
Received 13 September 2022, accepted 1 November 2022, date of publication 4 November 2022,
date of current version 15 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219875

Concurrency Control and Consistency Over
Erasure Coded Data
ANWITAMAN DATTA 1 AND FRÉDÉRIQUE OGGIER 2
1School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798
2School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798

Corresponding author: Anwitaman Datta (anwitaman@ntu.edu.sg)

The work of Anwitaman Datta was supported by the Ministry of Education (MoE), Singapore, under its Academic Research Fund Tier 1
though the Project Title ‘‘StorEdge: Data Store Along a Cloud-To-Thing Continuum with Integrity and Availability’’ under Project
2018-T1-002-076. The work of Frédérique Oggier was supported by Nanyang Technological University, Singapore, Start-Up Grant.

ABSTRACT For over a decade, erasure codes have become an integral part of large-scale data storage
solutions and data-centers. However, in commercial systems, they are, so far, used predominantly for static
data. In the meanwhile, there has also been almost a decade and a half of research on mutable erasure
coded data, looking at various associated issues, including update computation, concurrency control and
consistency, which has led to a variety of reasonably mature techniques. In this work we aim at curating and
systematizing this knowledge on managing mutable erasure coded data. We believe the time is right, both
because of the richness and maturity of the literature itself, and also, given the pervasiveness of erasure codes
in data-centers, because it is natural to expect a transition to accommodate mutable content using erasure
coded redundancy in order to support more diverse and versatile overlying applications, while benefiting
from the advantages (particularly, that of significantly lower storage overhead) of erasure codes.

INDEX TERMS Concurrency, consistency, distributed storage, erasure codes, mutable data, survey, tutorial.

I. INTRODUCTION
Large scale storage systems rely on data distribution and
redundancy to achieve scalability and provide fault-tolerance
in the event of failure of network components or storage
devices. At the data level, redundancy may be realized by the
means of replication or alternatively, erasure coding. Prior to
an explosion of the data volume to be stored, replication has
been the traditional choice of data redundancy. As of 2010,
researchers were still in a somewhat reluctant and exploratory
phase vis-a-vis erasure codes [1], wondering whether they
are suitable for data centers. However, considering on the
one hand the storage overheads incurred by replication, and
on the other hand, the significant reduction in storage over-
head for the same or even superior reliability provided by
erasure codes, the latter became pervasive in data centers
shortly thereafter, see e.g. [2] for Google architecture, [3] for
Microsoft Azure, [4] for Facebook, and [5] for Baidu.

The associate editor coordinating the review of this manuscript and

approving it for publication was Theofanis P. Raptis .

Having redundancy, whether in replicated or erasure coded
form, means that when some data is updated, then all forms
of redundancy involving this content must be updated accord-
ingly. This is not a trivial process. Every node in the storage
system is busy handling numerous tasks and thus might not
update data instantaneously, on top of being subject to failures
and communication outages. It is not clear (and in fact not
true) that at any given time point, all nodes have the same
updated content. This is the issue of consistency: when a
client user or application is requesting to access or modify
data, the storage system needs to agree on the content to
be returned or stored. The challenges are accentuated under
concurrency, when multiple clients may try to access/update
the data simultaneously. Techniques for concurrency control
and consistency over replicated data are mature. Already by
2010, there were over three decades of research on these
topics, see e.g. [6].

Depending on the application needs and user behaviors,
different stringency of consistency could suffice or be nec-
essary. As a first example, consider a collaboratively written
cloud hosted document. If the latest update of some data

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 118617

https://orcid.org/0000-0002-4203-1572
https://orcid.org/0000-0003-3141-3118
https://orcid.org/0000-0002-2906-584X

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

becomes unavailable to some users due to failures or latency
in the system, while such occasional glitches leading to users
working on stale copies may be detrimental to the user expe-
rience and (depending on the egregiousness of the glitches)
even to the reputation of a cloud service provider, it does
not entail the same consequences as losing or corrupting
a financial transaction for a banking system. Suppose two
financial transactions are being requested at the same time,
each trying to add the amounts of x and y respectively to an
account with an initial amount of z. The legitimate outcome
of these operations should lead to a final balance of x +
y + z. However, if each process reads the value z before the
other’s addition, and computes and writes the final amount by
adding x or y respectively to z, then, in absence of a proper
control and sequencing of the operations, the process that
last writes the content of its transaction will overwrite the
addition of amount done by the other process, resulting in
a wrong final amount of x + z or y + z. These scenarios
demonstrate that different applications may or not tolerate
different extent of inconsistencies, and accordingly, need to
manage concurrency of operations differently.

Managing data mutation over erasure coded redundancy is
complex.When an update is effectuated, erasure coded pieces
need to be recomputed, in a consistent manner when different
write processes happen concurrently. This implies the need
for keeping track of versions, the ability to establish an order-
ing of the operations, to recompute redundancy efficiently,
and yet to be able to support possible failures. That is why
most existing real-world deployments focus on storing cold
(that is infrequently accessed) data, and particularly static
data that does not mutate, while replication based redun-
dancy is preferred for hot and dynamic data. However, the
past decade has also witnessed a considerable body of work
addressing many of the prior gaps (see [7], for arguments
advocating for erasure coded storage systems to go beyond
archival storage by providing better update methods and pro-
vision of multiple levels of consistency). Erasure coding for
mutable content is thus becoming practical (at least for warm
data, where update rates are low or moderate, even if not yet
for hot data with high rates of change). We are at a cusp.
Similar to the transition roughly a decade back from purely
replication based redundancy to wide-spread use of erasure
codes for storing (static) data, we expect another transition
in the horizon, where even mutable content is increasingly
stored with erasure coding. To that end, this paper aims at sys-
tematizing the knowledge around the piece-meal techniques
for managing mutable content stored with erasure coding,
exploring the issues of concurrency and consistency.

Survey organization and contributions: This survey
comprises two logical parts. Section II serves both as back-
ground and a high-level survey: we first introduce erasure
codes, how they are used in distributed storage systems, and
detail the notion of granularity at which individual (data
read or write) operations might be carried out, which in turn
results in a number of choices with which re-computation
of updated data can be carried out for one data update in

isolation. We then define consistency semantics, and sys-
tematize properties of the reviewed works along three axes:
(i) the properties or functionalities being achieved, e.g., the
nature of consistency, limits on concurrency, the various
associated overheads, (ii) the techniques used to achieve
those, and (iii) the underlying assumptions and system model
which determine the practicality or impracticality of various
approaches. This yields a structured survey of the reviewed
works, resulting in a taxonomy exhibiting which forms of
consistency are achieved, under which architecture, sys-
tem models and assumptions; how they are positioned with
respect to each other.

Sections III, IV and V form the second logical part and
heart of this survey, where we review individual works,
grouped first as per the nature of consistency guarantees
achieved by the works, and then by the overall characterizing
mechanisms. The treatment here is deliberately detailed to
ensure that nuances across similar approaches can be dis-
cerned, even as we abstract out the specific implementation
details and focus on the families of approaches as per the
underlying design principles. We conclude in Section VI,
where we transcend the individual works and instead delve
into issues of design philosophies pertaining broader issues,
e.g., how the concurrency control and consistency mecha-
nisms for erasure coded systems borrow ideas yet (need to)
differ in details with respect to replicated systems.

II. ERASURE CODED REDUNDANCY, CONSISTENCY AND
SYSTEM MODELS
A. ERASURE CODES
Erasure coding is a process where a collection of infor-
mation symbols D = {d1, . . . , dk} is mapped into a col-
lection of encoded symbols E = {e1, . . . , en}, k < n,
where the encoded symbols are linear combinations of the
information symbols. The notation (n, k), or the term (n, k)
code, is used to emphasize both parameters. When all the
information symbols are part of the encoded symbols, i.e.
∀x ∈ D : x ∈ E , the code is called systematic. This is
desirable in storage systems, since the information symbols,
if/when they are available, allow for immediate access to the
original data. We shall only consider systematic codes, and
thus suppose that the encoded set of symbols is of the form
E = {d1, . . . , dk , c1, . . . , cn−k} where the information sym-
bols d1, . . . , dk are referred to as systematic pieces, while the
linear combinations

cj =
k∑
i=1

ξ j,idi, j = 1, . . . , n− k, (1)

of the systematic pieces dis are called parities. Replication is
a special case of erasure coding, with k = 1 and cj = d1, j =
1, . . . , n, where n determines the number of replicas.

The linear combinations are designed to allow erasure/
error recovery capabilities. Suppose some of the symbols
become unavailable, because they are either erased or cor-
rupted. Then, it should be possible to reconstruct E through

118618 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

a decoding algorithm (we speak of ‘erasure’ or ‘error-
correcting codes’ respectively), provided that sufficient infor-
mation is still available. This paper focuses on erasures,
in which case at most n−k erasures can be tolerated, meaning
that after experiencing the worst tolerable amount of erasures,
k arbitrary symbols from E are left. An (n, k) code such that
∀E ′ ⊂ E of size |E ′| = k , E ′ contains enough information
to reconstruct the erased symbols is called a maximum dis-
tance separable (MDS) code. MDS codes provide the best
trade-off between storage overhead (measured as n/k) and
reliability, particularly in low and moderate churn environ-
ments [8].

B. ERASURE CODES FOR DISTRIBUTED STORAGE
SYSTEMS
In the context of distributed storage systems, a data object
is split into k symbols, encoded with an (n, k) code (or
replicated), after which the encoded pieces (we may use
interchangeably block/piece/symbol) are dispersed.

1) PLACEMENT
The n encoded pieces of a data object are stored in n distinct
storage nodes, to avoid losing more than one piece of redun-
dancy, should one node fail. Dispersing strategies are also
applied across different racks, or even across multiple data
centers in different geographic locations (e.g., [4]), in order
to reduce the chances of data loss in the event of correlated
failures. Furthermore, many data objects are coded and stored
in N ≥ n storage devices. Choices are then made on how
to collocate the pieces of several objects, which have impli-
cations on load-balancing and performance. Those issues
are however orthogonal to this study. Here we consider the
management of n encoded blocks from a single data object
(which includes the case of an (ln, lk) code, where n groups
of l pieces are formed, each l pieces are co-located and can be
grouped as one symbol) and the n nodes store these encoded
blocks at given time points. Because of churn in the system,
induced e.g. by node failures, these n physical nodes may
actually change over time, an issue considered transparent,
unless stated otherwise. We will thus refer to an encoded
piece and the node where it is stored interchangeably.

2) REPAIR
Since the n encoded pieces of a data object are each allocated
to a distinct node, a node failure is akin to an erasure, and the
erasure recovery ability of code ensures the missing piece of
data can be repaired. It is important for systematic pieces,
so that read requests can be honoured, but the reconstruction
of parities is also critical to the maintenance process, ensuring
a healthy amount of redundancy over time. The process of
being able to ‘read’ a missing systematic piece by accessing
other systematic and parity pieces and performing an on-
demand re-construction is called a degraded read.
Recovering any erased symbol requires the access to k

other symbols for an MDS code, associated with the cor-
responding disk I/O operations, network bandwidth and

FIGURE 1. Logical abstractions of data storage and operations: the
abstract storage D as a unit versus individual systematic pieces as units.

computation costs, referred to as repair costs. Studying
repairs of specific symbols using smaller (than k) sub-
set(s) of symbols to reduce repair costs has been exten-
sively researched, leading to the so-called ‘local repair
problem’, and the creation of non-MDS locally recon-
structable/repairable codes (LRC codes). See e.g, [9], [10]
for surveys on the design of erasure codes tailored for dis-
tributed storage systems.

3) UNITS
To discuss the different ways in which the application and
storage layers manage the data redundancy, or client pro-
cesses perform read and write operations, we view a data
object in two manners (illustrated in Figure 1): (a) an abstract
object D as the unit, (b) individual systematic pieces as units.
When the data object D is the unit, any read or write

requires the (implicit) access to enough encoded pieces, for
D to first be reconstituted. Write operations on D need to be
followed by re-computation of the encoded pieces (the whole
of E is affected), and repopulating the storage nodes. This
approach is typically applied in systems that carry out encod-
ing at the granularity of files, and in object storage systems
which may require the file or object to be manipulated as a
whole.

When individual systematic pieces are the units, reads
are generally done without any decoding (barring the cases
of degraded reads), while writes only affect the specific
systematic piece(s) being written to and their corresponding
parities. This fits block storage systems which either store
fixed sized blocks, each containing multiple files or objects,
or stores a single file or object spread across multiple fixed

VOLUME 10, 2022 118619

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

sized blocks, but an agnostic storage layer handles data at
the granularity of the individual blocks. For such systems,
a collection of arbitrary k blocks can be encoded together for
storage efficiency, even though operations would still be at
the granularity of individual, systematic blocks. See e.g. [11],
[12] for details on file, block and object based storagemodels.

Notwithstanding these two logical abstractions, the imple-
mentation of the (re-)encoding and decoding might be at the
application layer (andmay even be integratedwith the clients)
or at the storage layer, or possibly be realized as an explicit
intermediate process.

C. CONSISTENCY
In layman’s term, consistency in the context of distributed
storage systems refers to the ability of having every node with
the same view of data at a given point in time, irrespective of
which client(s) may have updated the data. There are several
forms of consistency (see e.g. [28], [29]), which have been
well studied in different contexts, including replication-based
storage systems. We review classical definitions of consis-
tency, to then explain how they have been adjusted to erasure
code-based storage systems.

Properties of distributed systems in terms of concurrency
are categorized into safety and liveness. Safety properties
specify undesirable things that should not happen, while live-
ness properties assert desired outputs that eventually happen
for every execution. Therefore consistency properties can
also be expressed in terms of safety and liveness.

To refer to a perfect time line, which may not be per-
ceived in practice since processors are relying on clocks
which are unlikely to be perfectly synchronized given pos-
sible arbitrary delays and disruptions in communication, the
abstraction of a real-time/wall clock is used as as a point of
reference. For a single write client holding a single value,
we recall Lamport’s semantics [30], defined in terms of a
real-time clock beginnings and ends of operations to the
object:

• safe: asks that a read not concurrent with any write
obtains the previously written value.

• regular: asks to be safe, and furthermore that a read that
overlaps a write obtains either the old or new value.

• atomic: asks to be safe, and that reads and writes behave
as if they occur in some definite globally unique order.

Since clients are accessing the stored data to either read or
write it (be it new data or updating existing data), we may
call a client a reader or a writer respectively. Correspond-
ingly, a single writer means no concurrency in write opera-
tions. There are four possible scenarios: single reader/single
writer, single reader/multiple writers, multiple readers/single
writer, and multiple readers/multiple writers. The situations
of shared objects allowing multiple readers and/or writers are
more complex than the above Lamport’s semantics, leading
to different forms of consistency, ranging from weak consis-
tency to strong consistency, which requires a behavior as if
there were a single (copy of the) stored object.

Table 1 summarizes the works that will be reviewed,
together with the consistency they are achieving, ranked from
the weakest to the strongest: eventual - regular - sequential
- aRMW (see Sections III to V for the formal definitions).
Key properties of the system models and update processes
that are enabling the achieved consistency levels are
summarized:

(1) Active/passive nodes: Passive storage nodes only pro-
vide basic functionalities such as storing, returning and delet-
ing the data, responding to basic commands (e.g. pings)
and storing meta-data. Active storage nodes can compute
over the data and communicate with other storage nodes to
establish consensus. Many data center storage appliances are
collocated with computational resources, and satisfy the latter
requirement.

(2) Update processes: an update could be computed either
incrementally, or through an overall re-computation (see Sub-
section II-D for more details).
(3) In-place updates vs. storing older versions: In-place

update means overwriting the older version of data with the
latest one. Alternatively, copies of older versions are retained,
and the new data is stored separately as tentative candi-
dates; the older copies and out-of-synch candidate data may
subsequently be garbage collected e.g., after reconciliation
processes to establish the update ordering.

(4) Different system models are considered, in terms of
their synchronicity, fault models, and how computation and
coordination are performed, either centrally or in a distributed
manner (see Subsection II-E).
(5) Non-/blocking algorithms: Non-blocking algorithms

allow operations to be carried out by multiple processes opti-
mistically, carrying out reconciliation of conflicts in the back-
ground. Blocking algorithms rely on allowing only a single
process to carry out a write (possibly read) operation, while
blocking other processes e.g., via locks. Moreover, some
mechanisms navigate a middle-ground, where a weak form
of liveness is guaranteed and read operations can progress
provided that there are a (parameterized) finite number of
writes, a.k.a., finite-write termination.

Other features that are less prominent but are still worth
being noted, such as reliance on extrinsic meta-information,
e.g., a record of cryptographic hash(es) of the data or parities,
are indicated as remarks.

In early works discussing erasure coding for distributed
storage systems, codes were implicitly assumed to be MDS.
Codes such as LRC codes only appeared later on, with a
better understanding of maintenance needs. The same trend
is observed for existing works on concurrency control and
consistency: early works mostly rely on MDS codes, or on
generic codes [13], [14], [15], [25], which could be in partic-
ular eitherMDS or LRC codes. Only [27] focuses specifically
on LRC codes. While the approach in [24] is general enough
to work for arbitrary codes, the existing implementation
employs n = k + 1 MDS codes since it was geared towards
multi-datacenter deployments, i.e., only a single parity was
actually used for cross data-center dispersal.

118620 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

TABLE 1. Summary of the reviewed works, with the consistency they achieve: The column ‘arch’ (for architecture) contains two attributes, respectively
indicating computation/coordination (Centralized or Distributed), and the coupling between end-user clients and the rest of the storage system, viz.
strongly coupled (sC), weakly coupled (wC) and decoupled (dC). ‘FS’ in the column ‘failure’ stands for fail-stop. Entries with symbols (e.g. †) have
explanations for corresponding caveats, with the same symbol, in the ‘remarks’ column.

D. UPDATING THE SET E OF ENCODED BLOCKS
Whenever there is any change in the stored data, this change
needs to be reflected in both the systematic piece(s) and the
corresponding parities of the affected data.

There are different ways in which such updates are effec-
tuated, which we will broadly categorize into:
• Overall re-computation from scratch of all parity

updates: this is applicable both when D is treated as the unit
and when individual systematic pieces are the units.
• Incremental computation of individual parity updates:

this naturally fits individual systematic pieces as the units.
We describe the simplest case where the only process

involved is a single client operating an update. How to handle
variations in case of simultaneous multiple updates by dif-
ferent client applications, or attempts to read the data during
(an) ongoing update process(es), will be treated later, when
consistency mechanisms are discussed.

1) OVERALL RE-COMPUTATION OF ALL PARITY UPDATES
Suppose x pieces of the stored object need to be updated.
Overall re-computation means that its k systematic pieces

need to be present, among which x need to be updated, for
all the parities to be re-computed. Since the data is dispersed
and no single entity possesses all the k systematic pieces,
re-computation typically involves a centralized entity, which
starts by fetching enough information. We will assume the
usage of an MDS code, and that enough information means
reading and transferring k pieces from the storage nodes.
This is because the centralized entity may optionally recom-
pute (by decoding) the systematic pieces, if some systematic
pieces were missing. This is a pessimistic scenario; it could
also be (as a best case scenario in terms of data transfer
requirements) that we have the x new pieces independent
of the previous ones, and the centralized entity could just
transfer the n − x systematic pieces that do not need updat-
ing, which happen to be available at live storage nodes.
For updating the x systematic pieces, the centralized entity
(i) recomputes (by encoding) the n − k new values of the
parities, and (ii) transfers and writes back the n − k newly
computed parities at the corresponding storage nodes, and
likewise transfers and writes the new value of the x updated
systematic piece(s). All in all, this requires k + n − k +
x = n + x data transfers over the network, k blocks of

VOLUME 10, 2022 118621

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

read and n − k + x blocks of write operations (involving
disk I/Os) at storage nodes, in addition to the computations
for re-encoding (and the optional decoding). Re-computing
each parity piece in step (i) involves k multiplication and
k − 1 addition operations.

For large volumes of changes, affecting multiple system-
atic blocks, this approach can amortize the costs of updates.
However, for small updates, an incremental approach to com-
pute the parities, which we discuss next, is more efficient.

2) INCREMENTAL COMPUTATION OF INDIVIDUAL PARITY
UPDATES
Let D be a data object represented as a collection of the
blocks D = {d1, . . . , dk}. Recall from (1) that the parities
are computed based on the following linear combination of
the systematic pieces: cj =

∑k
i=1 ξ

j,idi, j = 1, . . . , n− k .
Suppose D undergoes a change which only affects the

block x, i.e., dx changes, and its updated value is d ′x . Then
all the parity pieces using dx need updating.

Observing that only the systematic piece dx has
changed [14], [15], [25], [26], [27], [31], one can recompute
the new parity values incrementally without the need to carry
out a full computation, as c′j = cj + ξ j,xδx where δx =
d ′x − dx . This involves a one time computation of δx which
is effectively a single addition operation, and the new value
for each parity can be computed using a single multiplication
and addition operation, as opposed to the k multiplications
and k−1 additions required above to recompute a parity from
scratch.

The volume of data to be read and transferred is also sub-
stantially lower than the approach of overall re-computation,
when a single systematic piece is updated, however the exact
volume further depends on how the incremental update is
actually orchestrated: either in a distributed manner by dele-
gating computations to active storage nodes if available, or in
a centralized manner at the writer client (see Figure 2 for an
illustration of these variants).

a: DISTRIBUTED VARIANT 1
The affected storage node x, or alternatively, the write client
(not shown in Figure 2a) determines and transfers δx to the
n−k parity nodes, which then compute their respective ξ j,xδx
values locally, carry out a read of the locally stored cj, and
replace it with the updated c′j. This approach has been used in
e.g. [15], where one subvariant uses the client, while another
subvariant uses a systematic storage node to disseminate the
differential to the parity nodes. Theworks [25], [26], [27] also
use this approach, but they are ambivalent regarding the entity
which initially disseminates the differential among (some of)
the parity nodes, and they additionally apply a gossip mech-
anism among parity nodes to continue the dissemination.

The write client needs to read and transfer the old value
of the systematic piece from the corresponding storage node,
and transfer back the new value (or alternatively, δx). In addi-
tion to these two data transfers, for MDS codes, there are a

FIGURE 2. Various ways for incremental parity updates.

further n − k transfers of δx to the n − k parity nodes (note
that δx is of the same size as a single block of data), which
read their local (parity) data, compute and write back new
updated values. This involves reading (as well as writing)
n − k + 1 blocks of data, and transferring n − k + 2 data
blocks over the network.

b: DISTRIBUTED VARIANT 2
Node x (or alternatively, not shown in Figure 2b, the client,
e.g., [14]) computes individual ξ j,xδx for each of the affected
parity nodes and then transfers them to the respective nodes,
which in turn use them to compute the new parity values.

Instead of conveying δx to all parity nodes, individualized
ξ j,xδx (whose size is that of a single block of data) are being
sent. The above cost analysis thus remains the same.

This variant requires active nodes, which may not always
be an option. A centralized variant circumvents this.

c: CENTRALIZED VARIANT
The write client computes the differential, fetches the parity
pieces, recomputes the individual new values incrementally,
and then repopulates them back at the storage nodes (see
Figure 2c), in addition to repopulating the updated systematic
piece. For MDS codes, this involves n− k + 1 data reads and
data writes, and 2(n − k + 1) blocks of data transfer. While
the centralized variant has data transfer overheads almost
double with respect to the distributed variants, it not only
accommodates passive storage nodes but also is much simpler

118622 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

TABLE 2. Costs in terms of blocks of data transfer and read/writes, when
a single systematic piece is updated.

from system design perspectives, see e.g., [32] for a non-
MDS code.

Inmany practical deployments, n−k is often (significantly)
smaller than n. For instance, in Facebook’s f4 system [4],
discounting cross-geographic redundancy, an MDS Reed-
Solomon code with k = 10 and n = 14 (so, n − k = 4)
is used within a single data-center. For small writes affecting
one or few systematic blocks, the incremental approaches
result in substantial savings in terms of data read/write oper-
ations, network transfers and computations; as opposed to
the approach entailing an overall re-computation, which is
most beneficial when an update involves changes to multiple
systematic pieces. In Table 2 we summarize the costs in terms
of network traffic and disk I/O operations when an update
modifies a single systematic piece.

E. SPECTRUM OF SYSTEM MODELS
The underlying assumptions on how nodes interact among
each other, and how their actions might depart from the
required behavior play crucial roles in determining the design
as well as efficacy of any given technique. We describe and
categorize below available systemmodels, depending on their
coordination techniques, fault models, synchronicity assump-
tions, and their client-storage interactions.

A common abstraction we adopt is that the clients doing
read/write are logically independent from nodes providing
storage services, even if they are sometimes co-located.

1) ARCHITECTURE: COMPUTATION & COORDINATION
Computation and coordination of actions among client, stor-
age nodes and any other auxiliary system components could
follow different strategies. We categorize them by introduc-
ing a taxonomy of architectures which disentangles the data
compute and control planes.

Some nodes could carry out all the computations for an
operation. For an update, thismeans determining the values of
the updated encoded pieces (possibly by first fetching the pre-
vious values from various nodes) and populating the affected
nodes with this information, as described in Subsection II-D.
Coordination may then be realized in two ways:

(i) Centralized computations and coordination (CC):
Within a given time period (always, or for a time window),
all operations are centralized at a unique node, e.g., one of the
storage nodes, client or another extrinsic entity, which deter-
mines the ordering of read/write operations. In replicated
systems, having a primary replica which actively manages the
concurrency and consistency issues, while the other replicas
copy its data as is, fits this approach. For erasure coded

systems, the same idea can be used, even though bit-wise
copying of the data is no longer an option, and instead, the
centralized node has to re-encode the pieces to be stored.

(ii) Centralized computations, but distributed coordination
(CD): Within the same time period, different operations may
be centralized, possibly at different entities. The affected
entities may coordinate among themselves using a distributed
protocol, e.g., a consensus algorithm to establish an ordering
of operations to achieve consistency.

Alternatively, together with distributed computations,
coordination may be realized either in a centralized or decen-
tralized way, called respectively centralized coordination
(DC), or distributed coordination (DD).
In the latter, nodes compute information in a distributed

fashion, and coordinate among themselves using distributed
algorithms, e.g., to establish a sequence of operations via
a consensus algorithm, or to rely on a quorum of nodes to
finalize decisions. The two distributed variants for update
computation of Subsection II-D fall within the DD category,
since storage nodes are computing their updates, even though
in distributed variant 2, a central node also does perform some
computation. As long as any aspect of either computation
or coordination is distributed, even if there are some other
aspects that rely on centralization, we will designate such
hybrid approaches as distributed.

2) FAULT MODELS
Participating nodes, clients and/or storage nodes, may fail.
Communication among (a subset of) storage nodes may be
disrupted, as could communication between the overlying
processes and the storage layer.

We distinguish two kinds of failures: (i) non-byzantine
failures, comprising crash failures which refer to an entity
not responding, and include the particular case of fail-stop
failures, where it is further assumed that properly functioning
entities are able to detect that a particular entity has failed,
versus (ii) byzantine failures, which encompass arbitrary
failures from an entity, including adversarial ones, where the
entity not only does not do what it is supposed to do, but
also has behaviors that it is not supposed to have. For a more
nuanced (but general) discussion on various failure modes in
distributed systems, we refer to [33].

The content of a storage node becoming inaccessible is
considered a fail-stop storage node scenario. For erasure
coded data, such failures lead to ‘erasures’ of some of the
pieces. A storage node ceasing some computations and/or
coordination activities also fits the fail-stop setup. In either
case, the storage system may decide to repopulate a different
node with the corresponding data. Alternatively, the original
nodemay return back online, and continue its usual functions.
This is a ‘repair problem’ [9], [10], which, unless specifically
addressed by a technique for achieving consistency, will not
be further discussed.

In contrast, a storage node deviating from its expected
behaviour in any manner (other than simply stopping to
respond), e.g., returning a wrong value, or introducing errors

VOLUME 10, 2022 118623

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

while carrying out any computation, is a byzantine stor-
age node fault. Error-correcting codes could be considered,
though extrinsic meta-data based integrity mechanisms, e.g.
hashes, can check which pieces are intact; erroneous pieces
are then discarded, thus reducing faults to erasures.

A byzantine client may have arbitrary behaviors. Exam-
ples include populate the systemwith data which is inherently
erroneous, e.g., the pretended systematic and encoded pieces
do not conform with the underlying coding scheme, or with
erroneous meta-data, e.g., tampered versioning information
to confound the legitimate system participants.

3) A/SYNCHRONOUS SYSTEMS
Another crucial characteristic is the synchronicity of nodes
and communication. Roughly speaking (see e.g. [33] for
formal definitions), if there is a known bound on the dif-
ference of the clock times at individual nodes, and likewise,
if the communication delay is bounded, then the system is
considered to be synchronous. In the absence of any such
bounds, the system is considered asynchronous.

In an asynchronous system, even determining whether a
given node has failed and stopped is difficult. Since the
synchronous setup is infeasible in practice, while it is often
impractically complex to deal with a fully asynchronous set-
up, many pragmatic solutions operate under an ‘in-between’
model, called the timed asynchronous model [34] which
uses time-outs as a proxy for failure detection. For instance,
Redis Labs’ describe their distributed locking service [35] as
one which ‘‘. . . relies on the assumption that while there is no
synchronized clock across the processes, still the local time
in every process flows approximately at the same rate, with
an error which is small . . . ’’.

4) CLIENT-STORAGE INTERACTION
Based on the interactions required among clients, or between
clients and the storage layer, for the storage system to func-
tion, we classify architectures into three categories. The
two extremes are: (i) decoupled (dC), where clients treat
the storage as a totally independent service, thus support-
ing ‘thin clients’, and (ii) strongly coupled (sC), where the
clients direct involvement in complex tasks and interactions
with the storage layer and/or other clients are necessary to
the overall system. An in-between situation is (iii) a weak-
coupling (wC), such that, (reasonably) thin clients can still
be deployed, while a ‘proxy’ middleware or a supplemen-
tary service may orchestrate some moderately complex tasks.
These distinctions are arguably subjective, and for individual
works, we will elaborate our designation choices.

The treatment of byzantine clients is an example of the
role played by the client-storage interaction. Some works
explicitly address this issue, while others follow a principle of
separation of concerns, viewing byzantine clients as an appli-
cation layer issue, disentangled from the storage layer. While
the former approach has the apparent advantage of a holistic
solution encompassing all system layers, by codifying the
behaviour of benign clients, it also imposes an additional

burden every application developer would have to adhere
to. The latter has practical advantages of modularity and
portability, i.e., by being disentangled from other systems,
the storage system provides functionalities and guarantees
unconditionally, enabling diverse overlying applications.

F. MULTI-VERSIONED DATA
Instead of storing only the latest version of the data, one may
also want to retain all its versions over time. This could be
particularly important for archival storage and provenance
oriented applications. Sparse sampling based techniques [36],
[37] to encode the differentials across adjacent versions in a
storage efficient manner have been explored. However [36],
[37] do not explore the issues of consistency, concurrency
control and compression of multiple versions in conjunction,
and that remains an open issue. Thus, further discussions on
these works are out of the current scope.

Some other works e.g., [16], ORCAS-B in [19] or [20]
happen to storemultiple (but not necessarily all) versions, as a
means and by-product of establishing consistency, however
they do not provide any guarantees in terms of retaining all
versions or a deterministic period of version history and are
thus not really applicable if the purpose is multi-versioning.

III. APPROACHES WITH WEAK CONSISTENCY
We start by reviewing three works that achieve weak consis-
tency guarantees, namely eventual consistency and regular
semantics. In subsequent sections, we discuss approaches
achieving strong consistency. An overall taxonomy of the
different works reviewed is shown in Figure 3.

A. EVENTUAL CONSISTENCY
Eventual consistency specifies as guarantee that if a data
update is made, then eventually it will be reflected at all
the nodes where the information is stored redundantly. This
means that a read query before eventual consistency is arrived
at can yield an arbitrarily outdated result or even something
completely random that was never written by any opera-
tion [38]. At the granularity of D as a unit, this guarantee is
subject to accessing any appropriate subset of nodes, so that
the data can be reconstructed. This is an optimistic approach,
where availability is prioritized over consistency, since, like
in the replicated case, different contemporaneous read oper-
ations may yield different values for the data object in the
transition period until eventual consistency is established.

In [13], the default configuration considers a single writer
which stores data dispersed in a multi-cloud setup, i.e., the
storage system is a collection of cloud services (where each
service is treated as a ‘node’). Because of their heterogene-
ity, cloud services are considered as passive storage and a
single writer centrally computes and coordinates (CC) all the
actions. Operations are done at the granularity of ensembles
of blocks, i.e.,D is the unit, every encoded piece is stored in a
different cloud, and any update leads to changes in the whole
of E . A single writer means there is no write concurrency, and
a quorum of cloud services determines whether an update has

118624 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

FIGURE 3. A taxonomy of the works reviewed. Abbreviations are those of Table 1.

propagated adequately: if enough cloud services acknowl-
edge their update is complete, the writer considers the overall
update done. This achieves the weak form of eventual con-
sistency, even if individual storage nodes undergo byzantine
failures. Fail-stop failures of the writer are considered.
Note that each cloud service may internally maintain multiple
copies of the stored data, and serve stale data until their
internal redundancy is up-to-date, a process that is transparent
to the mechanisms in [13]. Since cloud services often provide
only eventual consistency guarantee, [13] cannot guarantee
any stronger consistency.

In order to accommodate multiple writers, [13] uses time
leases by effectuating locks, and thus, blocks different writers
to write simultaneously, while, given the weak consistency
requirement, reads are not blocked. The writers coordinate
the leases among themselves using a single cloud storage
service with regular storage semantics, to acquire and release
leases. Several other issues such as data confidentiality are
also addressed in [13], and all in all, the clients need to
carry out many complex tasks, explicitly interacting with the
storage elements. As such, we designate the client-storage
architecture as strongly coupled (sC).

Both single-writer byzantine fault tolerant quorums and
write locks based on leases assume synchronized clocks and
bounded communication delays, which is realized using a
timed asynchronous setup, i.e., using timeouts.

B. REGULAR SEMANTICS
Regular semantics for multiple readers is a generalization
of Lamport’s regular semantics for a single reader. For a
single writer multiple reader setup, it is achieved, if (i) a read
operation never returns a value that was never written, or a
value that has been overwritten by a write operation; however,

(ii) in the event of concurrent read and write operations, the
read might return the value of the contemporaneous write
or the immediately previously written value, while (iii) the
writes themselves follow a total-ordering consistent with real-
time ordering at the given writer. The second clause can
be further generalized to accommodate multiple concurrent
writes, in which case, contemporaneous read operations may
return the value from any of the writes, or the previously
written value.

1)
In [14], operations at the granularity of individual sys-
tematic pieces are carried out. For update computations,
writer clients follow the distributed variant 2 strategy from
Subsection II-D which requires active storage nodes, and
compute differentials of parity updates. Knowing the cod-
ing strategy, clients use an atomic ‘swap’ operation at the cor-
responding storage node to replace a systematic piece to be
updated (i.e., an in-place data replacement), while computing
centrally the differentials for each parity with respect to this
systematic piece.

To support multiple writer concurrency, the nodes storing
systematic pieces create a local version identifier for each
write operation, and during the swap process, this information
is returned to the writer. For concurrent operations on the
same systematic piece by two processes, the storage node
determines an ordering locally, identified by a version id (or
‘operation id’, as named in the paper). The writers send the
version id with parity differentials. A parity node then allows
an ‘add’ operation only if it has already encountered the
update for the immediately preceding version for a given sys-
tematic piece, ensuring that ‘add’ operations corresponding to
concurrent updates on the same systematic piece are carried

VOLUME 10, 2022 118625

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

out in the same order at every parity node. Since writes at
all parity nodes are handled by the clients themselves, clients
may have to repeatedly attempt to write the update, until
the corresponding ‘add’ request is accepted. Writes are thus
lock free in the sense that multiple clients can write distinct
data blocks simultaneously, and there is no guarantee of a
globally unique sequence for those operations; hence, at the
granularity of D, at best, regular semantics can be achieved.
However, if different clients try to write concurrently on
the same block, the atomic swap ensures an ordering at the
nodes storing systematic pieces themselves, while the local
version ids created by the systematic storage node lead to
the imposition of the same ordering for ‘add’ operations at
the parity nodes. Coordination being thus mostly distributed
(in addition to the ‘add’ computations being distributed),
we deem this approach to have distributed computation and
distributed coordination (DD), even though it also contains
central computations. While the clients compute the differ-
entials, interact with storage nodes for ‘swap’ and ‘add’
operations, in principle, a proxy client or middleware could
carry out these tasks on behalf of end-user clients, we thus
designate this system to be weakly coupled (wC).

To support data recovery from fail-stop failures, each write
is associated with a further unique identifier determined by
the client, which is retained as meta-information at all parity
nodes during the ‘add’ operations. This enables any client to
carry out a recovery of the data at new replacement nodes,
should some storage node fails. This is done through a multi-
phase protocol, which first locks and blocks all writes, then
tries to obtain a quorum of up-to-date nodes identified by their
write operation identifiers. If a quorum cannot be achieved,
because the lock triggered by the recovery process prevented
some updates to be propagated to an adequate numbers of
nodes, then the protocol only allows these interrupted but
ongoing update writes to finish by partial release of locks.
These computations are carried out centrally. Any such recov-
ery from failure is registered as an epoch, and all unfinished
updates from previous epochs are discarded, allowing for
only new operations to be executed after a repair. In [15],
which we discuss next, the commutativity of the increment
operations for parity computation is exploited, simplifying
the mechanisms. In particular, [14] tries to ensure that incre-
mental updates due to changes to the same systematic piece
are executed in the same order at every parity node; yet,
it does not enforce an ordering when parities are updated
because of changes to different systematic pieces. Instead, a
separate mechanism ensures all pending updates of parities
because of changes to different systematic pieces are finished
within a quorum of nodes used for data recovery. Only the
latter could have sufficed to update parities (as is the case
in [15]), without differentiating whether the updates were for
some or different systematic pieces.

Failure detection, locking and unlocking mechanisms rely
on an implicit timed asynchronous model assumption.

In the absence of storage node failures, the protocol exe-
cutes in a non-blocking manner, even though node failure

FIGURE 4. An optimistic update mechanism from [15].

recoveries require blocking write operations. Furthermore,
depending on how the atomic swap capability at each storage
is effectuated in practice, it may implicitly result in blocking.

No proof of liveness is given, but experimental results are
provided to benchmark the system’s performance, and no
correctness issues were reported.

2)
In [15], a so-called ‘optimistic’ variant allows concurrent
writes to achieve consistency akin to regular semantics at
the granularity of the overall data object, which we discuss
next. A variant achieving sequential consistency and named
‘pessimistic’ will be discussed in Subsection IV-A. In both the
‘optimistic’ and ‘pessimistic’ variants, operations are at the
granularity of individual pieces, and updates are performed
using the distributed variant 1 of Subsection II-D.

In the optimistic variant (see Figure 4), writer clients
interact with a node storing a systematic piece, e.g., nodes
x and y in the figure. Similar to [14], the node storing
a systematic piece determines the ordering for concurrent
write requests for that specific piece. Such a node is also
responsible for communicating the differential of the updated
systematic piece (for example, node x computes and transmits
δx = d ′x − dx) to all the nodes storing parities, which in turn
compute the differential in their respective parities and incor-
porate them locally. They then acknowledge the completion
back to the node with the systematic piece, which in turn
aggregates such acknowledgments to finalize and confirm the
update to the writer client (the flow of acknowledgements is
omitted from the figure to keep it uncluttered). The client’s
interaction with the storage layer is straightforward, and the
orchestration complexities are within the storage layer itself.
As such, we designate this as decoupled (dC).

Multiple writes at distinct systematic pieces may occur
concurrently, e.g., at nodes x and y in Figure 4, and the cor-
responding differentials are incorporated at the parity nodes.
Since addition of all such differentials at the parity nodes
commute, no specific ordering on how they are imparted is
imposed, i.e., for the example in the figure, one parity node
may carry out the update corresponding to x before that of y,
while another parity might do so in the converse sequence.
Read operations of other systematic pieces, e.g., at node
z, can be carried out in parallel, unhindered by concurrent
write operations at x or y. The optimistic variant in [15] thus

118626 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

uses distributed computing and coordination (DD) relying on
active storage nodes, it is non-blocking in nature and carries
out in-place replacement of data.

In the absence of any failures, if all reads are directly
from the systematic pieces, this approach satisfies sequential
consistency over the individual pieces since the ordering of
operations are logically centrally determined by the corre-
sponding storage node. However, across the overall abstract
data object, comprising all the systematic pieces, a unique
view of global ordering of operations is not enforced. As such,
at the granularity of D as a unit, a regular semantics results
in the absence of any failures.

Failure recovery, particularly when systematic nodes expe-
rience fail-stop faults, to repopulatemissing data (or carry out
degraded reads) depends on how many given updates have
propagated. Accordingly, first, either a roll-back of incom-
plete operations, or otherwise, a carry ahead to complete
those operations, is recommended. Arguably, all the pending
updates at a parity node need to be imparted (or alterna-
tively, all unfinished updates would have to be rolled back)
before using the parity nodes for reconstruction of a valid
systematic piece (possibly, of an older version, essentially
effectuating an abortion of latest operations). This assumes a
timed-asynchronous system, to enable timeout based failure
detection. Many combinations of failures across clients, sys-
tematic nodes and parity nodes during the write process and
subsequent roll-back or carry-forward processes may occur,
which may imperil the correctness of the reconstruction or
degraded read operations. This issue is left to be explored.

IV. APPROACHES WITH SEQUENTIAL CONSISTENCY
Sequential consistency is a stronger form of consistency than
regular semantics and thus also than eventual consistency
because it requires that across all processes, there is a unique
history of read/write events which is equivalent to a sequential
execution, where the local ordering of events at each node
is respected. This is not the strongest consistency, because,
while events are sequential and consistent at every node,
sequential consistency allows operations to appear out of
real-time order. Sequential consistency applies to the atomic
multi-reader multi-writer (MRMW) abstraction, which is the
predominant focus of the existing literature on consistency
over coded data. This notion generalizes that of atomic single-
reader single-writer. Consider a variable V with the value
Vt at time t . When several processes (say, f and g) carry
out writes to modify its value concurrently at time t2, and
in case the new value is determined based on the previous
value Vt1 , then different candidate values Vt2 = f (Vt1) and
Vt ′2 = g(Vt1) could be proposed by processes f and g. Then,
either one of [Vt1 , f (Vt1), g(Vt1)] or [Vt1 , g(Vt1), f (Vt1)] is a
valid global ordering, satisfying the sequential consistency
criterion. In this example, both the second as well as the third
values depend only on the first value, and the third value
is independent of the second value. While this semantics is
strict and caters to a variety of applications, it cannot support
transactional semantics [39] essential to databases.

FIGURE 5. A pessimistic update mechanism from [15]: An extrinsic
master node is used for locking and versioning.

The works in this section all provide sequential consis-
tency achieving atomicMulti-ReaderMulti-Writer (MRMW)
abstraction. They are grouped into two groups, one that
assumes a timed-asynchronous model, and one for asyn-
chronous environments. Some works from the latter category
furthermore stand-out in their use of an extrinsic entity for
meta-data management, thus disentangling the control plane
for consistency from the data plane for redundancy.

A. TIMED ASYNCHRONOUS
In [15], a so-called ‘pessimistic variant’ relies on a centralized
master node for versioning and locking out concurrent writes
(Figure 5). Similar to the optimistic variant discussed in
Section III-B2, the operations are still at the granularity of
individual systematic pieces. A client trying to update a
piece of data contacts in parallel the node storing the piece
and the master node to obtain information on the latest ver-
sion. Accordingly, it determines whether the latest version of
the data is available, in which case, it obtains a lock from the
master node, so that no other concurrent write is feasible. This
architecture thus, at a logical level, resembles the lease mech-
anism to accommodate multiple writers in [13]. The client
then updates the systematic piece, and sends the difference
object to nodes storing parity pieces, which in turn locally
compute and store the updated values for the parity pieces,
and then send acknowledgements (not shown in the figure)
to the write process. Upon receiving all acknowledgements,
the write process releases the lock. The mechanism in [15]
relies heavily on centralized coordination, even though some
computations are distributed (DC), assuming active nodes. A
master node maintains versioning information and locks con-
current writes, yielding a blocking algorithm which achieves
sequential consistency. The end-user clients manage the
write locks at the master node, and determine the conclusion
of updates at the storage nodes to do so. This leads to a
strongly coupled (sC) architecture.

Failure of the master node requires the election of a new
master, which then needs to reconstruct the information
about latest versions by polling all storage nodes. Naturally,
no write operation is feasible until a master node is rein-
stated. If a node storing a systematic piece experiences a
fail-stop failure, all other operations are stopped, until the
corresponding data is reinstated using a decoding process,
provided that enough other nodes with the latest version of the
data are available. Likewise, in case of a parity node fail-stop

VOLUME 10, 2022 118627

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

failure, the data is recreated by carrying out re-encoding. If a
client fails during the write process (detected by the master
node using a timeout, which requires the use of a timed
asynchronous model), then, depending on the progress of
the write process, it is either rolled back, or completed by
the master node. For every kind of crash recovery, further
information (epoch) is maintained across the system, in order
to prevent the use of stale information. Latest version of data
replaces older versions in-place.

B. ASYNCHRONOUS AND QUORUM-BASED
We next review a series of works which share the following
commonalities: (i) they assume an asynchronous environ-
ment, (ii) where the granularity of operations is D as a unit,
(iii) and parity update is done with overall re-computation.
They (iv) realize non-blocking mechanisms, (v) relying on
quorums of storage nodes, but in a manner (vi) efficient only
forMDS codes.

We recall that in the context of replicated systems, a quo-
rum system is defined as a set of subsets of replica nodes
called quorums, such that every two quorums intersect, i.e.,
Q ∩ Q′ 6= ∅ for all Q,Q′ in the quorum system. Usually
quorums are established to read and/or write data. The term
quorum stems from the fact that read or write operations need
to be performed at an adequate number of nodes for them
to be successful and persist. Symmetric quorums are deter-
mined irrespective of the type of operations, while asymmet-
ric quorums distinguish write and read quorums. Furthermore
‘locks’ may be attributed to each node within a quorum in
order to carry out an operation, if there is a need to condition-
ally block other operations. Moreover, failed nodes might not
participate in a quorum until not only they join the system
anew, but also are repopulated with up-to-date data. Thus the
quorum membership may need adequate redundancy so that
intersection is guaranteed despite a number (chosen as per a
fault-tolerance parameter) of failures.

Using a quorum of nodes to agree on a latest stored version,
where nodes store encoded pieces from an MDS code in a
manner agnostic of the structure of the code, leads to write
processes not waiting for responses from all or some task
specific nodes but only at a threshold of nodes. This has the
following inherent drawbacks:

(i) A systematic piece affected by an update may not be
populated with information for the latest version, and more
generally, (ii) a given version of data may be stored with
a redundancy lower than the nominal (n, k) code parameter
would indicate. (iii) Since there is no guarantee that the sys-
tematic pieces are actually up-to-date for any given version,
or even if they are, they may not be included in the quorum
formed to read data, consequently, read operations are always
carried out by invoking decoding, which in turn levies an
additional burden in terms of I/O operations, data transfer
as well as computation, which maybe deemed impractical
in most real-world deployments. In practice, decoding based
data access is in fact considered ‘degraded read’, which is
done more as an exception than a norm. The works are

distinguished based on the detailed algorithms and the choice
of data structures involved in the coordination phases.

1)
In [16], before carrying out a write, the client queries a
quorum of storage nodes, to determine the latest (logical)
timestamp, and increments this timestamp to generate a new
one. The client then computes a cryptographic hash H (ex)
for each encoded piece ex in E = {e1, . . . , en}. These hashes
are concatenated to create HE = H (e1)| . . . |H (en), and a
summary of this concatenation of hashes by computing a
further hash ĤE = H (HE) is generated. This summary hash
Ĥ is appended with the logical timestamp to create a compos-
ite timestamp. The client then sends the individual encoded
pieces to the storage nodes, along with the concatenation
of hashes and the timestamp as version meta-data. Active
storage nodes locally determine whether the data hash of
the individual piece matches with the corresponding portion
within the concatenation HE and furthermore, check whether
the hash of HE matches the hash summary Ĥ embedded in
the time-stamp. This ensures that data which is not encoded
properly (poisonous write [40]) will not be written at well-
behaved, i.e., non-byzantine, storage nodes. A storage node
incorporates the write locally only if all these validations
work. Then the storage node sends an acknowledgement to
the writing client. The client needs to wait for a quorum of
q acknowledgements (see (2) for relationships among q, the
code parameters (n, k) and the number f of byzantine pro-
cesses) to determine whether the write process is successful.

The approach in [16] thus stores multiple data versions,
whose ordering is determined by logical time-stamps. It fits
the setting of centralized computations with distributed coor-
dination (CD), since the coordination is distributed, leverag-
ing on locally stored data structures and quorums of storage
nodes. Garbage collection of older versions is recommended,
but is not an integral part of the proposal.

Similarly, read operations need to obtain a quorum of
encoded blocks, foremost to determine the latest timestamp,
then to ensure that there are adequate data blocks to decode
the original data, while the integrity of the individual pieces
is validated using the hash digests. If not enough pieces with
the latest timestamp are obtained, it indicates an incomplete
write, and the client is then expected to fetch and read a
previous version (determined by logical timestamp) for which
the write process had been completed.

Both byzantine storage nodes and write processes are
accounted for by using additional (cryptographic hash based)
meta-data, which is replicated at every storage node. While
the mechanism provides very strong safety guarantees, in par-
ticular, a consistency guarantee which meets the stringency
of at least sequential consistency (the authors claim lineariz-
ability), proof of liveness is not given. In particular, if multiple
processes attempt to write concurrently, they may inadver-
tently use the same new logical timestamp. As such, it may so
happen that none of them acquires a sufficiently large quorum
to finish their write operations. This may recur indefinitely,

118628 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

an issue not considered in [16], which suggests that if a
write remains incomplete, then a read operation may have
to read one of the older versions where the write operation
was properly completed. However, simple heuristics can be
used to address this issue, e.g., to abort write attempts after
a timeout accompanied with back-off for a random period of
time by the clients to initiate a new write operation.

Overall, to tolerate f byzantine (or fail-stop) failures, n ≥
4f +1 storage nodes (per version) are needed, while the code
parameter k should be such that

k < q− f , for 2f + 1 ≤ q ≤ n− 2f , (2)

where q is the threshold of benign nodes (which may still
crash-fail subsequently) to which a write operation writes
to.1 Multiple versions need to be stored, resulting in a high
storage overhead, even though both concurrency control and
consistency, as well as byzantine storage nodes, and more
crucially, clients, are addressed.

[16] implicitly assumes that all encoded pieces carry
equivalent amounts of information, and thus, liveliness in
an asynchronous set-up only depends on how many nodes
respond, not which nodes. This assumption only holds for
MDS codes. The mechanism is thus inapplicable to LRCs.

A refinement of [16] is proposed in [17]. Before com-
mitting a write, storage nodes are required to determine that
enough other correctly functioning storage nodes have frag-
ments for the same write operation, and otherwise, the write
operation is discarded. The quantum for ‘enough’ depends
on the code parameters, so that the corresponding version can
be reconstructed. A homomorphic fingerprinting technique is
deployed, such that the fingerprint of an encoded piece yields
the same output as the erasure coding of the systematic piece
fingerprint. The storage nodes then determine more easily
whether an ongoing update is completed (they do not need
the content of the other pieces, but only the much smaller
fingerprints), and accordingly discard older versions more
aggressively, without the need for a separate garbage collec-
tion mechanism. The updates in [17] can thus be viewed as
in-place, as opposed to [16], however, uncommitted data still
needs to be buffered, which creates implicit though temporary
storage overhead.

Both [16], [17] codify the behaviour of the (well-behaved)
end-user clients and require them to carry out multiple tasks
in coordination with the storage layer elements, resulting in a
strongly coupled (sC) architecture.

Among other optimizations from [17], we note: (i) instead
of populating all nodes with encoded pieces, the writer
encodes and populates only n−f , where f is the targeted fault-
tolerance threshold, which reduces both the computation and
the storage cost compared to [16]; (ii) the use of message
authentication codes instead of public key cryptography for
client identification mitigates byzantine clients.

1The paper counts crash and byzantine failures separately, even though
their impacts turn out to be identical, because of extrinsic meta-information.
Here, we thus presented the bound in a slightly simplified manner.

2)
In [18], variations of the ideas from [16] are used. The
logical timestamp is appended with a (unique) processor
identifier, creating a strict ordering (lexicographic ordering is
used over the extended time-stamp) even if the actual logical
time-stamp is identical. This may result in a specific client’s
writes always get precedence over another’s, and the practical
implications to overlying applications are not explored.

A reliable atomic broadcast primitive [41] is assumed,
such that the data pieces are either dispersed to all the
(well-functioning) nodes in the broadcast group, or to none.
Thus [18] avoids storing multiple versions explicitly, since
either enough encoded pieces are stored at all the (well-
functioning) nodes receiving the pieces only after ascertain-
ing that enough other nodes also have corresponding pieces,
or else the pieces are discarded. The reliable broadcast has a
high communication complexity, and individual broadcasts
would also utilize (temporary buffer) storage space before
deciding to either deliver the data to the storage nodes,
or reject these (thus masking the cost of storing multiple
versions at the storage layer, while incurring storage in main-
taining buffers of data in the communication layer). Similar
to [16], a hash digest of the fragments determines that a
correct fragment is being obtained by (and during data reads,
from) storage nodes.

To prevent denial of service attacks by byzantine clients
which might generate arbitrarily large timestamps, [18]
enforces non-skipping timestamps through threshold cryp-
tography. In the initial response to a writer with current
timestamp, the servers also provide a threshold signature.
A subsequent write operation is accepted by servers only
if the threshold signature matches with the expected new
timestamp, in which case, servers share among themselves
the threshold signature for the next expected timestamp. End-
user clients coordinate with the storage elements for atomic
broadcast as well as adhering to the protocol enforcing non-
skipping timestamps, leading to a strongly coupled (sC)
architecture.

3)
In [19], two approaches, called ORCAS-A and ORCAS-B,
are proposed. In ORCAS-A (see Figure 6), a write client first
(Step 0, not shown) tries to contact all the n storage nodes,
and waits for n − f responses (where f is the target level
of crash or fail-stop failures to be tolerated) to determine
the latest (logical) timestamp for the data, and increment it
to obtain a new timestamp. Then (Step 1) the whole data
along with the associated timestamp is sent by the writer to
all the (available) storage nodes. Each storage node provi-
sionally stores the data by replication at first, by in-place
replacement of the the previous value (be it the whole data,
or an encoded piece). It is however possible that some of the
nodes are offline when the data is sent out, or otherwise, due
to communication outage, do not receive this new data, and
as such, they may retain an older value, which in turn could

VOLUME 10, 2022 118629

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

FIGURE 6. ORCAS-A from [19].

be either an encoded piece, e.g., el shown in the figure, or a
replica of a whole object (case not shown), or if no previous
value was held at the node, then it might continue to store
nothing, indicated as φ in the figure. The writer waits (Step 2)
for acknowledgements from at least n − f nodes (and the
expiry of a timer) to determine that such a node quorum
has the latest value. It waits for the timer expiry, to allow
all live nodes to respond when communication delays are
bounded. Then, as a last phase (Step 3), the writer instructs
these active nodes to carry out encoding locally and replace
the whole replicated data with an encoded piece, using a code
with parameters (n, k = q− f) where f is the targeted fault-
tolerance, and q ≥ n − f is the actual (dynamic) number of
acknowledgements that the client received. The nodes need
to record the associated coding parameters as meta-data, on
top of the timestamp. Depending on the status of the nodes,
and unreliability of communication, some nodes might miss
the trigger to code, and may retain the replicated data (coding
might be (re-)triggered for unencoded data during a subse-
quent access to the data). The coordination is centralized (at
the writer client2) but computations are distributed (DC).
For a read operation, a client needs to contact the storage

nodes andwait for responses from at least n−f nodes, in order
to identify the latest timestamp. Then it obtains sufficient
fragments of the latest version to reconstruct the value. If the
writer had failed before triggering the coding of the latest ver-
sion at the storage nodes, then the (first) reader would in fact
read one of the replicas, and would be the one which would
instruct the storage nodes to replace the replicated data by

2In case the original writer client fails to trigger the finalization phase, the
next client accessing the data is delegated to carry out the task, in that sense,
there is an element of distribution of coordination.

the encoded pieces (i.e., complete the last phase of the write
phase by proxy). ORCAS-A entails the transfer of the whole
unencoded data to all the storage nodes. Furthermore, if the
client crashes before triggering and completing the encoding
of data at the storage nodes, then the storage nodes continue to
store the replicated data instead of (smaller) encoded pieces.
To address these concerns, ORCAS-B first determines the lat-
est timestamp and the (estimate of the) number of live storage
nodes to be at least q. Then, it carries out the encoding at the
client itself using a (nz, x) encoding, where z = x

n−2f and x =
LCM (q−f , n−2f) where LCM is the least commonmultiple.
Then, instead of sending the whole object to all storage nodes
(as in ORCAS-A), the client sends z encoded fragments to
each node as part of the write operation, along with essential
meta-information, such as the new timestamp and coding
parameters. Upon receiving at least q acknowledgements,
it triggers a trimming process, whereby each passive storage
node discards some of the encoded fragments, in particular,
retaining only x

q−f of the original z fragments. Doing so
ensures that even if f of the q nodes experience a fail-stop
failure, enough unique fragments remain in the system, so that
the original data can be reconstructed. Since the fragments
of the older versions cannot be replaced in-place, instead,
fragments ofmultiple versions need to all be retained, until a
separate extrinsic process (assumed, but not detailed in [19])
ensures that there are no pending concurrent write processes,
following which, the fragments of the older versions could be
discarded. The coordination is centralized, as for ORCAS-A,
however computations are also centralized (CC). The multi-
phased mechanisms, and the end-user client’s involvement in
both the variants in triggering encoding and trimming of data
respectively lead to a strongly coupled (sC) architecture.

By reducing the number of rounds of messages between
a client and storage nodes, the following detrimental side
effects are created:

(i) A high data transfer cost: in one variant, the whole data
is transferred to every storage node, in the other, (possibly
several factors) more coded pieces are.

(ii) A high storage overhead cost: in one variant, replication
is used, in the other, multiple versions are maintained, with
(possibly several factors) more coded pieces until update
processes are complete.

(iii) This work considers the number of nodes available at
the time of carrying out a specific write, and ensures a further
fault-tolerance within even this set of live nodes. While that is
an interesting perspective of fault-tolerance, it leads to added
implementation and operational complexity arising from the
dynamic choice of code parameters.

To justify the larger volume of storage (either using repli-
cation, or by storing much larger number of encoded pieces)
when the data is undergoing updates, it is claimed that when/if
there is no further changes to the data, the system would
benefit from the redundancy being in storage efficient erasure
coded manner. Furthermore, it is argued that when the system
operates in a synchronous mode, the transitionary periods

118630 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

with higher storage overheads will be shorter. However, for
said advocated scenario, a two-tier system, where a replicated
layer is used as a ‘cache’ for concurrency control, disentan-
gling it from long term storage which can be used to store the
latest version erasure coded might be much simpler to realize,
and alsomore storage efficient. [19] does not benchmark their
approach against any such baseline.

4)
In [20], a set-up with a known and static set of active nodes is
considered, where a write operation is decomposed into two
phases, a preliminary phase and one for finalization. The data
is associated with both a logical version number, and a binary
label {pre,fin} to indicate whether the data has been written
preliminarily or finalized. Before a newwrite, a client queries
all the storage nodes to determine (based on a quorum of
responses) the highest value of the version corresponding to
finalized writes. The new data to be written is assigned a
version number by incrementing the current one, then the
client creates erasure coded fragments and pre-writes these to
the nodes, with the new version number and the label ‘pre’.
When a quorum of acknowledgments from storage nodes is
obtained to indicate that the pre-write fragments are stored,
the client sends a message to all the clients to change the
label to ‘fin’. If some nodes had missed out on the encoded
pieces from the pre-write process, they still store the version
and label information, along with a NULL data in lieu of the
encoded piece. The label ‘fin’ indicates that a quorum q of
nodes still have the encoded pieces. Thus, if the size of the
quorum q is chosen such that even if further f of these nodes
fail, the data is still reconstructable, i.e., q− f ≥ k , then one
can guarantee that the latest data version remains available.
Read operations query all the storage nodes, and then obtain
a quorum of k pieces corresponding to the latest version
with ‘fin’ tag, to decode and reconstruct the latest value.
Since coded fragments are centrally computed at a client,
while coordination is a mix of centralized and distributed
mechanisms, the mechanism falls into the CD category.
To tolerate f arbitrary fail-stop failures during any phase

of the algorithm, the worst case scenario is that f other nodes
among the n nodes failed to respond during the pre-write
phase, suggesting a quorum size of q = n− f , thus the overall
constraint n− 2f ≥ k .

Similar to ORCAS-B [19], the mechanism of [20] does
a preliminary write, ascertains that enough nodes have the
latest version, and then has a finalization phase. However,
because it considers the worst case scenario, there is no
trimming of additional redundancy in the finalization phase.
As such, even though the fault-tolerance of an (n, k) MDS
erasure code is n − k , this approach guarantees a fault toler-
ance bounded by n−k

2 , with the benefit of using a static code
parameter. This contrasts with [19] which optimizes the stor-
age space used, adjusted to the actual number of live nodes
encountered in the first phase. This mechanism requires the
storage of all the versions, which leads to a prohibitive stor-
age cost. A garbage collection mechanism to retain only

1+1 latest versions is proposed, for a pre-determined param-
eter 1, which guarantees liveness of writes if the number
of concurrent write operations does not exceed 1. Practi-
calities of how to choose 1, or adapting 1 as per workload
instead of using a hard-coded configuration are not explored.
Depending on the degree of concurrency to be supported,
the requirement of storing multiple versions to guarantee
consistency may defeat the original purpose of using erasure
codes, namely, to reduce storage footprint.

In [21], the ideas from [20] are extended, with as pri-
mary differentiator reconfiguration of nodes when the pool
of storage nodes is dynamic. This is in essence achieved by
assigning sequence numbers to each configuration, which is
incremented with a change of configuration. Contiguity of
sequences is achieved using quorums of intersecting nodes
across adjacent configurations, which also ensures that the
latest version of the data persists across such adjacent con-
figurations. In [22], an implementation of these ideas is pre-
sented by integration with the Cassandra [42] key-value store,
accompanied with certain purported storage optimizations.
Given the need for the end-user clients to be involved in a
multi-phased interaction with the storage nodes, to manipu-
late the labels and finalize writes, the architecture in these
works are considered to be strongly coupled (sC).

C. SEPARATE META-DATA AIDED
1)
In [23], a meta-data service is used with passive storage
nodes which decouples the storage and coordination of
meta-information from the storage of the actual data. The
meta-data service is a directory service, which, for each
client, provides an exclusive space to write information,
which in turn can be read by all the clients, i.e. the ser-
vice comprises of atomic single-writer multi-reader (SWMR)
registers for each client. Thus the coordination complexity
is offloaded (distributed) to the clients themselves, while
relying on a centralized external meta-data service.

A sequence number-client identifier pair is considered as
a logical timestamp, where the sequence number is incre-
mented for every new write. Before a write, a client scans
the aforementioned directory service and reads the timestamp
recorded by every client, to determine the highest timestamp,
and increments the corresponding sequence number to gen-
erate a new timestamp paired with its own client identifier.
This ensures a globally unique sequence of write opera-
tions3 in a non-blocking manner, where multiple writers
(and readers, detailed below) can concurrently operate. The
data to be stored is encoded, and fragments are sent to the
storage nodes. [23] thus fits the centralized computation but
distributed coordination (CD) framework, even though the
coordination relies on a centralized meta-data service. When
acknowledgements from k + t quorum of nodes out of

3If multiple clients try to write concurrently and choose the same new
sequential number, a prior agreed tie-breaker, such as lexical ordering of the
paired client identifier, could be applied, e.g., as in [18] or [23].

VOLUME 10, 2022 118631

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

FIGURE 7. Giza [24] architecture.

n ≥ k + 2t storage nodes are received (where t is the number
of storage node fail-stop failures to be tolerated), then the
identity of the storage nodes, with the hashes of the fragments
and the timestamp, are written into the directory service.

Each client wanting to perform a read starts by registering
its intent on the meta-data directory service. Thus once a
writer updates the meta-data at the directory, it also deter-
mines whether and which concurrent read operations might
be ongoing. Since the reader might be reading the values
prior to the write operation, corresponding fragments at other
storage nodes should not be garbage collected before the
reader finishes. Accordingly, the writer determines whether
to garbage collect the previous value. For each writer-and-
reader (concurrently active) pair, it is shown that preserving
only two values can ensure atomicity of operations. Thus,
while the approach does not support in-place updates, it needs
to retain only a bounded number of versions (a maximum
of two for each concurrently active writer-reader pair). The
idea of explicit coordination among concurrent write and read
processes is similar in purpose to [19], leading again to a
strongly coupled (sC) architecture, even though here, it is
realized via the meta-data service.

The reliable meta-data service also ensures that the latest
version can be easily identified, along with the location of
the storage nodes that carry the corresponding fragments.
The hashes of fragments stored at the meta-data service
furthermore ensure that byzantine failures of storage nodes
can be identified. The corresponding fragments can thus
be ignored during the decoding process, that is, treated as
‘erasures’ instead of ‘errors’. The atomicity of operations
in the meta-data service is exploited to coordinate all the
other actions, and in particular, in guaranteeing the atomic
operations over the encoded data. The issue of the meta-data
service itself becoming a single point of failure or bottleneck
is not discussed. Presumably, this can be addressed through
replication, particularly since the volume of meta-data is sig-
nificantly smaller, and there are mature techniques to ensure
consistency of single-writer multi-reader replicated data.

2)
In Giza [24], similar to [23], data and meta-data are stored
separately, and the meta-data plays a key role in achieving
consistency. The environment considered and the mecha-
nisms deployed are however fundamentally different. [24] is
targeted at a multi-data center environment (see Figure 7),

and is engineered to leverage on, but also subject to the con-
straints of the Azure infrastructure, specifically Azure blob
and table storage.4 For each data object, individual encoded
pieces are stored across different data centers, using Azure
blob storage. These coded pieces are treated as immutable
data with unique identifiers. A new version of the data then
leads to the introduction of new coded pieces, treated to be
independent and agnostic of other pieces from other versions.
Consequently, unlike the other works, there is no need nor
notion of a specific predetermined storage nodes where the
new encoded pieces need to reside. As such, it is assumed
that all n encoded pieces are successfully populated in (some)
distinct data centers and storage devices. Passive storage
nodes can be used for this.

Version control is achieved solely through meta-data man-
agement. Meta-data about each data object is stored as a
row of an Azure table within each data center, and is repli-
cated across the data-centers over which the encoded pieces
are dispersed. Paxos [43] is adapted to keep the replicated
meta-data consistent across data-centers. For each version
of a data object, three columns of the row of the table are
used. Two of these columns carry information relevant to
Paxos itself, while the third carries the information related
to the new version of the data object, namely, (blob storage
unique) identifiers of the encoded pieces, its corresponding
data-center locations, and the committed version number.

A client carrying out a write operation first reads the
meta-data from the local data center to figure out the highest
committed version number, to determine (by incrementing)
the tentative next version number.When it tries to commit this
new version to the meta-data stored at other data centers, if it
discovers that another operation had already committed said
version, then, its own commit attempt would fail, and it will
retry with a new version number based on the discovery of
the latest version. This mechanism of updating the meta-data
across different data centers is atomic (achieved through
Paxos), ensuring that either the new version is committed at
all the (live) data centers, or it is not, resulting in a global
view of the ordering of versions. Computations of encoded
pieces are centralized within the local data-center instance of
Giza where the write process inserts the data using a PUT
API, while coordination is distributed (in logic, storage of
meta-data that enables coordination, and theGizamiddleware
which spans across multiple data-centers) thus making [24]
fit the CD setting.

Reads need to go through the meta-data to determine
the latest version, and access the corresponding fragments.
Since the actual encoded pieces are written independently
of version relationships and before updating the meta-data;
furthermore since the meta-data is essentially replicated data,
Giza cleverly simplifies the problem of concurrency and con-
sistency of erasure coded data by transforming it into the issue
of consistency of replicatedmeta-data, essentially decoupling

4https://docs.microsoft.com/en-us/azure/storage/
common/storage-introduction

118632 VOLUME 10, 2022

https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

the actual versioned data from the (concurrency and consis-
tency) control. It retains all the versions of the data, and treats
a delete operation as a (special) update operation, which is
tied to garbage collection of the encoded fragments of all
the previous versions; while the meta-data itself is retained
longer, ensuring that no new write on the same object can be
carried out at any data-center, before garbage collecting the
meta-data as well.

[24] explicitly uses the Giza middleware to isolate the end-
user client, which only carries out a PUT operation with the
data, while the rest of the orchestration is in-fact carried out
in proxy, by Giza, yielding a decoupled (dC) architecture.

We note that the underlying Azure blob storage applies
an internal erasure coding within individual data centers,
for further fault-tolerance, but since this is done over the
‘immutable’ data, there is no need for any further version
control. As such, in Giza, there are two layers of coding -
a version controlled coding with n = k + 1 for dispersal of
data acrossmultiple data centers, and a further coding of these
immutable pieces within individual data centers.

Thus, [24] assumes a non-Byzantine asynchronous set-
up to achieve a non-blocking mechanism, reliant on stor-
ing multiple versions of the encoded data, treating these
individual pieces as immutable, but aided by active nodes
to maintain a replicated table, supporting atomic conditional
updates for executing Paxos and atomic updates of informa-
tion over the separately stored meta-data which is used to
enforce concurrency control and consistency.

V. APPROACHES WITH ATOMIC READ-MODIFY-WRITE
Stronger than Multi-Reader Multi-Writer (MRMW), the
atomic Read-Modify-Write (aRMW) semantics not only
requires a globally agreed sequence of changes, but further-
more constrains the write operation behaviour, as if the data
is read and overwritten simultaneously, with a new value
or some function of the previous value. Thus, if there are
concurrent write operations, say processes f and g concur-
rently write at t2 to modify the value of a variable V based
on the previous value Vt1 , and the different candidate values
are Vt2 = f (Vt1) and Vt ′2 = g(Vt1), then the resulting
global ordering should be such that the second value in
the sequence determines what follows, i.e., only either of
[Vt1 , f (Vt1), g(f (Vt1))] or [Vt1 , g(Vt1), f (g(Vt1))] would be an
acceptable sequence; this is in contrast to MRMW, where
[Vt1 , f (Vt1), g(Vt1)] or [Vt1 , g(Vt1), f (Vt1)] could be accept-
able outcomes, as described previously in Section IV.
In [25], [26], and [27], atomic Read-Modify-Write is

achieved. This necessitates a blocking algorithm, hence the
assumption of a distributed locking service, e.g., [35]. Two
kinds of locks are considered: (i) exclusive write locks, such
that, if a client has a write lock on a resource, no other client
is allowed to have a read or a write lock on the resource until
the write lock is released, (ii) read locks, which can be issued
to multiple clients simultaneously, however if a resource has
a read lock, then a write lock for the same cannot be granted,
and vice versa, until the read lock is released.

A fundamental differences distinguish [25], [26], [27] from
works reviewed earlier: they explicitly take into consideration
the structural properties of the code, in particular, that the sys-
tematic pieces can be considered independent of each other,
while the parities are dependent from (a subset of) systematic
pieces. This naturallymakes the operations at the granularity
of individual pieces and implies that quorum membership
can be explicitly determined based on the code structure,
where the quorums for reads and writes are dependent on
the particular systematic piece(s) involved. Smaller quorums
as compared to approaches in Subsection IV-B thus suffice.
Since the atomic Read-Modify-Write consistency is derived
from the locking mechanism, even quorums that are agnostic
of code structure could have sufficed to that end. Conversely,
these quorums exploiting the code structure, deployed with-
out locks and by storing multiple versions of data instead of
carrying out in-place replacements, might achieve sequential
consistency, but without the stricter atomic Read-Modify-
Write guarantee.

Two mechanisms guarantee atomic Read-Modify-Write
consistency, given the dependency of parity pieces on (sub-
sets of) the systematic pieces: (i) simultaneous writes on
distinct parity pieces should not render the system in an
inconsistent state, where parity pieces are modified out of
order; this is particularly relevant for correct degraded reads,
and (ii) all live parity nodes should ideally reflect their lat-
est value, updated correspondingly to the latest changes to
relevant systematic pieces. This second clause is not strictly
necessary, but desirable to make optimal use of storage over-
head, and this is thus a pragmatic choice adopted in [25], [26],
and [27], in contrast to other quorum based approaches in
Subsection IV-B. There, not all parities are updated, instead
additional redundancy is deployed up-front (e.g., many such
mechanisms tolerate f failures where f is lower bounded
by n−k

2 , even though an MDS (n, k) code can inherently
tolerate n − k failures) and a decoding reliant on a majority
of the nodes capturing latest value is performed, subject to an
assumed bound in the number of failures in the system.

A. READ AND WRITE QUORUMS
In [25], in addition to taking into account the code structure,
quorums are defined in an operation specific manner. Distinct
definitions for read, degraded reads and write quorums over
data encoded using an (n, k) code are proposed. Consider
the systematic block di, for some 1 ≤ i ≤ k . A write
quorum Qw(di) to update di is defined to be a subset of nodes
comprising one node storing di and at least b n−k2 c + 1 nodes
storing parities. A read quorum Qr (di) is one node storing di,
and a (computed) read quorum Qcr (di) is a subset of nodes
comprising parities so that at least b n−k2 c + 1 parities are
present and any further necessary (coded) blocks to compute
di. Computed read quorums are useful in the context of
degraded reads. A read quorum has size 1, a computed read
quorum has size max(k, n−k2 + 2) and a write quorum has
size n−k

2 + 2. The value n − k is typically smaller than k

VOLUME 10, 2022 118633

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

for practical deployments. Quorum based works in Subsec-
tion IV-B require quorums which are strictly larger than k for
both read and write operations (since full encoding/decoding
is required), and often, significantly more, e.g, n+k2 .

When a write lock is acquired over a write quorum, which
includes the affected systematic piece, it ensures that no other
write or even read operations on the same block can be carried
out simultaneously. In fact, since more than half the parity
nodes are involved in a write quorum, any quorum for a future
write operation is guaranteed to intersect with the set of nodes
involved in previous writes, which is essential for establishing
ordering of operations. This blocking of other operations is
key to ensuring atomic Read-Modify-Write (aRMW) seman-
tics. One of the problems with lock based mechanisms is
that a node which has acquired certain locks may fail before
releasing the locks, thus stalling the whole system. Practi-
cally, this is dealt with by releasing locks by default after a
time-out [35], even if they are not released explicitly. This
implies that [25] assumes a timed asynchronous model.
Even when a systematic piece is under a write lock, other
systematic piece(s) can be read simultaneously in parallel,
if the corresponding storage node(s) is/are available, because
the de facto read quorum comprises only the corresponding
systematic pieces.

[25] adopts a proactive approach to update dissemination,
where all the nodes storing parity pieces gossip among each
other, to propagate the update differential. Since the differ-
ential of the updated systematic piece δx = d ′x − dx itself is
of the same size as a fragment, the gossip is about the meta-
data, e.g., logical time-stamp, and the actual differential is
pulled by the nodes which do not yet have it. The write oper-
ation concludes after ensuring that the parity nodes included
in the write quorum receive the differential and associated
meta-information. Active storage nodes locally compute the
new parity values and replace them in-place. They cache
the differential itself, pending garbage collection. Once the
update is propagated to all parities (again determined through
gossiping), the local caches can be garbage collected. The
computation of parities is distributed, and coordination is
done among the storage nodes using a gossip algorithm,
which leads to a distributed computation and coordination
(DD) based architecture.

Since a write operation acquires an exclusive lock over
more than half the parity pieces, two different processes
cannot simultaneously carry out writes, even over distinct
systematic pieces. This is a bottleneck of [25]. A single
write process can however write to multiple systematic pieces
simultaneously (by acquiring write locks for the correspond-
ing systematic pieces, but without the need to acquire any
additional locks on parities, since the existing quorum suf-
fices), and furthermore, as mentioned earlier, systematic
pieces that are not being written into can in the meanwhile
still be read in parallel. Orchestration of locks is assumed
and delegated to a distributed lock service, resulting in a
weakly coupled (wC) architecture. The family of works [26],
[27] inherit the same system design, and focus on the

FIGURE 8. A Grid layout for an (n,

√
n(1+

√
n)

2) code [26], with
√

n an
integer.

code-structure specific choice of quorums, and as such, they
are too are wC.
Byzantine behavior is not considered in [25], and the

mechanism is effective for fail-stop set-ups, for which
resource availability and contention estimations are provided
for MDS codes, though the rest of the described mechanisms
apply for generic codes.

B. GRID QUORUMS
The quorum technique used in [25] is asymmetric in nature,
meaning that read and write quorums are different. While
the resulting write quorum has a size already significantly
smaller than other approaches, it nevertheless necessitates
more than half of the parity nodes to be involved. In [26],
two symmetric grid quorum variants (called Grid and B-Grid
quorums in the context of replicated systems) are adapted to
erasure coded data, to reduce the size of write quorums, but
with certain constraints on the choice of code parameters. [26]
demonstrates how the relationship among systematic and
parity fragments can be exploited to achieve quorums involv-
ing smaller number of nodes, and affording some extent of
parallelism of operations within a system of coded blocks.

As the name suggests, grid quorums assume a logical grid,
meaning that while the physical layout of the storage nodes
can be arbitrary, the grid layout is a logical abstraction used
for algorithmic reasoning, in fact a square grid, on which n
storage nodes are positioned. The grid thus has dimensions
√
n×
√
n, assuming

√
n is an integer. The applicability of the

mechanism using Grid quorum is restricted to (n,
√
n(1+
√
n)

2)
codes, which also implies codes with a storage overhead
marginally lower than two. For such codes, the logical grid
layout shown in Figure 8 is considered, with the systematic
pieces populating the lower triangle including the diagonal,
while parities populate the upper triangle. With this set-up,
a baseline strategy is to consider all the nodes in row i and
column i to be part of a quorum, and thus for any read or write
access to a systematic piece in row i, to invoke this quorum.
This baseline set-up yields quorums of size 2

√
n − 1. How-

ever, leveraging the observation from [25], these base-line
quorums can be trimmed, so that for a systematic piece in
row i, only a quorum involving itself, and only the parities

118634 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

FIGURE 9. Quorums for a (48, 30) code, a B-Grid layout with c = 8,
b = 3 and r = 2. [26].

in row i and column i can be considered. The size of these
quorums are strictly upper bounded by 2

√
n− 1.

B-Grid quorums assume a rectangular grid instead. Now
n = cbr nodes are arranged into a logical rectangular grid of
br rows and c columns, where rows are grouped into b bands
of r rows, as shown on Figure 9. The intersection of column c
and band j is called a mini-column, denoted by [[j, c]]. We first
specify a setC = {C1, . . . ,Cb} of mini-columns in which the
rb2 parities are placed. We have b sets Ci of mini-columns,
i = 1, . . . , b, that is a set of mini-columns for each band in
the grid, each set Ci contains bmini-columns in band i, given
by Ci = {[[i, c(i, β)]], β ∈ {1, . . . , b}}, where c(i, β) shows
the dependency of each column in i and β, e.g. in the figure,
C1 = {[[1, 1]], [[2, 4]], [[3, 3]]}. The k = n − rb2 data blocks
are placed elsewhere. Using this configuration, a quorum
Qij comprises the bmini-columns [[1, c(1, i)]], . . . [[b, c(b, i)]],
one per band, and of a choice of c − 1 elements in band i,
such that there is exactly one element per mini-column. The
index j of the quorum refers to the jth choice out of the
r(c − 1) choices to choose one element from a mini-column
of r elements, for each of the c− 1 columns.
The B-Grid based quorum is available for (n, k) =

(cbr, n − rb2) codes, the range of parameters is thus more
flexible than the earlier Grid version. The size of a B-Grid
quorum is c− b data nodes plus br + b− 1 parity nodes, for
a total of br + c− 1.

The focus of [26] was in designing the quorums
themselves, particularly reducing the size of the quorums
while ensuring intersection of any two quorums. Rest of the
mechanisms, e.g., locking, propagation and computation of
incremental updates, etc., are inherited from [25], and as
such, they share the same general characteristics - active
nodes, timed-asynchronous environment, blocking algo-
rithm, using a DD framework and assumes fail-stop failures,
achieving in-place data updates. Both the Grid and B-Grid
based quorums in [26] are limited to MDS codes, subject to
further constraints on the choice of code parameters.

FIGURE 10. The layout of the LRC codes from [27].

C. GRID QUORUMS FOR LRC CODES
[27] exposes how an explicit treatment of the code property
can be exploited to design quorums for a family of locally
repairable codes (LRC codes). This is of particular practical
relevance owing to the facts that (i) practical storage systems
often and increasingly deploy LRC codes, rather than MDS
codes, while (ii) a majority of approaches rely onMDS codes,
and their code-structure agnostic treatment render them inap-
plicable (or impractical) to LRCs. This is because a quorum
threshold is set, which depends on the fault tolerance of the
code, which itself is independent from the set of encoded
pieces for MDS codes (any k pieces are always enough),
a property that is not true for LRC codes. To have a threshold
that does not depend on the encoded pieces, one would need
to consider a worst case scenario, making the quorum highly
inefficient. Similar to [26], [27] again inherits the overall
mechanisms and thus shares the characteristics of [25]. The
focus of [27] is thus in designing a quorum mechanism in
tandem with an LRC code design.

The specific family of LRC proposed in [27] is similar
to [3] and [32], where the code locality naturally maps to
the (logical) grid layout, and ideas from [26] on Grid quorum
construction for erasure coded data are adapted by leveraging
the structural nuances of the proposed LRC code family.

The LRC code is an (n, k) = (4d1d2 + r, 4d1d2) code.
Using k = 4d1d2 allows to place the systematic pieces into a
grid layout formed by 4 quadrants as shown in Figure 10, each
with d1 rows and d2 columns. The r parities are grouped as
2d1r1 row parities (as the name suggests, these are computed
using the systematic pieces from the same row), similarly,
2d2r2 column parities, and 6r3 quadrant parities where r3 par-
ities are computed using all systematic pieces from a given
combination of two quadrants. r1, r2 and r3 are code design
parameters, as are d1 and d2.

Two quorum variants are proposed: if r3 = 0, the code
only has row and column parities. Then the quorum Qi,j to
access the systematic piece located on row i and column j
comprises the nodes in position {(i, j), (i, 2d2+l), (2d1+k, j)}
for l = {1, . . . , r1} and k = {1, . . . , r2}, i.e., the data symbol
and the parities sharing its row and column in the grid layout.
This quorum technically does not satisfy the formal definition
of quorum since Qi,j∩Qk,l = ∅ if both i 6= k and j 6= l hold,

VOLUME 10, 2022 118635

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

even though it is adequate in this current setting to guarantee
consistency. When two data objects share no row or column
in the grid layout, the parities they influence comprise disjoint
sets. Mutual exclusion among them is thus immaterial for
ensuring consistency and the proposed quorums are adequate
to achieve sequential consistency at the granularity of indi-
vidual data pieces.

Now, if r3 > 0, the code has row, column as well as
quadrant parities. The quorum Qi,j to access the systematic
piece located on row i and column j includes the nodes from
the quorum for r3 = 0, and additionally the 3r3 quadrant
parities that are determined according to the quadrant to
which the systematic piece belongs. Consider the quorums
Qi,j and Qk,l with r3 > 0. If positions i, j and k, l belong
to the same quadrant, then their quorums will intersect at all
the 3r3 quadrant parities of each of their respective quorums.
If they belong to two different quadrants, say Qx and Qy
where x 6= y, they will intersect at the r3 quadrant parities that
are computed using the data symbols from the quadrants x
and y. This ensures mutual exclusion and thus sequential con-
sistency at the granularity of the data objectD. The immediate
downside in this case, unlike the former scenario without
quadrant parities is that, because of the mutual exclusion
among all the data objects, parallelization of processing is by
design not possible.

VI. CONCLUDING REMARKS
A. FACTS AND ARTEFACTS
At the beginning of this paper, we provided Table 1, con-
taining an overview of the works considered. Two groups of
properties were highlighted: first, those that are playing a role
in the update processes, including the nature of the storage
nodes (active or passive), of the architecture (in terms of
centralization or distribution of computation/coordination),
whether the updates are in-place. We also listed properties
related to the system model and design goals - in terms of
accommodating (a)synchronicity, realization of non/blocking
algorithms, and the nature of failures tolerated.

Now that the considered works are understood, we extract
below interactions among some of their key characteristics
across the dimensions discussed above.

1) ARCHITECTURE VS STORAGE
We notice that systems with passive servers often use central-
ized computations and coordination (CC), since they do not
have the ability to perform these tasks themselves, while if
the architecture assumes distributed computations and coor-
dination (DD), then the storage nodes are typically active;
though [23], [24] are two notable exceptions, which can be
explained by the presence of extrinsic meta-data which is
leveraged to disentangle the storage (relegated to passive
nodes) from the control logic. In [23] the clients interact
among each other via a collection of Single-Writer, Multi-
Reader registers used as the extrinsic meta-data store, while
in [24] themeta-data is stored in Azure tables, which provides

sophisticated primitives like conditional atomic swap which
can be deemed as active, and the control logic is realized
through the Giza middlware which is distributed and runs
across multiple data-centers.

2) ATOMIC READ-MODIFY-WRITE (aRMW) VS BLOCKING
AND IN-PLACE
aRMW operations need to ensure that two concurrent write
operations reading and using the same previous value of the
data should not happen since any ordering of these operations
will not satisfy the atomicity property; hence they necessarily
rely on blocking. In contrast, non-blocking algorithms gener-
ate multiple and divergent versions optimistically, on which
a global ordering may be established a posteriori. Thus, they
may require the retention of multiple versions (particularly
when coordination is distributed), at least until the ordering
is established, after which, older versions may be discarded
(garbage collected). The approaches reliant on multiple ver-
sions whose ordering is resolved subsequently are naturally
incongruent to in-place updates.

3) DESIGN CONSTRAINT UNDER ASYNCHRONICITY
In an asynchronous set-up, a mechanism contingent on
responses from a specific entity is undesirable, because of its
adverse impact on liveness. As such, we notice that (almost)
all the mechanisms that operate under an assumption of an
asynchronous environment rely on quorum based algorithms,
where a threshold of responses, but irrespective of, which
particular individual entities these responses are from, is used.
This in turn limits their applicability to MDS codes, an issue
and its implications have been elaborated in Section IV-B.
An apparent exception is [24]. In [24], new write operations
are however not tied to any specific individual node, or even
specific data-center, and as such, the mechanism can wait for
‘all’ responses and still progress in an asynchronous envi-
ronment, since the responders in each iteration can be any
out of a much larger set of entities. In contrast, [25], [26],
[27] explore code structure specific quorums, which (in part)
requires responses from some specific nodes. These works
relied on a timed-synchronous assumption.

B. BYZANTINE FAULTS
This brings us to an issue which is peripheral to our core
focus. Within the storage layer, byzantine faults typically
happen because of two primary reasons: software artifacts
or bugs [44] and corruption of the actual data [45] stored
in the storage hardware. e.g., [44] identified that approxi-
mately 5% of the bugs affect consistency. Such bugs however
would result in an unbounded number of byzantine faults,
while all the existing algorithmic solutions that we discuss
are efficacious under the assumption of a limited number of
byzantine faults. As such, the root cause of such software and
firmware byzantine faults need to be addressed, which require
fundamentally different tools, e.g., formal verification [46],
which is outside our scope. In a study of data corruption in the
storage stack [45], silent data corruptions are characterized

118636 VOLUME 10, 2022

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

as checksum/parity inconsistencies, as well as (file-system
block) identity discrepancies. File-systems address the block
identity discrepancy issues. Likewise, local RAID system
of modern storage systems are equipped to deal with silent
data corruption such as checksum and parity inconsisten-
cies. Often, erasure codes furthermore have inherent error
correcting capability. As such, the algorithmic approaches
of byzantine fault-tolerance surveyed here may have limited
practicality, both because there are off-the-shelf solutions to
deal with random errors, while systematic errors (e.g., arising
from software bugs) may lead to arbitrary number of faults,
which the algorithmic solutions cannot cope with. As such,
the scarcity of works dealing with byzantine nodes may be
explained both by the significantly more complex system
designs they entail, as well as the marginal practical benefit
such a design might provide in the specific context.

C. FROM REPLICATION TO ERASURE CODING
Given the antecedence of the literature on concurrency con-
trol and consistency for replicated data, which inspired many
of the reviewed works, our final remarks are on the subtleties
of the transition from replicated to erasure coded redundancy.

When using replication, as long as one full copy of a
version, old or new, is present in the system, that version
is usable, and it can be further propagated to make more
copies. This is particularly so if no data corruption errors
(byzantine faults at storage) happen. A quorum is then used
to ensure that (at least one instance of) the latest version
of the data is identified. Thus, in replicated quorum system
designs, older data may be replaced in-place at the storage
nodes. In contrast, for erasure coded redundancy, no single
storage node carries enough information to reconstruct the
whole data object D, and the code parameters determine
another threshold, which needs to be met, so that the storage
nodes among them carry enough information to recompute
the latest version of overallD. If data at individual nodes were
to be replaced in-place and older instances were discarded
immediately before ascertaining that sufficient number of
other nodes have also stored other encoded pieces, then there
would be a risk of insufficient information for reconstructing
the latest data while also losing the older version(s). This
trade-off is explicitly exposed and juxtaposed in the two
variants of [19], where, ORCAS-A achieves in-place updates
with replicas, before triggering coding at each storage node;
while in ORCAS-B, where coded data is populated directly
at storage nodes, multiple versions need to be maintained.

Consequently, the works in IV-B predominantly need
to rely on storing multiple versions. Exceptions like [17]
and [18] use extrinsic mechanisms to ensure that enough
encoded pieces are written together, achieving in-place data
writes by relegating the overhead of storing the multiple
versions from the storage system to ‘elsewhere’. E.g., [17]
stores new data in a temporary buffer until it verifies that
enough storage nodes have pieces from the same write oper-
ations, before committing the writes to the storage layer,
while [18] relies on an atomic broadcast primitive, which

itself again would need to buffer the data until delivery of
the data. Likewise, the works from Section V, by operating at
the granularity of individual pieces, achieve in-place replace-
ment, but they store the differentials with previous versions
temporarily, and garbage collect these after ascertaining that
the update has propagated across the rest of the storage nodes
which were not part of the original quorum used to carry out
the write.

D. OUTLOOK
The works [25], [26], [27] adapt techniques for replication,
namely Gifford’s quorum in [25] and grid quorums in [26]
to erasure codes, by explicitly accounting for the structural
relationship among the codewords, allowing for significantly
smaller quorum sizes as compared to the ones used in many
of the works in IV-B. Three promising directions of future
investigation are: (i) explore and adapt other quorums that
have been studied previously for replicated data, and more
crucially (ii) explore the design of quorums applicable to
more families of LRCs, and (iii) determine whether and how
such quorums can be applied in an asynchronous instead
of a timed-asynchronous environment and in realizing non-
blocking mechanisms.

In a spirit similar as above, the structure of error correcting
codesmay be exploited tomitigate byzantine faults. Yet, none
of the reviewed works do so. This comprises another natural
frontier to explore.

Finally, the current body of work has very heterogeneous
treatments, often impeding their valorization for real-world
deployments. Real-world usage and setups data informed
workloads, along with a proper set of metrics of pragmatic
interest to establish a common and comprehensive set of
benchmarks that can be used to evaluate and compare various
approaches are thus necessary for translating research in this
space into wide-scale adoption. This work, while qualitative
in nature, serves as a first step in that direction. We have
systematized the knowledge, not only in terms of the design
elements of the algorithms, but also by identifying the spec-
trum of models and assumptions, which may serve as a guide
to identify and establish quantitative metrics.

ACKNOWLEDGMENT
The authors would like thank Dr. V. R. Cadambe for his
patient explanations clarifying the author’s queries on some
of his coauthored papers [20], [21], [22].

REFERENCES
[1] Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and D. Narayanan, ‘‘Does

erasure coding have a role to play in my data center?’’ Microsoft Res.,
Redmond, WA, USA, Tech. Rep. MSR-TR-2010-52, 2010.

[2] A. Fikes, ‘‘Storage architecture and challenges,’’ Faculty Summit, Google,
Mountain View, CA, USA, Tech. Rep., 2010. [Online]. Available:
https://cloud.google.com/files/storage_architecture_and_challenges.pdf

[3] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, ‘‘Erasure coding in windows azure storage,’’ in Proc.
USENIX Annu. Tech. Conf. (ATC), 2012, pp. 15–26.

[4] S.Muralidhar,W. Lloyd, S. Roy, C. Hill, E. Lin,W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang, and S. Kumar, ‘‘f4: Facebook’s warm BLOB stor-
age system,’’ in Proc. USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2014, pp. 383–398.

VOLUME 10, 2022 118637

A. Datta, F. Oggier: Concurrency Control and Consistency Over Erasure Coded Data

[5] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong,
‘‘Atlas: Baidu’s key-value storage system for cloud data,’’ in Proc. Symp.
Mass Storage Syst. Technol. (MSST), 2015, pp. 1–14.

[6] B. Charron-Bost, F. Pedone, and A. Schiper, Replication (Lecture Notes in
Computer Science), vol. 5959. Berlin, Germany: Springer, 2010.

[7] O. T. Lee, S. D. M. Kumar, and P. Chandran, ‘‘Erasure coded storage
systems for cloud storage—Challenges and opportunities,’’ in Proc. Int.
Conf. Data Sci. Eng. (ICDSE), 2016, pp. 1–7.

[8] W. Lin, D. Chiu, and Y. Lee, ‘‘Erasure code replication revisited,’’ in Proc.
Int. Conf. Peer-to-Peer Comput., 2004, pp. 90–97.

[9] F. Oggier and A. Datta, ‘‘Coding techniques for repairability in networked
distributed storage systems,’’ Found. Trends Commun. Inf. Theory, vol. 9,
no. 4, pp. 383–466, 2013.

[10] S. Liu and F. Oggier, ‘‘An overview of coding for distributed stor-
age systems,’’ in Network Coding and Subspace Designs. Berlin,
Germany: Springer, 2018.

[11] Y. Perry. (2020). What is Block Storage? [Online]. Available:
https://cloud.netapp.com/blog/cvo-blg-what-is-block-storage-pros-
cons-and-comparisons

[12] RedHat. (2018). File Storage, Block Storage, or Object Storage.
[Online]. Available: https://www.redhat.com/en/topics/data-storage/file-
block-object-storage

[13] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, ‘‘DepSky:
Dependable and secure storage in a cloud-of-clouds,’’ACMTrans. Storage,
vol. 9, no. 4, pp. 1–33, 2013.

[14] M. K. Aguilera, R. Janakiraman, and L. Xu, ‘‘Using erasure codes effi-
ciently for storage in a distributed system,’’ in Proc. Int. Conf. Dependable
Syst. Netw. (DSN), 2005, pp. 336–345.

[15] K. Peter and A. Reinefeld, ‘‘Consistency and fault tolerance for erasure-
coded distributed storage systems,’’ in Proc. 5th Int. Workshop Data-
Intensive Distrib. Comput. Date, 2012, pp. 23–32.

[16] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, ‘‘Efficient
Byzantine-tolerant erasure-coded storage,’’ in Proc. Int. Conf. Dependable
Syst. Netw., 2004, pp. 135–144.

[17] J. Hendricks, G. R. Ganger, and M. K. Reiter, ‘‘Low-overhead Byzantine
fault-tolerant storage,’’ ACM SIGOPS Oper. Syst. Rev., vol. 41, no. 6,
pp. 73–86, Oct. 2007.

[18] C. Cachin and S. Tessaro, ‘‘Optimal resilience for erasure-coded Byzantine
distributed storage,’’ in Proc. Int. Conf. Dependable Syst. Netw. (DSN),
2006, pp. 115–124.

[19] P. Dutta, R. Guerraoui, and R. R. Levy, ‘‘Optimistic erasure-coded
distributed storage,’’ in Proc. Int. Symp. Distrib. Comput. Berlin,
Germany: Springer, 2008, pp. 182–196.

[20] V. R. Cadambe, N. Lynch, M. Mèdard, and P. Musial, ‘‘A coded shared
atomic memory algorithm for message passing architectures,’’ Distrib.
Comput., vol. 30, no. 1, pp. 49–73, Feb. 2017.

[21] N. Nicolaou, V. Cadambe, N. Prakash, K. Konwar, M. Medard, and
N. Lynch, ‘‘ARES: Adaptive, reconfigurable, erasure coded, atomic stor-
age,’’ in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2019, pp. 2195–2205.

[22] V. R. Cadambe, K. M. Konwar, M. Medard, H. Pan, L. Tseng, and Y. Wu,
‘‘CassandrEAS: Highly available and storage-efficient distributed key-
value store with erasure coding,’’ in Proc. IEEE 19th Int. Symp. Netw.
Comput. Appl. (NCA), Nov. 2020, pp. 1–8.

[23] E. Androulaki, C. Cachin, D. Dobre, and M. Vukolić, ‘‘Erasure-coded
Byzantine storage with separate metadata,’’ in Proc. Int. Conf. Princ.
Distrib. Syst., 2014, pp. 76–90.

[24] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips, ‘‘Giza:
Erasure coding objects across global data centers,’’ in Proc. USENIX Annu.
Tech. Conf. (ATC), 2017, pp. 539–551.

[25] A. Datta and F. Oggier, ‘‘Quorums over codes,’’ J. Parallel Distrib. Com-
put., vol. 161, pp. 1–19, Mar. 2022.

[26] F. Oggier and A. Datta, ‘‘On grid quorums for erasure coded data,’’
Entropy, vol. 23, no. 2, p. 177, Jan. 2021.

[27] A. Datta, A. A. Fahreza, and F. Oggier, ‘‘QLOC: Quorums with local
reconstruction codes,’’ IEEE Access, vol. 9, pp. 93298–93314, 2021.

[28] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, ‘‘Highly available transactions: Virtues and limitations,’’ Proc.
VLDB Endowment, vol. 7, no. 3, pp. 181–192, Nov. 2013.

[29] P. Viotti and M. Vukolić, ‘‘Consistency in non-transactional distributed
storage systems,’’ ACM Comput. Surv., vol. 49, no. 1, pp. 1–34, 2016.

[30] L. Lamport, ‘‘On interprocess communication,’’ Microsoft Res.,
Tech. Rep., 1985. [Online]. Available: https://lamport.azurewebsites.net/
pubs/interprocess.pdf

[31] K. S. Esmaili, A. Chiniah, and A. Datta, ‘‘Efficient updates in cross-
object erasure-coded storage systems,’’ in Proc. Int. Conf. Big Data, 2013,
pp. 28–32.

[32] K. S. Esmaili, L. Pamies-Juarez, and A. Datta, ‘‘CORE: Cross-object
redundancy for efficient data repair in storage systems,’’ in Proc. IEEE
Int. Conf. Big Data, Oct. 2013, pp. 246–254.

[33] S. Poledna, Fault-Tolerant Real-Time Systems: The Problem of Replica
Determinism, vol. 345. Berlin, Germany: Springer, 2007, ch. 3.

[34] F. Cristian and C. Fetzer, ‘‘The timed asynchronous distributed system
model,’’ IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 6, pp. 642–657,
Jun. 1999.

[35] Redis Labs. Distributed Locks With Redis. Accessed: Feb. 11, 2021.
[Online]. Available: https://redis.io/topics/distlock

[36] J. Harshan, F. Oggier, and A. Datta, ‘‘Sparsity exploiting erasure coding
for resilient storage and efficient I/O access in delta based versioning
systems,’’ in Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst., Jun. 2015,
pp. 798–799.

[37] J. Harshan, A. Datta, and F. Oggier, ‘‘DiVers: An erasure code based
storage architecture for versioning exploiting sparsity,’’ Future Gener.
Comput. Syst., vol. 59, pp. 47–62, Jun. 2016.

[38] P. Bailis and A. Ghodsi, ‘‘Eventual consistency today: Limitations, exten-
sions, and beyond,’’ Commun. ACM, vol. 56, no. 5, pp. 55–63, May 2013.

[39] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok, ‘‘Extending acid
semantics to the file system,’’ ACMTrans. Storage, vol. 3, no. 2, p. 4, 2007.

[40] J.-P. Martin, L. Alvisi, and M. Dahlin, ‘‘Minimal Byzantine storage,’’
in Proc. Int. Symp. Distrib. Comput. Berlin, Germany: Springer, 2002,
pp. 311–325.

[41] G. Bracha, ‘‘An asynchronous [(n-1)/3]-resilient consensus protocol,’’ in
Proc. 3rd Annu. ACM Symp. Princ. Distrib. Comput., 1984, pp. 154–162.

[42] A. Lakshman and P. Malik, ‘‘Cassandra: A decentralized structured stor-
age system,’’ ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[43] L. Lamport, ‘‘Paxos made simple,’’ ACM SIGACT News, vol. 32, no. 4,
pp. 51–58, Dec. 2001.

[44] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-Anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria, ‘‘What bugs live in the cloud? A study of 3000+ issues in
cloud systems,’’ in Proc. ACM Symp. Cloud Comput., Nov. 2014, pp. 1–14.

[45] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
G. R. Goodson, and B. Schroeder, ‘‘An analysis of data corruption in the
storage stack,’’ ACM Trans. Storage, vol. 4, no. 3, pp. 1–28, Nov. 2008.

[46] P. Deligiannis, M. McCutchen, P. Thomson, S. Chen, A. F. Donaldson,
J. Erickson, C. Huang, A. Lal, R. Mudduluru, S. Qadeer, and W. Schulte,
‘‘Uncovering bugs in distributed storage systems during testing (not in
production!),’’ in Proc. 14th USENIX Conf. File Storage Technol. (FAST),
2016, pp. 249–262.

ANWITAMAN DATTA is currently an Associate
Professor with the School of Computer Science
and Engineering, Nanyang Technological Univer-
sity, Singapore. His core research interests include
the topics of large-scale resilient distributed sys-
tems, information security, and applications of
data analytics. Presently, he is exploring topics at
the intersection of computer science, public poli-
cies and regulations along with the wider societal,
and (cyber)security impact of technology. This

includes the topics of social media and network analysis, privacy, cyber-
risk analysis and management, cryptocurrency forensics, the governance of
disruptive technologies, and impact and use of disruptive technologies in
digital societies and government.

FRÉDÉRIQUE OGGIER is currently an Asso-
ciate Professor with the Division of Mathemati-
cal Sciences, Nanyang Technological University,
Singapore. Her research interests include algebra
and number theory and their applications to coding
theory and security.

118638 VOLUME 10, 2022

