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ABSTRACT Evolutionary multiobjective algorithms have become a popular choice to tackle the clustering
problem. On the one hand, the simultaneous optimization of complementary clustering criteria offers an
increased robustness to changes in data characteristics. On the other hand, the evolutionary search is able
to approximate the Pareto optimal front and deliver a set of trade-offs between these criteria in a single
algorithm execution. Decision making is the concluding stage of the pipeline, having as its goal the selection
of a single, final solution from the set of candidate trade-offs produced. This is a complex task for which a
definitive answer does not seem to be available, as the underlying assumptions of existing techniques may
not hold for all applications. In this paper, we investigate an alternative approach to address this challenge:
posing it as a learning problem. The key idea is to build a model that, given a proper characterization of
solutions and their context (defined by the full approximation solution set and the specific clustering task at
hand), is able to estimate quality and facilitate the identification of the best choice. To evaluate the suitability
of this approach, we conduct a series of experiments over diverse synthetic and real-world datasets, including
comparisons against a range of representative decision-making strategies from the literature. Our proposal
exhibits greater flexibility in dealingwith problems of varying characteristics, consistently outperforming the
reference methods considered. This study demonstrates that it is possible to learn from the decision-making
process in example settings and generalize the acquired knowledge to new scenarios.

INDEX TERMS Clustering algorithms, multiobjective clustering, decision making, evolutionary computa-
tion, machine learning, pareto optimization.

I. INTRODUCTION
Clustering is a fundamental, unsupervised data analysis and
machine learning task. Its goal is to determine the intrin-
sic organization of a set of elements into groups, such that
this partition reflects the similarities and differences between
them. Evolutionary multiobjective clustering (EMC) involves
formulating this task as a multiobjective problem and adopt-
ing evolutionary algorithms as the optimization engine
[1], [2], [3]. By exploiting multiple clustering criteria simul-
taneously, EMC methods are able to assess partition quality
more comprehensively, which translates into an increased
effectiveness and the ability to handle problems with a wider
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range of features. However, there is unlikely to be a single
best solution for the resulting multiobjective formulation; due
to the complementary but conflicting nature of the optimiza-
tion criteria chosen, EMC methods generally produce a set
of trade-offs between these criteria as output (this is illus-
trated in Figure 1 and further explained in Section II-B) [4].
Given that all the obtained trade-offs are considered equally
good, i.e., they are all nondominated in the Pareto-optimality
sense [5], how can one of them be selected and delivered as
the final solution? The decision making process is concerned
with this particular question, being the last step of the EMC
pipeline. Identifying a single, promising solution may rep-
resent the ultimate goal in practice; this highlights the rele-
vance of decision making, which is the specific focus of this
study.
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The complexity of decision making has hindered the devel-
opment of a definitive approach to carry out this process.
Some of the existingmethods employ an additional clustering
criterion to induce an ordering (break ties) over the set of non-
dominated solution alternatives [6], [7], [8], [9]; this assumes
compatibility between the criterion chosen and the clustering
task at hand, being inconsistent with the motivations behind
the adoption of a multiobjective problem formulation. Other
methods rely on geometric considerations, analyzing the rel-
ative location of solutions in objective space [10], [11], [12],
[13]; although such an approach is widely used in multiobjec-
tive optimization [14], we show later in this paper that it can
lead to poor decisions in the specific context of EMC. Finally,
there are also methods that construct a consensus solution
from the set of nondominated candidates available [15], [16],
[17], [18]; this approach assumes that all candidates are
equally important, but the inclusion of low-quality partitions
(despite being nondominated) can negatively affect the out-
come of this process. Representative examples of the above
three categories of decision-making methods and a detailed
discussion of their limitations are provided in Section II-C.

Acknowledging the importance of decision making and
its complexity, and motivated by the limitations of existing
techniques, we explore a novel approach to tackle this chal-
lenge. Specifically, we frame decisionmaking as a supervised
learning problem. Our approach relies on the construction
of a predictive model that is able to associate characteris-
tics of individual solutions and their context with a measure
of partition quality (as explained in Section III, by context
we refer to the full set of competing nondominated solu-
tions as well as to the particular clustering problem they
try to solve). In this way, the derived model can be used
to estimate the quality of candidate partitions and guide the
decision-making process.We investigate the suitability of this
approach in terms of its ability to automate the selection
of high-quality partitions from the nondominated solution
sets produced by a state-of-the-art EMC algorithm. For this
sake, our proposal is compared with respect to different base-
lines and a set of reference approaches that are represen-
tative of the three categories of existing methods discussed
above. Our experimental analysis is conducted over a diverse
collection of both synthetic and real-world data clustering
problems.

The remaining of this paper is structured as follows.
Section II introduces the necessary background and reviews
the related literature. Then, Section III describes our proposed
approach to decision making in detail. The experimental
setup is described in Section IV. Section V discusses our
results and main findings. Finally, Section VI concludes this
study and highlights potential directions for future research.

II. BACKGROUND AND RELATED WORK
Below we introduce background concepts and review the
relevant literature. First, Section II-A presents a formal def-
inition of clustering and states it as an optimization prob-
lem. Then, the formulation of clustering as a multiobjective

problem is discussed in Section II-B. Finally, Section II-C
covers the central topic of this paper: decision making in
EMC.

A. DATA CLUSTERING
Clustering is the task of finding the best way to partition
a collection of samples into two or more disjoint subsets.
Because of its unsupervised nature, this task is mostly based
on the analysis of the similarities between the samples, and
it heavily relies on a mechanism that supports the effective
assessment of partition quality. Such a mechanism, known as
clustering criterion or cluster validity index [19], allows us to
frame the clustering task as an optimization problem and use
a range of techniques to search for the best possible partition.

Let X = {x1, . . . , xN } be a set of N samples, f : 9 → R
be a clustering criterion, and 9 = {{c1, . . . , ck} | ci ∈
P(X ) \ {∅} and X =

⋃
ci, for i = 1, . . . , k} be the set of

all possible partitions of X . Clustering can be stated, without
loss of generality, as the following optimization problem:

Minimize f (C) ,

subject to C ∈ � , (1)

where C = {c1, . . . , ck} is a partition of X into k subsets,
called clusters, and the constraint that C belongs to the fea-
sible space � ⊂ 9 implies that it must be a proper partition;
that is, it must hold that X =

⋃
ci, ci 6= ∅, and ci∩cj = ∅, for

i, j = 1, . . . , k and i 6= j. Despite that many clustering meth-
ods require the specific value of k to be known in advance,
frequently this information is not readily available in practice.
The task of partitioning X without any prior knowledge of
the correct value of this parameter is commonly referred to
as automatic clustering in the literature [20].

B. MULTIOBJECTIVE CLUSTERING
From the above definition, the critical role of the clustering
criterion f is evident, as we aim to find a partition that is
optimal according to it. Thus, f needs to correctly evaluate
the properties that determine a good partition, being respon-
sible for guiding the search process towards high-quality
solutions.

Many criteria have been proposed so far [21], [22], each
presenting a specific formulation to evaluate (either one or a
combination of) properties such as intra-cluster homogeneity
(compactness), connectedness, and inter-cluster separation.
The diversity of existing clustering criteria highlights the
lack of consensus on how to assess partition quality, and
the fact that it is unlikely that a single solution can simul-
taneously satisfy all the desirable but (usually) conflicting
properties [23]. The effectiveness of a clustering algorithm
strongly depends on whether the underlying assumptions of
the specific criterion adopted hold for the particular character-
istics of the problem, which is in line with the No-Free-Lunch
theorems [24], [25]. Acknowledging these facts, however,
allows us to realize that reasonable trade-offs may be possible
through the simultaneous consideration of multiple criteria,
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FIGURE 1. The clustering phase of EMC produces a Pareto front
approximation (PFA). This PFA was obtained using algorithm
1-MOCK [26], which simultaneously optimizes the connectivity and
intra-cluster variance criteria (to be minimized). The PFA obtained
includes trade-off partitions of varying quality and numbers of
clusters (k). The decision-making phase is concerned with identifying a
member from this set as the final solution.

an approach which may deal more effectively with a wider
range of characteristics in the problem domain.

That is, rather than focusing on a single criterion, clustering
can be stated as a multiobjective optimization problem:

Minimize f (C) ,

subject to C ∈ � , (2)

where f (C) = [f1(C), . . . , fm(C)]T and fi : 9 → R is the i-th
criterion to be optimized. Due to the conflict that may exist
between the m clustering criteria, we are now interested in
identifying the set of the best possible trade-off solutions [5]:
P∗ = {C∗ ∈ � | @C ∈ � : C ≺ C∗}.1 P∗ is referred to as the
Pareto-optimal set, and the image of P∗ in the objective
function space is the so-called Pareto front.
The simultaneous optimization of multiple, complemen-

tary criteria commonly results in the identification of promis-
ing, high-quality partitions which may be unattainable
through the optimization of a single criterion. Moreover, set
P∗ may include solutions with a range of potential k values
if the criteria optimized present opposing biases regarding
this parameter, which can be particularly useful in an auto-
matic clustering setting. Figure 1 helps to illustrate the above
behaviors in the context of two specific clustering criteria:
connectivity and intra-cluster variance [26]. Whereas the
optimization of the former tends to decrease k , the optimiza-
tion of the latter tends to increase it; consequently, simul-
taneously optimizing these criteria produces a set of trade-
off partitions that can vary greatly both in characteristics and
k values.

1Symbol ≺ refers to the Pareto-dominance relation. Solution C is said
to dominate solution C ′ (which is denoted by C ≺ C ′) if and only if
∀i : fi(C) ≤ fi(C ′) ∧ ∃j : fj(C) < fj(C ′), i, j = 1, . . . ,m. All solutions in set
P∗ are said to be nondominated with respect to each other.

Although the intrinsic multiobjective nature of cluster-
ing was acknowledge since the early work of Delattre and
Hansen [27], it was not until the application of metaheuristics
to this multiobjective task that the topic started to attract
increasing attention [1], [2], [3], [4], [10], [28]. In particular,
population-based metaheuristics such as multiobjective evo-
lutionary algorithms offer a significant advantage: they are
able to construct a Pareto front approximation (PFA) in a sin-
gle execution. Such is the case of the recently reported algo-
rithm 1-MOCK [26], which produced the PFA of Figure 1.
1-MOCK is a newer version ofMOCK [10], one of the most
representative EMC algorithms from the literature.

C. DECISION MAKING
EMC can be seen as a two-phase process. First, the clustering
phase is concerned with the generation of a PFA of candidate
partitions. Then, the decision-making phase focuses on the
selection of one of the PFA members as the final solution.
Whilst obtaining the full PFA can be useful in some cases,
obtaining a single solution more likely corresponds to the
ultimate goal in practice. The relevance of decision making
is even more evident in automatic clustering, where the PFA
may offer a diversity of choices with respect to the value of
k , as shown in Figure 1; the selection of a final solution is the
step that actually materializes a decision on this parameter.

Decision making in EMC has been accomplished using
strategies that fall into three broad categories, as discussed
in Section I. These categories and representative works for
each of them are separately described below, followed by a
discussion of the limitations and areas of opportunity moti-
vating our new proposal introduced later in Section III.

1) DECISION MAKING BASED ON ADDITIONAL
CLUSTERING CRITERIA
Perhaps the most widely adopted approach to select a final
solution in EMC corresponds to the use of an additional cri-
terion to discriminate between the (otherwise incomparable)
nondominated partitions in the PFA. In algorithm MOGAC
(multiobjective genetic algorithm for clustering) [28], for
example, decision making relies on the use of index I [29].
In a closely related work [6], however, the authors replace
index I, adopting the silhouette index instead [30]. Other
examples of the use of the silhouette index for decision-
making purposes include algorithm MOVGA (multiobjective
variable string length genetic fuzzy clustering) [31] and algo-
rithm MVMC (multi-view multiobjective clustering) [7].
AlgorithmMOKGA (multiobjective k-means genetic algo-

rithm) considers both indices Davies-Bouldin [32] and
SD [33] at the decision-making phase [34]. In a separate
study [35], the authors use six different criteria for decision
making: the silhouette, C [36], Dunn [37], Davies-Bouldin,
SD, and S_Dbw [38] indices. In the work of Garcia-Piquer
et al. [8], the silhouette, Dunn, Davies-Bouldin, andCalinski-
Harabasz [39] indices are all explored as alternatives to guide
decisionmaking, within the context of algorithmCAOS (clus-
tering algorithm based on multiobjective strategies) [40].
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In particular, it is shown that the effectiveness of these indices
in identifying a final solution can be improved by filtering
solutions at the extreme regions of the PFA (hence, this pro-
posal relates also to the strategies discussed in Section II-C2,
considering geometric aspects of the PFA).

Besides the use of additional clustering criteria in an
individual manner, decision making has also been assisted
by index combinations. In a recent study [9], Zhu et al. report
that a linear combination of the Calinski-Harabasz, Davies-
Bouldin, and silhouette indices (denoted CH+DB+SIL)
in most cases outperforms the use of several individual
approaches. Their analysis initially centers on the applica-
tion of decision making to PFAs generated by algorithm
1-MOCK [26], but combination CH+DB+SIL is later
explored in the context of the consensus-based decision-
making strategy of algorithm MOAC (multi-objective
automatic clustering) [9], which is further discussed in
Section II-C3.

2) DECISION MAKING BASED ON THE SHAPE
OF THE PARETO FRONT
In the general area of multiobjective optimization, selecting a
final solution based on geometric considerations is a popular
strategy, which is inherited to the specific domain of EMC.
The prominent regions of the Pareto front, commonly referred
to as knees [14], [41], are considered particularly relevant.
These regions tend to offer the most interesting trade-offs
between the optimization criteria, where a minor improve-
ment in one dimension causes amore significant deterioration
in another. In the absence of any explicit preference informa-
tion, knees are usually assumed to correspond to the likely
choices of a decision maker. Thus, some of the strategies that
have been proposed for decisionmaking in EMC are based on
identifying knee regions in the PFA and selecting promising
trade-off partitions from such regions.

A representative example of the methods in this category
is algorithm MOCK [10]. To locate a knee in the PFA, this
method computes a number of control fronts by applying its
clustering strategy (i.e., the same strategy used initially to
obtain the PFA) to randomly generated data. Then, a potential
knee is identified and selected as the final result based on the
distance of candidate solutions with respect to such control
fronts. Alternative schemes have also been proposed with the
aim of lowering the computational complexity of MOCK’s
strategy. One of them relies on a simple heuristic: the solu-
tion minimizing the sum of (normalized) objective values is
always selected [12]. Another proposal reduces the cardi-
nality of the PFA, removing solutions not complying with
the assumptions of convexity; then, knee-like solutions are
identified by analyzing the adjacent angles of PFA members
with respect to their immediate neighbors [11].

Recently, two multiobjective fuzzy clustering methods
were proposed [13]: ECM-NSGA-II (entropy
c-means-nondominated sorting genetic algorithm II) and
ECM-MOEA/D (entropy c-means-multiobjective evolution-
ary algorithm based on decomposition). These algorithms

apply certain rules regarding the location of solutions with
respect to a reference line connecting the extreme points of
the PFA. Starting at the extreme point where cluster compact-
ness (first objective) reaches its lowest value, the position
of the next points along the PFA, relative to the reference
line, determine the solution to be selected. If the points fall
above the line, the decision is simply to keep the extreme
point. Otherwise, when the points fall below the reference
line, the one maximizing the distance with respect to this line
is identified as the knee and delivered as the final partition.

3) DECISION MAKING BASED ON ENSEMBLE CLUSTERING
In ensemble clustering [42], the goal is to derive a new,
consensus partition by integrating the information contained
in a collection of base partitions. This concept has been
adopted by several EMC methods, where the solutions in the
PFA are taken as the ensemble members and a consensus
is constructed on the basis of them. The motivation behind
this approach is that every nondominated solution contains
useful information on the cluster structure of the data, and the
incorporation of ensemble techniques thus provides a means
to exploit all this information in delivering a final answer.

Mukhopadhyay et al. [15] study approaches MOGAC-
CSPA,MOGAC-HGPA, andMOGAC-MCLA, which combine
algorithm MOGAC (discussed in Section II-C1) with the
following ensemble techniques [43]: CSPA (cluster-based
similarity partitioning algorithm), HGPA (hypergraph parti-
tioning algorithm), and MCLA (meta-clustering algorithm).
MECEA (multiobjective evolutionary clustering ensemble
algorithm) is another example of the methods in this cate-
gory [16]; it employs the aforementioned MCLA ensemble
strategy at the decision-making phase, but the clustering
phase relies on algorithmMOCK [10] rather thanMOGAC.

Consensus-based approaches have also been combined
with the use of a classifier [17], [18]. The resulting technique
initially produces a consensus partition by means of a voting
strategy, which assigns samples to clusters whenever the
majority of the PFA members agree on the assignment. This
is likely to result in a partial clustering, as some samples can
be left unassigned due to the lack of agreement across voters.
Hence, the complementary step exploits this partial consen-
sus solution for the purposes of training a classifier, which
is later employed to determine the cluster membership of
the remaining (originally unassigned) samples. It is unclear,
however, whether the above approach is applicable when the
PFA involves solutions with different numbers of clusters.

Decision making in algorithm MOAC relies on both, the
generation of consensus solutions and the use of additional
criteria [9]. First, the cardinality of the PFA is reduced based
on an indicator which takes into account the quality and
diversity of solutions. Then, a new set of consensus partitions
with a range of numbers of clusters is generated, from which
a final solution is chosen by means of index combination
CH+DB+SIL (refer to Section II-C1). To generate the con-
sensus partitions, two recently proposed ensemble techniques
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FIGURE 2. PFAs produced by algorithm 1-MOCK [26] for a set of four
example problems. The clustering solution exhibiting the highest
similarity with respect to the real partition of the data is illustrated, and
the location of this solution in the corresponding PFA is indicated with a
star marker.

are adopted [44]: LWEA (locally weighted evidence accumu-
lation) and LWGP (locally weighted graph partitioning).

4) LIMITATIONS OF CURRENT DECISION-MAKING
APPROACHES
Despite their simplicity, methods that use an additional clus-
tering criterion present an inherent limitation: they implicitly
assume that the criterion chosen will be compatible with the
properties of the data. This opposes the motivations for the
use of amultiobjective formulation of clustering. It is unlikely
that a single criterion can properly capture all aspects of
a partition and induce an effective discrimination between
candidate solutions in every scenario. Each criterion intro-
duces a specific bias and its effectiveness will depend on
the characteristics of the particular problem at hand (usually
unknown in advance). To a certain extent, this may be offset
by the use of more elaborate criteria, attempting to evaluate
multiple aspects simultaneously, or by the use of criteria
combinations (e.g., CH+DB+SIL [9]). However, finding the
right weighting between various aspects or criteria may not
be straightforward; it may certainly be problem-dependent.

Methods in the second category are supported by com-
mon assumptions in multiobjective optimization regarding
the regions of the Pareto front which should be prioritized
(in the absence of explicit decision-maker’s preferences).
Whilst favoring knee regions would probably be a wise
choice in the general case [14], in the specific setting of EMC
the best trade-off in the PFA may not always correspond to
the correct answer. It has been argued, for example, that the
cluster structure of the data is reflected in the shape of the
Pareto front [10]. Evidently, this depends on the particular
optimization criteria used but, more importantly, on how
compatible these criteria are with the target data. If all criteria
are compatible and contribute equally to solving the problem,
then we would expect that the best trade-offs between these
criteria would provide us with the most reasonable answers.

Otherwise, if one of the criteria is much more helpful than the
others, we would expect better choices to be located closer to
the corresponding extreme region of the Pareto front. These
behaviors are clearly illustrated in Figure 2.

Finally, consensus-based approaches do not necessarily
select one of the solutions in the PFA; instead, they construct
a new solution from them. These strategies operate under the
premise that all partitions in the PFA contain useful informa-
tion that can be integrated and exploited to construct a higher-
quality final solution. This assumes that PFAmembers are all
equally reliable, which implies that the optimized clustering
criteria are all compatible with the characteristics of the data.
This may not be the case, as discussed before. When one
of the objectives contributes significantly more than others
in solving the problem, and the best choices are therefore
located at one of the extreme regions of the PFA (as seen in
Figure 2), including the information of solutions from other
regions of the PFA may be equivalent to introducing noise
and can negatively affect the generated consensus.

III. DECISION MAKING BASED ON MACHINE LEARNING
The above discussion highlights the challenging nature of
decision making, and the fact that current techniques operate
under assumptions that do not necessarily apply given the
peculiarities of EMC. This stresses the need for alternative,
more effective and robust strategies to accomplish this task.

This section introduces a novel approach as our attempt
to meet this need: machine learning-based decision making
(MLDM). Our MLDM strategy treats decision making as a
supervised learning problem. The goal is to learn by example,
i.e., to learn from the decision-making process in example
settings, and build a model which can capture the available
knowledge for subsequent exploitation in unknown settings.
MLDM consists of two main stages: the learning stage
and the decision-making stage. These stages are separately
described in Sections III-A and III-B. Then, Sections III-C
and III-D respectively discuss some design choices adopted
in this study and the characterization process of PFAs, which
is an essential component of the proposed methodology.

A. LEARNING STAGE: MODEL CONSTRUCTION
The learning stage of strategy MLDM, depicted in Figure 3,
is responsible for the construction of a regression model.
This model is used later, at the decision-making stage (see
Section III-B), to predict the quality of the solutions in a given
PFA and enable the identification of the best alternative.

This stage starts with the formation of a repository of
PFAs for the purposes of training the predictive model. These
PFAs are produced through multiple independent executions
of a chosen EMC algorithm (process A in Figure 3), over a
collection of sample clustering problems. Each training PFA
obtained consists of a set of nondominated partitions that
the EMC method offers as potential solutions to the given
problem. By sample clustering problems, we mean datasets
for which the correct cluster structure (i.e., the ground truth)
is known, so that learning can occur in a supervised manner.
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FIGURE 3. Learning stage of MLDM. Construction of a predictive (regression) model from a collection of training
PFAs for sample problems. This process relies on the characterization of PFAs and their solutions (feature
extraction), and on the use of a measure of partition quality (cluster validity index) as a target variable.

Since the correct clustering solution is known for these
(sample) problems, a direct comparison using this solution as
a reference provides us with an objective measurement of the
quality of every member of the training PFAs (process B in
Figure 3). Such a comparison is made bymeans of an external
cluster validity index (refer to Section III-C for details), and
the resulting quality value is used as the target (response)
variable to be predicted by the regression model.

At the core of the proposed decision-making methodology
is the characterization of the PFAs (process C in Figure 3),
i.e., the extraction of a set of features (explanatory vari-
ables) that the model will later learn to associate with the
target variable at the training step (process D in Figure 3).
These features are extracted for every member of the PFA
(just as quality measurements are computed independently
for each of these members, in process B of the figure).
The feature set encompasses individual aspects of the PFA
members and the partitions they represent, as well as global
aspects of the PFA and the particular clustering problem being
solved. Section III-D elaborates further on the characteriza-
tion process.

B. DECISION-MAKING STAGE: MODEL APPLICATION
In the decision-making stage of MLDM, the knowledge
acquired during the learning stage is exploited to guide the
selection of a final solution in a real (unsupervised) setting.

As illustrated in Figure 4, the input to this stage is a
PFA generated by the chosen EMCmethod, which comprises

a range of candidate solution alternatives for an unknown
clustering problem (a problem for which information about
the correct partitioning is unavailable, as it generally occurs
in practice). Given that all these solution alternatives are
nondominated, i.e., equally good in the Pareto-optimality
sense, the goal is to employ the regression model constructed
in advance to estimate their quality, enable discrimination
(breaking ties), and hence identify a promising final choice.

More specifically, once the input PFA is character-
ized (process A in Figure 4, which is explained later in
Section III-D), the regression model is applied to the feature
vectors extracted for all PFA members to get their corre-
sponding quality estimates. The candidate PFA member with
the highest estimated quality value is chosen and presented as
the final solution recommendation (process B in Figure 4).

C. DESIGN CHOICES AND CONSIDERATIONS
The methodology proposed, as described above, is indepen-
dent from the specific definition of its main design com-
ponents: (i) the EMC algorithm used to generate the PFAs;
(ii) the set of features used to characterize the PFAs; (iii) the
external cluster validity index used as the target variable; and
(iv) the machine learning technique used to build the predic-
tive model. Despite this flexibility, evaluating the impact of
varying these components is beyond the scope of this study.
We adopted specific choices for our experimental analysis:
• Algorithm1-MOCK [26] is chosen as the EMCmethod.
As discussed before, 1-MOCK is the successor of
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FIGURE 4. Decision-making stage of MLDM. The regression model obtained during the learning stage is employed
to estimate the quality of the candidate solutions in a given PFA for an unknown problem. This predicted quality
information is then exploited to identify the most promising solution alternative.

MOCK [10], a prominent algorithm from the EMC lit-
erature. Furthermore, the PFAs produced by 1-MOCK
present characteristics which are representative of the
PFAs produced by several other EMC methods that
rely on the same (or otherwise equivalent) optimization
criteria [1], [9], [10], [11], [16], [45], [46], [47].

• To our knowledge, this is the first work that explores a
methodology like the one proposed, including the need
for defining a set of features (explanatory variables) to
characterize the solutions in the PFAs produced by EMC
methods. As such, the engineering of these features
is seen as one of the contributions of this paper, thus
receiving a separate, detailed treatment in Section III-D.

• Our supervised learning approach (building a model
from sample problems with known solution), allows
us to employ an external cluster validity index as an
indicator of partition quality. This indicator is exploited
as the target (output) variable, i.e., as the solution quality
measure that the model will learn to estimate on the
basis of the extracted features of PFA members. The
adjusted Rand index (ARI) is the particular measure we
adopted [48]. ARI evaluates the pairwise co-assignment
of elements to clusters between two given partitions (in
this case, a candidate partition in the PFA and the correct
clustering for the sample problem). This measure is
defined in the range [∼0, 1], where a value of 1 indicates
a perfect agreement between the two partitions.

• Finally, given that the model is intended to predict solu-
tion quality, i.e., the (continuous) ARI value for PFA
members, we approach decision making as a regression
(rather than classification) task. The random forest tech-
nique has been adopted to construct such a regression
model [49]. This technique has shown robustness to
deal with mixed-type and high-dimensional features sets
(as in our case, see Section III-D), obtaining promising
results in different application domains [50], [51], [52].

D. CHARACTERIZATION OF APPROXIMATION SETS
The characterization process of the PFAs is a critical com-
ponent that enables the application of the above-described
decision-making methodology. This process involves extract-
ing a set of features that allow us to describe each of the
candidate partitions in the PFA, so that these features can
later be linked to the adopted measure of solution quality.
In other words, these features will assume the role of explana-
tory (input) variables during the supervised construction and
subsequent utilization of our method’s predictive model.

Although separate feature vectors are to be extracted for
the different PFA members, these features need to capture
aspects of these members both at the individual level and
at the global, context level. That is, the decision on a final
solution should not be made by only analyzing individual
candidates in isolation, but by also taking into account the
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FIGURE 5. Illustration of the 40 synthetic datasets considered in this study. The size (N) and number of clusters (k∗) are specified for each of
these datasets.

relationships between these candidates in the PFA. Looking at
such relationships makes possible the evaluation of properties
related to the geometry of the PFA as well as those referring
to the entire set as a whole. These properties, together with
information regarding the particular clustering problem being
addressed, represent the context against which these alterna-
tive solution choices are presented for consideration.

In this study, a total of 55 features are defined to evaluate
different aspects of PFA members and their context. The full
description of these features, as well as of the five categories
in which they are organized, is provided in Appendix A.

IV. EXPERIMENTAL SETUP
The following subsections describe the main settings of
our experimental study, including the clustering problems
used for testing, the decision-making approaches adopted
as references, and the performance assessment measures
considered.

A. CLUSTERING PROBLEMS
A total of 50 clustering problems are considered in our exper-
iments, out of which 40 are synthetic and 10 are real-world

datasets. The 40 synthetic problems, as illustrated in Figure 5,
vary in size and present a diversity of characteristics regarding
the shape, overlap/separation, and density of the clusters.
The motivation for using these synthetic, low-dimensional
problems, is to be able to associate the performance of the
methods evaluated with the observable features of the data.

The 10 real-world problems are included to evaluate our
proposal and reference methods under conditions which
can be more representative of those encountered in prac-
tice. Table 1 specifies the size, dimensionality, and correct
number of clusters in these real-world datasets: Banknote
authentication (Banknote); Breast cancer Wisconsin diag-
nostic (Breast), Optical recognition of handwritten dig-
its (Digits); Ecoli; Iris; Statlog landsat satellite (Landsat);
Palmer archipelago penguin data (Palmer); Seeds; Thyroid
disease (Thyroid); and Wine. All these datasets except one
are available from the UCI machine learning repository.2

The remaining problem, namely, Palmer, is provided by its
authors via GitHub.3

2https://archive.ics.uci.edu
3https://allisonhorst.github.io/palmerpenguins

117288 VOLUME 10, 2022



M. Garza-Fabre et al.: Decision Making in Evolutionary Multiobjective Clustering: A Machine Learning Challenge

TABLE 1. The 10 real-world datasets considered in this study.

B. REFERENCE APPROACHES
Our proposed MLDM method is evaluated with respect to
a diverse set of decision-making approaches that have been
proposed in the EMC literature. We consider representatives
from the three categories described in Section II-C as well as
some additional references, as detailed below.

1) REFERENCE METHODS BASED ON ADDITIONAL
CLUSTERING CRITERIA
We include comparisons against the use of three separate
clustering criteria: SIL [30], DB [32], and DUNN [37]. These
indices, as discussed in Section II-C1, are commonly used
for decision-making purposes. In addition, we consider the
recently proposed index combination CH+DB+SIL [9].

2) REFERENCE METHODS BASED ON THE SHAPE
OF THE PFA
Our analysis includes two methods based on the selection of
a final solution from the knee of the PFA: MOCK’s strategy
based on the computation of control fronts [10], and Shi-
rakawa and Nagao’s approach of selecting the solution that
minimizes the sum of objective values (SUMO) [12]. These
approaches have previously been discussed in Section II-C2.

3) REFERENCE METHODS BASED ON
ENSEMBLE CLUSTERING
The two ensemble-based approaches by Zhu et al. [9], to be
referred to as LWEA and LWGP, are included in our compar-
ison. These approaches generate a set of consensus partitions
using the techniques proposed by Huang et al. [44], and
then apply index combination CH+DB+SIL to select a final
solution (refer to Section II-C3 for additional details).

4) ADDITIONAL BASELINE REFERENCES
Finally, the following baselines are considered: the best and
worst solutions in the PFA (BEST and WORST), represent-
ing the upper and lower bounds on the achievable perfor-
mance; the extreme points of the PFA (EXT1 and EXT2),
referring to the naive approach of always favoring one objec-
tive function over the other (intra-cluster variance and con-
nectivity, respectively); and a random selection (RAND),
which any reasonable decision-making strategy should
outperform.

C. PERFORMANCE ASSESSMENT
The results of our experiments are evaluated considering
three different aspects of performance. First, we evaluate
prediction performance, referring to the capacity of our pro-
posed method, and more specifically of the regression model
employed, to accurately estimate the quality of the candi-
date solutions in the PFA. As indicated in Section III-C,
we adopted ARI [48] as the measure of solution quality to
be predicted by the model. Therefore, we evaluate prediction
performance in terms of the root-mean-square error (RMSE)
between the predicted and actual (measured) ARI values of
candidate solutions. Lower RMSE values are always pre-
ferred, with 0 being the best possible value for this measure.

The second aspect evaluated is decision-making perfor-
mance. Since the goal of decision making is to ultimately
select a good solution from the PFA, this aspect refers pre-
cisely to the quality of the solutions chosen, which is given
by their actual ARI values (as computed with respect to the
correct solution of each problem). As stated in Section III-C,
ARI is defined in the range [∼0, 1] and is to be maximized.

The last considered aspect of performance is the effective-
ness of the methods at determining the correct number of
clusters, k . As discussed in Section II-C, selecting a final
solution also implies deciding on the value of k , given the
diversity of choices available in the PFA. Thus, we com-
plement our evaluation of decision-making approaches by
analyzing the absolute differences between the correct value
k∗ and the value of k of the solutions selected, |k∗ − k|
(the lower the difference, the better the performance of the
method is).

Finally, given the stochastic nature of some of the decision-
making methods evaluated, we consider 20 independent rep-
etitions of each experiment. In the specific case of MLDM,
each repetition consists of the full process of training the
regressionmodel and testing; during training, the main hyper-
parameters of the random forest technique are adjusted by
means of exhaustive (grid) search and 5-fold cross-validation.
Statistical significance analyses are conducted for our main
results using the (nonparametric)Mann-Whitney U test, con-
sidering in all the cases a significance level of α = 0.05 and
the Holm-Bonferroni correction procedure.

V. EXPERIMENTS AND RESULTS
This section presents the results of a series of experi-
ments conducted to evaluate the suitability of the MLDM
method proposed in this paper. First, the experiments of
Sections V-A andV-B focus on synthetic clustering problems,
each considering a particular decision-making scenario with
different difficulty. Then, Section V-C extends this evalua-
tion, analyzing the performance of our proposal on real-world
datasets.

A. EXPERIMENT 1: KNOWN DATASETS
In the scenario considered in this experiment, we aim to select
a final solution from an unknown PFA, generated for a dataset

VOLUME 10, 2022 117289



M. Garza-Fabre et al.: Decision Making in Evolutionary Multiobjective Clustering: A Machine Learning Challenge

FIGURE 6. Experiment 1 - Prediction performance. The RMSE obtained by
MLDM is shown for both training and testing PFAs. Summary of the
results for all 40 synthetic problems and 20 independent repetitions of
each experiment.

which is already known to MLDM. That is, the specific PFAs
used for testing are completely unknown toMLDM, but other
sample PFAs, obtained for the same dataset, were used during
the training ofMLDM’s regressionmodel. Despite being gen-
erated independently, the testing PFAs may share some simi-
larities with the ones included in the training set. Hence, this
particular scenario is evidently less challenging for MLDM,
in comparison to the one analyzed later in Section V-B. Note,
however, that this scenario is representative of situations
where the same clustering problem (or a similar one) needs
to be solved repeatedly (with certain frequency). In market
segmentation, for example, the goal is to identify groups of
customers so that differentiated, more effective strategies can
be devised. We may expect the characteristics of the problem
(and those of the PFAs produced for it) to remain comparable
if the analysis always centers on the same type of information
(e.g., demographics). Thus, it should be possible to learn
from the outcome of previous decision-making processes,
as evidenced by historical data or even by data from other
business branches.

This experiment considers the 40 synthetic problems
described in Section IV-A. For each problem, a total
of 40 PFAs were generated through independent runs of
1-MOCK. Out of these 40 PFAs, 20 were included in the
training set and the remaining 20 were reserved for testing
purposes. Considering that the average carnality of the PFAs
is 100, the training and testing sets used in this experi-
ment each contains approximately 80,000 solution samples.
As indicated in Section IV-C, we performed 20 independent
repetitions of the full process of training (including cross-
validated hyperparameter tuning) and testing. The results are
summarized in Figures 6, 7, and 8, which cover the three per-
formance aspects discussed in Section IV-C and include com-
parisons against the references described in Section IV-B.
Detailed results on decision-making performance, focusing
on individual problems and including the findings of the
statistical significance analysis, are provided in Table 2
(Appendix B).
As can be seen from Figure 6, MLDM reports promis-

ing results in terms of prediction performance, scoring rel-
atively low RMSE values in most cases when applied to
the unknown, testing PFAs (note, however, that these RMSE
values are higher in comparison to those observed for the

FIGURE 7. Experiment 1 - Decision-making performance. ARI values of
the solutions selected by MLDM and reference approaches. Results are
summarized for the 40 synthetic problems and the 20 repetitions
performed.

FIGURE 8. Experiment 1 - Performance at determining k . Absolute
differences between k∗ and the value of k of the solutions selected.
Results are summarized for the 40 synthetic problems and 20 runs
performed. Note that the y-axis of this plot is in logarithmic scale.

training data, which is an expected behavior in supervised
learning). Low RMSE values confirm that MLDM’s regres-
sion model has reasonably succeeded in estimating partition
quality. This translates into a highly competitive decision-
making performance, as shown in Figure 7 and Table 2. The
solutions selected by MLDM yield high ARI values, signif-
icantly surpassing those selected by the reference methods
and competing closely with the best solutions available in
the PFAs (baseline BEST). MLDMwas able to identify high-
quality solutions for most problems (indeed, it chose the best
solution alternative in many cases), in spite of the wide range
of qualities observed across PFA members (see the large
differences between baselines BEST and WORST). These
observations are also consistent with the results of Figure 8,
where MLDM is found to be the best performer in terms of
the correct determination of the number of clusters.

The strongest contender among the references considered
is MOCK’s strategy, based on the identification of the knee
of the PFA. This is followed by five approaches that seem to
provide comparable (average) performances: SIL, DB, and
CH+DB+SIL, which are based on the use of additional
clustering criteria, and LWEA and LWGP, which are based
on ensemble clustering. It is interesting to observe that the
use of strategies DUNN and SUMO leads to the selection of
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FIGURE 9. Experiment 2 - Prediction performance. The RMSE obtained by
MLDM is shown for both training PFAs (included as a reference) and
testing PFAs generated for unknown problems. Summary of the results
for all 40 synthetic datasets and 20 independent repetitions of each
experiment.

solutions which are, at least in average, poorer in quality than
those selected at random (baseline RAND).

B. EXPERIMENT 2: UNKNOWN DATASETS
The scenario of our second experiment focuses on the selec-
tion of a final solution from a PFA generated for a dataset
which is unknown to MLDM. That is, contrasting with the
experiment presented earlier in SectionV-A, in themore chal-
lenging setting considered herein the training set completely
excludes PFAs produced for the same dataset being used for
testing. Therefore, this experiment is intended to investigate
the ability of our proposal to learn from the knowledge avail-
able for example problems and exploit it to guide decision
making in the context of new applications.

For each of the 40 synthetic problems, we generated
20 PFAs by means of independent runs of algorithm
1-MOCK. In this case, however, we only used 39 problems at
a time for training, leaving the remaining problem out for test-
ing. Consequently, 40 configurations of this experiment were
required, each allowing a different problem to be excluded
from training and reserved for testing. These configurations
consider training and testing sets with roughly 78,000 and
2,000 solution samples, respectively (given that the 20 PFAs
of every problem contain about 100 solutions). Furthermore,
for each experiment configuration 20 independent repetitions
of the training and testing processes were performed, as indi-
cated in Section IV-C. Below, the performance of MLDM is
compared against several reference methods (Section IV-B)
and analyzed from multiple perspectives (Section IV-C).
Our results make evident the more challenging condi-

tions of this new scenario. From Figure 9, it is possible to
observe a decrease in prediction performance when MLDM
is applied to PFAs of unknown problems, with significantly
higher RMSE values than those reported for the previous
experiment (see Figure 6). Such a decrease in prediction
performance is also reflected in reduced decision-making
and k-determination capabilities, as can be seen from Fig-
ures 10 and 11 (and by contrasting these results with those
shown previously in Figures 7 and 8). It is noteworthy that
the increased difficulty of this scenario is only relevant to
MLDM; reference methods thus maintain the same behaviors
as observed and discussed at the end of Section V-A.

FIGURE 10. Experiment 2 - Decision-making performance. ARI values of
the solutions selected by MLDM and reference approaches. Results are
summarized for the 40 synthetic problems and the 20 repetitions
performed.

FIGURE 11. Experiment 2 - Performance at determining k . Absolute
differences between k∗ and the value of k of the solutions selected.
Results are summarized for the 40 synthetic problems and 20 runs
performed. Note that the y-axis of this plot is in logarithmic scale.

Despite the aforementioned performance drops, MLDM’s
results in terms of decision-making and k-determination
are clearly competitive. From the overall results of
Figures 10 and 11, our method is seen to outperform all refer-
ence approaches evaluated. This suggests that the estimations
of partition quality produced by MLDM’s regression model,
although not as accurate as those observed in Section V-A,
are still sufficiently informative so as to induce an effective
discrimination among the competing solutions in the PFAs.
At this point, it is worth considering the question of how
strong the correlation between prediction performance and
decision-making performance is, which we investigate by
analyzing Figure 12. The figure confirms that the two perfor-
mance aspects are certainly correlated, where lower RMSE
values tend to be associated with a higher quality of the
solutions chosen. More interestingly, though, the figure also
reveals that there is an important number of cases indicating
the selection of high-quality solutions in spite of relatively
high prediction errors. From this, we can stress that even
inaccurate predictions can provide useful information to
guide the identification of promising solution alternatives,
which is the ultimate goal of decision making. The accuracy
of the regression model’s predictions is therefore a sufficient,
but not necessary condition for the effectiveness of MLDM.

Finally, some interesting behaviors can be derived from the
analysis of problem-specific results of MLDM and reference
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FIGURE 12. Experiment 2 - Correlation between prediction and
decision-making performance. The horizontal axis refers to the RMSE
values reported by MLDM. The vertical axis refers to the difference
between the ARI of the solution selected by MLDM and the ARI of the
best solution available in the PFA; a value of 0 indicates that MLDM
selected the best solution, whereas a negative result indicates that a
solution with lower ARI was selected. Pearson’s and Spearman’s
correlation coefficients are shown as a reference.

methods. Figure 13 presents individual results for a sample of
12 problems, but detailed results for the full set of 40 prob-
lems can be found in Table 3 (Appendix B). On the one
hand, we would like to emphasize that all contestant methods
have stood out, showing a good performance for specific
subsets of problems. However, they lack robustness and fail
when problem properties change. For example, DB, DUNN,
and SUMO are among the best performers for problems that
present non-overlapping and non-linearly separable clusters
(these properties can be visualized in Figure 5), such as: atom,
chainlink, circles1, inside, orange, part2, and smile1. Note
that the remaining references, namely, SIL, CHz+DB+SIL,
MOCK, LWEA, and LWGP, in most cases scored a poor
performance for this particular subset of problems. The com-
pletely opposite situation occurs when we consider datasets
with linearly separable clusters and varying degrees of over-
lap, such as: blobs1, blobs2, data_5_2, data_9_2, r15, sizes1,
sizes5, square2, triangle2, and twodiamonds. In these prob-
lems, methods SIL, CH+DB+SIL, MOCK, LWEA, and
LWGP report highARI values, whereasmethodsDB,DUNN,
and SUMO show a low performance.

On the other hand, it is possible to highlight the increased
robustness that MLDM has shown across the diversity of
characteristics covered by our dataset collection. Our pro-
posal competes with some of the best results for most of
the above-mentioned problems. Moreover, there are other
problems for which our proposal is clearly the best performer
(in fact, for some problems MLDM is the only method pro-
viding a reasonable result): flamesize5, longsquare, moons3,
moons5, spiralsizes5; with the exception of longsquare,
these problems seem to combine characteristics of non-
linearly separable and overlapping clusters. Finally, we can
also identify three datasets, namely, circles2, data_9_2, and
spiralsdata92, for which MLDM exhibits a notably low
performance. These are difficult problems, as can be judged
from the results of all baselines and strategies evaluated.
It might also be the case, however, that the particular

FIGURE 13. Experiment 2 - Decision-making performance. The ARI of the
solutions selected by MLDM and reference approaches is shown.
Individual results for a subset of 12 problems (summary of the
20 repetitions performed).

properties of these problems are not well represented in the
training data, which would certainly explain the low perfor-
mance observed (as a supervised learning method, MLDM’s
success depends on the availability of representative training
samples).

C. EXPERIMENT 3: REAL-WORLD DATASETS
So far we have considered low-dimensional, synthetic clus-
tering problems. This has allowed us to ensure that our collec-
tion of test scenarios spans a diversity of characteristics and,
more importantly, has enabled us to relate such characteristics
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FIGURE 14. Experiment 3 - Prediction performance. The RMSE obtained
by MLDM is shown for both training PFAs (included as a reference) and
testing PFAs generated for unknown problems. Summary of the results
for all 10 real-world datasets and 20 independent repetitions of each
experiment.

FIGURE 15. Experiment 3 - Decision-making performance. ARI values of
the solutions selected by MLDM and reference approaches. Results are
summarized for the 10 real-world datasets and the 20 repetitions
performed.

FIGURE 16. Experiment 3 - Performance at determining k . Absolute
differences between k∗ and the value of k of the solutions selected.
Results are summarized for the 10 real-world datasets and 20 runs
performed. Note that the y-axis of this plot is in logarithmic scale.

with the performance of MLDM and the reference methods
evaluated. Nevertheless, it is essential to validate our findings
and the suitability of these approaches under more realistic
conditions. We thereby replicate the experiment presented
previously in Section V-B, focusing now on the set of 10 real-
world datasets described in Section IV-A.

As explained in Section V-B, the experiment has been
designed to investigate the ability of MLDM to model
available knowledge from example settings and exploit it
to accomplish decision making in the context of a com-
pletely new (previously unseen) problem. Distinct config-
urations of the experiment are considered so that each of

FIGURE 17. Experiment 3 - Decision-making performance. The ARI of the
solutions chosen by MLDM and reference methods is shown. Individual
results for the 10 real-world datasets (summary of the 20 repetitions
performed).

the 10 real-world problems is used exactly once for test-
ing, ensuring that no sample PFAs for the same problem
are included in the training set (the training set involves
only the remaining 9 problems). This results in training
and testing sets with 18,000 and 2,000 solution samples,
respectively (we generated 20 PFAs for each dataset, each
of which containing about 100 solution samples). As before,
we ran every configuration of this experiment multiple times
independently, presenting summaries of the results obtained
from the perspective of different performance indicators in
Figures 14, 15, and 16. Additionally, Figure 17 and Table 4
(Appendix B) provide separate results for the 10 problems
considered.

The results obtained on the real-world problems bear
some resemblance to those observed for the synthetic data
in Section V-B. Despite the relatively high RMSE values
reported in Figure 14, Figure 15 indicates that MLDM
selected final solutions which in average present a better
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FIGURE 18. Multidimensional scaling projection of the Banknote dataset.
Colors illustrate the two original problem classes (a) as well as the k = 9
clusters in the best solution observed according to the ARI measure (b).
Left and right sides show two distinct rotations of the three-dimensional
plots.

quality in comparison to those selected by all the reference
methods and baselines (with the evident exception of BEST),
therefore being the best overall performer in this test. Ana-
lyzing decision-making performance from the perspective of
individual problems, the results of Figure 17 are consistent
with previous observations regarding the increased robust-
ness that our proposal exhibits across test scenarios. MLDM
ranks among the best performers for all the 10 problems con-
sidered, unlike the reference methods which only stand out in
particular cases. Specifically, the most robust references, SIL,
LWEA, and LWGP, only performed well in half of the prob-
lems: Breast, Digits, Ecoli, Iris, and Wine; CH+DB+SIL
performed well in all these problems, except Digits; MOCK
appears as one of the best performers only for three problems:
Ecoli, Iris, and Palmer; DB competes with some of the best
results only for problems Landsat and Thyroid; and, finally,
approaches DUNN and SUMO scored a poor performance in
all cases.

It is interesting to note, however, that the real-world
datasets certainly posed some challenges for all the meth-
ods evaluated. In general, we can see from Figure 15
that all the methods scored ARI values which are consis-
tently lower than those reported for the previous experiment
(Figure 10). Approaches DB, DUNN, MOCK, and SUMO
have performed even worse than baseline RAND (which
selects a solution at random). Furthermore, it is possible
to observe that baseline BEST (upper bound on achievable
performance) shows an average ARI of about 0.75 (in con-
trast to the value of 0.95 that it reports in Figure 10). This
indicates an unavailability of high-quality solutions in most
of the PFAs considered (at least from the perspective of the

ARI indicator), which can indeed explain the lower perfor-
mance of all methods.

An alternative explanation for the lower ARI values
observed consistently in this experiment, is the assumption
that the class assignments (labels) specified for these real-
world problems reflect the correct partition of the data, which
we use as the reference (ground truth) for the computation
of this measure. Although these class assignments effectively
group the samples and are undoubtedly relevant to the par-
ticular application domains of these datasets, they do not
necessarily match exactly the inherent cluster structure of
the data. To illustrate this, consider the multidimensional
scaling projection of dataset Banknote, shown in Figure 18.
As can be seen from the figure, the two classes defined for
this problem result in a clear separation of the data sam-
ples; however, from the clustering perspective it makes more
sense to split these classes further into multiple clusters. This
finding also offers an explanation to the large errors that all
the methods report in terms of k-determination, as shown
in Figure 16.

VI. CONCLUSION
Limitations of existing decision-making methods challenge
the applicability of EMC algorithms, as the delivery of a
single final solution is a necessary step for them to be fully
useful in practice. The underlying assumptions of current
proposals do not always hold under the peculiarities of the
data and the application domains, stressing the need for
alternative approaches to cope with the complex nature of
this task. In view of this, we explored a novel approach to
decision making, demonstrating the viability of addressing it
through machine learning. The key concept of our supervised
learning-based proposal involves: (i) learning in advance the
association between partition quality and a set of features
extracted from nondominated solutions; and (ii) exploiting
the knowledge gained to drive decision making, enabling
the identification of a promising final solution. Our main
finding is that, by following the proposed methodology,
it is possible to generalize prior learning to completely new
scenarios.

Our proposal was evaluated and compared to eight rep-
resentative decision-making approaches from the literature
and some additional baselines. This evaluationwas conducted
over a diverse collection of synthetic and real-world datasets,
under different experimental conditions. Our method consis-
tently reported the best overall performance throughout our
experiments. Moreover, it showed an increased versatility
with respect to the changing problem characteristics. In gen-
eral, our results underline the suitability of this proposal and
its superiority with respect to existing techniques. On the
other hand, the proposed method also presents a limitation
that is inherent to supervised learning settings: it relies on
the availability of training samples which are representative
of the scenarios seen in practice. Although our proposal has
shown some robustness, providing competitive results for
problems which were completely excluded from the training
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process, special attention needs to be given to the training set
compilation process in order to overcome this limitation.

The outcomes of this study are encouraging, confirm-
ing that the development of alternative decision-making
approaches is a valuable direction which merits additional
research. Preliminary analyses have revealed potential oppor-
tunities to further improve the effectiveness of our pro-
posal through an in-depth inspection of our feature set. This
should lead to the removal of irrelevant or redundant features,
to achieve meaningful dimensionality reductions, as well as
to the engineering of new features that can better capture
the complexities of the decision-making task. Despite being
proposed as a generic framework, to delimit the scope of
this study the evaluation of our proposal centered around a
specific EMC algorithm, 1-MOCK [26], and the particular
optimization criteria used by it (similar design choices had
to be made regarding other components, such as the machine
learning method used to construct the regression model and
the partition quality criterion used as the response variable).
Hence, extending this study to other different conditions,
including the use of more than two optimization criteria,
would certainly support the generality of our conclusions.
Finally, our method exploits characteristics of the decision-
making task which apply only to the specific EMC con-
text. An interesting research direction concerns exploring the
applicability of a methodology like the one proposed in this
paper with the aim to assist decision making in the more
general context of multiobjective optimization.

APPENDIX A
DEFINITION OF FEATURES
As discussed in Section III-D, a set of 55 features are used in
this study for the characterization of candidate solutions in the
PFAs. These features have been assigned specific acronyms
and are organized into five distinct categories, which are
separately defined in the following subsections.

A. CATEGORY 1: FEATURES DESCRIBING PFA
MEMBERS INDIVIDUALLY
The first category involves features which are defined to
describe aspects of the PFA members at the individual level.
A total of 11 features are included in this category:

• Objective values (OBJ1, OBJ2). These features cor-
respond to the (raw) objective values of the candidate
partition (its specific coordinates in objective space, see
Figure 19). In the particular case of algorithm1-MOCK,
OBJ1 and OBJ2 refer to the values scored for the intra-
cluster-variance and connectivity criteria.

• Normalized objective values (NOBJ1, NOBJ2).
As illustrated in Figure 20, NOBJ1 and NOBJ2 are
versions of features OBJ1 and OBJ2, considering the
independent normalization of each dimension of the
PFA to the range [0, 1]. Min-max normalization is
applied.

FIGURE 19. Features OBJ1 and OBJ2 refer to the objective values
produced by 1-MOCK, i.e, to the coordinates of PFA members in objective
space.

FIGURE 20. Features NOBJ1 and NOBJ2 correspond to the coordinates of
PFA members, after normalizing each dimension independently to
range [0, 1].

FIGURE 21. Feature TEND captures the tendency that a PFA member can
present towards favoring one objective over the other, which depends on
its location with respect to a line connecting reference points (0, 0)
and (1, 1).

• Average of normalized objectives (ANOBJ). This fea-
ture is computed as the arithmetic mean of the normal-
ized objective values (NOBJ1 and NOBJ2 features).

• Tendency towards a particular objective (TEND).
Each solution in the PFA exhibits a particular trade-off,
which can favor one of the optimized criteria more than
the other. Accordingly, we assign three possible values
to the TEND feature, {0, 1, 2}. As shown in Figure 21,
this depends on the location of the PFA member with
respect to a reference line connecting points (0, 0) and
(1, 1) of the normalized objective space. If the PFA
member appears in the upper half, then it shows a ten-
dency towards the first criterion and we assign a value
of 0. If it locates in the opposite half, then it favors the
second criterion and we assign a value of 2. Otherwise,
no tendency is observed and we assign a value of 1.
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FIGURE 22. Feature ZINT indicates whether a PFA member is inside the
interest zone, delimited by a line connecting the extreme points of
the PFA.

FIGURE 23. Feature SUBX refers to the specific number of subrange of
the horizontal, x-axis where the candidate PFA solution locates.

• Zone of interest (ZINT). The computation of this
binary feature requires tracing a reference line connect-
ing the extreme points of the PFA. As illustrated in
Figure 22, these points are located at the (0, 1) and (1, 0)
corners of the normalized objective space. PFAmembers
appearing in the upper half (above the reference line) are
considered to be outside the zone of interest and assigned
a value of 0 for the ZINT feature. Such solutions exhibit
less interesting trade-offs in comparison to PFA mem-
bers located at the opposite half, the interest zone, which
are assigned a value of 1.

• Subrange of x-axis and y-axis (SUBX, SUBY). The
x-axis and y-axis are discretized into a number of
subranges, see Figures 23 and 24. Features SUBX
and SUBY indicate the specific number of subrange
(x-axis and y-axis, respectively) where the PFA member
resides. In this study, the x-axis and y-axis were both
split into 10 subranges after being independently nor-
malized to range [0, 1]. Thus, features SUBX and SUBY
are assigned a value of 1 if the PFA member is within
subrange [0.0, 0.1] of the corresponding axis, a value of
2 if it lies at subrange (0.1, 0.2], and so on.

• Distance to the ideal point approximation (IDEAL).
In multiobjective optimization, the vector given by the
best (feasible) value that can be reached for every objec-
tive function constitutes the so-called ideal point. Con-
sidering the normalization of the PFA to the range [0, 1]
in both dimensions, point (0, 0) can thus be seen as our
current approximation to the ideal point. We compute
feature IDEAL as the distance from the PFA member to
such an approximated ideal point, see Figure 25.

FIGURE 24. Feature SUBY refers to the specific number of subrange of
the vertical, y-axis where the candidate PFA solution locates.

FIGURE 25. IDEAL denotes the distance from the PFA member to the
ideal point approximation at coordinates (0, 0) of the normalized
objective space.

FIGURE 26. NADIR refers to the distance from the PFA member to the
nadir point approximation at coordinates (1, 1) of the normalized
objective space.

• Distance to the nadir point approximation (NADIR).
Contrary to the ideal point, the nadir point is given by
the worst value for each objective function in the entire
Pareto-optimal set. Therefore, point (1, 1) of the normal-
ized objective space represents an approximation to the
nadir point from the perspective of the PFA under con-
sideration. Feature NADIR, as illustrated in Figure 26,
is calculated as the distance of the PFA member with
respect to such an approximation.

B. CATEGORY 2: FEATURES DESCRIBING THE PARTITION
THAT THE PFA MEMBERS REPRESENT
Each member of the PFA represents a candidate solution to
the particular clustering problem under consideration. The
second category is thus concerned with features which refer
to properties and measures of quality of these candidate
partitions. Four different features belong to this category:
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FIGURE 27. The extreme points of the PFA correspond to the candidate
solutions that exhibit the best obtained values for the objective functions.

• Number of clusters (KCLU). As initially exemplified
through Figure 1, the PFA may involve solutions show-
ing a diversity of numbers of clusters, k . Feature KCLU
refers to the specific value of k of the partition repre-
sented by a given PFA member.

• Internal cluster validity indices (SIL, DB, DUNN).
These are unsupervised measures that assess solution
quality by analyzing specific aspects of the clusters in
the partitions they define. We include in our feature set
three indices which are popular choices and have also
been exploited for decision-making purposes, as seen in
Section II-C1: SIL [30], DB [32], and DUNN [37].

C. CATEGORY 3: FEATURES DESCRIBING THE PFA
MEMBER IN RELATION TO OTHER PFA MEMBERS
Unlike previous categories, the third category of features
considers properties of the PFA member whose evaluation
depends on other candidate members of the PFA (such as
neighboring solutions or the extreme points of the PFA). This
category includes the following 16 features:
• Ranking for individual objectives (RANK1,RANK2).
Features RANK1 and RANK2 are computed as the rank
positions of the candidate solution after sorting the full
list of PFA members according to their values for the
first and second objective functions, respectively. Given
that all PFA members are nondominated with respect
to each other, a total order is obtained when consid-
ering the two objective functions independently. Thus,
no PFA member is ranked equal to any other, and every
member receives a distinct value for features RANK1
and RANK2. The solution with the best objective value,
i.e., the extreme point of the PFA, is assigned rank 1 for
the corresponding objective, whereas the solution with
the worst objective value (at the opposite extreme) is
assigned a rank that equals the cardinality of the PFA.

• Extreme points of the PFA (EXT1, EXT2). Binary
features indicating whether or not the PFA member is
the extreme point (best objective value) for the first and
second objective functions, respectively (see Figure 27).

• Membership to convex hull (INCVX). The convex
hull (or convex closure) is given by the smallest subset
of points which define a convex polygon enclosing all
points in a set. After discarding solutions outside the
zone of interest (see Figure 22 and description of feature

FIGURE 28. Feature INCVX indicates whether a PFA member is a vertex of
the convex hull (computed for points in the zone of interest, see
Figure 22).

FIGURE 29. Feature ANGNE is defined as the angle between the lines
connecting the PFA member characterized to its left and right neighbors.

FIGURE 30. Feature ANGAP is computed as the angle between the lines
connecting the PFA member with its left and right approximated
neighbors.

ZINT), the convex hull is computed for the remaining
PFA members, as shown in Figure 28. Feature INCVX
is assigned a value of 1 whenever the PFA member is a
vertex of the resulting convex hull, and 0 otherwise.

• Angle between closest neighbors (ANGNE). As illus-
trated in Figure 29, this feature is computed as the angle
between the lines joining the solution being character-
ized with its left and right closest neighbors in the PFA.

• Angle between left and right approximations
(ANGAP). ANGAP is proposed as a ‘‘smooth’’ version
of feature ANGNE defined above. Rather than consider-
ing the left and right neighbors, ANGAP uses hypothet-
ical points calculated as the average of the coordinates
of all PFA members at the left (respectively right) side
of the point being characterized, see Figure 30.

• Contribution to hypervolume (CHVOL). The hyper-
volume, as discussed further in Appendix A-D (defini-
tion of feature HVOL), is a well-known performance
indicator in evolutionary multiobjective optimization,
evaluating the quality of a PFA as a whole [53].
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FIGURE 31. Feature CHVOL describes a PFA member in terms of its
contribution to the value of the hypervolume indicator.

FIGURE 32. Features DEXT1 and DEXT2 refer to the distance from the PFA
member to the extreme points of the first and second objectives,
respectively.

FIGURE 33. Feature RADIUS computes the number of neighboring PFA
members within a certain radius from the solution being characterized.

The contribution of individual solutions to the value
of this indicator (see Figure 31) has been used as a
criterion to guide the search process [54]. This approach
is adopted as one of our features to characterize PFA
members.

• Distance to the extreme points (DEXT1, DEXT2).
Features DEXT1 andDEXT2 are given by the Euclidean
distance from the point being characterized to the
extreme points of the PFA, as shown in Figure 32 (objec-
tive values are normalized to range [0, 1]).

• Number of points within a certain radius (RADIUS).
This feature, exemplified in Figure 33, refers to the
total number of solutions lying within a certain radius r
from the PFAmember under consideration. In this study,
we adopted a fixed value of r = 0.1, which represents
about 7% of the distance between the extreme points
of the PFA (assuming the previous normalization of
the PFA).

• Crowding distance (CROWD). The crowding distance
is a measure implemented within the nondominated
sorting genetic algorithm 2 (NSGA-II) as a means to

FIGURE 34. Feature CROWD refers to the crowding distance of the PFA
member, a measure introduced as part of algorithm NSGA-II [55].

FIGURE 35. Feature NEIGK counts the total number of consecutive
neighbor solutions around the PFA member having the same value for k .

FIGURE 36. Feature TRIAR is given by the area of the triangle formed by
the PFA member under consideration and the extreme points of the PFA.

promote the diversity and distribution of solutions in the
PFA [55]. Feature CROWD refers to the value of this
measure, whose computation is illustrated in Figure 34.

• Neighbors with the same k value (NEIGK). As shown
in Figure 35, feature NEIGK specifies the number of
consecutive neighbors (at both sides) presenting the
same value of k as the PFA member characterized.

• Percentage of points with the same k value (PERCK).
PERCK is the percentage of the full set of solutions in
the PFA that exhibit the same value of k as the specific
PFA member being characterized.

• Triangle area (TRIAR). This feature is illustrated in
Figure 36. As can be seen, it is defined as the area
of the triangle which has the PFA member and the
extreme points as its vertices. The area can be calculated
from the length of the triangle’s sides, using Heron’s
formula. If the point being characterized is outside
the zone of interest (see description of feature ZINT,
Appendix A-A), the negative of the computed area is
used instead.

• Triangle height (TRIHE). In a similar manner to fea-
ture TRIAR, this feature considers the triangle defined
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TABLE 2. Detailed results for Experiment 1, presented separately for the 40 synthetic clustering problems. The median ARI of the final solutions selected
by the decision-making approaches analyzed is shown, highlighting the best performance scored for each problem. Results for all reference methods
considered (except baselines BEST, WORST, EXT1, EXT2, and RAND) are marked • to indicate that a statistically significant difference is observed with
respect to MLDM.

FIGURE 37. Feature TRIHE is given by the height of the triangle formed by
the PFA member under consideration and the extreme points of the PFA.

by the extreme points of the PFA and the candidate
solution being characterized. Feature TRIHE is given by
the height of such a triangle (considering as the base of
the triangle the line connecting the extreme points of the
PFA, see Figure 37). If the solution considered is beyond
the zone of interest (refer to the definition of feature
ZINT in Appendix A-A), the negative of the computed
triangle’s height is used as the value of feature TRIHE.

D. CATEGORY 4: FEATURES DESCRIBING GLOBAL
ASPECTS OF THE PFA
Features in the fourth category capture aspects of the PFA as
a whole. That is, their computation involves the full set of
solutions in the PFA. Therefore, it is worth noting that the
value of these features is invariant across the feature vectors
extracted for all solutions which are members of the same
PFA (unlike features in the three previous categories). The
following 22 features are defined within this category:

• Cardinality of the PFA (CARD). As the name of
this feature suggests, it refers to the total number
of candidate clusterings in the PFA. In the specific
case of this study, the maximum cardinality is 100,
which corresponds to the population size used by algo-
rithm1-MOCK during PFA generation. However, given
that the PFA consists of nondominated solutions only,
it is possible that it contains fewer solutions in some
cases.

• Minimumobjective values in the PFA (MIN1,MIN2).
Features MIN1 and MIN2 are given by the minimum
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TABLE 3. Detailed results for Experiment 2, presented separately for the 40 synthetic clustering problems. The median ARI of the final solutions selected
by the decision-making approaches analyzed is shown, highlighting the best performance scored for each problem. Results for all reference methods
considered (except baselines BEST, WORST, EXT1, EXT2, and RAND) are marked • to indicate that a statistically significant difference is observed with
respect to MLDM.

(best) value scored for the first and second objectives,
respectively, considering all PFA members.

• Maximum objective values in the PFA (MAX1,
MAX2). Contrary to features MIN1 and MIN2, features
MAX1 and MAX2 are given by the maximum (worst)
values yielded by any of the PFA members for the first
and second objective functions, respectively.

• Average objective values in the PFA (AVG1, AVG2).
These features are computed as the arithmetic mean
of the values scored for the two objective functions,
considering all candidate partitions in the PFA.

• Average normalized objective values (NAVG1,
NAVG2). These features are defined equivalently to the
AVG1 and AVG2 features described above. However,
NAVG1 and NAVG2 are computed after normalizing the
PFA to range [0, 1] independently in each dimension.

• Hypervolume of the PFA (HVOL). The hypervol-
ume is one of the most widely used indicators to
assess the performance of evolutionary multiobjective
optimizers [53]. It is able to simultaneously evaluate
both aspects of convergence and diversity of the PFAs

FIGURE 38. Feature HVOL is given by the hypervolume of the PFA.

produced by these algorithms. Briefly, this indicator is
defined as the volume of the region of the objective
space, delimited by a reference point, which is dom-
inated by the solutions in the PFA (see Figure 38).
Feature HVOL is given by the value for such an indica-
tor, which in this study is computed for the normalized
PFA and using always a fixed reference point, namely,
(1.01, 1.01).

• Minimum and maximum hypervolume contribution
(MINHV, MAXHV). In Appendix A-C, we describe
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TABLE 4. Detailed results for Experiment 3, presented separately for the 10 rea-world clustering problems. The median ARI of the final solutions selected
by the decision-making approaches analyzed is shown, highlighting the best performance scored for each problem. Results for all reference methods
considered (except baselines BEST, WORST, EXT1, EXT2, and RAND) are marked • to indicate that a statistically significant difference is observed with
respect to MLDM.

FIGURE 39. Features ACVX and PCVX are respectively defined as the area
and perimeter of the convex hull of the PFA (computed only for points in
the zone of interest, see description of feature ZINT and Figure 22).

feature CHVOL as the contribution of a specific PFA
member to the hypervolume indicator. Features MINHV
and MINHV respectively refer to the minimum and
maximum individual contributions in the entire PFA.

• Area and perimeter of convex hull (ACVX, PCVX).
These features, as illustrated in Figure 39, are computed
as the area and the perimeter of the convex hull of the
PFA, respectively. Note, however, that the computation
of the convex hull disregards PFA members outside the
zone of interest (see feature ZINT in Appendix A-A).

• Cardinality of the convex hull (CCVX). This feature is
given by the total number of vertices in the convex hull.
As discussed before, convex hull computation considers
only PFA members inside the zone of interest (refer to
the description of feature INCVX in Appendix A-C).

• Minimum,maximum, and average value of k (MINK,
MAXK, AVGK).Considering that the PFAmay contain
candidate partitions with a range of values for k , features
MINK, MAXK, and AVGK refer to the minimum, max-
imum, and average values of this parameter across the
full set of PFA members, respectively.

• Mode of the k values in the PFA (MODK). Adhering
to the definition of mode in statistics, feature MODK is
computed as the k value that appears most frequently
across the clustering solutions in the PFA.

• Number of unique k values in the PFA (UNIK). This
feature simply reflects the total number of distinct values
for parameter k in the PFA’s candidate partitions.

• Percentage of solutions favoring a particular
objective (PTEND1, PTEND2). As explained in
Appendix A-A and Figure 21 for feature TEND, a PFA
member may exhibit a tendency towards favoring one
objective over the other depending on its location. Fea-
tures PTEND1 and PTEND2 indicate the percentage of
the PFA members showing a tendency towards the first
and second objective functions, respectively.

E. CATEGORY 5: FEATURES DESCRIBING THE
CLUSTERING PROBLEM BEING SOLVED
In this last category, we consider features that reflect aspects
of the particular clustering problem at hand. Similar to the
features in the fourth category (Section A-D), the value of
these features is fixed for all members of the given PFA
(it is, indeed, fixed for all solutions in all PFAs generated for
the same problem). Two features are included in this category:
• Size of the dataset (DATA). This feature refers to the
number of samples in the dataset under consideration.

• Dimensionality of the dataset (DIME). Feature DIME
captures the total number of dimensions (i.e., features or
variables) in the clustering problem.

APPENDIX B
DETAILED RESULT TABLES
This appendix includes detailed results for the main experi-
ments of this study. Tables 2, 3, and 4 present the results for
individual problems and the findings of the statistical signif-
icance analysis for Experiments 1, 2, and 3, respectively.
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