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ABSTRACT Nowadays Automatic Speech Recognition (ASR) systems can accurately recognize which
words are said. However, due to the disfluency, grammatical error, and other phenomena in spontaneous
speech, the verbatim transcription of ASR impairs its readability, which is crucial for human comprehension
and downstream tasks processing that need to understand the meaning and purpose of what is spoken. In this
work, we formulate theASR post-processing for readability (APR) as a sequence-to-sequence text generation
problem that aims to transform the incorrect and noisy ASR output into readable text for humans and
downstream tasks. We leverage the Metadata Extraction (MDE) corpus to construct a task-specific dataset
for our study. To solve the problem of too little training data, we propose a novel data augmentation method
that synthesizes large-scale training data from the grammatical error correction dataset. We propose a model
based on the pre-trained language model to perform the APR task and train the model with a two-stage
training strategy to better exploit the augmented data. On the constructed test set, our approach outperforms
the best baseline system by a large margin of 17.53 on BLEU and 13.26 on readability-aware WER
(RA-WER). The human evaluation also shows that our model can generate more human-readable transcripts
than the baseline method.

INDEX TERMS Automatic post-editing, ASR post-processing for readability, data augmentation,
pre-trained language model, natural language processing.

I. INTRODUCTION
ASR systems have reached great recognition accuracy, even
outperforming professional human transcribers on conversa-
tional telephone speech in terms of Word Error Rate (WER),
thanks to the fast advancement of speech-to-text technol-
ogy [1]. However, spontaneous speech is riddled with dis-
fluency, informal expression, grammatical errors, and other
noises that make it difficult to comprehend. For example,
in an utterance such as ‘‘I want a flight ticket to Boston,
uh, I mean to Denver on Friday’’, the speaker means to
communicate ‘‘I want a flight ticket to Denver on Friday.’’
The segment ‘‘to Boston, uh, I mean’’ in the speech transcript
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is not helpful for interpreting the intent of the sentence.While
theASR system is excellent at distinguishingwhichwords are
said, it tends to transcribe the speech verbatim while ignoring
the readability of the output text. Therefore, for the above
example, ASR systems optimized for recognition accuracy
will keep all words including disfluencies, increasing the
cognitive load of the reader and impairing the performance
of downstream tasks.

Automatic speech transcription that is highly readable for
humans is required for applications like automatic subtitle
generation [2], [3] and meeting minutes generation [4], [5],
while machine translation [6], [7], dialogue systems [8], [9],
voice search [10], [11], voice question answering [12], [13],
and many other applications require highly readable tran-
scriptions to generate the bestmachine response. If the system
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is unable to deal with deficiencies in speech transcription,
it will have a substantial negative impact on the application
users’ experience.

In this paper, we formulate generating human-readable
text from ASR transcripts as a sequence-to-sequence
(seq2seq) text generation problem, which we call the
ASR post-processing for readability (APR). The APR
aims to transform the ASR output into a readable text
for humans and downstream natural language processing
(NLP) tasks. Readability in this context means having
proper segmentation, capitalization, and no grammatical
errors or speech disfluencies. The APR can be treated as a
style transfer, converting informal speech to formal written
language.

Since there is no off-the-shelf dataset for the APR task,
we construct the desired dataset from the RT-03 MDE Train-
ingData [14], which includes speech audio, human transcript,
and annotation. We follow the annotation guideline [15] to
parse the human transcript and annotation file to get the
speech and readable transcript pairs. After data processing,
we obtained about 27k samples for the APR task. To solve
the training data scarcity problem, in addition to directly
fine-tuning the model, we propose a novel data augmenta-
tion method that synthesizes large-scale training data using
Grammatical Error Correction (GEC) corpora. First, we used
a text-to-speech (TTS) system to convert the ungrammatical
sentences to speech. Then, we use an ASR system to tran-
scribe the TTS output. Finally, we use the output of the ASR
system and the original grammatical sentences to create the
data pairs. By this means, we produced 1.1 million training
samples for the APR task.

We build a Transformer-based model to perform the APR
task. Our model is based on the Robustly Optimized BERT
Pretraining Approach (RoBERTa) [16], which is a pre-trained
language model used for natural language understanding
tasks. Inspired by the UNIfied pre-trained Language Model
(UniLM) [17], which applies self-attention masks on the
Bidirectional Encoder Representations from Transformers
(BERT) [18] to convert it into a seq2seq model, we adapt
the RoBERTa towards a seq2seq model for the APR task
with a specific self-attention mask and autoregressive pre-
diction. We use a two-stage training strategy, consisting of
pre-training and fine-tuning, in order to maximize the benefit
of the augmented data. Because of this two-phase training,
not only is it possible to get important knowledge from
the augmented data, but it also eliminates the possibility of
being overwhelmed and negatively influenced by augmented
data.

On the test split of the constructed dataset, we evaluate
our approach and compare it with multiple baseline systems.
Our approach beats the best baseline system that includes an
extra step of removing disfluencies by 17.53 on BLEU and
13.26 on readability-aware WER (RA-WER), respectively.
The results of the human evaluation also reveal that our
approach produces more human-readable transcripts for ASR
output than the baseline method.

Our main contributions can be summarized as follows:
• We formulate the problem of making ASR output more
human-readable to a seq2seq text generation problem:
ASR post-processing for readability (APR). It aims to
solve the shortcomings of the traditional post-processing
concept/methods by jointly performing error correction
and readability improvements in one step.

• We construct a dataset for training and evaluating the
APR task. To address the lack of training data, we pro-
pose a novel data augmentation method to synthesize
large-scale training data to pre-train the language model.

• Utilizing a two-stage training strategy, our proposed
model outperforms the baselines in both automatic and
human evaluation.

We note that a shorter conference version of this paper
appeared in Liao et al. [19]. Our initial conference paper
omitted many details due to the page limit and only com-
pared with an in-house baseline system in the experiment.
This manuscript complements the missing information on
datasets and approaches, and provides extensive experiments
and further discussions. The additional experiments include:
• We compare the proposed approach with several online
speech-to-text (STT) services apart from an in-house
STT system.

• We analyze the contribution of each step of the baseline
system to the final readability with respect to reference
sentences.

• We make a comparison of using other models instead of
our proposed model to perform the APR task.

• Besides the ASR system we use in this work, we also
conduct an experiment to see how much gain the
proposed approach provides on top of different ASR
systems.

II. RELATED WORK
A. ASR POST-PROCESSING
ASR post-processing is the process of editing the output tran-
scripts of an ASR system, where the ASR system is usually
used as a black box and users do not have access to the inter-
nals of the system. The purpose of ASR post-processing can
be divided into two categories: improving the performance of
the ASR system in terms of recognition accuracy or meeting
the final goal of the system.

One type of ASR post-processing is to enhance the
performance of ASR systems. The optimization goal of
ASR systems is to pursue high recognition accuracy. Post-
processing can further improve this metric without chang-
ing the ASR system. [20] contains an overview of previous
works on error detection and correction for ASR. Besides,
Guo et al. [21] trained an LSTM-based seq2seq model to cor-
rect spelling errors. Hrinchuk et al. [22] investigated the use
of Transfomer-based architectures for the correction of ASR
output into grammatically and semantically correct forms.

The other type of ASR post-processing is to change the
form of ASR output to meet the requirements of human
understanding or downstream task handling. This type of
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processing usuallymodifies the sentence display format, such
as adding capitalization and punctuation [23], [24], [25], [26],
[27], [28], correcting grammatical errors [29], [30], [31],
[32], removing disfluencies [33], [34], and formatting dates,
times, and other numerical entities [35].

Unlike the two aforementioned types of ASR post-
processing, our APR task post-process the ASR output
to obtain the highly readable text for human and down-
stream tasks. Readability in this context means having proper
segmentation, capitalization, and no grammatical errors or
speech disfluencies. From this definition, we can see that
our APR task contains both types of ASR post-processing
mentioned above.

B. METADATA EXTRACTION
Metadata extraction (MDE) [36] shares the goal of our APR
task, which is making ASR transcripts more human-readable.
The MDE research, which is part of the DARPA EARS
program [37], intends to improve speech recognition output
by adding automatically tagged information on the location
of sentence boundaries, speech disfluencies, and other key
phenomena. The purpose of MDE is to allow technologies
that can improve raw Speech-To-Text output into forms
that are more useful to people and downstream automated
processes. Simply put, this entails the generation of auto-
mated transcripts that are as readable as possible. On top
of verbatim transcription, MDE divides the aim into many
classification tasks. The Hidden Markov Model [38], [39],
Maximum Entropy, and Conditional Random Fields [38],
[40] approaches are used in most MDE systems to handle
both the textual and prosodic information.

There are three main differences between the APR and
the MDE. Firstly, The MDE decomposes the task goal into
multiple classification tasks to obtain the annotated text,
which then requires subsequent processing to get the final
result. While the APR directly gets the readable text from
the raw text in an end-to-end manner. Secondly, the methods
adopted by the MDE require the input of textual and prosodic
information, while the APR only requires text information
as the input. Thirdly, while the MDE improves the read-
ability of ASR transcripts to a certain extent, it ignores the
recognition errors introduced by the ASR system. Thus the
MDE needs to work with other ASR post-processing compo-
nents such as language model rescoring to provide the final
human-readable transcript. The APR can simultaneously cor-
rect recognition errors from ASR systems without additional
processing steps.

C. PRE-TRAINED LANGUAGE MODEL
Recently pre-training approaches [41], [42], [43] have been
used for many NLP tasks. Large language models pre-trained
on massive text collections have shown surprising emer-
gent capabilities to generate text and perform zero- and
few-shot learning [44], [45], [46], [47], [48]. The most suc-
cessful pre-trained language models are based on the Trans-
former [49] architecture and trained with self-supervised

tasks such as mask language model, and denoising autoen-
coders. Among them, BERT [18] and RoBERTa [16] are
single-stack Transformer encoders; GPT & GPT-2 [50], [51]
and XLNET [52] are single-stack Transformer decoders;
UniLM [17] is a single-stack Transformer serving both
encoder and decoder roles; and MASS [53], BART [54]
and T5 [55] are standard Tranformer encoder-decoder
architectures.

We adapt RoBERTa with the self-attentive mechanism to
support the seq2seq objective, which preserves the excellent
performance of RoBERTa on natural language understanding
tasks while enabling it to be used for natural language gener-
ation tasks.

III. DATASETS
A. APR DATASET CONSTRUCTION
To the best of our knowledge, there is no readily available
dataset that can be utilized for the APR task. As a result,
we create the necessary dataset from the MDE corpus,1

namely the MDE RT-03 Training Data Text and Annotations
corpus. Specifically, this data was gathered to support the
DARPA EARS (Efficient, Affordable, Reusable Speech-to-
Text) Program in Metadata Extraction (MDE), which pur-
sues an objective that is quite similar to the APR. The data
in this release comprises transcripts and annotations from
English Conversational Telephone Speech (CTS) and Broad-
cast News (BN). The conversational speech from CTS has
more grammatical faults and speech disfluencies, making it
more difficult for the model to convert into readable scripts,
but it is also more prevalent in reality. As a result, we solely
utilize CTS data to construct the dataset for the APR task.

The CTS data was drawn from the Switchboard
corpus [56], of which the transcripts and annotations cover
approximately 40 hours of CTS audios of casual and conver-
sational speech. The annotation files are provided in RTTM2

format developed by NIST to support the EARS Program.
The RTTM format labels each token in the reference tran-
script according to the properties it displays, such as lex-
eme, non-lexeme, edit, filler, segment, etc. Next, we briefly
describe these properties used in annotation.

Annotators identified four sorts of fillers in the MDE
annotation standard [15]: filled pauses like ‘‘uh’’ and ‘‘um’’,
discourse markers like ‘‘you know’’, asides and parenthet-
icals, and editing terms like ‘‘sorry’’ and ‘‘I mean’’. Edit
disfluencies are also recognized, with the full extent of the
disfluency (or string of adjacent disfluencies) and interrup-
tion points (IP) annotated. Annotators also identify SUs
(alternately semantic units, sense units, syntactic units, slash
units, or sentence units), which are units within the discourse
that serve to communicate a speaker’s whole thinking or
idea. The purpose of SU labeling, like that of disfluency
annotation, is to increase transcript readability by presenting
information in short, organized, coherent pieces rather than

1https://catalog.ldc.upenn.edu/LDC2004T12
2http://www.nist.gov/speech/tests/rt/rt2003/fall/index.htm
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long turns or stories. There are four types of sentence-level
SUs: statements, questions, backchannels, and incomplete
SUs. The annotation process additionally determines a num-
ber of sub-sentence SU boundaries (coordination and clausal
SUs) to improve inter-annotator consistency.

By parsing the annotation files, we get the transcript with
metadata annotation, which, for example, uses ‘/.’ for state-
ment boundaries (SU), ‘<>’ for fillers, ‘[]’ for disfluency
edit words, and ‘*’ for interruption points inside edit disflu-
encies. The following example shows an ASR transcript with
metadata annotation:

and < uh > < you know > wash your clothes
wherever you are /. and [ you ] * you
really get used to the outdoors ./

The transcripts containing annotatedmetadatamust be pro-
cessed in order to produce a human-readable text. By cleaning
up the metadata annotations, we construct a readable target
transcript, in which the deletable section of edit disfluencies
and fillers is deleted, and each SU is presented as a separate
line inside the transcript. To enhance the readability of the
transcript, we uppercase the first word of each sentence.
After these processes, the above transcript with metadata
annotation becomes a readable text: ‘‘And wash your clothes
wherever you are. And you really get used to the outdoors.’’

After the above processing, we obtain 27,355 readable
transcripts in total. The corresponding speech duration is
about 34 hours. By pairing them with corresponding speech
transcripts, we obtain the input and output samples for the
proposed APR model (Section IV-B). About 1K samples are
extracted for validation and testing, respectively. We ensure
that samples of training, validation, and testing come from
different conversations.

B. AUGMENTED DATA SYNTHESIS
Typically, transformer-based models are trained on
millions of parallel sentence pairs, and they have a high
tendency to overfit when the data is insufficient. To over-
come this challenge, Hrinchuk et al. [22] proposed two
self-complementary regularization strategies. Besides ini-
tializing the model weights using the pre-trained language
model, the other solution is data augmentation. Inspired by
this, we propose a novel data augmentation method for the
APR.

By starting with a grammatical error correction (GEC)
dataset as the seed data, we are able to generate large-scale
training data. The GEC aims to correct different kinds of
errors such as spelling, punctuation, grammatical, and word
choice errors [57]. The GEC data samples contain grammat-
ically correct and incorrect sentence pairs. A human corrects
the grammatically incorrect sentence to obtain the target
grammatically correct sentence. Table 1 shows an example
sentence pair taken from the GEC dataset for illustration.
With its help, we can incorporate more forms of mistakes that
are not exclusive to our ASR system, allowing us to make the
APR model more general.

TABLE 1. A GEC data sample is shown. The input is a sentence with some
grammatical errors. The output is a grammatically correct sentence.

Figure 1 depicts the steps involved in data synthesis. The
ungrammatical sentences are first converted to speech using a
text-to-speech (TTS) system. Then, these audio files are sent
into an ASR system, which generates the corresponding tran-
scripts. The generated text incorporates both the grammatical
faults discovered originally in the GEC dataset as well as
the problems discovered through the TTS plus ASR pipeline.
In the last step, we pair the ASR system’s outputs with the
original grammatical sentences as the training examples for
the APR task.

Specifically, the TTS system that we use is a Tacotron2
model [58], which is composed of a recurrent seq2seq feature
prediction network that maps character embeddings to mel-
scale spectrograms, followed by a modified WaveNet model
acting as a vocoder to synthesize time-domain waveforms
from those spectrograms. Trained directly on normalized
character sequences and corresponding speech waveforms,
Tacotron2 can synthesize natural sounding speech that is
difficult to distinguish from real human speech. We fed the
grammatically incorrect sentences from the seed corpus into
Tacotron2 to produce the audio files simulating human speak-
ers. To simulate the diversity of speech, we configure the
TTS system using 220 speaker features to synthesize the
speech audio. These speaker features diversify with different
gender, speaking rates, prosody, etc, which imitate the various
speakers in the real world. Each sentence randomly selected
one speaker, and all speakers have the same number of
input sentences [59]. In addition to the mentioned simulation
method, we also tried using the top-k best output of the ASR
system to augment our dataset tenfold. However, we found
that the augmented dataset is not beneficial, due to the lack
of diversity in the resulting sentences, which often differ only
in some characters.

The ASR system that we use is a hybrid model using
contextual layer trajectory LSTM (cltLSTM) [60] for acous-
tic modeling. It decouples the responsibilities of temporal
modeling and target classification from each other, using time
and depth LSTMs, respectively, and integrates future context
frames in order to get additional information for accurate
acoustic modeling. The input feature is an 80-dimension log
Mel filter bank that is activated for every 20 milliseconds
(ms) of speech, which is accomplished via the use of frame
skipping [61]. The senone labels are modeled by 9404 nodes
in the softmax layer. Runtime decoding is carried out utilizing
a 5-gram LM with a decoding graph of around 5 gigabytes
(Gbs). The cltLSTM has a lookahead of 24 frames, which
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FIGURE 1. The process of data synthesis is shown. The top sentence pair is from the GEC dataset. The bottom sentence pair
is an APR instance. The source sentence of the APR is obtained from the source sentence of the GEC dataset processed by
the TTS and ASR systems. The target sentence of the GEC dataset remains unchanged and is used as the target sentence for
the APR.

amounts to a period of 480 milliseconds. The training of the
cltLSTMmodel exploits a three-stage training strategy: from
cross-entropy to maximummutual information [62], and then
followed by sequential teacher-student learning [63].

We used the data from the datasets provided by restricted
tracks of BEA 2019 shared task [64] as our seed cor-
pora for data synthesis. Specifically, we collected data from
FCE [65], Lang-8 Corpus of Learner English [66], [67], and
W&I+LOCNESS [64], [68], totaling to around 1.1 million
samples. The total duration of speech data synthesized using
the TTS system is about 1335 hours. Through the above pro-
cess, we obtained the augmented training dataset containing
1.1M sentence pairs. The statistics of the augmented dataset
are shown in Table 2.

IV. APPROACHES
In this section, we first introduce the multi-head attention
network of the Transformer, through which we adapt the
RoBERTa to a sequence-to-sequence (seq2seq) generative
model (Section IV-A). Then, we describe the proposed model
based on RoBERTa for the APR task (Section IV-B). Finally,
we present a two-stage training strategy (Section IV-C) to
better utilize the augmented data to train the proposed APR
model.

TABLE 2. Dataset statistics are shown. We create synthetic data from the
seed corpus using the synthesis process described in Section III-B. Seed
corpus FCE, W&I+LOCNESS, and Lang-8 Corpus are used to synthesize the
augmented training data.

A. BACKGROUND
As shown in the left part of Figure 2, the proposedAPRmodel
is based on RoBERTa [16], which is a robustly optimized
BERT [18] pre-training approach. BERT and RoBERTa both
contain a single Transformer stack. Transformer is a com-
monly used model architecture with multiple layers and each
layer is composed of a multi-head attention network followed
by a feed-forward neural network. The modification of our
model to RoBERTa is mainly implemented through multi-
head attention. Therefore, we introduce the multi-head atten-
tion network in Transformer.
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FIGURE 2. The schematic diagram of the proposed APR model. The left part is the proposed APR model based on the
modified RoBERTa. The right part is the self-attention mask of the Transformer layer for the seq2seq task.

Specifically, the input sequence x = (x1, x2, . . . , xn) is
first embedded into H0

= [h01, . . . ,h
0
n], and then encoded

into contextual representations at different levels of abstract
Hl
= [hl1, . . . ,h

l
n] using an L-layer Transformer Hl

=

Transformerl(Hl−1), where Transformerl is the l-th Trans-
former layer and l ∈ [1,L]. To aggregate the output vectors
of the previous layer, multi-head attention is adopted in each
Transformer layer. The output of one head of the multi-head
attention Attentionl is computed for the l-th Transformer
layer as follows:

Ql = Hl−1WQ
l , Kl = Hl−1WK

l , Vl = Hl−1WV
l

(1)

Mij =

{
0, allow to attend
−∞, prevent from attending

(2)

Attentionl = softmax

(
QlK>l
√
dk
+M

)
Vl (3)

where the previous layer’s output Hl−1
∈ Rn×dh is linearly

projected to a triple of queries, keys and values using parame-
ter matricesWQ

l ,W
K
l ,W

V
l respectively, and the mask matrix

M ∈ Rn×n decides whether a pair of tokens can be attended
to each other. When computing a token’s contextualized rep-
resentation, the mask matrix M is utilized to determine what
context it can attend to.

B. APR MODEL
RoBERTa is pre-trained exclusively via bidirectional LM,
which allows all tokens to attend to each other in prediction.
As indicated in Equation 2, the self-attention mask M is a
zero matrix, so that every token is allowed to attend across all
positions in the input sequence. This setting makes its behav-
iormore discriminative rather than generative. In their speech
recognition correction work, Hrinchuk et al. [22] showed the

success of transfer learning fromBERT to the seq2seq task by
initializing both the encoder and the decoder with pre-trained
BERT. Inspire by their work, we follow UniLM [17] and
use specific self-attention masks to the RoBERTa model to
select what context the prediction conditions on. In this case,
it is transformed into a seq2seq generation model. During
the training process, we use an autoregressive technique to
achieve whole-sentence prediction rather than only masked-
position predictions. Another advantage of using this strategy
is that the model is capable of accurately predicting the end of
a sentence. So there is no need to tweak the maximum output
length and length penalty in the same way that the UniLM
fine-tuning is accomplished.

Specifically, the mask matrix M used for the seq2seq
objective is shown in the right part of Figure 2. The left part
ofM is set to 0 in order that all tokens are able to attend to the
first segment. The top right part of M is set to −∞ in order
to prevent attention from the source segment to the target
segment. Furthermore, we set the upper triangular section of
the bottom right part of M to −∞, while the other elements
are set to 0, preventing tokens in the target segment from
attending their future (right) positions.

After adapting to a generative model via the custom atten-
tion mask, the APR model is trained using seq2seq [6],
[69] learning. Specifically, given a source sentence x =
(x1, x2, . . . , xn), a seq2seq model learns to generate its target
sentence y = (y1, y2, . . . , ym). The model is usually trained
bymaximizing the log-likelihood of the training source-target
sentence pairs:

L(θ;D) =
∑

(x,y)∈D
logP (y | x; θ)

=

∑
(x,y)∈D

log
m∏
t=1

P
(
yt | y<t , x; θ

)
(4)
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where D denotes the training set (i.e., source-target parallel
sentence pairs) and θ denotes the parameters of the model.
During inference, the decoder generates output y autoregres-
sively by maximizing P(y | x; θ̂ ):

P(y | x; θ̂ ) =
m∏
t=1

P(yt | y<t , x; θ̂ ) (5)

where θ̂ denotes the parameters of the model learned in
training.

In the training phase, we concatenate the source and target
segments with special tokens as the input and train the model
with teacher-forced maximum likelihood. For example, given
source segment t1t2t3 and its target segment t4t5, we feed
input ‘‘[SOS]t1t2t3[EOS]t4t5[EOS]’’ into the model. In the
inference phase, we feed the model ‘‘[SOS]t1t2t3[EOS]’’ as
input, then the model will autoregressively output the pre-
dicted segment ‘‘t4t5’’ until generates [EOS] token.

C. TWO-STAGE TRAINING
As previously stated in Section III-B, the augmented data
from the GEC corpus is beneficial in terms of generalizing
the APR model. Therefore, as shown in Figure 3(a), we can
train the APRmodel with amixed training set containing gold
data and augmented data:

D = Dgold ∪Daug (6)

where Dgold and Daug denote the gold and the augmented
training data respectively. However, due to the fact that the
GEC corpus is created fromwritten language, the synthesized
source transcript does not include numerous speech disfluen-
cies and other faults that are common in spoken language.
If we combine the augmented data and gold data during
model training, as a consequence, the enormous augmented
data has a tendency to overwhelm the gold data and add
unneeded and even erroneous editing knowledge, which is
detrimental to readability. In order to tackle this issue, we fol-
low the lead of Zhang et al. [70] and train the model utilizing
augmented data and gold data in two stages: pre-training and
fine-tuning.

As shown in Figure 3(b), in the first stage we train the
model with the augmented dataDaug using seq2seq learning:

ψ̂ = argmax
ψ

∑
(x,y)∈Daug

logP(y | x;ψ) (7)

where the ψ̂ denotes the parameters of the model learned in
the pre-training stage. In the second stage we fine-tune the
pre-trained model with the gold data Dgold using seq2seq
learning:

θ̂ = argmax
θ

∑
(x,y)∈Dgold

logP(y | x, ψ̂; θ ) (8)

where the θ̂ denotes the parameters of themodel learned in the
fine-tuning stage and is used during inference in Equation 5.

During the pre-training and fine-tuning stages of the pro-
cess, the augmented data is not processed in the same way as

FIGURE 3. Comparison between simultaneous training and two-stage
training.

the gold data. Instead, it just serves as prior knowledge that
may be updated, if necessary, and even completely rewrit-
ten during the fine-tuning step. As a result, the model can
learn more successfully from the gold data since it isn’t
distracted by the augmented data. Moreover, by segmenting
the augmented and gold data into separate training stages, the
model becomes more tolerant of noise in the augmented data,
lowering the quality requirement for the augmented data and
allowing the model to accept noisier augmented data, or even
training data from other tasks, during the training stage. It is
via this two-stage training process that the model not only
learns critical information from the augmented data, but it
also avoids being overloaded and adversely impacted by the
augmented data.

V. EXPERIMENTAL SETTINGS
A. EVALUATION METRICS
In light of the fact that our goal is to increase the readability
of automatic speech transcription, the word error rate (WER),
a typical measure that is frequently used in speech recogni-
tion, is not appropriate for our application. Instead, as part of
our research, we looked at the usefulness and consistency of
many measures that are either directly or indirectly derived
from related tasks such as speech recognition and machine
translation, or that are modified from them.
• Speech Recognition Metric Our research first focused
on extending the traditional WER in speech recognition
to readability-aware WER (RA-WER) by omitting the
text normalization step prior to computing the Leven-
shtein distance. We considered any mismatches owing
to grammatical flaws, disfluency, as well as inappro-
priate capitalization, punctuation, and written numerical
entity forms, to be errors. If there are other references,
we chose the one that is themost similar to the candidate.

• Machine Translation Metric Alternatively, the APR
task may be seen as a translation problem from a spoken
transcript to a more easily understandable written text.
As a result, wemaymake use of the Bilingual Evaluation
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Understudy (BLEU) [71] score, which is frequently used
in machine translation to assess the performance of the
APR task in this scenario. In BLEU, the precision score
is computed over variable-length of n-grams with length
penalty [72] and optionally with smoothing [73].

B. BASELINE METHODS
In this work, we study the ASR post-processing for the
readability task that aims to improve the readability of the
ASR transcript. Therefore, we need baselines with the same
or similar goal to the APR task. To the best of our knowledge,
the most similar system with the goal of the APR task is
inverse text normalization. Inverse Text Normalization (ITN)
is the process of converting spoken text to its written form.
ITN is commonly used to convert the output of an auto-
matic speech recognition (ASR) system to increase the read-
ability for users and automatic downstream processes [74].
Almost all commercial STT services incorporate the ITN to
increase the readability for users and automatic downstream
processes. We choose four STT services that provide the
audio transcription as the baseline systems including an in-
house Speech-to-Text service, Google Cloud Speech-to-Text
service,3 Microsoft Azure Speech-to-Text service,4 and IBM
Watson Speech-to-Text service.5

Note we take these STT services as a black box, which
means that we input the audio file and get the readable text
from the service output in one shot. On the contrary, our
approach is applied in an explicit step-by-step manner, i.e.
ASR and ASR post-processing, where the ASR system is the
same hybrid model used for synthesizing the augmented data
(Section III-B).

C. MODEL TRAINING
Based on the RoBERTa-large architecture (24-layer,
1024-hidden, 16-heads, 355M parameters), our model is
developed using PyTorch on top of the Huggingface Trans-
formers library.6 We train our model using the Adam opti-
mizer [75] (β1 = 0.9, β2 = 0.999) for 3 epochs and a batch
size of 8 for each GPU. After warming up throughout the first
tenth of all steps to a peak value of 2.5e-6, the learning rate
linearly declines. For each model, 4 NVIDIA V100 GPUs
with 32GB of memory and mixed-precision are used in the
training process. In accordance with Vaswani et al. [49],
we utilized label smoothing of 0.1 for regularization. Our
vocabulary is the same as the 50K byte-level BPE vocabulary
used by RoBERTa, which allows us to directly transfer its
pre-trained weights. When it comes to both training phases,
we employ the same training setting. In the fine-tuning stage,
we choose checkpoints based on the validation set and set the
beam size for beam search to 5 after searching in {1, 3, 5, 7}.

3https://cloud.google.com/speech-to-text
4https://azure.microsoft.com/en-us/services/cognitive-services/speech-

to-text/
5https://www.ibm.com/cloud/watson-speech-to-text
6https://github.com/huggingface/Transformers

TABLE 3. Performance of our approach and baseline systems on the test
set of the APR data.

VI. RESULTS AND DISCUSSION
A. MAIN RESULTS
Table 3 shows the results of proposed APR models and
baseline methods on the test set of the APR task.

In Table 3, we can see that all four speech-to-text ser-
vices achieve comparable performance and lag much behind
our approach. Our approach outperforms the in-house STT
service baseline by a significant margin of 18.51 RA-WER
points and 20.9 BLEU points (absolute value). This is rea-
sonable because readability is not the eventual goal of the
baseline systems, and they tend to transcribe the speech ver-
batim to ensure high recognition accuracy. On the contrary,
the goal of the APR task is ‘‘translating’’ the ASR transcript
into a highly readable text. Thus our approach trained on the
APR dataset demonstrates the superiority of improving the
readability of the ASR transcript.

We also conduct an ablation study on our approach by
removing the pre-training stage in the proposed two-stage
training strategy. Compared to the two-stage training (pre-
training & fine-tuning), training the APR model without
pre-training on the augmented data results in performance
degradation, which proves the effectiveness of the proposed
data augmentation method and the two-stage training strategy
for the APR task.

B. ANALYSIS OF BASELINE SYSTEM
The in-house STT service is a pipeline composed of three
components including a hybrid model, an n-best language
model (LM), and an inverse text normalization (ITN). Using
this pipeline can sequentially improve the accuracy of speech
recognition and optimize the display format for readability.

The hybrid model used in in-house STT service is the
same ASRmodel used for data augmentation (Section III-B).
ASR models are often supplemented by separately trained
language models that rescore the list of n-best hypotheses in
order to improve the accuracy of speech recognition. Specif-
ically, a stacked recurrent neural network with two unidi-
rectional Long Short-Term Memory (LSTM) layers [76] is
utilized as the languagemodel in this pipeline. After decoding
the ASR model output with beam search and rescoring the
n-best list with the language model, the pipeline modifies the
sentence display format for readability by invoking an ITN

117060 VOLUME 10, 2022



J. Liao et al.: APR: Task, Dataset and a Two-Stage Pre-Trained Approach

TABLE 4. Results on the test set of the APR data between the output of
each step of the in-house pipeline and the reference sentence.

service. Specifically, a rule-based weighted finite-state trans-
ducer (WFST) is used in the pipeline due to low tolerance
towards unrecoverable errors [77].

To better understand the contribution of each step of the
pipeline to readability, we compute metric scores between the
output of each step of the pipeline and the reference sentence
in Table 4.

From the table, we can see that the LM rescoring only
results in a 0.42 RA-WER decrease and a 0.58 BLEU pro-
motion. In an extremely informal and conversational speech,
recognition accuracy, particularly verbatim recognition, only
accounts for a tiny proportion of the readability. Differ-
ent from the APR task that aims to improve readability,
LM rescoring focuses on improving the accuracy of speech
recognition and overlooks factors related to readability, such
as segmentation and disfluencies.

The ITN is one of the processes in the pipeline that is
primarily concerned with increasing the readability of the
ASR transcript. The ITN is made up of various modules,
each of which performs a specific function. One module
attempts to determine if a sentence is a statement (which
requires the period ‘‘.’’ at the end) or a question (which
requires the question mark ‘‘?’’ at the end), and inserts proper
punctuation where necessary. Moreover, it must figure out
how to group together words to form sentences. Capital-
ization is handled by a separate module that is responsi-
ble for capitalizing names and the first word of sentences.
By means of these processes, the ITN further improves the
scores by 5.94 RA-WER and 7.71 BLEU, but not that far.
It goes without saying that appropriate capitalization and
punctuation are beneficial to readability, yet they are not
sufficient.

Although the ITN improves the readability of the ASR
transcript bymapping from spoken to written forms, it can not
handle disfluencies in spoken language, which is especially
common in spontaneous speech. To provide a fair comparison
with our approach, we add an extra step to the pipeline
for eliminating certain disfluencies. To be more specific,
we remove the often used filled pauses (e.g., uh, um) and
discourse markers (e.g., you know, I mean), and filter out
the repeated words by keeping just one of them (e.g., I’m
I’m→I’m, it’s it’s→it’s). With these simple operations of
removing some disfluencies, the performance gain is signifi-
cant (RA-WER 5.25, BLEU 3.37), which implies that disflu-
encies are the major factor in the gap between the baselines
and our approach.

TABLE 5. Results of using different models as the APR model. The ASR
system used in this experiment is the hybrid model.

C. COMPARISON OF APR MODELS
In this subsection, we make a comparison of using differ-
ent models to perform the APR task. Our proposed APR
model uses the RoBERTa as the backbone and adapts it to a
seq2seq model by using a specific self-attention mask. The
UniLM also adapts the BERT to a seq2seq model with a
particular self-attention mask. The main difference between
our model and the UniLM is that we use an autoregres-
sive approach to achieve whole-sentence prediction rather
than only masked-position prediction during the training pro-
cess, which utilizes training data more efficiently. We con-
duct an experiment to prove this in this subsection. Since
both our model and the UniLM are pre-trained models,
we also compare them with standard seq2seq models such
as LSTM-based and Transformer-based.

We briefly introduce baselines used in the subsection as
follows.
• LSTM-based seq2seq models are fundamental seq2seq
models, which employ an LSTM [78] to map a sen-
tence into a dense, fixed-length vector representation.
LSTM, as opposed to RNN, is useful for handling long
sequences, however it is unable to preserve the global
information of the sequences.

• Transformer-based seq2seq models are cutting-edge
seq2seq models that have been widely used to han-
dle a variety of NLP tasks such as machine transla-
tion and abstractive summarization. Transformer [49]
employs a self-attention mechanism that directly models
the relationships between all words in an input sequence,
independent of their order. Transformer, unlike LSTM,
processes the full input sequence at once rather than
iterating words one by one.

• UniLM is a pre-trained model using the BERT architec-
ture and three types of language modeling tasks: uni-
directional, bidirectional, and seq2seq prediction. The
unified modeling approach is achieved by employing
a shared Transformer network and utilizing specific
self-attention masks to control what context the predic-
tion conditions on. This allows the UniLM to be used for
both discriminative and generative tasks.

As shown in Table 5, the pre-trainedmodels (UniLM&our
model) perform much better than the vanilla seq2seq models
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(LSTM & Transformer). For all models, the performances
degrade when excluding the pre-training stage of the pro-
posed two-stage training strategy.

In the first group of Table, we can see that the Transformer
outperforms the LSTM when using the proposed two-stage
training. However, when training the Transformer directly on
the APR data (w/o pre-training), it underperforms the LSTM
without pre-training because of the problem of extreme over-
fitting on the relatively small training dataset. Pre-training
the Transformer with the augmented data can overcome
this problem, which brings a more significant improvement
(BLEU score 69.26 vs. 55.51) than for pre-trainedmodels like
UniLM (BLEU score 71.76 vs. 70.02).

In the second group of Table, we can see that ourmodel sur-
passes the UniLM, showing that the autoregressive approach
exploits training data more efficiently.

D. COMPARISON OF ASR SYSTEMS
In this work, we mainly focus on studying the ASR
post-processing for readability. Therefore, we use an off-the-
shelf hybrid model for ASR to obtain the transcript for the
input of theAPRmodel throughout thewholework. Although
we use the ASR system as is, it might be interesting to see
how much gain our approach provides on top of different
ASR systems. In this subsection we compare some end-to-
end ASR systems on the APR task.

Different from hybridmodels comprised of separate acous-
tic, pronunciation, and language modeling components that
are trained independently [79], [80], end-to-end trained
seq2seq ASR systems directly map the input acoustic speech
signal to grapheme or word sequences [81], [82], [83], [84],
[85]. In such seq2seq models, the acoustic, pronunciation,
and language modeling components are trained jointly in a
single system. Since these models directly predict graphemes
or words, the process of decoding utterances is greatly simpli-
fied. Because seq2seq models are easier to train and require
less human labor than a traditional approach, they are gaining
new popularity in both research and industry settings.

In this subsection, we compare several predominant
seq2seq models including connectionist temporal classifi-
cation (CTC) [83], the recurrent neural network transducer
(RNN-T) [82], attention-based encoder-decoder (or LAS:
Listen, Attend and Spell [81]). The CTC criterion was
proposed as a way of training end-to-end models without
requiring a frame-level alignment of the target labels for a
training utterance. The RNN-T augments the encoder net-
work from the CTC model architecture with a separate recur-
rent prediction network over the output symbols. Because
of its streaming nature, RNN-T has become a very promis-
ing end-to-end model in industry to replace the traditional
hybrid models. Attention-based models like LAS consist of
an encoder network, which maps the input acoustics into a
higher-level representation, and an attention-based decoder
that predicts the next output symbol conditioned on the full
sequence of previous predictions.

TABLE 6. Results of using different ASR systems to obtain the transcript
as the input for the APR task. The APR model used in this experiment is
the proposed model in this work.

As shown in Table 6, LAS, RNN-T, and Hybrid model
get comparable results, while CTC is significantly lower
than others. The main reason is that a CTC model is highly
dependent on the use of an external language model to have
acceptable accuracy. RNN-T and LAS models do not need
an external language model due to the existence of a decoder
component in the model. Among LAS, RNN-T, and Hybrid
model, LAS outperforms Hybrid model while RNN-T under-
performs Hybrid model. Previous works [86], [87] show a
similar trend in the accuracy rate of speech recognition in
terms of WER. Although the results in Table 6 are obtained
through additional post-processing for readability, it can be
seen that the performance of ASR systems is critical to down-
stream tasks such as theAPR task. This inspires us that we can
build an end-to-end speech recognition system for readability,
which directly maps the input acoustic speech signal to highly
readable text to avoid the error propagation between ASR and
ASR post-processing steps. We leave it to future study.

E. HUMAN EVALUATION
Because readability is subjective, the BLEU score and the
RA-WER may not be congruent with what people really
perceive. Thus, we undertake a human evaluation on the
Switchboard corpus [56] in addition to the automatic eval-
uation. Our A/B test, in particular, was conducted in order to
compare our model with the baseline method. We created a
test set for human evaluation by selecting 100 audio samples
at random from a pool of source sentences ranging in length
from 20 to 60 words. These audio samples are sent into the
ASR system, which generates transcripts from them. After
that, we construct the output text using both the baseline
method (the in-house STT service) and our model, which
are both described above. There are three annotators who are
presented with the produced texts in a random sequence and
asked to identify the one that is most readable. To avoid bias,
the transcripts seen by the annotators were randomly shuffled,
and the approach used to construct each transcript was kept
a secret. Annotators were given the option of listening to the
original audio if the produced text was difficult to understand.
Each sample is assigned three labels by three different anno-
tators. The ultimate decision is determined by amajority vote.

Annotators chose the output of our model 70 times out of
100 times (a win rate of 70%), indicating that our model is
judged as more readable than the baseline method, according
to the results of the human evaluation described above. This
is confirmed by the two-sided binomial test on our results,
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TABLE 7. Comparison of readable transcripts generated using the baseline method and the proposed model. The bold parts of sentences are corrections
for recognition errors.

which indicates that our model is statistically substantially
more readable than the baseline method, with a p-value of
less than 0.01.

F. CASE ANALYSIS
We compare the output samples of our approach with the
baseline method (the in-house STT service) in order to
undertake a qualitative study of readable transcripts gener-
ated by the proposed model. For reference, we also give
the ground truth of the APR dataset constructed from the
human-annotated MDE corpus (Section III-A). As seen in
Table 7, both the baseline method and our approach enhance
the readability of the ASR transcript by including punctuation
and capitalizing the names and initial words of sentences,
respectively. However, the baseline is maintained verbatim
by including all of the words from the ASR transcript, which
results in a disfluent sentence as well as improper segmen-
tation and punctuation of the phrase. For example, in the
first example, because of the impact of filler words (‘‘uh’’,
‘‘like’’), the baseline incorrectly splits the phrase and inserts
a question mark instead of a period (‘‘they have to pay any.
Uh, like federal tax, uh?’’). Our approach, in contrast to the
baseline, eliminates any words that create disfluency and
inserts accurate punctuation in the right places in the tran-
script to make the transcript more accessible and understand-
able. Using the third example, we can see how effective the

proposed model is in eliminating disfluencies. For example,
Our approach eliminates asides and parentheticals (‘‘as far as
i’m concerned because i’m i’m not a big vegetable eater’’) to
produce a coherent sentence that is consistent with the ground
truth.

Our approach, in addition to correcting punctuation and
capitalization problems, as well as reducing disfluencies, also
corrects certain recognition errors, which the baselinemethod
fails to accomplish. Table 7 has been highlighted with a bold
type font to draw attention to the inaccuracies that have been
fixed. This leads to an intriguing discovery: the final example
has the term ‘‘a post problems’’ replaced with ‘‘cause prob-
lems’’, which is distinct from the term ‘‘pose problems’’ in
the ground truth since the latter is not often used. While it is
true that the original user input is ‘‘pose’’, we might argue
that our model’s output is better readable for the majority of
human readers and machine applications if we do not take
personalization into account.

VII. CONCLUSION
In this work, we study the problem of improving the
readability of ASR output transcripts. We formulate the
ASR post-processing for readability as a seq2seq text gen-
eration problem, which means we intend to obtain the
human-readable text from the raw ASR output in one shot
and without any extra information except the textual input.
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We construct the dataset for this task from the MDE corpus.
To overcome the problem of relatively small training data,
we propose a novel data augmentation method that uses the
TTS plus ASR to synthesize large-scale training data from
GEC seed corpora. To make better use of the augmented
data, we utilize a two-stage training strategy. We exploit an
adapted RoBERTa pre-trained language model to perform the
APR task, which can directly ‘‘translate’’ the ASR output
to an error-free and readable transcript for human under-
standing and downstream tasks. We compare its performance
with a pipeline-based baseline method deployed in the in-
house speech-to-text service. Automatic and human evalua-
tion demonstrate that our model outperforms the traditional
pipeline-based baseline method and generates a more read-
able transcript.
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