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ABSTRACT We tackle explicitly constrained black-box continuous optimization problems in which the
feasible domain forms a union of disconnected feasible subdomains. The decoder-based constraint-handling
technique is a promising approach when the feasible domain is disconnected. However, the design of a
reasonable decoder requires deep prior knowledge of the optimization problem to be solved and, hence,
human effort. In this study, we investigated the usefulness of a deep neural network as a decoder and
developed a training scheme for a deep neural network without prior information, such as a training dataset
consisting of feasible and infeasible solutions required by existing decoder approaches. To stabilize the
training of the deep generative model as the decoder, we propose decomposing the decoder into sub-models,
introducing skip connections to each sub-model, and training the sub-models sequentially with separate loss
functions. Numerical experiments using a test problem and a topology optimization problem show that the
proposed method can find feasible domains with better objective function values and higher probability than
both conventional decoder-based constraint-handling methods and non-decoder-based constraint-handling
methods.

INDEX TERMS Black-box optimization, constraint handling, deep learning, disconnected feasible domain,
evolutionary computation, explicit constraint, generative models.

I. INTRODUCTION
Black-Box Optimization (BBO) is a class of mathemati-
cal optimization problems in which the objective function
is a black-box function. When a simulation is required to
evaluate the objective function value of a solution, such an
optimization problem is often treated as BBO because the
relation between a solution and its objective function value is
nearly a black-box. BBO appears extensively in engineering
fields such as material engineering [51], aeronautical engi-
neering [5], [42], ocean engineering [41], [46], civil engineer-
ing [11], [45], mechanical engineering [3], [17], [18], [19],
[20], and artificial intelligence [13], [23].

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiyan Zhang .

In this study, we consider the following black-box contin-
uous optimization with explicit constraints:

argmin
x∈S

f (x) s.t. gj(x) 6 0, ∀j = 1, . . . ,m, (1)

where f , g1, . . . , gm : S → R are the objective function
and m constraint functions, respectively, and S ⊆ Rn is the
search domain on which f is well defined. We assume that
S is a rectangular region (e.g., S = [−1, 1]n). In BBO, the
objective function usually requires computationally expen-
sive simulations, and the gradients of the objective function,
∇f , are unavailable or unreliable. Constraint functions can
be categorized as either explicit or non-explicit constraints.
In this study, we focus on explicit constraints, where the
constraint functions are computationally cheap to evaluate,
and their gradients, ∇gj, are often available.
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This study focuses on explicitly constrained BBO prob-
lems where the feasible domain X := {x ∈ S | gj(x) 6
0, ∀j} is the union of non-connected feasible subdomains
Xl (l=1,...,M ),Xi∩Xj = ∅ (i 6= j), that is,X :=

⋃L
l=1Xl . Such

a problem is difficult to address because it is challenging to
search across different disconnected domains.

This work originated in the field of topology optimiza-
tion (TO) [8], [9], [54], which is an optimization that deter-
mines the optimal distribution of materials in a given design
space. Several methods have been proposed, such as level-
set methods [54], density-based methods [8], and NGnet
methods [48]. In TO, a material configuration is param-
eterized using a real vector x, and an objective function
encompasses a boundary value problem of partial differen-
tial equations, which are computed using numerical solu-
tion methods such as the finite element method. Therefore,
the evaluation of the objective function of TO is relatively
computationally expensive, and the relationship between the
solutions and objective function values is almost a black-box.
Restrictions, such as volume and perimeter constraints [19],
are often imposed to prevent undesirable material arrange-
ments, such as checkerboard arrays [14]. The computational
cost of restrictions is significantly lower than that of the
objective function, and because the relationship between
the constraint function values and solution is explicitly
available, it is often possible to compute their gradients.
However, the resulting feasible domain can be separated
into several disconnected subdomains. Therefore, this prob-
lem can be considered an example of the aforementioned
BBO problems.

Evolutionary computation has been widely used as a
promising optimization method in BBO. This is because
evolutionary computation does not require gradients or a pri-
ori knowledge of the characteristics of the objective func-
tion, such as smoothness, and has been empirically shown
to have a low initial value dependence, which are proper-
ties required for BBO. In particular, the covariance matrix
adaptation evolution strategy (CMA-ES) [2], [25], [29],
[30], [32], a type of evolutionary computation, is a quasi-
parameter-free method, and has been successfully applied to
several real-world BBOs [10], [16], [36], [40], [41], [52],
[53], including various TO applications [17], [18], [19],
[20]. In this study, we also investigate optimization based
on CMA-ES.
Decoder-based techniques [12], [35] are considered

promising approaches for BBO problems with disconnected
feasible subdomains [43]. The idea underlying decoder-based
approaches involves designing a map G : Z → S, called
the decoder, which is a mapping from a relatively simple and
possibly convex region Z, such as a hypercube, to the search
domain S. In this work, we consider setting Z = S ⊆ Rn.
Ideally, the image of G should be in the feasible domain, that
is, G(Z) = X. Then, the original problem (Equation (1)) is
translated into the following problem:

argmin
z∈Z

f (G(z)) s.t. gj(G(z)) 6 0, ∀j = 1, . . . ,m. (2)

Once a reasonable decoder is obtained, the solver only
needs to deal with a relatively simple boundary of Z.
However, existing works in decoder-based approaches [12],
[35] require prior knowledge about the feasible domain
or a dataset of feasible points to design or train a
decoder.

The main contribution of this study is the automation of the
decoder designwhile inheriting the decoder feature that trans-
forms the original optimization problem with a disconnected
feasible domain X (Equation (1)) into an optimization prob-
lem with a convex domain Z (Equation (2)), whose boundary
is easy to handle. In practice, owing to the continuity and
incomplete training of neural networks, G(Z) ⊆ X cannot
be guaranteed, and the constraints of the transformed opti-
mization problem (Equation (2)) are violated in some regions
of Z. However, the fraction of the Lebesgue measure of the
feasible domain onZ (regions of z ∈ Z, such thatG(z) ∈ X) is
much larger than the fraction of the Lebesgue measure of the
feasible domain X on the search domain S, as shown in the
numerical experiments in Section IV. When the proportion
of infeasible domains is small, a stochastic multipoint search
method, such as CMA-ES, can ignore the infeasible domains
because the probability of generating infeasible solutions is
sufficiently low. This is expected to make it easier to identify
feasible domains with globally superior objective function
values.

The remainder of this paper is organized as fol-
lows: Section II reviews decoder-based constraint-handling
techniques; Section III introduces the proposed method;
Section IV quantitatively analyzes the proposed decoder G
using a test problem in which the number of disconnected
regions in the feasible domain can be adjusted; Section V
verifies the effectiveness of the proposed method using a
topology optimization problem by comparing it with existing
decoder methods and typical constraint-handling methods;
and finally, Section VI concludes the paper.

II. REVIEW OF DECODER-BASED
CONSTRAINT-HANDLING
Many evolutionary computation methods, including
CMA-ES, were designed by assuming unconstrained opti-
mization or optimization with only rectangular constraints.
Therefore, when applying them to constrained optimization,
it is necessary to use them in conjunction with constraint-
handling methods. The penalty function method is widely
used in engineering as a constraint-handling method owing
to its versatility and ease of implementation. However, the
optimization becomes inefficient if the penalty coefficients
are not well adjusted; if the penalty is too small, the con-
straints will be violated, and if the penalty is too large,
the landscape of the penalized objective function will have
a deceptive structure (i.e., a globally weak structure [27]),
as shown in Figure 1. It is empirically known that CMA-ES
can appropriately search on globally well-structured func-
tions (i.e., functions with a big valley structure); however,
it often fails to locate good local optimal solutions on globally
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FIGURE 1. Landscape of the penalized objective function when the
penalty coefficient is too large. The feasible subdomains are inside the
red circles. The color map shows the penalized objective function values.

weakly structured functions (i.e., functions with a deceptive
structure) [28], [39]. Therefore, such a constraint-handling
method is not suitable for BBO problems with disconnected
feasible subdomains.

The advantages of using a decoder include the following
factors. First, we believe that optimizing the transformed
problem in Equation (2) is expected to be much easier than
optimizing the original problem Equation (1); if we have
a decoder satisfying G(Z) ≈ X, then the optimization
method only needs to consider the simple boundary of the
convex domain Z, and effective constraint-handling methods
have been proposed for such constraints (e.g., [47]). Second,
we can utilize the fact that the computational cost of the
constraint function gj is significantly lower than that of the
objective function f . In the case of the penalty function
method, it is necessary to evaluate f , which is expensive
even when the constraint violations are large and the objec-
tive function values are not necessary to guide the search
method. By contrast, learning a decoder requires considerable
access to constraint functions, but the cost is relatively small.
Searching for the function defined in Equation (2) using the
learned decoder on Z corresponds to searching only in the
feasible domainX; thus, the number of f -calls can be reduced.
Therefore, when the measure of the feasible domainX is very
small compared with the measure of the search domain S,
it is expected that optimization can be achieved in less
time.

In [35], amethodwas proposed to create a quasi-isomorphic
map between X and an n-dimensional hypercube Z as the
decoder. This mapping was defined non-explicitly by a line
search between the generated candidate solution z and a
predefined reference point (a feasible solution). The disad-
vantage of this method was that the decoder tended to project
an infeasible solution to the feasible domain in which the
reference point was located. Therefore, domain knowledge
of the problem and trial-and-error are required to determine a
reasonable reference point. In [12], a method using a support
vector data description (SVDD) was proposed to model and

train a decoder using a dataset consisting of feasible and
infeasible solutions. This method alleviated the tendency to
select a single feasible domain, but it required the preparation
of the training dataset in advance. The SVDD-based decoder
method required expert knowledge of the problem and human
effort to design and train the decoder. If we can obtain a
decoder without domain knowledge or human effort, we can
automatically transform a difficult problem (Equation (1))
into a relatively simple problem (Equation (2)); however,
to the best of our knowledge, such a method has not yet been
explored.

The purpose of this work is to automate the design of
the decoder G : Z → X and facilitate the handling of
explicit constraints in BBO, where the feasible domain is
the union of several disconnected domains. As the feasi-
ble domain X is disconnected, the decoder must be able
to represent highly nonlinear maps. Recent developments
in deep generative models, such as generative adversarial
networks (GANs) [21], variable auto-encoders (VAEs) [34],
and flow-based deep generative models (flows) [15], have
shown promising performance in terms of representing highly
nonlinear mappings. However, unlikemachine learning tasks,
in which deep generative models are usually applied, the
difficulty in using deep generative models in this research is
that we do not have prior training data at hand. To address
this difficulty, we propose a new training method that does
not require the prior collection of training data.

In this study, we propose a method for training a decoder
using a deep neural network. To represent a highly nonlinear
mapping, it is necessary to use a deep network; however, the
deeper the network, the more difficult it becomes to stably
learn a disconnected feasible domain, and it is easy to obtain
a model that can only represent a few disconnected domains.
This phenomenon is similar to the well-knownmode collapse
observed in deep generative models. To solve this problem,
we propose to divide the decoder network into sub-models,
define a loss function for each sub-model, and train each
sub-model sequentially. Numerical experiments show that the
proposedmethod can stably learnmany disconnected feasible
domains without using training data.

III. PROPOSED METHOD
The primary research question in this study is that of how
to train a decoder G without preparing the training data in
advance, that is, without human effort. In GANs, we train a
generator such that its output is indistinguishable from the
training data by the discriminator. In the current context,
the training data correspond to a feasible solution set in the
feasible domain X; however, we do not have such training
data. Instead, we use the information that the constraint func-
tions gj that define X are explicit.

A. DESIGN PRINCIPLE
We consider that G should have the following properties:
(a) G is a surjection from latent space Z ⊆ Rn to feasi-
ble domain X ⊆ Rn; (b) in each feasible subdomain, X`,
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G−1 : X` → Z is continuous; and (c) in the latent space,
two neighboring points z1, z2 ∈ Z are projected onto the
same feasible subdomain X` or onto neighboring feasible
subdomains X` and X′`. These properties are desirable for
successful optimization by transforming the original opti-
mization problem defined in Equation (1) into the problem in
Equation (2). Requirement (a) is necessary because if x∗ =
argminx∈S f (x) /∈ G(Z), then solving the transformed prob-
lem will not yield the optimal solution x∗. The requirements
(b) and (c) represent a type of continuity; if a small change
in the latent space leads to a large change in its projection,
a sudden change in the objective function value occurs. Con-
sequently, even if the original objective function f is unimodal
and has a good scale, the transformed objective function
f ◦ G can either be multimodal or have a bad scale. The
above requirements are intended to prevent these problems
from occurring.

We represent a decoder G that satisfies the above require-
ments by using neural networks (NN) Gθ : Rn

→ Rn. In the
following, we consider the latent space Z of the decoder to
be equal to the search domain S. In this case, we can consider
learning Gθ by minimizing the loss function, as follows:

L(θ ) = Ez∼Pz
[
‖z− Gθ (z)‖2 + γ · φ (Gθ (z))

]
, (3)

where Pz represents a probability distribution on Z ⊆ Rn and
φ : Rn

→ R>0 is an aggregation of constraint violations. For
example, it can be defined as

φ(x) =
1
m

m∑
j=1

min
{
gj (5Z(x)) , 0

}
+ ‖x−5Z(x)‖2, (4)

where 5Z : Rn
→ Z is the projection onto Z. As we

assume that Z = S is a hyper-rectangle and it is easy to
force the decoder to output solutions in Z, e.g., by using
Tanh output activation, we can often ignore the projection.
By training the NN according to Equation (3), we expect
z = Gθ (z) if z ∈ X, and Gθ (z) to be a projection from z
to the nearest feasible domain if z /∈ X. When training the
decoderGθ , we generateM samples, z1, . . . , zM (calledmini-
batch), from Pz independently every iteration and apply mini-
batch training. In other words, the expected value Ez∼Pz is
minimized by replacing it with the sample mean 1

M

∑M
i=1 for

the newly generated mini-batches in each iteration. Note that
this loss function does not require the preparation of training
data, such as feasible solution sets, in advance.

By training Gθ using Equation (3) as the loss function,
we expect to obtain Gθ , such that Gθ (z) ∈ X for any z ∈ Z.
However, as shown in Section IV, Gθ (Z) trained using the
loss function above tends to be biased toward some regions
of X. In standard generative models, such as GANs, the
phenomenon of output bias toward some training data is
notorious as a mode collapse. In this study, we did not use
training data; therefore, the phenomenon described above is
not necessarily the same as general mode decay; however,
it is similar. Here, we refer to mode collapse as the state in

which the NNmodel learns only a portion of the disconnected
feasible domain. In the next section, we present the pro-
posed structure and loss function of an NN that avoids mode
collapse.

B. PROPOSED STRUCTURE AND TRAINING SCHEME FOR
DEEP DECODER NETWORK
One reason for mode collapse is that the decoder network has
insufficient representational capability. To learn mapping to a
disconnected region, such as the one targeted in this study, it is
necessary to use a network with sufficient expressive power,
that is, a sufficiently deep network. However, the deeper the
network, the more unstable its learning is.

The first idea is to introduce a skip connection into the
decoder network. When the loss function is defined as in
Equation (3), the first term requires that Gθ is close to an
isomorphic map. However, it is challenging to realize iso-
morphic mapping in deep neural networks. To reduce the
difficulty, we incorporated the skip connection proposed by
ResNet [31] into the model structure.

A skip connection is a structure in which an input to the
model is added to the output. That is, we have Gθ (z) =
z + Gres

θ (z), where the model to be trained is the residual
block Gres

θ : Z → Rn. By adopting a skip connection, only
the difference between z and the feasible domain X must be
represented by Gres

θ . This is expected to reduce the learn-
ing difficulty compared with simply learning the mapping
from Z to X.
Consequent upon preliminary experiments, the number of

feasible domains that decoder Gθ can learn was improved by
introducing a skip connection. However, in tasks with numer-
ous disconnected feasible domains, we have not been able to
prevent mode collapse, in whichGθ (Z) is biased toward some
regions. This may be due to the difficulty of training Gθ such
that all z /∈ X are projected to the nearest feasible domainX`.
If both the mini-batch size and the capacity of Gθ are large,
it would be feasible. However, in reality, the mini-batch size
is finite, and when θ is updated to project a finite number of
latent vectors to X =

⋃
`X`, the latent vectors that are not

in the mini-batch are mapped to X`. Once such a mapping is
learned, it is difficult to correct it because when θ is updated
such that an input z is mapped to X`, the constraint term is
dominant in Equation (3). If z is incorrectly projected to a
distant X`, and we try to move it to a neighboring X` by the
effect of homogeneous mapping, a single parameter update
will only take z out of the constraint momentarily, and it will
be quickly pushed back to the originalX` when the constraint
term is dominant.

The second innovation represents the decoder Gθ as a
composite Gθ = GθK ◦ · · · ◦ Gθ1 of several sub-models
Gθ1 , . . . ,GθK , and trains each sub-model Gθk independently.
For input z, we define x0 = z and xk = Gθk (xk−1). In this
case, Gθ : z 7→ xK and xK are the final output. The idea
is to gradually move the input data closer to X each time it
passes through each sub-model Gθk ; thus, the difference in
the mapping of Gθk is small and mode collapse is prevented
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FIGURE 2. Visualization of the sequences x0 = z, x1 = Gθ1 (x0), . . . ,
xK = GθK−1

(xK−1) generated by inputting several latent vectors z (star)
to the decoder obtained by SeqTrain (the proposed approach).

(see Figure 2). Each sub-model Gθk is represented using a
skip connection, Gθk (x) = x + Gres

θk
(x), as shown in the first

device, and is trained according to the loss function

Lk (θk ) := Ez∼Pz
[
‖xk−1 − Gθk (xk−1)‖

2

+ γk · φ(Gθk (xk−1))
]
, (5)

where γk = γ0αk−1 are the penalty coefficients. The reason
for increasing the coefficients γk exponentially is to align
the differences between the mappings of each sub-model Gθk
as much as possible. Because the output xk approaches X
as k increases, the constraint term decreases as k increases.
In other words, to equalize the weight of the constraint
term with the first term for each loss function Lk , it is
appropriate to increase the coefficient γk as k increases.
This idea is expected to alleviate the aforementioned
problems.

The third innovation is to train the coupled model sequen-
tially. The simplest way to train the coupled model Gθ =
GθK ◦ · · · ◦ Gθ1 described above is to update the training
parameters of all the sub-modelsGθk simultaneously at every
iteration. By contrast, in the proposed method, we train the
connected sub-models Gθk starting from k = 1. Initially,
only the model Gθ1 is trained using Equation (5). After a
certain number of training iterations, the parameter θ1 is
fixed. Next, the model Gθ2 is trained. In this case, the input
to the summodel Gθ2 is Gθ1 (z) for each input z. This process
is repeated until k = K . In other words, there is always
only a single sub-model Gθk being trained, and its input is
the output of model Gθk−1 ◦ · · · ◦ Gθ1 with fixed parameters.
The advantage of sequential training is that the number of
models can be increased indefinitely by repeating the afore-
mentioned operations; therefore, there is no need to determine
the number of models K in advance. In addition, by starting
with a small value of the coefficient γk of the constraint term
and increasing the number of models while observing the

Algorithm 1 Sequential Decoder Training
for k = 1, . . . ,K do

γk ← γ0α
k−1

for Itr = 1, . . . , Itrmax do
zi ∼ Pz for i ∈ {1, . . . ,M}
xk−1,i← Gθk−1 ◦ · · · ◦ Gθ1 (zi) for i ∈ {1, . . . ,M}
Approx. (5) with mini-batch loss L̂k (θk )
Train θk with ∇L̂k (θk )

end for
end for
return G = GθK ◦ · · · ◦ Gθ1

situation, we can reduce the risk of setting γk too large and
causing mode collapse.

The proposed training scheme for the decoder network is
summarized in Algorithm 1.

IV. QUANTITATIVE EVALUATION OF TRAINED DECODER
ON TEST PROBLEM
This experiment was performed to quantitatively evaluate
the effectiveness of the proposed decoder training method
in learning disconnected feasible domains. We focused on
determining the number of regions that could be learnedwhen
the feasible domain was the union of several disconnected
regions; that is, X =

⋃L
`=1X` and X` ∩ X`′ = ∅ for

any ` 6= `′.
First, we designed a test problem to quantitatively evaluate

the number of learned feasible domains X in model Gθ .
Using this test problem, we focused on (i) the coverage of
disconnected regions (see below) and (ii) the search per-
formance using a trained decoder. Using these two metrics,
we quantitativelymeasured the quality of the decoder training
method.

A. TEST PROBLEM
To evaluate indices (i) and (ii), we define the following test
problem on S = [−1, 1]n:

f (x) := ‖x− x∗f ‖
2

g(x) := min
`=1,...,L

{max{0, ‖x− x∗`‖
2
− ε2}},

where x∗` ∈ Rn denotes a uniform randomly generated vector
from [−1 + ε, 1 − ε]n. The feasible domain is the union
of L disconnected closed hyperspheres, B̄(x∗`, ε). In other
words, X =

⋃L
`=1X`, where X` = B̄(x∗`, ε). The number

of disconnected feasible subdomains and their volumes are
easily controllable by changing L and ε. Moreover, because
the location of each feasible subdomain is clear, it is suitable
for analyzing the quality of trained decoders.

The optimal solution of the objective function x∗f ∈
[−1, 1]n is randomly sampled such that x∗f /∈ X, and the opti-
mal solution to the test problem is at the boundary of the near-
est feasible domain from x∗f , that is, x

∗
= argminy∈X‖x

∗
f −y‖.

The number of dimensions was n = 10, the number of
feasible domains was L = 100, and the radius was ε = 0.25.
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TABLE 1. Network architecture specifications. The decoder comprised K
sub-models, Gθ = GθK ◦ · · · ◦ Gθ1 , and each sub-model was Gθk (x) = x+

Gres
θk

(x). Batch normalization (BN) and an activation function were
applied before each dense layer (i.e., fully connected layer)
if they are indicated in the table.

The ratio of the feasible domain X to the search domain S =
[−1, 1]n was L · [π

n
2 /0( n2 + 1)] · (ε/2)n ≈ 2.38× 10−7; the

feasible domain of the test problem was very small compared
with that of the search domain.

B. EXPERIMENTAL SETTING
The structure of each sub-model Gθk (k = 1, . . . ,K ) is
described in Table 1. Mish [44] is similar to ReLU, which
is widely used as an activation function; however, Mish is
non-flat and smooth everywhere, and the loss function is also
smooth, making it easier to optimize than ReLU. The number
of sub-models in the coupled model was set to K = 10,
the initial value of the coefficients of the constraint term
was γ0 = 0.1, and the increasing coefficient was α = 1.3.
The ADAM optimizer [33] was used for training, with a
mini-batch size of 128, a learning rate of 0.001, and β1 =
0.3. A uniform distribution U (S) was used as the generating
distribution Pz of z. The maximum number of training iter-
ations was set to 20 × 104, and the number of training iter-
ations for each sub-model during sequential training was set
to 20× 104/K = 2× 104.
The data used by the chosen existing decoder methods,

a decoder with Homomorphous Mapping (HM) [35] and
decoder with SVDD [12], that is, the set of feasible solutions,
were collected by minimizing the constraint violations as the
objective function by CMA-ES and saving the feasible solu-
tions obtained in the search process. When g was minimized
and the search distribution enters the feasible domain, most
of the candidate solutions become feasible solutions, their
objective function values all become zero, and the search dis-
tribution starts a random search within the feasible domain.
The search distribution was restarted every time 100 feasible
solutions were collected, and feasible solutions spanning as
many regions as possible were collected.

We define the following two evaluation indices for the
model G after training:

feasibility := Pr[G(z) ∈ X : z ∼ U (S)].
coverage := #{` ∈ J1,LK : Pr[G(z) ∈ X` 6 Pcov/L]}/L.

Here, feasibility denotes the probability that G(Z) will
enterX and coverage denotes the fraction of the disconnected
partially executable region X` that G has learned. In our

experiments, we set Pcov = 0.01, and the probability Pr was
estimated using the Monte Carlo method separately from the
mini-batch, with 215 samples z ∼ Pz. By examining these two
metrics, we can evaluate how well model G is learning X.
Optimization of the test problem using CMA-ES with

the trained decoder model was conducted for 20 trials. For
each trial, the mean vector, step size, and covariance matrix
were initialized to m(0)

∼ U (S), σ (0)
= 2/5 = 0.4, and

C(0)
= In, respectively. The true optimal solution of the

objective function was set to x∗f ∼ U (S) for each trial,
and the optimal solution of the problem x∗ was initialized
accordingly. Each trial was terminated when the maximum
number of evaluations of the objective function reached
15,000 or when ‖G(m) − x∗‖2 6 10−2 was satisfied. If the
latter termination condition was satisfied, it was considered
a successful trial as this condition is satisfied only when the
feasible subdomain where x∗ exists is located.

Because infeasible solutions may be generated even with
a trained decoder G, we combined CMA-ES and the
constraint-handling method ε-ordering [50] to handle such
solutions and optimize them. ε-ordering is based on the
constraint violation φ(x) =

∑m
j=1max

(
0, gj(x)

)
, and ranks

solutions using the ε-level comparison defined by

{f (x1), φ(x1)} 6ε {f (x2), φ(x2)}

⇔


f (x1) 6 f (x2) if φ(x1), φ(x2) 6 ε(t)
f (x1) 6 f (x2) if φ(x1) = φ(x2)
φ(x1) < φ(x2) otherwise,

where ε(t) is defined as

ε(t) =

{
ε(0)

(
1− t

Tc

)cp
if 0 < t < Tc

0 otherwise
ε(0) = φ(xθ ).

Here, φ(xθ ) (θ = d0.2Ne) is the value of 20% of the
constraint violation amount of infeasible solutions out of the
N = 100 solutions generated from the initial search distribu-
tion of the CMA-ES,1 Tc is the maximum number of itera-
tions (Tc = 0.8 Tmax) and cp = 5. The algorithm prioritizes
the objective function while allowing constraint violations
in the early stages of the optimization, but gradually increases
the weight of the constraint function and emphasizes it in the
final stages to eventually converge to the feasible domain.
The top three methods in the CEC2020 Competitions on
Real-World Single-Objective Constrained Optimization that
dealt with single-objective constrained problems based on
real problems [22], [37], [38] employ ε-ordering and its
improved versions. In addition, they are particularly effective
for problems where obtaining a feasible solution is difficult.
As a baseline, we also show the results of optimization using

1When using a decoder, many of the generated solutions are feasible.
To calculate the constraint violation amount, it is desirable to generate a
sufficient number of solutions. Even if numerous solutions are generated,
the computational cost is assumed to be sufficiently low because only the
constraint functions are evaluated.
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CMA-ES with ε-ordering without using a decoder, i.e., G :
x 7→ x (denoted as BruteForce).

C. RESULTS AND DISCUSSION
We first check the effectiveness of the proposed training
method, and then we examine the effect of transforming the
search domain using the decoder on the optimization results.

1) EFFECT OF COMPONENT-WISE LOSS FUNCTION
In the proposed method, we confirmed that training each
sub-model using the loss function defined in Equation (5)
leads to the suppression of mode collapse; consequently,
a large number of feasible domains X can be trained. For
this purpose, we compared the following three approaches:
(1) SeqTrain (sequential training) is a method in which
sub-models are trained sequentially; (2) SimulTrain (simul-
taneous training) trains all sub-models simultaneously, but
with the same loss function and architecture as SeqTrain;
and (3) SingleFix uses the same architecture as SeqTrain and
SimulTrain, but trains the entire model using the single loss
function defined in Equation (3). By comparing SingleFix
with the other two, we can determine the effect of training
each sub-model with multiple loss functions.

The feasibility and coverage of the decoder G obtained
after training are summarized in Table 2. The SingleFix result
shows that feasibility was improved by increasing the coef-
ficient of the penalty term γ , but the coverage was low in
both cases, indicating that only a small portion of the feasible
domain can be trained. By contrast, the proposed methods,
SeqTrain and SimulTrain, which use multiple loss functions,
show a significant improvement in coverage compared to
SingleFix in most settings. The fact that there is a large
difference in coverage between SingleFix and the proposed
method, even though the final model size is exactly the same,
indicates that the use of multiple loss functions facilitates the
learning of complex distributions.

2) EFFECT OF SEQUENTIAL TRAINING
Next, we confirmed the effectiveness of the proposed sequen-
tial training. The coverage of SimulTrain is remarkably low
when α = 1.6, which is the rate of increase in the penalty
coefficient γk . This is attributable to the fact that the coeffi-
cient of the loss function γk is too large for the models after
the middle of the connected models. The coefficients γk are
designed based on the assumption that the value of the penalty
term decreases as the method progresses to later models.
However, there is no guarantee that the penalty term of later
models will be smaller because the mapping ‘‘moving the
input slightly in the direction ofX’’ is not learned in the initial
stages of SimulTrain training. In other words, the penalty
term of the latter model is likely to be dominant, and mode
collapse will occur at this time, as described in Section III.
After this occurs, because it cannot be repaired, the coverage
converges to 0.02 until the end without recovering.

However, because SeqTrain trains eachmodel sequentially,
the possibility of such a problem occurring is low. The results

FIGURE 3. Visualization of the decoder trained using SeqTrain. Left:
Contours and heat map of f (G(z)) on Z. Right: Image of G(z) when z is
sampled evenly over Z at 50× 50 = 2500 points. The interior of the red
circle represents the feasible domain and the orange points represent the
points projected onto the infeasible domain. The color bars represent the
objective function values of the points projected onto the feasible
domain.

FIGURE 4. Visualization of decoders obtained by HM: (a) reference point
is the same as the optimal solution; (b) reference point is located in a
feasible subdomain where the optimal solution does not exist. (Please
see the caption of Figure 3 for details.).

of SeqTrain confirm that SimulTrain can train approximately
80% of the regions when the coverage is set to 0.02. However,
there is a decrease in the coverage compared to α = 1.3;
therefore, although it is relatively robust to the increasing
rate α, there is a possibility of mode collapse if it is too large.

3) EFFECT ON OPTIMIZATION RESULTS
The feasibility and coverage of the models trained using each
method and the success rate after 20 optimizations of the
problem using the trained models are shown in Table 3.

The success rate of BruteForce was 0.18, indicating that
optimizing the test problem directly was difficult.2 On the

2Although the performance of CMA-ESwith ε-ordering (BruteForce) was
not competitive in this experiment, it was better than that of other penalty
function-based approaches, such as augmented Lagrangian constraint han-
dling [6] and the penalty function method with manually tuned penalty
coefficient.
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TABLE 2. Results of a typical single trial obtained during three trials in each setting. A similar trend was observed in all trials. α and γ0 in SeqTrain and
SimulTrain, respectively, are parameters that determine the penalty coefficient γk = γ0α

k−1 in the loss function Lk (Equation (5)) of each sub-model Gθk .
The parameter γ in SingleFix represents the penalty coefficient in the loss function (Equation (3)).

other hand, the proposed method achieved a success rate as
high as 0.7, indicating that the search domain was trans-
formed using decoder G, which made the optimization pro-
cess easier.

The comparison of the success rates between the methods
confirms that the proposedmethod achieves the highest value.
This means that the search domain transformed using the
proposed decoder G can be transformed into a space that is
easiest (among the compared methods) for the optimization
method to search. A visualization of the acquired G is shown
in Figure 3, which shows that the proposed method acquires
a Voronoi-like map, where the center of each disconnected
feasible domain is the representative point. This indicates that
the design principle of the proposedmethod, which states that
the nearest z should be projected onto the nearest x, has been
realized.

Although the feasibility and coverage of the model
obtained by the decoder with SVDD [12] are comparable to
those of the proposed method, the success rate is zero. This
is because the output G(Z) of the decoder G is degenerate.
When the decoder has numerous regions to learn, the output
of each region tends to converge to a point in exchange for
learning the numerous regions. Consequently, even if it learns
the region where the optimal solution is located, it cannot
reach the area around the optimal solution.

The results of the decoder with HM [35] show that while
the feasibility is 1, the coverage is 0.01, meaning that only one
disconnected region of the feasible domain has been learned.
In this method, G(z) is calculated via a line search between
the feasible solution and latent variable z, which is called the
reference point; thus, a feasible solution is always obtained.
However, when the feasible domain is disconnected and the
measure of the feasible domain is very small compared to the
search domain, as in this experiment, it is extremely difficult
to find a feasible domain other than the region with the
reference point using a line search. This phenomenon is illus-
trated in Figure 4. Figure 4 shows a heat map of f (G(Z)) for
different reference points in a problem with dimensionality
n = 2, domain L = 8, and optimal solution of the objective
function f (x) = ‖x − x∗f ‖

2, where x∗f = [0.25, 0.25]T for
the different reference points. Figure 4a, where the reference
point is the same as the optimal solution of [0.25, 0.25]T,
confirms that feasible solutions are obtained for regions other
than the region where the reference point is located. However,
in Figure 4b, where the reference point is different from
the optimal solution, most of the points in z are projected

TABLE 3. Feasibility and coverage of the decoder G determined by each
method and the success rate of optimizing the problem using the decoder
G. BruteForce is the result of direct optimization without using the
decoder G. For SeqTrain, the model shown in Table 2 was used among
the models obtained from three decoder training trials. The success rates
were 0.8 and 0.7 when the other two models were used.

onto the region where the reference point is located. In other
words, in the 10-dimensional experiment, the coverage was
0.01 because only feasible solutions were obtained in the
region where the reference point was located, and the success
rate was zero because the reference point did not coincide
with the region where the optimal solution was located.

V. APPLICATION TO TOPOLOGY OPTIMIZATION
PROBLEM
The experiment outlined in this section was conducted to con-
firm the effectiveness of the proposedmethod in transforming
optimization problems by using an example TO that is closer
to a real-world problem. As mentioned in Section I, TO with
volume fraction and perimeter constraints is expected to have
disconnected feasible subdomains.

A. MBB BEAM
In the experiment outlined in this section, we used the Python
implementation of a classic problem in topology optimiza-
tion: the symmetric MBB beam [1], [49]. Figure 5 shows
the design domain, anchorage of the structure, and location
of the external force. The objective of this problem is to
determine a structure in a finite design domain that mini-
mizes the distortion of the beam when an external force is
applied.

Following the modified SIMP method [7], [55], which is
commonly used in TO, the MBB beam was formulated as
follows:

min
ρ

f (ρ) = UTKU =
∑
e

uTe keue

s.t. KU = F

g =
V (ρ)
V ∗
− 1 =

∑
e

νeρe

V ∗
− 1 6 0

0 6 ρe 6 1,
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FIGURE 5. Symmetric MBB-beam design area, fixation points, and
external force locations.

where K , U , and F denote the overall stiffness matrix, dis-
placement vector, and external force vector, respectively. The
subscript e refers to each element, where ke = k(ρe) =
E(ρe)k0e is the element’s stiffness matrix and k0e is the ele-
ment’s stiffness matrix for the unit Young’s modulus. ρ is the
design variable, and each element ρe ∈ [0, 1] represents the
density. V (ρ) is the volume of the structure, and V ∗ is the
upper bound of the volume. The first constraint implies that
the structure is not broken by external forces, the second is
a volume constraint, and the third is an upper- and lower-
bound constraint. The Young’s modulus for each element of
the design variables is defined by

E(ρe) = Emin + ρ
p
e (E0 − Emin), (6)

where p is the penalty factor, Emin = 10−9 is a value that
prevents the calculation from failing if the element is empty,
and E0 = 1 is the Young’s modulus of the solid.

In this experiment, the size of the design domain was set to
32× 32, and the design variable was set to x ∈ S = [−1, 1]n

during optimization using CMA-ES, which was converted to
[0, 1]32×32 during the evaluation of the objective function.

In addition to the preceding formulation, we imposed a
perimeter constraint defined by

g(x) := Q(Sign(x))− Qth,

where Q : {−1, 1}n → R+ is the perimeter length, Qth
is the upper limit, and Sign : [−1, 1]n → {−1, 1}n is
a function that converts each element of x to −1 if it is
less than or equal to zero, and 1 otherwise. The perimeter
length constraint imposes a limit on the perimeter length of
a structure, which reduces its complexity to the extent that it
can be manufactured [4], [24]. We set Qth = 256, and the
upper limit of the volume constraint was set such that the
ratio of the volume of the structure to that of the entire design
domain (= 1024) was 0.2.

B. EXPERIMENTAL SETTING
In this experiment, we used convolutional neural networks
(CNNs) as the decoder G. The specifications of the network
architecture are presented in Table 4. The number of models
was set to K = 10, the initial value of the coefficients
of the constraint term was γ0 = 0.1, and the increasing

TABLE 4. Network architecture specifications. The decoder was the
composite of K sub-models, Gθ = GθK ◦ · · · ◦ Gθ1 , and each sub-model
was Gθk (x) = x+ Gres

θk
(x).

coefficient was α = 1.3. ADAM [33] was used for training,
with a mini-batch size of 64, a learning rate of 0.0001, and
β1 = 0.3. A uniform distribution U (S) was used as the gen-
erating distribution Pz of z. The number of updates for each
sub-model Gθk in the training was set to 100000 iterations.
The training data collection method for SVDD and HM was
the same as that for Section IV.
Because the perimeter constraint is calculated by con-

verting the design variables to binary values, the gradient
becomes zero everywhere; this means that the training of the
model will not proceed. To avoid this, we used a proxy model
V : Rn

→ R+, which approximates the perimeter functionQ.
The surrogate model V was trained to minimize the mean
squared error

minimize : Ez∼Pz
[
(V(G(z))− Q(G(z)))2

]
.

The proxy model V was updated once before updating Gθk in
each iteration.

CMA-ES optimization using the trained model was per-
formed for 20 trials for SeqTrain and three trials for SVDD
and HM. For each trial, the mean vector, step size, and covari-
ance matrix were initialized as m(0)

∼ U (S), σ (0)
= 2/5 =

0.4, and C(0)
= In, respectively. The end condition of each

trial was set to be when the maximum number of evaluations
of the objective function reached 200000. For other CMA-ES
settings, we used the values recommended in [26]. To han-
dle infeasible solutions, CMA-ES and ε-ordering were com-
bined for optimization, as in the experiment in Section IV.
As a baseline, we show the results of 20 trials of opti-
mization using CMA-ES with ε-ordering without a decoder
(BruteForce).

One of the weaknesses of decoder-based optimization is
that it is impossible to obtain a solution that is not included
in the image of the trained decoder. In this experiment,
after optimizing the decoder obtained by SeqTrain, we also
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FIGURE 6. Three-trial behavior of the (left) objective function f (m(t)) and
(right) constraint function g(m(t)) on the mean vector m(t) during
optimization using (a) BruteForce, (b) Decoder with HM, (c) Decoder with
SVDD, and (d) Decoder with SeqTrain (proposed). The same color
indicates the same trial. The horizontal axis represents the number of
evaluations performed.

performed hybrid optimization using BruteForce on the
obtained results. First, a solution search was performed on the
decoder for half the maximum number of evaluations. The
resulting solution was then locally searched by BruteForce,
with this solution taken to be the initial mean vectorm(0) with
a small initial step size σ (0)

= 0.01. This hybrid approach
searches for a feasible solution with a superior objective
function value on a global scale using a decoder, and it refines
the solution locally in the latter half of the process without
being bound by the expressive power of the decoder.

C. RESULTS AND DISCUSSION
Table 5 summarizes the objective function values f (mlast)
in the mean vector obtained after MBB-beam optimiza-
tion. The SIMP method is a gradient-based method widely

FIGURE 7. Visualization of the optimization process using the proposed
method’s decoder, G. First column: mean vector m(t); second column:
xmap = G(m(t)); third column: Sign(xmap), at iteration (a) t = 0, (b) 100,
(c) 200, (d) 300, and (e) at the end of optimization. The displayed image is
a 1D vector transformed to 32× 32.

used in topology optimization. We implemented the SIMP
solver published at the same URL [1] as the MBB-beam
publication.

The results in Table 5 confirm that the minimization of
the objective function does not proceed adequately in the
optimization using SVDD or HM. The behavior of the vol-
frac and perimeter constraints for each optimization process
illustrated in Figure 6 exhibits almost no change. Because the
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TABLE 5. Average value of the objective function f (mlast) at the mean vector mlast of CMA-ES obtained after the optimization of the MBB beam. The
mean and standard deviation of 20 trials (all of which obtained feasible solutions) are shown for SeqTrain and Hybrid, the mean and standard
deviation of 16 out of 20 trials in which feasible solutions were obtained are shown for BruteForce, and the means of three trials are shown
for SVDD and HM. The mean and standard deviation at the end of the first stage in Hybrid were 123.6 and 8.98, respectively.

FIGURE 8. Visualization of the mean vectors obtained by BruteForce:
(a) trial converged to a feasible solution; and (b) trial converged to an
infeasible solution. Left column: mlast; right column: Sign(mlast).

FIGURE 9. Visualization of the final optimization solution obtained using
SIMP. Left: solution x; right: Sign(x).

same behavior is observed in all three trials, it is highly likely
that the output of the decoderG is limited to a very small area,
which is why the optimization does not proceed. As discussed
in Section IV-C, when the number of disconnected feasible
domains in SVDD or HM is large, it is difficult to learn an
appropriate decoder, which makes them unsuitable for this
type of problem.

The results of BruteForce and SeqTrain in Table 5 con-
firm that both methods obtain the same or better objective
function value compared with that of the SIMP topology
optimization method. Note, however, that BruteForce con-
verged outside of the constraint in 4 out of 20 trials; hence,
only the average value of 16 trials is shown. The behavior

of the optimization process for the three trials of BruteForce
in Figure 6 indicates that one trial continued to violate the
volumetric (volfrac) constraint. This indicates that themethod
is converging to outside the constraint. It can be seen that
in the failed trials, the clumps are relatively large. To sat-
isfy the volume constraint in this state, it is necessary to
decrease each element. However, when a hole is created in
the clump, the perimeter length increases rapidly, and such
a solution is difficult to select in the optimization process.
In other words, it is difficult to escape this situation when the
search distribution is small. On the other hand, in a search
using a decoder G as in the proposed method, the search
domain is generally a feasible domain, so the possibility of
convergence to an unconstrained local solution is extremely
low. We can also confirm the advantage of the decoder-based
approach over BruteForce in terms of the number of f -calls
mentioned in Section II. BruteForce did not locate a feasible
solution before 105 f -calls, whereas the proposed approach
already located a feasible solution with a good f -value before
105 f -calls.
The advantage of the proposed decoder-based optimization

method is best observed in the hybrid method. Although Seq-
Train can stably obtain feasible solutions, it cannot search for
solutions that cannot be represented by the decoder; therefore,
it is difficult to reduce the objective function value even if the
search is continued after obtaining a good global structure.
On the other hand, in BruteForce, if a feasible domain with a
good global structure can be found, a small objective function
value can be obtained; however, the rate of finding such a
feasible domain is small, and the optimization results show
a large variation from trial to trial. When a hybrid method
is used, a stable and excellent global structure is found, and
the objective function value can be reduced by subsequent
refinement.

VI. CONCLUSION
In this study, we proposed a decoder-based constraint-
handling method that transforms an explicitly constrained
BBO problem (Equation (1)), where the feasible domain X is
a union of several disconnected regions, into an optimization
problem (Equation (2)), where the search domain is feasi-
ble almost everywhere. We designed a method to represent
the mapping (decoder) from the latent space Z, which is a
convex set, to the disconnected feasible domain X using a
deep neural network, and to learn it without using training
data. In the proposed method, the decoder is represented as
a composite of multiple sub-models, each of which has skip

VOLUME 10, 2022 117511



N. Sakamoto et al.: Explicitly Constrained Black-Box Optimization With Disconnected Feasible Domains

connections. The loss function of each sub-model is defined
independently, and the sub-models are trained sequentially.
Numerical experiments using a test problem and a topol-
ogy optimization problem show that the proposed method
can find feasible domains with better objective function val-
ues and higher probability than both conventional decoder-
based constraint-handling methods and non-decoder-based
constraint-handling methods.

We recommend the hybrid method, as shown in Section V,
as a way to use the decoder proposed in this study. First,
the decoder was trained using the proposed method. Because
the training of the decoder does not require the evaluation
of the objective function value, which is computationally
expensive, we can obtain a decoderG∗ with sufficient perfor-
mance by adjusting the training parameters using the ratio of
feasible solutions as an indicator. Next, the trained decoder
G∗ was used to solve the minimization problem defined by
Equation (2) to obtain the solution z∗. This allowed us to
globally search for a feasible domain with a good objec-
tive function value. However, because the decoder does not
necessarily represent the entire feasible domain, there is
room for improvement. Finally, we locally solved the min-
imization problem defined in Equation (1), with G∗(z∗) as
the initial solution, to refine the solution within the feasi-
ble domain where G∗(z∗) exists. The topology optimization
results (Section V) show that the hybrid method can sta-
bly obtain a feasible solution with a lower objective func-
tion value than optimizing Equation (1) or Equation (2)
alone.

There are three elements in the proposed method that must
be determined by the user. The first is the initial value, γ0,
of the loss function’s penalty term’s coefficient γk and its
rate of increase, α. As shown in Section IV-C, if γk is larger
than necessary, mode collapse may occur, and G may learn
only a part of the region. To prevent this, it is recommended
that the initial value γ0 and the rate of increase α be mini-
mized. However, as such values depend on the scale of the
constraint function, investigating the guidelines for deter-
mining these hyperparameters will contribute to performance
improvement. The second is the architecture ofG. To obtain a
betterG, it is desirable to select an architecture that considers
the characteristics of the task. In the experiments in this
study, we chose a network with fully connected layers for
a toy problem and a network with convolutional layers for
a topology optimization problem. For the latter, we used
prior knowledge that the design variable in our topology
optimization problem is naturally treated as a 2D grayscale
image and that convolutional layers are known to excel at
handling image formats in the machine learning field. Unless
such prior knowledge is available, fully connected layers with
number of nodes a few times greater than the input dimension
n may be the default choice. Choosing a reasonable net-
work architecture may sometimes require expert knowledge
in neural networks. The third is the termination condition of
the training. In the experiments conducted in this study, the
end condition of each connected model was unified at 200k

iterations. However, for different tasks and models, this may
result in inadequate training. Currently, only the convergence
curve of the loss function and the feasibility ratio of the model
output guide the termination condition, and these need to
be determined by the user through trial-and-error. However,
this adjustment requires practical experience in deep learning,
which is a weakness of the proposed method. If there is an
index to evaluate the goodness of the model, such as the
spread and continuity of the model output, the adjustment
of the proposed method will be easier and the quality of the
acquired model will be improved. These are important issues
to be addressed in the future.
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