecting the best MTR the items in the test fold are
considered as test items. The hyperparameters of the models
(CF and MTR) are internally tuned2 in one of the folds.
In the selected fold the parameters are tuned again based
on CV. To tune the hyperparameters of CF methods
and cold-start RSs, we used the ‘‘forest_minimize’’ from
‘‘scikit-optimize’’ library and for MTR methods we used
‘‘GridSearchCV’’ from ‘‘scikit-learn’’. For CF methods and
cold-start RSs we usedNDCG, and forMTRmethods we used
MAE to select the best hyperparameters.

Then, when the best CF model, the best MTR as well as
their corresponding hyperparameters are fixed, we use the
second part of the datasets to evaluate the item cold-start
recommendation task. The second part of the datasets is also

1This threshold is 30, 100, 100 and 50 for ML-1m, ML-20m, Adressa and
Globo respectively.

2The detailed information about the selected hyperparameters is reported
in Appendix VI.

FIGURE 3. The scheme of 5-fold cross validation for model selection and
the cold-start evaluation.

split in 5-fold CV and each time we use the items in the test
fold as the test cold-items to evaluate our proposed approach.
The items in the other four folds are combined with the items
from the model selection part, for a final matrix completion
calculation and for training a final MTR model, using the
selected approaches.

Last, we evaluate statistically significant differences
between two methods by employing a Wilcoxon signed-rank
test [35] (α = 0.01) to show that our proposed approach is
significantly better compared to the second best comparative
method in the results. Typically for one to apply such a test,
more than ten paired independent observations are required.
As we did not have such volume of data at our disposal,
we computed the test on the different folds and repeated
the experiments with three different random seeds (overall
15 paired observations).

C. COMPETITOR APPROACHES
In this section, we first present the CF and MTR approaches
from which we select the best performing models for the two
parts of our approach. In the first step, which is selecting the
CFmodel, SVD [21], NMF [22], UKNN [36], IKNN [37] and
SLIM [23] are considered for the datasets with explicit feed-
back and BPR [24],WRMF [26],WARP [25] andMVAE [27]
are used for datasets with implicit feedback. For the second
step RF, ERT and KNNR are used as MTRs in the proposed
approach.

Finally, to evaluate our proposed approach we compare it
against the following competitor approaches that address the
cold-start problem:

• CB: the classic CB RS that aggregates users’ previous
interactions to create user profiles and then recommends
users whose profiles have the highest cosine similarity
with the cold-item features.

• CMF: the Collective Matrix Factorization (CMF) [14]
method explained in Section II. In this method we
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TABLE 2. Datasets descriptions.

collectively factorize the interaction matrix and the item
feature matrix.

• LCE: the Local Collective Embeddings (LCE) [15]
approach explained in Section II, which extends
CMF with non-negativity constrains and the locality
assumption.

D. EVALUATION MEASURES
To evaluate the models in each step of the proposed approach
we use different evaluation measures. To select the best CF
RS in the first step, we use three measures, namely recall,
MAP3 and NDCG.4 Recall is a standard information retrieval
measure that reflects the proportion of relevant items that are
recommended.MAP and NDCG are rank-sensitive relevance
measures. In the second step, we use MAE5 averaged over
the targets to evaluate predictions of MTRs. Finally, NDCG
andMAP are used to evaluate the proposed approach and the
other competitor methods that address the cold-start problem.

V. RESULTS AND DISCUSSION
The results of applying the proposed approach with different
base models are summarized in Table 3, 4, 5 and 6.

TABLE 3. Results of CF RSs on datasets with explicit feedback (measures
are all based on top@10).

As it is shown in Table 3, in both datasets with explicit
feedback (ML-1m and ML-20), SLIM performs the best
w.r.t. all three evaluation measures. For implicit datasets,
as reported in Table 4, MVAE has the best performance in all
three evaluation measures compared to the other CF-based
RSs. Therefore, we select SLIM and MVAE to reconstruct
the interaction matrix between users and items for datasets
with explicit and implicit feedback, respectively. Next, using

3Mean Average Precision.
4Normalized discounted Cumulative Gain.
5Mean Absolute Error.

TABLE 4. Results of CF RSs on datasets with implicit feedback (measures
are all based on top@10).

TABLE 5. Results of MTRs w.r.t. MAE.

the reconstructed matrices and items’ features, three MTRs
are trained and evaluated. As reported in Table 5, the best
performingMTRs are RF and ERT in our explicit and implicit
datasets, respectively.

The results of applying our proposed approach PULCO6

with the selected CF and MTR method and the competitor
methods that address the cold-start problem are summarized
in Table 6. As shown in the table, PULCO has superior
performance over all the competing methods and statistically
significantly outperforms the second best approach in all
datasets. In the explicit feedback datasets, the LCE method
is the second best while in the implicit datasets, CMF is the
second best performing approach. Although the CB approach
is quite simple and straightforward, it performs relatively well
in comparison to CMF and LCE. A possible reason is that
the item feature space is relatively rich and therefore the CB
approach can effectively model user profiles.

In the proposed approach we used different base models
for each step of the algorithm. We selected the CF base-
lines based on the results of the award winning paper [38],
which showed that the memory-based approaches (UKNN
and IKNN), SLIM and MVAE outperform recent complex
deep neural network based approaches. We selected RF,
ERT and KNNR, as they are well-established multi-target
regression models and are also computationally efficient.

6Positive-Unlabeled Learning for COld start problems.
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TABLE 6. Results of recommendations for cold-start items w.r.t. NDCG@10 and MAP@10.

TABLE 7. Hyperparameters for datasets with explicit feedback.

Nevertheless, we should highlight that the proposed approach
does not depend on a specific CF or MTR model and it is
robust enough to accommodate other possible combinations
as well, handling the cold-start problem both efficiently and
effectively.

Our proposed approach fits perfectly to real-case recom-
mender systems, as the latter have typically limited inter-
actions in the user-item matrix. This means that most of
the possible user-item interactions have not been recorded,
nonetheless, it is likely that the user would be interested
in some items in case they are presented to him/her. Our
method takes into account this fact, reconstructing the user-
warm item matrix prior to handling any cold-start items.
This way, the inferred set of interactions consists of positive,
reliable negative, and predicted interactions between users
and warm items. As it is reflected in the obtained results,

this methodology gives us an advantage over the competitor
methods.

In real-life recommendation tasks, before a system is put
in production, usually several types of CF methods are com-
pared via A/B testing with real users in order to select the
best performing one. This effectively removes the need for
the CF selection step of our proposed approach. Once this
best performing CF method is known, it can be used to
reconstruct the interaction matrix for the first step of our
proposed approach. Multiple repetitions of such comparisons
between several CF approaches will not be needed in such
real-life applications, something that also extends to the sec-
ond step of our proposed approach. Furthermore, the second
step with the tree-ensemble methods can be parallelized and
implemented effectively. Serving the cold-start items does
not therefore present a large computational burden on the
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TABLE 8. Hyperparameters for datasets with implicit feedback.

whole recommendation task. This is a crucial advantage of
inductive models over transductive competitors. The latter
require the new items to be already present in the training pro-
cess, which is not usually possible. In case recommendations
have to be provided for new items, transductive models need
to be re-trained, a process that is typically computationally
very expensive and therefore makes the online application of
corresponding RSs particularly difficult.

VI. CONCLUSION
In this paper we have addressed the cold-start problem in
recommendation through PU learning. More specifically,
we have deployed an effective two-step approach integrating
powerful CF methods with fast and accurate multi-target pre-
diction models. In the first step, we reconstructed the interac-
tion matrix between users and warm items via a collaborative
filtering recommender, identifying reliable negative user-
item pairs and assigning a score to the rest of the (ambiguous)
unlabeled data. Next, in the second step, we trained a multi-
target regressor on warm item features and the reconstructed
interaction matrix from the first step, efficiently predicting
scores for hard cold-items. We showed that the proposed
approach significantly outperforms the extended versions of
matrix factorization for cold-start problem, i.e., collective

matrix factorization and local collective embeddings models,
as well the content-based recommender system in all four
datasets considered. The proposed approach is flexible and
robust in the sense that (1) it does not depend on the type of
feedback (implicit or explicit) as well as the choice of CF or
MTR models, and (2) it does not require retraining the model
when a new cold item arrives.

The application of our work to the online learning set-
ting would be a great direction for future research. In addi-
tion, the extension of our work to the field of multi-view
learning, where one could integrate multi-modal feature sets
of items or users to handle item or user cold-start cases,
would be interesting. Last, it would be very interesting to
extend this approach to pairwise learning handling user-item
pairs by integrating user and item feature sets in a unified
framework.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

APPENDIX A HYPERPARAMETER TUNING
In this Appendix, details about the hyperparameter selection
procedure are reported in Table 7 and Table 8, for explicit and
implicit datasets, respectively.
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