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ABSTRACT The market uptake of Brain-Computer Interface technologies for clinical and non-clinical
applications is attracting the scientificworld towards the development of daily-life wearable systems. Beyond
the use of dry electrodes and wireless technology, reducing the number of channels is crucial to enhance the
ergonomics of devices. This paper presents a review of the studies exploiting a number of channels less
than 16 for electroencephalographic (EEG) based-emotion recognition. The main findings of this review
concern: (i) the criteria to select the most promising scalp areas for EEG acquisitions; (ii) the attention
to prior neurophysiological knowledge; and (iii) the convergences among different studies with respect to
preferable areas of the scalp for signal acquisition. Threemain approaches emerge for channel selection: data-
driven, prior knowledge-based, and based on commercially-available wearable solutions. The most spread
is the data-driven, but the neurophysiology of emotions is rarely taken into account. Furthermore, commer-
cial EEG devices usually do not provide electrodes purposefully chosen to assess emotions. Considerable
convergences emerge for some electrodes: Fp1, Fp2, F3 and F4 resulted the most informative channels for
the valence dimension, according to both data-driven and neurophysiological prior knowledge approaches.
The P3 and P4 resulted in being significant for the arousal dimension.

INDEX TERMS Emotion, EEG, channel selection, machine learning, neurophysiology of emotions,
wearable devices.

I. INTRODUCTION
In recent years, biosignals have become an increasingly used
source for measuring emotions alongside other traditional
systems such as affective reports (e.g. SAM [1]). Cerebral
blood flow [2], electroculographic (EOG) signals [3], elec-
trocardiogram, blood volume pulse, phalanx temperature [4],
galvanic skin response, and respiration are just some of
the biosignals employed in the field of emotion recognition
over the years. Recently, several studies focused on brain
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signal analysis exploiting techniques such as PET (Positron
Emission Tomography), MEG (Magneto Encephalography),
fNIRS (funcitonal Near-infrared Spectroscopy), fMRI (Func-
tional Magnetic Resonance Imaging), EROS (Event-related
optical signal), and EEG (Electroencephalogram). Among
the systems mentioned above, EEG has the advantage to offer
a better temporal resolution.

The growing use of BCI technologies is boosting the mar-
ket mainly in case of BCI applications to treat brain disor-
ders and injuries. In 2020, the worldwide BCI market size
was valued at $1,488.00 million. This value is expected to
reach $5,463.00 million by 2030, growing at a Compounded
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Average Growth Rate (CAGR) of 13.9% from 2021 to
2030 [5]. In the last years, a significant challenge in EEG
system prototyping has been to move the signal recording
outside clinical research laboratories. Bulky technology was
generally used in laboratory or clinical settings for subject
monitoring. However, the efforts to realize wearable EEG
systems have made possible the long term and non-invasive
recording of brain signals outside of the lab [6]. Therefore,
the increasing wearability of the prototyped solutions allows
the use of BCI for the recognition of emotions in several
sectors. In non-clinical applications, EEG is widely used in
neuromarketing to evaluate the customer reactions to prod-
ucts or services [7], [8], [9]. In this sector, different kinds
of commercial EEG devices have been employed in previous
studies. However, researchers always tend to prefer systems
that are more comfortable for the users [10]. Some further
application fields are, for example, car driving [11], [12],
working environment [13], and entertainment [14]. In clinical
applications, wearable systems were employed for measuring
sleep parameters [15], for detecting epileptic seizures [16]
and for screening, intervention and monitoring of autism
spectrum disorders [17], [18]. These approaches are made
possible by the availability of new wearable solutions. In this
perspective, an even more significant reduction in the number
of channels and the use of dry electrodes [19], [20] represent a
fundamental challenge together with the use of wireless tech-
nology to enhance the system ergonomics. However, most
of the commercial wearable solutions are general purpose.
Often, no information is offered about the adequacy of the
positioning of the few electrodes to the specific phenomenon
to investigate.

The complexity of emotional phenomena makes difficult
the identification of universally recognized electroencephalo-
graphic patterns. The absence of electroencephalographic
patterns makes the attempt to minimize the number of chan-
nels particularly challenging. In the last years, machine
learning-based approaches have supported neuroscientists
to identify EEG patterns related to emotional phenomena.
Moreover, machine learning has been directly used for the
goal of minimization through the identification of the most
informative channels.

The complexity of the emotional phenomena also poses
significant challenges in terms of experimental reproducibil-
ity. In an emotion recognition task, it is always necessary
to manage the uncertainty due to the relations among the
stimulus, the perception of the stimulus and the physiological
response (i.e., how the emotion reverberates at the electroen-
cephalographic level). Therefore, each element can intro-
duce variability that affects the experimental reproducibility.
Reproducibility can be evaluated on both the cross-subject
and the within-subject levels. Cross-subject reproducibility
loss occurs when the same stimulus does not induce the
same emotion in different subjects. A loss in within-subject
reproducibility arise from different reactions to the same
elicitative stimulus at different times. Over the years, many
attempts to standardize both the procedures for emotional
elicitation and the elicitative stimulus itself have been made

to address the problem of reproducibility. Suitable stimuli
datasets were experimentally validated (i.e., standardized) by
using significant samples and are widely used by researchers
(e.g., International Affective Picture System - IAPS [21],
Open Affective Standardized Image Set - OASIS [22], and
Geneva Affective Picture Database - GAPED [23]). The
use of standardized datasets allows reducing the problem
of reproducibility loss. Stimuli are rated according to the
valence and arousal dimensions, and, for each stimulus, the
corresponding mean and standard deviation are given. Thus,
the probability associated with the confidence interval of the
stimulus score gives an estimation of the percentage of the
experimental sample perceiving the expected emotion.

To date, no EEG-based emotion recognition review focuses
on the problem of channel reduction and, consequently,
the problem of electrodes’ optimal positioning. The present
review contributes to this issue by answering the following
research questions (RQ):

• In an emotion recognition task, what are the criteria
used to select the most promising scalp areas for EEG
acquisitions? In the literature, what are the preferred
approaches? A priori-knowledge or data-driven? (RQ1)

• If data-driven approaches are exploited, are the obtained
results compared with the neurophysiological knowl-
edge? (RQ2)

• If devices with few number of channels are already
adopted, is this choice justified with respect to the EEG
phenomenon to be investigated? (RQ3)

• Are there convergences between different studies with
respect to preferable areas of the scalp for signal acqui-
sition? (RQ4)

In Sections II-A, and II-B we briefly review a theoret-
ical framework about emotions and their neurophysiology.
In Section III, the process of papers selection is reported.
In Section IV, findings about: (i) the time trend analysis,
(ii) the minimization strategies, (iii) the reference theories,
(iv) the experimental sample size and selection, and (v) the
eliciting stimuli were reported. In Section V, the three chan-
nel reduction strategies mostly used in the literature were
identified: data-driven based (Section V-C), prior knowledge
based (Section V-A), and based on commercial EEG devices
provided with a low number of channels (Section V-B).
In Section VI, an argumentation of the achieved findings is
reported.

II. BACKGROUND
A. THEORETICAL FRAMEWORK
The absence of a uniquely accepted definition of emotions
strongly impacts their measurability. To date, several def-
initions of emotions were proposed by different theories.
Kleinginna and Kleinginna proposed a well-assessed cate-
gorization of these definitions in [24]. The authors distin-
guished among: (i) affective, feelings of pleasure/displeasure
and excitement/depression, (ii) cognitive, appraisal pro-
cesses, namely the perceptual/thinking aspects of emotions,
(iii) Stimuli-Organism-Response (SOR) based, effects of
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external stimuli on physiological mechanisms, (iv) adap-
tive/ disruptive, the emotions are considered to increase
the probability for the body to meet its needs or to
cause destructive effects on it, (v) multiaspect, which
embrace different aspects of emotions, (vi) restrictive,
attempt to differentiate emotions from other processes,
(vii) motivational, the overlap between emotion and moti-
vation is highlighted, and (viii) skeptical, the usefulness of
the concept of emotion is denied. Based on the reported def-
initions, Kleinginna and Kleinginna proposed the following
multi-component emotion definition: ‘‘Emotion is a complex
set of interactions among subjective and objective factors,
mediated by neural-hormonal systems, which can: (i) give
rise to affective experiences such as feelings of arousal, plea-
sure/displeasure; (ii) generate cognitive processes such as
emotionally relevant perceptual effects, appraisals, labelling
processes; (iii) activate widespread physiological adjust-
ments to the arousing conditions; and (iv) lead to behaviour
that is often, but not always, expressive, goal-directed, and
adaptive’’.

Further clustering of the theories of emotions refers to the
link between the emotion and the underlying neurophysiolog-
ical system. Discrete theories propose an independent neural
system subserving every emotion whileDimensional theories
affirm that all affective states arise from few independent and
interacting neurophysiological systems [25], [26], [27]. Dis-
crete theories of emotions suggest the existence of separate
emotions, each with specific characteristic patterns. Six basic
emotions (i.e., anger, disgust, fear, joy, sadness, and surprise)
were proposed by Ekman [28].

Basic emotions are also called primary emotions because
they are considered present from birth. They have innate
neural substrates, and innate and universal expressions [29].
Secondary emotions, instead, result from the combination of
the primary ones (e.g., pride, shame, guilt, etc.).
Dimensional theories of emotion propose the existence

of underlying affective dimensions common to all emo-
tions [30]. Thus, emotions can be represented in a multidi-
mensional space. In theCircumplexModel of Affect, proposed
by Russel [31], emotions are categorized according to two
central neurophysiological systems explaining the valence of
emotion (i.e., positive/negative affect) and the level of arousal
(i.e., corresponding physiological activation). The choice of
the reference theory determines the possibility of carrying out
a classification of the emotional states (when the theory of
discrete emotions is exploited) or ameasure of the dimensions
underlying the emotional states, namely valence or arousal
(when dimensional theories are exploited).

The discrete theory entails the use of a nominal scale that
represents non-additive quantities and can not be employed
for measurements, referring to the International Vocabulary
of Metrology [32]. Dimensional models allow the measure-
ment since emotions are arranged along with interval scales.
Studies on EEG-based recognition of emotions mainly refer
to cortical brain lateralization theories. The Theory of Right
Hemisphere claims that each emotional expression and per-
ception takes place in the right hemisphere [33]. The Theory

of Valence affirms that the right hemisphere is dominant for
processing negative emotions and the left hemisphere is dom-
inant for processing positive emotions [34]. Similarly, the
Approach-Withdrawal model posits the role of the left- and
right-anterior regions in processing emotional states in the
government of approach andwithdrawal behaviours [35]. The
Behavioral Activation System – Behavioral Inhibition System
(BAS/BIS)model states that the left and the right frontal activ-
ity reflects the strength of the BAS and BIS systems, respec-
tively [36]. BAS/BIS are the two anatomical paths governing
the emotional/motivational systems. The BAS is responsible
for the activation of the behaviour in response to rewarding
stimuli, and it associates emotions (which are generally posi-
tive, like hope and relief) with these behaviours. On the other
hand, the BIS inhibits behaviour in response to new, feared,
and adverse stimuli. BIS activates with passive avoidance and
extinction behaviours, and the related emotions are generally
negative (e.g., anxiety, fear).

B. NEUROPHYSIOLOGY OF EMOTIONS
This section reports the results of previous meta-analyses
and surveys on the association between emotions and spe-
cific brain areas. Several meta-analyses aimed to verify the
hypotheses posed by the theory of discrete emotions. In [37],
neuroimaging studies were employed to determine whether
basic emotions are associated with consistent and diverse
brain activation patterns. Consistency relates to the fact that
the same brain region exhibits more significant activity for
the same category of emotions (e.g. the amygdala activity
increases each time an instance of the category fear is expe-
rienced). Brain activation loci strongly associated with the
five basic emotions (i.e. happiness, sadness, anger, fear, and
disgust) [28] were identified to evaluate consistency. Activa-
tion maps for each pair of emotions were compared to verify
emotions discriminability. While the consistency of regional
brain activations corresponding to each primary emotion was
found, the existence of discriminable neural correlates has not
been demonstrated [37].

The most significant associations between basic emotions
and brain activation regions are the following: (i) fear with
the amygdala; (ii) disgust with the insula, ventral prefrontal
cortex, and amygdala; (iii) sadness with the medial prefrontal
cortex; (iv) anger with orbitofrontal cortex; and (v) happiness
with rostral anterior cingulate cortex. Individual differences
such as age and sex can influence some brain functions.

In [38], a meta-analysis conducted on neuroimaging stud-
ies was carried out to verify whether the data support the loca-
tionist or constructionist-psychological theory of emotions.
A locationist account will be found if a certain emotion
category (e.g. fear) corresponds to a brain region’s consis-
tent and specific activation across considered neuroimag-
ing studies. A constructionist-psychological vision will be
found if the same brain regions activate for different emotion
categories. Furthermore, these brain regions may also carry
out some basic psychological operations (e.g. core affect,
conceptualization, language, or executive attention). The
conducted analysis did not find strong evidence between
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the locationist hypothesis and the brain–emotion correspon-
dence. The increase in brain region activation was not specific
to instances of a particular discrete emotion.

Few meta-analyses were conducted to explore the link
between brain regions and the affective dimensions of valence
and arousal because of the lack of neuroimaging studies
investigating the two dimensions independently. Two main
views were proposed. The first one posits that arousal and
valence are separately processed. Thus, an increase in amyg-
dala activity is linked with the arousal dimension. At the same
time, an activation in medial and lateral orbitofrontal cortex
(OFC) regions is related to positive and negative valence,
respectively [39]. Further studies hypothesized the involve-
ment of multiple brain regions in the representation of arousal
and valence. This hypothesis was confirmed with a finite
impulse response model and suggested the existence of net-
works underlying valence and arousal dimensions (e.g., the
network responsible for pleasant emotions includes the mid-
brain, the ventral striatum, and the caudate nucleus) [40].
Emotion is, therefore, the result of a complex process that
takes place on several levels. The stimulus enters the brain
stem, and the limbic system interprets it. The hypothalamus
elaborates the stimulus and triggers the corresponding vis-
ceral physiological reactions (i.e., increased heart rate, chills,
etc). The amygdala links the stimulus to the emotional reac-
tion and compares new stimuli to the past experience. In the
end, the temporal and prefrontal cortices cognitively evaluate
the experienced emotion. Hence, the role of the frontal cortex
as the emotional control centre.

EEG-based studies on the origin and brain processing
of emotions are mostly aimed at identifying asymmetrical
EEG activation over the frontal cortex, referring to the the-
ory of valence. Thus, the most common feature employed
to detect the difference in activation between the two cor-
tical hemispheres is the alpha asymmetry. Alpha activ-
ity monitoring is predominantly carried out at F3 and F4
positions, as they are located above the dorsolateral pre-
frontal cortex [41]. Conversely, among the studies adopting
the theory of discrete emotions, there is a lack of studies
anchoring the proposed EEG features to neurophysiological
theories.

As evidenced by the literature, neuroimaging studies
mainly rely on discrete emotion theories, while EEG-based
studies mainly rely on dimensional theories.

III. RESEARCH METHOD
The analysed studies were collected from Scopus, Pubmed,
and IEEE Xplore by implementing the PRISMA guidelines
about the systematic review reporting [42], [43].

The following query was used on the search engines:
(eeg AND emotion AND ((‘‘reduced number’’ AND (chan-
nels OR electrodes)) OR ‘‘wearable’’ OR ‘‘six channels’’’ OR
‘‘portable’’ OR ‘‘one channel’’ OR ‘‘two channels’’ OR ‘‘three
channels’’ OR ‘‘four channels’’ OR ‘‘five channels’’ OR ‘‘six
channels’’ OR ‘‘seven channels’’ OR ‘‘eight channels’’ OR
‘‘nine channels’’ OR ‘‘ten channels’’ OR ‘‘channel minimisa-
tion’’ OR ‘‘channel reduction’’ OR ‘‘channel selection’’)).

FIGURE 1. PRISMA flow diagram [42] of the systematic review process.

The review was carried out by inspecting the titles, the
keywords and the abstracts of the papers. Only journal and
conference articles were considered, and book chapters and
reviews were excluded from the results. No time limits were
applied. A total of 418 papers were obtained: 258 from
Scopus, 89 from Pubmed, and 71 from IEEE Xplore. One
hundred five duplicates were excluded, and 313 papers were
selected for the next step. Then, the articles were filtered
according to their abstracts: all the papers not dealing with
the emotion recognition field or not exploiting the EEG signal
were eliminated. By the end of this round, 140 articles were
left. Subsequently, each article was analyzed by reading the
complete text, and other 25 papers were excluded because
they dealt with the theme of emotions but did not carry out
a classification of the emotional states (e.g., the aim was
to distinguish between depressed and non-depressed groups.
One hundred fifteen papers were finally selected and clas-
sified. The EEG device employed for recording the signals
was not a criterion used to evaluate the inclusion/exclusion
of the papers within the review. However, it is important
to underline the role played by the equipment in guaran-
teeing the quality of the signal and therefore the classifi-
cation performance. An objective criterion for establishing
the adequacy of the instrumentation is represented by the
compliance with the standard IEC 60601-2-26:2012 [44] (in
2019 replaced by the standard IEC 80601-2-26:2019 [45].)
The following instruments will be considered as ‘‘compli-
ant’’: (i) devices in compliance with this standard and specif-
ically intended for clinical use, and (ii) instruments produced
for scientific research which are accompanied by datasheets
reporting the satisfaction of the minimum requirements
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FIGURE 2. Time trend of the reviewed papers.

FIGURE 3. Occurrences of papers varying the minimization strategy.
Market (blue), data-driven (orange), and prior-knowledge (gray).

identified by the standard. Studies reporting the use of ‘‘non-
compliant’’ devices were also included in the review given
their high number on the total of the papers in the current
scientific panorama [46]. These papers emblematically rep-
resent an important ongoing scientific and technological pro-
cess of searching for a trade off between wearability, low
cost and classification performances. In general, the metro-
logical characterization of an instrument can be a useful tool
to evaluate its adequacy, as in [47]. In Fig. 1, the phases
of identification, screening, eligibility, and inclusion of the
papers are shown in detail.

IV. GENERAL FINDINGS
A. TIME TREND ANALYSIS
A time-trend analysis of the number of papers published each
year allows identifying increasing attention towards the topic
of emotion recognition by using a minimal number of chan-
nels. From 2013 onwards, the number of published papers
per year increased almost linearly. Fig. 2 graphically shows
the time-trend.

B. MINIMIZATION STRATEGIES
The articles fall in three macro-clusters namely data-driven,
prior-knowledge, andmarket according to the channel reduc-
tion strategy employed. The data-driven cluster includes
studies aiming a channel reduction by applying proper algo-
rithms on a high number of channels dataset. The prior-
knowledge cluster collects studies selecting the optimal
subset of channels relying on the prior-neurophysiological
knowledge. Lastly, papers exploiting commercially available
devices equipped with a low number of channels are included
in the market cluster. Fig. 3 shows the occurrences of papers
for the clusters mentioned above.

FIGURE 4. Occurrences of papers varying the adopted reference theory of
emotions. Dimensional theory (blue), discrete theory (orange).

FIGURE 5. (yellow), and #subjects ≥ 31 (light blue).

C. REFERENCE THEORY
Dimensional theory is the most widely adopted, specifically
Russell’s circumplex model of affect in which emotions are
represented by two dimensions, namely emotional valence
and arousal. The discrete theories of emotions are less com-
monly employed with respect to the dimensional theories.
The amount of papers exploiting the above mentioned refer-
ence theories is reported in Fig. 4. Ten papers analyzed emo-
tion by referring to both discrete and dimensional theories.

Depending on the reference theory adopted, different emo-
tions can be assessed. In the case of the discrete emotion
theory, primary (or secondary) emotions can be classified.
In the case of the dimensional model, valence, arousal
(possibly dominance) are evaluated.

D. EXPERIMENTAL SAMPLE SIZE AND SELECTION
60% of the surveyed papers employ a self-produced dataset
acquired for emotion recognition. The remaining 40%
employ publicly available datasets, such as Seed [48],
Deap [49], Dreamer [50], Amigos [51], and Mahnob-HCI
[52]. No particular criteria were used for the selection of
the experimental sample. The information reported about the
data set mainly concerns the number of subjects, age, sex and
their health conditions. Less frequently, the ethnicity and the
presence of cognitive or hearing issues are indicated. Four
clusters of papers at varying the sample size, were identified:
(i) 1 ≤ n ≤ 10, (ii) 11 ≤ n ≤ 20, (iii) 21 ≤ n ≤ 30,
and (iv) n ≥ 31 were n is the number of subjects involved
in the experimental activities. In Fig. 5, the number of papers
for each interval is reported. The same item can be counted
multiple times when it falls into multiple categories.

E. STANDARDIZED STIMULI
A not standardized set of stimuli (mostly video clips) was
used to elicit emotions in most experimental setups. Stan-
dardized sets of eliciting stimuli are mainly pictures and are
employed in a minority of cases. Results are shown in Fig. 6.
The total number of studies exceeds the number of articles
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FIGURE 6. Occurrences of papers varying the eliciting stimuli. Not
standardized set of stimuli (blue) and standardized set of stimuli
(orange).

reviewed because some studies fall into more than one cate-
gory and were considered multiple times.

V. SPECIFIC FINDINGS ON CHANNEL REDUCTION
APPROACHES
This section focuses on the most known strategies for
the reduction of channels in the emotion recognition field
reported in the selected literature. Three channel reduction
strategies largely used in the literature were identified: A)
manually choosing the best subset of channels based on the
prior neurophysiological knowledge; B) use of commercial
EEG devices provided with a low number of channels, and
C) use of machine learning-based algorithms (data-driven
approaches) to find the best subset of channels.

A. PRIOR KNOWLEDGE-BASED APPROACHES
Papers employing prior knowledge to select the best electrode
placement mainly refer to the theory of the right hemisphere
and valence theory. Asymmetry in EEG patterns between the
two hemispheres is mostly employed for emotion recogni-
tion, particularly in the dorsolateral prefrontal cortex. Among
these papers, 68% select electrodes only from the frontal area,
following the theory of valence. Further 32% select few elec-
trodes symmetrically from each hemisphere’s different areas
(frontal, parietal, temporal, and occipital).

All the articles performing a channel selection based on
neurophysiological knowledge can be grouped into two cate-
gories: (i) compliant devices [53], [54], [55], [56], [57], [58],
[59], [60], and (ii) non-compliant devices [61], [62], [63],
[64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74],
[75], [76], [77], [78], [79], [80], [81]. It is worth noting that
prior knowledge-based approaches does not involve the use
of channel reduction algorithms. The optimal channels are
manually chosen by the experimenter on the basis of prior
knowledge and are independent of the device employed for
the EEG recording. Besides the different quality of the instru-
mentation, also the different experimental protocols exploited
for the experiments make it difficult to compare the results of
the studies.

The most adopted electrodes were identified by counting
the number of articles that proposed them, and the percentage
for each channel was assessed. Results of the most adopted
electrodes in a neurophysiology-based channel reduction task
for emotion recognition purposes are shown in Fig. 7. Only
the channels proposed by at least 30% of the studies were

FIGURE 7. More informative electrodes in a channel reduction task based
on prior knowledge. Different colors indicate the percentage of studies
which returned that specific channel.

considered significant. F3 and F4 resulted in being the most
used channels.

B. APPROACHES BASED ON COMMERCIALLY-AVAILABLE
WEARABLE SOLUTIONS
EEG devices have become increasingly available on the mar-
ket over the last decade. Most of these are general-purpose
(i.e., measuring cognitive functions, sleep phases, meditation
states, etc.). Therefore, the positioning of the electrodes is not
anchored to a consistent neurophysiological theory.

The commercial devices provided with a number of chan-
nels ≤ 16 were classified as low number of channel devices.
#16 is an empiric threshold emerged from the surveyed
literature: #16 is the maximum number of channels to con-
tinue defining a device as wearable [82]. Below, the com-
mercial devices provided with a low number of channels
(< #16) employed in scientific papers on emotion recog-
nition are reported: Emotiv Epoc + [83], NeuroSky mind-
wave [84], Muse [85], Enobio8 [86], FlexComp Infiniti [87],
Nexus4 [88], IMEC [89], the OpenBCI [90], Mindlink [91],
Emotiv Insight [92], Ant neuro eego [93], Nexus10 [94], and
abmedica Helmate [95]. TheMuse was employed by the 36%
of the papers ( [96], [97], [98], [99], [100], [101], [102],
[103], [104], [105], [106], [107]), the Emotiv Epoc + by
the 30% [51], [108], [109], [110], [111], [112], [113], [114],
[115], [116], and the NeuroSky Mindwave by the 12% [117],
[118], [119], [120]. The OpenBCI, the Mindlink, the Emotiv
Insight, the Nexus10, the Nexus4, and the abmedica Helmate
are employed in the minority of cases [82], [121], [122],
[123], [124], [125], [126], [127]. Also in this case it is pos-
sible to distinguish between compliant and non-compliant
devices. Both the abmedica Helmate and Enobio8 comply
the mentioned standard. The scalp areas covered by the
electrodes are different across devices. The Emotiv Epoc +
and the Muse systems lack channels along the midline. The
IMEC system shows a higher concentration of electrodes
in the frontal area of the scalp, but registration sites in the
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FIGURE 8. Channels most used by wearable devices on the market.
Different colours indicate the percentage of systems which employs that
specific channel.

central area are also present. The NeuroSky mindwave and
the Mindlink present a tiny number of channels concentrated
in the pre-frontal area.

Table 1 reports the channels provided by the aforemen-
tioned commercial solutions, those not reported in table do
not have a fixed configuration of channels and allow the
positioning of the electrodes to be changed within the posi-
tions offered by the compatible EEG cap. In Fig. 8 the most
used channels are represented. The different colours indi-
cate the percentage of devices that employ each channel.
Only the channels used in at least 30% of the devices were
reported. A subset of 12 channels can be identified as the
most commonly used in commercially-available EEG sys-
tems employed for emotion recognition goals, namely Fp1,
Fp2, F3, F4, F7, F8, C3, C4, P7, P8, O1, and O2. It is worth
noting the symmetrical distribution of electrodes used in com-
mercial devices.

C. DATA-DRIVEN APPROACHES
The problem of channel selection is strictly related to the fea-
ture selection problem for classification methods for which
several survey works are available in the literature, e.g. [128],
[129], [130]. It is now common opinion that the methods
for feature selection fall in three major categories, depending
on the search strategy adopted to find the most meaningful
features:

i) filter methods: the subset of features is selected
as a preprocessing step and does not depend on the
learning approach
ii) wrapper methods: a learning engine is used to
score subsets of features according to their predic-
tive power
iii) embedded methods: the selection is integrated in
the training phase and usually strongly depends on
the learning approach.

Most of the methods proposed for the selection of the best
EEG channels for emotion recognition do fall in one of the

above categories changing the word feature with the word
channel. In addition, somemethods achieve channel selection
via feature selection: first, features are selected considering
signals from all channels, and then the channels with more
selected features are labelled as most informative.

1) FILTER METHODS
Different from other strategies, filter methods are classifier-
independent; no classifier is needed to select the best elec-
trode sets. However, some score measure is needed to rank
the electrodes. Three strategies are mainly used to rank the
channels/features in the current literature: Correlation-based
methods, Mutual Information-based methods, and Relief-
based methods.

a: CORRELATION-BASED
The Correlation Coefficient [131] is an indicator of the rela-
tionship between a pair of variables X and Y . It is usually
defined as:

r(X ,Y ) =

∑
(X − E(X ))(Y − E(Y ))√∑

(X−E(X ))2
√∑

(Y−E(Y ))2

where E(·) is the average operator and the summations
run over the values assumed by the variables. In [132],
the functional interconnections between electrodes pairs are
computed for each session of each subject. In the pro-
posed work, the correlation is used as a similarity measure
between pairs of electrodes. The work was validated on the
DEAP 32 channels signals on four classes sampled from the
Valence/Arousal space. The correlations were then reported
in connectivity graphs to facilitate pattern detection. Sev-
eral statistics are then computed using the graphs: electrode
degrees (number of electrodes connected to each electrode)
and electrode modes. These indexes are used to estimate a
final channel activation probability used to select the best four
electrodes for the proposed emotions, resulting in CP1, O1,
Pz, Po4.

The Reverse Correlation Algorithm (RCA, [133], [134])
is an unsupervised feature selection method. A pseudo-code
of the algorithm for feature selection is reported in the
Appendix.

In [135], the RCA was adapted for the channel selection
task. The intuition is that a lower correlation between chan-
nels can be interpreted as low connectivity with the other
ones. In a nutshell, considering each channel as a collection
of features, it is possible to give a score to each channel by
computing the correlations between the channels’ features
and summing them up. Next, the channels having the lowest
sums are selected iteratively. Experiments were done on the
DEAP dataset, where stimuli were generated using music
videoclips of 1 minute each one. The method was assessed
on a four classes problem (happy, sad, calm, enthusiasm) in
the Valence/Arousal space. A comparison with other three
channel selection methods is made. The method was vali-
dated with a 10-fold CV. The authors search for the best
three channels, founding the set composed of P8, AF4 and
Cz as the best configuration. The authors highlighted that
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TABLE 1. Channel locations of the main wearable commercial EEG devices. The devices in compliance with the IEC 60601-2-26:2012 are highlighted in
gray.

several inspected methods also select the Cz electrode and
the right part of the brain. This was motivated by the authors
because, as highlighted by other studies, the right-brain activ-
ity reflects a negative emotional state and negative emotions
are considered to elicit more reactivity with respect to positive
ones. Similarly, in [136] and [137] sets of respectively 11 and
4 optimal channels are found for the emotion classification
problem on the DEAP dataset. To generalise the channel
selection to an unseen subject, in [136] and [137] the RCA
is adopted for each subject. Then the most frequent channels
are selected. In particular, the authors highlighted that using
the proposed 11 channels in an emotion classification task led
to an average difference of less than 1 %with respect to using
all the 32 channels used to acquire the data.

b: MUTUAL INFORMATION-BASED
Given two continuous random variable X ,Y , Mutual Infor-
mation MI is defined as [138]:

MI (X ,Y ) =
∫ ∫

p(x, y) log
p(x, y)
p(x)p(y)

dxdy

where p(x, y), p(x), p(y) are the joint probability density func-
tion (pdf) of X and Y , the marginal pdf of X and the marginal
pdf of Y respectively. High values of MI correspond to high
relation between the two variables. If the variables are dis-
crete, the integrals will be replaced by sums and pdf by prob-
abilities. Since no statistics is used to compute MI , it can
measure any kind of relationship between pair of variables,
differently from other measures [139]. On the other size, MI
requires to estimate the pdfs of the variables from data sam-
ples. Since 0 ≤ MI (X ,Y ) ≤ min(H (X ),H (Y )) [138], [140],
a normalized version ofMI (·, ·) can be defined as

NMI (X ,Y ) =
MI (X ,Y )

min(H (X ),H (Y ))

where H (X ) and H (Y ) are the Entropy [138] of X and Y
respectively. In [141], a feature selection algorithm based on
MIwas proposed. The proposedmethod build a set of features
in an iterative way, maximising the MI between the classes
and the features and penalising the features highly depen-
dent on each other. A pseudo-code of the algorithm proposed
in [141] is reported in the Appendix.

Reference [140] proposed a variation of the [141] algo-
rithm using the Normalized Mutual Information index. NMI
is adopted in [142] for channel selection problem to build
connection matrices between channels used for a channel
selection procedure. Also, in this case, the method is assessed
on the DEAP dataset, showing, as for other methods, a cer-
tain channel reduction while maintaining high classification
accuracy.

Mutual Information is again used in [143] with wavelet
entropy, and average wavelet coefficient (WEAVE) features,
halving the number of channels (from 32 to 16) with less
than 8 % loss of accuracy.

Instead, in [144] an automatic channel selection procedure
is performed exploiting theminimumRedundancyMaximum
Relevance feature selection algorithm (mRMR, [145], [146]).
mRMR selects less redundant features and most relevant for
a given class simultaneously, and then either chooses the
corresponding channels or assigns a weight to the channel
averaging over the weights of the feature in the channel.
Both redundancy and relevance are computed considering the
Mutual Information between features. In other terms, mRMR
optimizes the following conditions at the same time:

max
F

1
|F |

∑
i∈F

MI (C,X (i)) (1)

min
F

1
|F |2

∑
(i,j)∈F×F

MI (X (i),X (j)) (2)

with {X (i)
}
d
i=1 set of features, C the class variable, MI (·, ·)

is the Mutual Information, and F the set of the desired fea-
tures. the first condition wants to maximize the the rele-
vance between the selected features and the class, while the
second one wants to minimize the redundancy between dif-
ferent features. In general, mRMR is an incremental search
scheme, selecting one features at each iteration, not taking
into account the interactions between groups of features.
In [140], is highlighted that the mRMR algorithm can be
obtained by setting β = 1

F in the [141] algorithm. In [144],
two different methods to adapt mRMR to channel selection
was proposed: the former using mRMR to feature selection
and then selecting the corresponding channels, the latter using
mRMR to assign a weight to the features, and the select-
ing the channels with highest average feature weights. The
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method is tested on the DEAP dataset reducing from 32 to
28 and 22 channels with a slight loss in classification accuracy
(around 1.37%) using a Kernel Extreme Learning Machine
(KELM, [147]) as a classifier. Furthermore, well-known elec-
trodes sets discovered in other studies were tested.

c: RELIEF-BASED
The Relief Algorithm [148] is a feature selection procedure
that ranks each feature by analysing the differences between
feature values sampled from the items in the dataset. Relief
starts from the hypothesis that a representative feature has
similar values between sample acquisitions of the same class
and very different values for instances of different classes.
Therefore, the basic Relief strategy assigns a score to each
feature X (i) in an iterative way. A pseudo-code of this strategy
is given in the Appendix.

In [149], ReliefF, a popular filter feature selection method
built on top of Relief, is proposed. Its main differences respect
to Relief consist in searching for k neighbours with k >

1 instead of just one as in the Relief algorithm and averaging
the k neighbours’ contributions in the Ew update to improve the
reliability of the scores. Furthermore, ReliefF uses a different
strategy to handle multiclass data with respect to Relief and
can work with incomplete data.

ReliefF is exploited in [150] for the channel selection task.
Three different channel rank strategies are proposed: using
the weights average over the features belonging to each chan-
nel (Mean-ReliefF-Channel-Selection, MRCS), the first one
selecting the channels having the top-N features selected by
ReliefF, and refining the ReliefF channels ranks exploiting
the classification performances given by an SVM. These
Strategies are tested on a subset of the DEAP dataset. Simi-
larly, [151] performs valence recognition experiments both on
DEAP and self-collected data, selecting the channels having
the highest features ranks. In contrast, in [152], the channels
are scored relying on the average feature weights. ReliefF is
also tested in [153] and [154] on proprietary datasets, and
in [155] and [151].

d: OTHER RANK MEASURES
Other measures used to rank the channels are reported.
- ReliefF-mRMR: mRMR and ReliefF are both adopted

in [156]. In the proposed work, an intermediate set of 18 opti-
mal channels was selected using the ReliefF algorithm, and
then refined toward a final set of 10 channel. The strategy is
validated on the DEAP dataset.
- Common Spatial Pattern-based: [157] a channel

selection procedure was assessed on self-made data and
MAHNOB-HCI dataset with three different emotions sam-
pled from the Valence dimension. The adopted channel
selection procedure gives a score of each channel relying
on a multiclass CSP transform. Each 60 s is framed into
6 s windows and the method is validated with a 5-fold CV
for each subject. Analysing the classification accuracy with
different numbers of channels, the authors observed that the
accuracy increases until the number of channels is below 19.
- Differential Entropy: in [158], a combined feature-

channel selection method is proposed. The features are first

extracted by four different Neural Networks and then ready
for the channel selection procedure. The channel selection
criteria is based on the Differential Entropy. Given a thresh-
old value, channels with a greater entropy are selected omit-
ting the remaining ones. The work is validated using DEAP,
MAHNOB, and SEED datasets.
- Synchronization Likelihood:Another filter method is pro-

posed in [159] measuring the linear interdependency between
signal via the Synchronization Likelihood [160].
- Stepwise Discriminant Analysis: The use of Stepwise

Discriminant Analysis (SDA) [161] is discussed in [162].
The final classification score are obtained with the Linear
Discriminant Analysis.
-EigenVector Centrality Method: In [163], one channel is

selected for a four emotions (fear, sad, happy, relax) classi-
fication task. The EigenVector Centrality Method (EVCM)
makes the channel selection process. EigenVector Centrality
relies on the following principle: given the channels relations
disposed of in an adjacency matrix A, the eigenvector of A
with the greatest eigenvalue is considered a score of centrality
of each node. In this context, the centrality of a node (channel)
is a measure of the node’s influence on the whole network.
Video stimuli are used to elicit the emotions, mapped in the
arousal/valence model. The original signal is acquired using
a 24 channel EEG device, reduced to one. The best channel
found by the proposed method was FP1-F3.
- Energy Variation: In [164], optimal channels for each

subject are selected, looking for the channels showing the
most significant changes in brain activity during emotions.
The relevant channels are selected by computing a probability
score on the relevance of each channel. This probability is
computed considering the Energy variations in the frequency
bands. An estimate of the Energy is obtained from DFT and
Numerator-Group-Delay (NGD). The chosen electrodes are
different for each subject. The idea of selecting channels for
each subject is based on the assumption that the folding of
the cortex differs between any two people and on the find-
ings of [165] that, in functional magnetic resonance imaging
(fMRI) scans, the brain activity was unique for each emo-
tional state. In other words, the authors searched for the most
relevant electrodes for the investigated emotional states. The
validation was made on the DEAP dataset. Final classifica-
tion was made with RNN and QDC.

2) WRAPPER METHODS
In the channel selection domain, a wrapper method gives
scores to subsets of channels using a learning engine. The
channel subsets can be given a priori relying on some the-
ory or empirical evidences or determined by a machine
learning method. In particular, a significant part of the lit-
erature explores swarm intelligence algorithms for channel
discovery.

a: A PRIORI KNOWELDGE CHANNEL SETS
In [166], several electrodes configurations for emotion recog-
nition and attention recognition are proposed. The final aim
of the study is to propose a general-purpose set of electrodes
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suitable for both tasks. The study proposed configurations
composed of 2, 4, 6, and 8 electrodes, validated using a
10 × 10 -CV on the DEAP dataset on 4 classes sampled
from the Valence/Arousal space. Sets of pair numbers of
electrodes are chosen to satisfy the hemispherical symmetry.
The research of the best electrode sets is made exhaustive,
considering different feature configurations. Each set’s final
rank is given as a combination of the resulting accuracy and
the normalized concentration performance measure (CONC).
In the conclusions, the authors highlight that, for emotional
recognition, all the discovered sets always include F7 and F8
channels.

Using the appraisal as reference theory, in [56], different
electrodes sets are experimentally assessed in a 3-fold Cross-
Validation scheme on an SVM classifier, considering the best
channels highlighted to be associated with appraisal process-
ing in other studies.

b: CLASSICAL MACHINE LEARNING FOR CHANNEL SETS
DISCOVERY
A simple empirical study for channel selection using a simple
classifier is reported in [167]. The method builds a classi-
fier for each channel for data acquired from a 21 channels
device. The final results showed that the occipital channels
have good discriminatory performance (around 80% of clas-
sification accuracy). The experiments were performed on a
proprietary dataset from 26 females volunteers. In [168] the
best classification performance are empirically selected from
a set of 32 channels. The channels’ performance was assessed
using a Neural Network, and then the channels giving the
best performance for each subject were selected. The final
classification accuracy were validated with a 4-fold Cross-
Validation on proprietary data.

A SEnet architecture [169], for channel selection is pro-
posed in [170]. The network is used to capture the dependen-
cies between channels assigning a weight to each channel.
The method is tested on the DEAP dataset, using an SVM
classifier reporting that selecting the top 7 or 12 channels
shows a better result than a pair of competing methods.

In [54], a binary emotion classification problem on EEG
signal of 26 subjects was addressed. A channel selection pro-
cedure, based on Gradient Boosting Decision Trees, selected
a combination of channels located in the lateral annular region
of the brain as the most effective for the proposed emotion
classification task.

In [171], the performances on a three emotions classifica-
tion problem on self-acquired data are used to find a set of
10 optimal channels. The classification performances of each
channel are used to measure the most relevant channels for
emotion alteration. After the validation procedure, the chan-
nel corresponding to the C6 area appears to be most sensitive
to the emotion alteration. In general, the right hemisphere
seems particularly sensitive to emotions.

c: SWARM INTELLIGENCE FOR CHANNEL SETS DISCOVERY
Several Swarm Intelligence algorithms [172] were adopted
for channel selections. The most significant part of them are

inspired by mechanisms observed in nature. The selection
of channels is possible with a swarm intelligence algorithm
since it can exploit the most promising areas of the solution
space without an exhaustive search.

In [173], Particle Swarm Optimization (PSO, [174]),
Cuckoo Search (CS, [175]), Grey Wolf Optimizer
(GWO, [176]), and Dragonfly ( [177]) are adopted to select
relevant features. The selected features are used to choose the
most relevant channels for an emotion classification prob-
lem on the DEAP dataset with SVM and k-NN classifiers.
A channel is chosen if at least one of its feature was chosen
for at least 31 subject in the 90% of the experiments in the
feature selection stage. A group of 11 channels distributed
over all brain regions was identified as involved in emotion
classification.

In [178], a differential Evolution (DE, [179], [180]) version
for feature selection is exploited for channels selection. In this
work, features and channel selection are tied to selecting them
in pairs via a Sparsity Constrained Differential Evolution
(SCDE) approach. The feature-channel pairs are optimised
synchronously in the global search adopting a sparsity con-
strained fitness function. The DE fitness function is obtained
as the combination of the classification accuracy returned
by Quadratic Discriminant Analysis (QDA) and a channel
sparsity parameter to limit the number of the selected chan-
nels. Channels are selected relying on the features selected
during the DE procedures. The DEAP dataset is used for the
experimental assessment, obtaining different sets of channels
at varying the sparsity coefficient. A pseudo-code of the DE
algorithm for feature selection is reported in the Appendix.

A combination of DE and the Bat Algorithm [181], was
proposed in [182]. The proposed Binary Adaptive Differen-
tial Evolution Bat Algorithm (BADEBA) was tested on the
DEAP using an SVM classifier. The idea is to apply the
mechanisms of theDifferential Evolution algorithm to the Bat
algorithm so that the mutation mechanism is introduced into
the Bat algorithm. To solve the problem in the solution space
of channel selection, the authors modify the Bat and the DE
algorithms, the former imposing that each bat position EF is
in the {0, 1}d space with d number of channels, the latter by
using logic operations instead of arithmetic ones. Two final
sets of 8 and 7 optimal channels for valence and arousal were
given. A pseudo-code of the basic Bat Algorithm is reported
in the Appendix.

A feature subset selection algorithm based on DE is
adopted in [183]. The method is tested on a small dataset of
10 subjects acquired by the authors using an LDA classifier
on seven emotions, proposing sets of optimal channels for
each examined emotion.

d: OTHER METHODS
In [184], a feature channel reduction and a channel selection
procedure were proposed. The proposed channel selection
method (Relief-FGSBS) is based on the Relief Algorithm
and the Floating Generalized Sequential Backward Selec-
tion (FGSBS) combination. In FGSBS a feature is removed
iteratively from the candidate optimal set. The removal is
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made relying on an evaluation function (e.g., the classifica-
tion accuracy) computed at each iteration. In the proposed
work, Relief-FBSBS iteratively removes the less influential
channels. The performances of the selected set of channels
were compared with random channels sets performances.
Experiments were made both on self-collected data and pub-
lic data (DEAP). In the self-produced data, a 64 channel
acquisition device was adopted. The images from the CFAPS
dataset was used as stimulus. Validation is made with a 4-fold
CV procedure. In the study, a set of 10 channels reached an
accuracy close to the one obtained using all the channels.
Furthermore, the authors also highlighted that the channel
rankings changed in function of the EEG features chosen.

3) EMBEDDED METHODS
Group Sparse Canonical Correlation Analysis (CCA) [185],
a method that incorporates group effects of features into
the correlation analysis while performing individual feature
selection simultaneously is adopted in [186]. The traditional
CCA is formulated as a weighted reduced-rank regression
problem in this work. A set of binary weights indicates
whether the corresponding group of features are selected
and tested on the SEED dataset in leave-one-trial-out cross-
validation setup. The proposed method wants to select the
best channels and predict the emotion information of testing
EEG data simultaneously. The study reports a set of 4 chan-
nels returning an accuracy of about 80 % on three classes.

In [187] and [188] Graph Neural Networks (GNNs) are
proposed both for emotion classification and channels rela-
tions detection. In particular, [188] returned a channel acti-
vation map showing the contribution of each channel for the
final classification together with the inter-channel relations.
The method is evaluated on SEED and SEED-IV.

4) THE CASE OF ALGORITHMS TESTED ON THE DEAP
DATASET
To compare the performance of the proposed minimization
algorithms, we focused our attention on papers using public
datasets. Indeed, in the case of public datasets, the variability
of the data generation process is controlled. The reference
theory (i.e., discrete or dimensional), the elicitation stimu-
lus (e.g., standardized or not), the mood induction procedure
(how many and what instructions are given to the subjects),
and the size of the experimental sample are all sources of
variability.

Among the papers exploiting public datasets, the majority
(53%) consider the DEAP dataset.

The EEG signals contained in the DEAP dataset are
labelled in the framework of the dimensional theory of emo-
tions in terms of valence, arousal, and dominance. Further
information is provided about like/dislike and familiarity.
54% of the studies employ those signals in a 4-class emo-
tion recognition problem where the emotions correspond to
the four quadrants of the valence/arousal plane. The most
informative electrodes were identified by counting the num-
ber of articles that proposed them, and the percentage for
each channel was assessed. Results of the most informative

FIGURE 9. More informative electrodes in a channel reduction task on
the DEAP dataset in a 4-class emotion recognition. Different colors
indicate the percentage of studies (> 30%) associated to each channel.

electrodes in a channel reduction task on the DEAP dataset
in a 4-class emotion recognition problem are shown in Fig. 9.
Only the channels obtained in at least 30% of the studies were
considered significant. The detected electrodes are mostly
concentrated in the brain’s frontal areas in accordance with
the knowledge provided by neurophysiology regarding the
relevance of the frontal brain regions in emotional processes.

42% of the works consider the valence and arousal dimen-
sion in channel reduction processes separately. Of these stud-
ies, 5 investigated only the dimension of emotional valence;
the remaining 6 applied a channel reduction approach sep-
arately to both the valence and the arousal dimensions.
Fig. 10 and 11 show the maps of the most significant chan-
nels for valence and arousal, respectively. The reported chan-
nels were obtained in at least 30% of the studies. One of
the papers exploiting the Deap dataset did not report the
selected channels. The most informative channel for the emo-
tional valence dimension resulted in being F4. For the
arousal dimension, in addition to some frontal electrodes,
also electrodes placed in the parietal and occipital regions
(i.e., P3, P4, O2) resulted informative.

The updated version of the 10/20 International Positioning
System proposed by [189] was used to create the electrode
maps.

The performances of a subset of the revised studies using
the DEAP dataset were reported in Table 2. The investigated
emotions (i.e., the classes), the classification accuracy, the
modality of data division in the validation strategy, the vali-
dation strategy, and the reduced number of channels are indi-
cated for each study. Only studies reporting all the requested
information are considered.

VI. DISCUSSION
As stated in the Section Background, the neurophysiological
theories anchoring EEG patterns to anatomy-functional anal-
ysis move within the framework of dimensional theories by
considering only the valence dimension. The arousal-neural
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TABLE 2. Achieved performances of a subset of the revised studies exploiting the Deap dataset. For each row we report, the study, the classes (where H,
L, V, and A mean high, low, valence and arousal, respectively), the classification accuracy, how the data are divided during the validation strategy, the
validation strategy, and the reduced number of channels.

FIGURE 10. More informative electrodes in a channel reduction task on
the DEAP dataset in a 2-class emotion recognition for the valence
dimension. Different colors indicate the percentage of studies (> 30%)
associated to each channel.

circuitry is not associated with any EEG pattern [190]. There-
fore, neurophysiological theories do not provide specific indi-
cations for using the EEG in emotion recognition. In the
last years, data-driven approaches have been supporting the
identification of EEG patterns useful formore accurate classi-
fication of emotional phenomena. The identification of EEG
patterns is useful for the goal of channel selection. On the
contrary, selection strategies can help the identification of
EEG patterns.

We can now attempt to answer the four questions formu-
lated in the introduction to this paper. Regarding RQ1, we can
safely state that three approaches are used to select the most
promising scalp areas for EEG acquisitions in an emotion
recognition task: data-driven, prior knowledge-based, and
based on commercially-available wearable solutions.

Regarding RQ2, the most spread is based on data-driven
approaches, but rarely the neurophysiology of emotions is
taken into account [54], [144], [191].

FIGURE 11. More informative electrodes in a channel reduction task on
the DEAP dataset in a 2-class emotion recognition for the arousal
dimension. Different colors indicate the percentage of studies (> 30%)
associated to each channel.

Considering question RQ3, it is worth noting that the
majority of commercial solutions is general purpose, and,
to our knowledge, no manufacturer justifies the location of
the proposed electrodes. Therefore, when devices with a low
number of channels are already adopted, this choice is often
not justified with respect to the EEG phenomenon to be inves-
tigated. Few wearable systems without a fixed configuration
of channels allow to change the positioning of the electrodes
according to the research goal.

As RQ4 is concerned, convergences among different stud-
ies with respect to preferable areas of the scalp for signal
acquisition were found in the present review regarding the
use of frontal and parietal channels to measure emotions.

In the case of studies exploiting commercial solutions
already based on few channels, findings show electrodes pre-
dominantly placed along the sagittal lines (right and left)
connecting Fpz to Oz [189]. Fp1 resulted in the most used
electrode among wearable devices. Indeed, Fp1 and Fp2 were

117422 VOLUME 10, 2022



A. Apicella et al.: Survey on EEG-Based Solutions for Emotion Recognition With a Low Number of Channels

also found to be significant from data-driven based channel
reduction analyses. Unlike the scientific literature, several
market solutions nowadays propose P7 and P8. These chan-
nels could be informative in the framework of the asymmetry
theories since they maximise the distance from the midline.
P3 and P4 are entirely missing though they are helpful for
arousal recognition. F3 and F4, together with F7 and F8
are largely employed, in agreement with neurophysiological
knowledge suggesting a fundamental role of these channels
for the measurement of emotions [41], [192]. C3 and C4,
and O1 and O2 are widely used even if neurophysiology
does not suggest a fundamental role of these channels in
the recognition of emotions. Both for prior knowledge-based
approaches and approaches based on commercially-available
wearable solutions, performance analysis on the classifica-
tion outputs were not carried out because of the different
experimental setups employed for the EEG signal recording,
i.e., the investigated emotions, the eliciting stimuli, the elec-
trode type (wet or dry), the EEG device, etc. Indeed, compli-
ance with the standard should be reported by the manufac-
turers in the technical documentation. Among the mentioned
devices, only the abmedica Helmate and Enobio8 refers to the
standard.

By analysing the results provided by the papers dealing
with data driven-based minimisation, the channels in the
frontal area emerged as informative, as anticipated by the
anatomical-physiological research. More informative elec-
trodes were concentrated in the brain’s frontal regions in
a channel reduction task on the DEAP dataset in 4-class
emotion recognition. In the 2-class emotion recognition task,
F4 resulted being the most informative channel for the
valence dimensions. Strangely the same did not happen for
F3. For the arousal dimension, electrodes placed in the pari-
etal area, namely P3 and P4, resulted in being significant.

However, despite having restricted the evaluation to those
compared on the same public dataset, it is not easy to propose
a comparison among the reviewed algorithms. Numerous dif-
ferences emerged regarding: (i) the object of investigation
(only valence or arousal dimensions or both), (ii) the number
of classes, (iii) the size of the reduced set of channels and their
positioning, and (iv) the validation strategy.

As regards the validation strategy, different performance
validation results and relevant electrodes can be obtained if
the validation strategy (e.g., k-fold Cross Validation (CV),
Hold-Out Validation, Leave One Subject Out (LOSO), etc.)
is applied considering recordings from each subject at a time,
or considering the data of all the subjects together. Unfortu-
nately, only a few of the reviewed works provide a detailed
description of the use of the data. In Table 2 the works that
reported the details mentioned above are reported. From the
results of the studies reported in Table 2, it is possible to
conclude that satisfactory performance can be produced even
with a low number of channels. Thus, the experiments on
the DEAP dataset, as for other datasets largely employed in
scientific literature on EEG based recognition strategies, are
affected by a weakness of reproducibility of the experiments
as concerns the elicitation of the measurand. The impact of

the experimental setup on the system performance, namely,
the number and type of emotional states, the kind of stimulus,
the stimulus induction procedure, the experimental sample
selection, etc. also, adopting a peculiar reference theory is
poorly justified (i.e., discrete vs dimensional).

Finally, in many studies, the sample size does not exceed
30 subjects (empirical threshold of the central limit theo-
rem [193]) and therefore, the statistical significance of the
results is compromised.

VII. CONCLUSION
In this review, different strategies for channel reduction in
the context of EEG-based emotion assessment are compared.
The goal is to contribute to improving the EEG-device wear-
ability by minimizing, at the same time, the loss of infor-
mation. The lack of robust EEG signal patterns linked to
emotions makes more challenging the channel reduction with
respect to other EEG phenomena (e.g., Steady State Evoked
Potentials or Event-Related Potentials). Nevertheless, since
2007, more than 100 papers have pursued the reduction
of the number of channels in EEG-based emotion recogni-
tion according to three main approaches: data driven-based,
prior knowledge-based and based on commercially-available
wearable solutions. The majority of the reviewed papers
exploited data-driven approaches, but the neurophysiology
of emotions is rarely taken into account. Many studies are
based on public datasets, and this allows a comparison of
the performances of the proposed algorithms. However, it is
worth noting how often the public datasets are obtained
using not-standardized stimuli and without administering
questionnaires to the experimental sample for its preliminary
characterization.

In the case of self-produced datasets, the care in prepar-
ing a reproducible setup to stimulate emotions is sometimes
not accompanied by an equally profound evaluation of the
criteria to be adopted to reduce the number of channels. For
example, when devices with few channels are used, the con-
sistency of the disposition of the electrodes with the local-
ization of the studied electroencephalographic phenomenon
is not previously discussed. Also the compliance of the EEG
device with the standards is not always verified thus affecting
the signal quality. Despite the limitations mentioned above
regarding the non-univocal definition of the measurand and
the low experimental reproducibility, some interesting trends
can be identified. By analyzing the results, the channels in
the frontal area emerged as informative, as anticipated by the
anatomico-physiological research. Fp1, Fp2, F3 and F4 were
the most informative channels for the valence dimension,
both according to data-driven based channel reduction analy-
ses and prior neurophysiological knowledge. For the arousal
dimension, electrodes placed in the parietal area, namely P3
and P4 resulted in being significant. Generally, commercial
EEG devices do not provide the selected electrodes since they
are not built for the specific purpose of emotionmeasurement.
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