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ABSTRACT As the explosive growth of the data volume, data center is playing a critical role to store
and process huge amount of data. Traditional single data center can no longer to adapt into incredibly fast-
growing data. Recently, some researches have extended the tasks such data processing to geographically
distributed data centers. However, since the joint consideration of task placement and data transfer, it is
complex and difficult to design a proper scheduling approach with the goal of minimizing makespan
under the constraint of task dependencies, processing capability and network, etc. Therefore, our work
proposes JHTD: an efficient joint scheduling framework based on hypergraph for task placement and data
transfer across geographically distributed data centers. Generally, there are two crucial stages in JHTD.
Initially, due to the outstanding of hypergraphs in modeling complex problems, we have leveraged a
hypergraph-based model to establish the relationship between tasks, data files, and data centers. Thereafter,
a hypergraph-based partition method has been developed for task placement within the first stage. In the
second stage, a task reallocation scheme has been devised in terms of each task-to-data dependency.
Meanwhile, a data dependency aware transferring scheme has been designed to minimize the makespan.
Last, the real-world model China-VO project has been used to conduct a variety of simulation experiments.
The results have demonstrated that JHTD effectively optimizes the problems of task placement and data
transfer across geographically distributed data centers. JHTD has been compared with three other state-of-
the-art algorithms. The results have demonstrated that JHTD can reduce the makespan by up to 20.6%. Also,
various impacts (data transfer volume and load balancing) have been taken into account to show and discuss
the effectiveness of JHTD.

INDEX TERMS Big data processing, geographically distributed data centers, joint scheduling framework,
hypergraph, task placement, data transferring.

I. INTRODUCTION
With the advent of Big Data era, the rate of data generation
is dramatically increasing. For example, Internet giants such
as Google and Facebook crunch more than 10 PB of data a
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day [1]. As a result, it is essential to improve the efficiency
of data processing in the face the huge amount of data.
MapReduce [2] and Spark [3] have been widely adopted to
deal with large amounts of data. These frameworks usually
process data analytic jobs characterized by data-dependency
awareness. These jobs can be divided into a set of dependent
tasks. The execution of a task not only requires the outcome
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of the parent tasks, but also the data. Normally, the data and
tasks are stored within a data center, therefore the computing
node selection is the only consideration; it is unnecessary to
consider data transfer. However, due to the increase in the
amount of data, the data is distributed between multiple data
centers rather being kept in a single data center. Therefore,
a joint optimization problem of task placement and data
transfer has to be addressed to maximize performance.

Geographically distributed data centers (GDDCs) can
be applied to improve the efficiency of processing large-
scale jobs. When using GDDCs, several issues need to
be considered. First, because the network bandwidth is
the bottleneck for data transfer, the heterogeneity of link
bandwidth must be taken into account during data transfer.
Selecting suitable links to data centers can greatly reduce
data transfer time. Second, the computing capability of each
data center may vary; the higher the capability, the shorter
the job processing time. Last, the privacy of data at each data
center should be considered. Data transfer must obey the local
legislation.

In this situation, literature that aims to improve the
performance of GDDCs can be generally categorized into
two groups. One attempts to reduce the size of data transfer
across the data centers [4], [5], [6]. However, this group of
studies cannot really enhance the efficiency of job processing.
Since most of the data centers are heterogeneous, the network
transmission time not only depends on the amount of data,
but also on the link bandwidth [7], [8], [9]. As a result, solely
limiting to amount of data transferred cannot improve the per-
formance of GDDCs. The other group [10], [11] focuses on
developing sophisticated strategies for task placement. Data
analysis consists of multiple data-dependency tasks, whose
processing time or energy cost [12] can be shortened by
appropriately allocating the tasks. Different task placement
strategies lead to different results. By far, previous studies
have either focused on limiting the size of the transferred data
or only focused on the placement of tasks.

In contrast to these studies, with the objective of opti-
mizing performance via GDDCs, our study tackles the joint
optimization problem of task placement and data transfer.
To achieve this objective, we proposed a joint scheduling
framework that considers task placement and data transfer
based on a hypergraph (JHTD). We strictly formulated
the joint optimization problem of task placement and data
transfer between GDDCs. Since the key elements in our
problem are data, tasks and data centers, we employed a
hypergraph-based model to connect these elements. As a
generalization of a graph, a hypergraph can connect multiple
vertices with one hyperedge. Assigning data, tasks, data
centers and other key elements to the vertices and hyperedges
of the hypergraph can clearly express their dependencies,
which helps us to better handle problems. So, we developed
a two-stage scheduling framework (JHTD). The first stage
was to devise a hypergraph-based partition method for task
placement (HPTP) to minimize the amount of data trans-
ferring across data centers based on the various computing

capabilities of data centers. The second stage was to devise
a task allocation scheme to re-allocate tasks in terms of
the lowest dependency (TALD) by computing the task-to-
data dependency. Simultaneously, a data aware method with
the highest dependency transferring scheme (DHD) was
designed to minimize the data transfer completion time.
Finally, we evaluated the performance of JHTD by comparing
it with three other state-of-art algorithms.

The main contributions of our study are summarized as
follows:
• We formulated a joint optimization problem of task
placement and data transfer between GDDCs. To con-
nect the data files, tasks, and data centers, we introduced
and established a hypergraph-based model. The model
of the distributed data center, data file, job, and network
are setup, and the problem statement is given.

• We proposed a joint scheduling framework for task
placement and data transfer that optimizes makespan.
The proposed framework can be divided into two stages.
At begin an initialized task placement problem is solved
using a hypergraph partition method. Later, the tasks
and data files are reallocated and transferred to the other
data centers based on the awareness of dependency,
accordingly.

• We performed experiments using real-world configu-
rations from the China-VO project [13]. The proposed
JHTD was compared with three other well-known
algorithms: Greedy, Hypegraph [14], and Fast −
Newman [15]. The results show that JHTD has better
performance in terms of data transfer volume and load
balancing, and can reduce the makespan by 20.6% at
most. Meanwhile, we also discussed and verified the
effectiveness of JHTD under various impacts.

The remainder of this paper is organized as follows:
in the next section, give the preliminary knowledge of
hypergraph.We then review the current studies on optimizing
performance of GDDCs. Section III formulates the joint
problem of task placement and data transfer betweenGDDCs.
Details of the models are also given. Section IV elaborates the
proposed framework JHTD. Section V shows the evaluation
and comparison results. SectionVI discusses the performance
of JHTD under various impacts. Section VII concludes our
study and suggests future research prospects.

II. PRELIMINARY AND RELATED WORK
In this section, we give brief knowledge of hypergraphs,
then we review three classes of previous work: Task-oriented
scheduling, data-aware scheduling and hypergraph-based
scheduling.

A. PRELIMINARY TO HYPERGRAPH
A hypergraph can be defined as a graph generalization,
which is a discrete structure in finite sets. Unlike ordinary
graphs where an edge can only connect two vertices,
an edge in a hypergraph can connect any number of
vertices. Consequently, the hypergraph can represent more
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FIGURE 1. Illustration of a hypergraph, where V =
{
v1, v2, v3, v4, v5

}
and E =

{
e1, e2, e3

}
. e1 connects v1 and v2, while e2 connects v2, v3, v4,

and v5. At the same time, v5 is also the only vertex of e3.

complex relationships between vertices and edges. Due
to its advantages, the hypergraph has many real-world
applications in fields such as physics, chemistry, biology,
and computer science. Hypergraphs have been extensively
used in tasks including quantum entanglement [16], pre-
dicting molecular models [17], selecting genes [18], [19],
predicting diseases [20]. In addition, hypergraph learning
has also been used to build social networks [21], design
recommendation systems [22], and [23] and [24] used it
to extend graph neural network. Especially in the field of
computer vision, where hypergraphs are used for person re-
identification [25], hyperspectral image classification [26],
and visual tracking [27]. Some studies have also applied
hypergraph to high-performance computing [28] and task
scheduling [28], [29], [30].

Figure 1 illustrates a hypergraph H = (V, E) with a
two-tuple, where V is a set of the vertices, E consists of
a set of hyperedges. Hyperedges e1, e2 and e3 contain 2,
4, and 1 vertices, respectively, and v2 overlaps with e1 and
e2, so does v5 with e2 and e3. The hypergraph can describe
a complicated model, so it is adopted to define the joint
optimization problem in our study.

B. RELATED WORK
In the framework ofMapReduce and Spark, data analysis jobs
typically consist of multiple dependent tasks. The execution
of task requires data, as well as the data from its parent
task according to the precedence. Several studies improved
the performance of data analysis using the technique of
scheduling. Based on the importance of data and tasks,
we generally divide these works into three categories: task-
oriented scheduling algorithms, data-aware scheduling algo-
rithms, and hypergraph-based task scheduling algorithms.

1) TASK-ORIENTED SCHEDULING ALGORITHMS
The central idea of task-oriented scheduling algorithm is
to find a way to allocate tasks to servers (computing
nodes) that minimizes the completion time, which is a

single-objective optimization problem. To address this prob-
lem, there are many classical approaches such as FIFO,
greedy and maximum completion time (MCT [31]). Some
heuristic algorithms can be exploited as Max-Min [32], Min-
Min [33], and heterogeneous earliest finish time (HEFT),
critical path on a processor (CPOP). Moreover, some
traditional intelligent algorithms such as genetic, particle
swarm, and ant colony [34] are adopted to find the optimal
completion time. Not only that, but there are also some
works that improve these algorithms, making them applicable
to more scheduling scenarios. For example, [35] improved
genetic algorithms through accelerating and optimizing the
evolution processes, [36] presented an improved genetic
algorithm by introducing the spectrum partitioning algorithm,
and [37] proposed an adaptive granularity learning distributed
particle swarm optimization (AGLDPSO) with the help of
machine-learning techniques. However, these algorithms are
straight-forward and confined to solving simple scheduling
scenarios, and their results are random and susceptible to
parameters. Since tasks with no precedence are naive and
impractical, they neglect the factors of data-dependency
on tasks. As the number of tasks increases, the traditional
intelligent algorithms have a problem of being trapped in
local optima with a lower convergence speed.

2) DATA-AWARE SCHEDULING ALGORITHM
Unlike task-oriented scheduling algorithms, data-aware
scheduling algorithms consider the feature of data in improv-
ing performance [38]. Casanova et al., exploited file data
locality to compute the cluster sufferage value. The higher
value of sufferage means that it is needed for more tasks.
To effectively reducemakespan, data files with high sufferage
value have the priority to transfer [39]. Hu et al., devised
a task scheduling algorithm titled Flutter [11]. To eliminate
the impact of data movement, Flutter focuses on scheduling
tasks to data between GDDCs to reduce the completion time.
The close-to-files algorithm [40] schedules tasks with file
data replication transfer to the least-loaded data center to
balance the loading. Similarly, Convolbo et al., presented
a data-replication aware scheduler [41] (DRASH), which
partially replicates file data to data centers. Clearly, the
advantage of this approach is that it generates less cost in
terms of data transfer. Researchers in [42] formulated the
issue of task scheduling as a community detection problem.
By considering the dependencies between tasks, file data,
and data centers, they designed a community-detection-based
scheduling (CDS) algorithm. CDS relies on the task-to-data
center relation to compute the value modularity that ignores
the file data transferring cost.

Although data-aware scheduling algorithms benefit per-
formance, scheduling scenarios have been simplified. Most
studies consider a static scheduling condition, avoiding data
movement between data centers. But, for online scheduling,
it is difficult to prevent data transfer. Otherwise, the
dependent tasks cannot be successfully executed.
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3) TASK SCHEDULING ALGORITHM BASED ON
HYPERGRAPH
Since the task, data, network link, and data center are four
key factors in our joint optimization problem, to connect
these three elements, many studies adopted the hypergraph
method. For example, Ankita et al. used hypergraph to solve
the data placement problem in geographically distributed
clouds [43]. And Li et al. employed a hypergraph to divide the
workflow, and scheduled tasks using the Dijkstra algorithm
based on the Fibonacci heap [44]. The study [45] devote to
task-placement-based hypergraph partitioning approach. The
proposed algorithm can efficiently partition data items and
place them in distributed data centers, but it has a limitation
in data transfer. Yang et al. improved the traditional vertex-cut
hypergraph partition into a net-cut hypergraph partition [46];
it effectively balanced the partitioning results but it is not
suitable for large-scale data. In addition, [28] and [47] used
hypergraphs to reduce data transfer to shorten the overall
makespan but they neglected the actual execution of the task.
From the above work, it is evident that the deficiency of
current studies is that they simply integrate the idea of the
hypergraph or cannot be applied to problem optimization
in geographically distributed data centers. By adopting the
hypergraph partition method, a task placement solution can
be eventually obtained.

Besides, Yuen et al. improved the particle swarm algo-
rithm [48], [49] and applied it to a signalized traffic problem
to optimize the average vehicle delay and stop frequency.
However, such algorithm gains optimized results that rely on
the initialized parameters selection and tuning. Akbar et al.
studied various limitations of tasks in different scenarios and
optimized the network performance [50], [51]. Instead, for
the geographically distributed data centers, tasks placement
to the appropriate data center is not the only issue, more
factors to be concerned data dependency, data transfer and
processing capability on each data center.

Therefore, due to the defects of the current researches
on GDDCs, it is necessary to propose a sophisticated
algorithm that fully covers the joint optimization issues of
task placement and data transfer.

III. PROBLEM FORMULATION
In this section, we formally describe the joint optimization
problem. First, we set up the model of the system and job.
Note that the job model has been extended with hypergraph
to connect task, data transfer, and geographically distributed
data centers. We then formally state the joint optimization
problem for task placement and data transferring across
GDDCs. To clarify the formulation, Table 1 summarizes
some of the symbols and notation used in this article.

A. SYSTEM MODEL
There are |M | number of geographically distributed data cen-
ters owned by a service provider, which can be represented
as C = {C1,C2, . . . ,CM }. Because of the heterogeneity

TABLE 1. Symbols and Notations used in this article.

of data centers, the processing capability of each data
center is different from the other and is denoted by P =
{P1,P2, . . . ,PM }. These data centers are managed by a
central controller and connected with heterogeneous network
link. The bandwidth on each link is denoted asR(Cp,Cq), where
p, q ∈ M . The data is encapsulated as a data file stored in data
center. Assuming that the total number of data files is |F |, and
formulated as f = {f1, f2, . . . , fF }. The size on each data file
can be calculated by S(fi), i ∈ F . The system model is shown
in Figure 2. When jobs are submitted, the central controller
preprocesses the job and extracts the tasks from these jobs for
task placement by a task placer. The data files are stored in
data centers in advance. The main function of the task placer
and file controller is to place tasks and transfer the data files
to respective data centers.

B. JOB MODEL
Suppose at a certain time t , there are Nt number of jobs
arriving, defined as J = {J1, J2, . . . , JNt }. The job is
presented as a direct acyclic graph (DAG) in Figure 3.
Each vertex and edge represents a task and relationship,
respectively. From the root task of T1 to the last task T7,
the number of depth is 3 according to the precedence. Note
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FIGURE 2. Illustration for System model. It consists of two parts, central
controller and geographically distributed data centers, where the central
controller contains job preprocess, task placer and data file controller.

FIGURE 3. Illustration of direct acyclic graph (DAG) for a job. It represents
a job containing 7 tasks, with three levels of depth, and tasks of the same
depth have the same priority.

that the jobs are independent, but the tasks within each
job are dependent on precedence and required data files,
where the set of Nk task on Jk , k ∈ Nt can be noted as
T = {T1,T2, . . . ,TNk }. As the submitted jobs must be
preprocessed by the central controller, each task is extracted
with a size denoted as tel, l ∈ Nk , where the size of each
task includes two segments: the program file owned by task
and the subset of data files from f required by Tl . The task
Tl completion time CT l consists of three parts: execution
time ET l , waiting time WTl , and cost of data file transfer
time CDTl . Suppose that the task Tl is placed onto data
center j with computing capability Pj, so, we can define (1)
to calculate the execution time. ETl is calculated as follows:

ET l =
tel
Pj

(1)

The waiting time of Tl is the task arrival time TAl ,
subtracted from the task starting process time TSl so the task
Tl waiting time can be defined as (2). WTl can be calculated
as follows:

WT l = TSl − TAl (2)

where TAl is the arrival time of a job that embraces the
task Tl .

As the task execution needs the data file, the data file
transferring time for task Tl is computed using the size of
data file required by Tl and bandwidth R(Cp,Cq). So, the cost
of data file transferring time(CDT ) can be defined as (3)

CDTl = Max

{∑
i∈F S(fi,l)

C1 )
R(C1,Cq)

,∑
i∈F S(fi,l)

C2 )
R(C2,Cq)

, . . . ,

∑
i∈F S(fi,l)

Cp )
R(Cp,Cq)

}
(3)

where task Tl is allocated on the data center Cq, and
the required data files are distributed on data center
{C1,C2, . . . ,Cp} with bandwidth R(C1,Cq),R(C2,Cq),. . . ,
R(Cp,Cq), respectively. S(fi,l) is to calculate the size of data
file fi required by Tl , and S(fi,l)C1 is the data files located on
data center C1. Because of the multi-port transferring model
we used on the data center, the maximum data file transfer
time is selected for CDTl .

Therefore, the completion time of the task Tl is defined
as (4),

CTl = ETl +WTl + CDTl (4)

C. HYPERGRAPH MODEL
Through the description of system model and job model
above, we observe that there is a complicated relationship
between data center, task, and data file, respectively;
ordinary graphs have limitations in accurately reflecting
their connection and dependency. Therefore, based on the
aforementioned models, we made further extension with
respects to hypergraph H = (V, E). Figure 4 shows the
difference between a normal graph and a hypergraph. From
Figure 4(a), 4(b) data files f1 and f2 are distributed on data
centers C1 and C2, respectively. And the task T1 has a
data-dependency on f1 and f2. Instead, while leveraging the
hypergraph, these relationships can be explicitly represented
in Figure 4(c). Under the hypergraph partition, each hyper
edge f1 and f2 can only include one data center.
To guarantee the results mentioned above, we define

the weight for vertices and hyper edge for the hypergraph
partition. We set an initialized weight WCl ,Cl ∈ C on each
data center. As (5), W̄C is to compute the averaging weight of
the data center. It is the sum of weights on each data center
WCl (Cl ∈ C) that divides the total number of data centers
|M |, where α is a scaling factor to tune the W̄C .

W̄C =

∑
Cl∈C WCl

|M | × α
(5)

Then, the weight on each data center is recomputed as (6)

W ′Cl =
WCl

W̄C
(6)

The heterogeneity of data center, W ′Cl is updated based
on the processing capability. The basic updating rule is
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FIGURE 4. Illustration of difference between ordinary graph and hypergraph. (a) Indicates that data files f1 and f2 are located on data centers C1 and C2,
respectively. (b) Indicates that task Tl requires data files f1, f2. (C) The above relationship is characterized using a hypergraph.

that the processing capability Pj, j ∈ M in decreasing
order is one-by-one assigned weights fromW ′Cl in increasing
order. When the updating is completed, the maximum
weight must not be more than the sum of two least
weights, otherwise the α must be tuned. Only that way
can ensure that there is only one data center within a
hyper edge.

D. PROBLEM STATEMENT
While submitting multiple jobs J at a certain time t , each job
Jk , k ∈ Nk constitutes numerous tasks, the makespan of a
job is the time the last task is finished. The joint optimization
problem of task placement and data transfer JOP can be stated
as following:
Definition 1: with the system model, job model, and

hypergraph-based model mentioned above, the objective
is to find the minimum makespan of each job without
compromising of the deadline DJk considering limited
bandwidth, computing ability on each network link, and
data center, respectively. Suppose that the makespan of Jk is
symbolized as 0Jk , so the minimizing of 0Jk can be formally
defined as (7a),

Objectivemin imize :

0Jk = max{CT 1
1 ,CT

1
2 , . . . ,CT

1
L1} +max{CT 2

1 ,CT
2
2 ,

. . . ,CT 2
L2} + . . .+max{CTL

1 ,CT
L
2 , . . . ,CT

L
Ln}

(7a)

s.t., 0Jk ≤ DJk

(7b)∑
l∈Nt

xl,q=1,where q ∈ M , xl,q = 0 or1

(7c)

9(Tl,Cq, f1 ∧ f2 ∧ . . . ∧ fF̂ ) = 1,

where F̂ < F (7d)

From (7a), assuming that from root task to the last
task, there is L depth that separates tasks due to the
precedence, the sum of maximum task completion time on

each depth {1, 2, . . . ,L} indicates the makespan of job Jk ,
L1 + L2 + . . . + Ln is the total number of tasks on Jk ;
Constraint (7b) means that each job has a deadline and the job
Jk must be completed within the deadline DJk ; To successful
complete a job Jk , constraint (7c) makes sure that each task
can only be placed on one data center for processing, where
xl,q = 1 task Tl is allocated to data center Cq, otherwise not;
(7d) is to check the satisfaction on data-dependency, where
the data-dependency of task Tl has been satisfied with the set
of data files {f1, f2, . . . , fF̂ } on data center Cq, function (7d)
equals to 1, otherwise not.

IV. PROPOSED JOINT SCHEDULING FRAMEWORK: JHTD
A. OVERVIEW
To address the problem of JOP defined in the last section,
we propose an efficient joint scheduling framework for task
placement and data transfer across GDDCs, i.e., JHTD.
Figure 5. illustrates the flowchart of the JHTD. Initially,
jobs are submitted to the system. The jobs are collected and
preprocessed to extract the tasks according to the precedence
of the tasks and required data files. Next, JHTD is going
to implement two important stages. As we have built the
hypergraph model in the last section, the first stage is mainly
to obtain a basic feasible solution in terms of hypergraph
partition to task placementHPTP. However,HPTP pays con-
siderable attention on maintaining load balancing in the data
center. It is inevitable to yield the file data transferring cost
which increase the task completion time. In the second stage,
based on the result of HPTP, with the aim of optimizing the
completion time, there are two schemes developed: For the
task reallocation, the task with the lowest data-dependency is
reallocated to the data center with minimum completion time
(TALD). From the aspect of data file, the data file with highest
dependency is preferentially transferred (DHD). By repeat-
edly doing so, the minimum makespan can be eventually
obtained.

B. JOB PREPROCESS
At a certain time t , while receiving a set of Nt jobs, the job
preprocess is launched to process and extract tasks, so that the
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FIGURE 5. Flowchart of the proposed JHTD. It is a joint scheduling framework for task placement and data transfer including Job Preprocess,
HPTP , TALD and DHD.

constraint and data files required by each task are clarified
for later task placement and data transferring. According
to the execution sequence of each task, the tasks can be
extracted with precedence. Initially, we set the depth(li) to
record tasks with various precedence, the tasks within the
same depth(li) indicate that these tasks have no precedence,
where the increment of li is 1 in each step. Initially, from
the root task, as there is no parent vertex for the root task,
li equals to 0, and the root task is reserved to depth(0).
Next, the child tasks reply on depth(0) will be discovered.
Among these tasks, if precedence on tasks is satisfied, the
tasks are selected and classified into depth(1). By itera-
tively doing so, all the tasks can eventually be extracted
to the depth(li) for task placement preparation and data
transfer.

C. HPTP: HYPERGRAPH PARTITION BASED TASK
PLACEMENT
As jobs are separated into tasks, the next step is to
place these tasks onto data centers. We propose HPTP
to get the initialized placement. HPTP deals with the
hypergraph model we proposed in the previous section
to transform the task placement problem into a hyper-
graph partitioning problem. There are many studies on
the problem of hypergraph partitioning, which have
developed many advanced hypergraph partitioning tools
such as hMETIS [52], PaToH [53], Zoltan [54], and
KaHyPar [55]. We use the most popular partition tool
PaToh to deal with the problem. HPTP consists of three
phases: multilevel coarsening, initial partitioning, and
uncoarsening.
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In the hypergraph model we have proposed, vertices
represent the data center and tasks respectively, and the
weight of vertices represents the processing capability and
task size of the data center. Meanwhile, the hyper edge
represents the data file, and the weight of hyper edge
represents the size of the data file. We can calculate the
baseline of the task completion. According to (4), it is easy
to find that the actual calculation time is proportional to the
size of data files S(fi,l). So, we denote the number of data
files fi required by task Tl on data center Cp as N

Cp
fi,l . The

minimization cost function can be approximately regarded
as the completion of the minimization makespan. We set the
cost of ei to the size of the file, i.e., c(ei) = S(fi), and λei
represents the number of partitions connected by hyperedge
ei. Therefore, we define the cost function Cut(E) as below:

Cut(E) =
∑
ei∈E

c(ei)(λei − N
Cp
fi,l ). (8)

where Cut(E) is equal to the sum of the costs of the cut
edges. The hypergraph partitioning problem can be defined
as a task of dividing a hypergraph into two or more parts
such that the Cut(E) is minimized, when we complete the
partitioning of the hypergraph, we actually get a task place-
ment under load balancing. After expounding the problem
of hypergraph partitioning, next we explain the three phases
of partitioning. Multilevel coarsening phase, the purpose is
to merge vertices to form multiple small-scale hypergraphs
according to Algorithm 1. Then, initial partitioning phase
uses Algorithm 2 to recursively partition of hypergraphs,
and multilevel uncoarsening phase is to adjust the partition
results.

1) THE MULTILEVEL COARSENING PHASE
The goal of multilevel coarsening initialization partitioning
is to compress the hypergraph H = H1 = (V0, E0) into suf-
ficiently small hypergraphsH1 = (V1, E1),V2 = (V2, E2),. . . ,
Hm = (Vm, Em) satisfying |V0| > |V1| > |V2| > . . . >

|Vm|. The coarsening at this stage is achieved by coalescing
disjointed subsets of vertices of hypergraph Hi into multi-
vertices, each vertex in Hi can form a single vertex of Hi+1
after coarsening. Meanwhile, the weight of each vertex of
Hi+1 becomes equal to the sum of its constituent vertices
of the respective multi-vertices in Hi. The coarsening phase
terminates when the number of vertices in the coarsened
hypergraph reduces to below a pre-determined number. Two
clustering methods have implemented in Patoh, namely
matching-based and agglomerative clustering. We use the
matching clustering, and its algorithm steps are shown in the
Algorithm 1.

Each vertex u is assumed to constitute a singleton cluster
Hu = u at the beginning of each coarsening level. Then,
vertices are visited in a random order. If a vertex u ∈ Vi
has not been matched, one of its unmatched neighbors is
selected according to the weight of the vertex (i.e. the size
of the task represented or the processing power of the data
center). If such a vertex v exists, we merge the matching pairs

Algorithm 1 The Matching-Based Clustering Algorithm.
Input:H0 = (V0, E0)
Output:H1 = (V1, E1),H2 = (V2, E2),. . . ,Hm = (Vm, Em)
1 for u ∈ Vi do
2 if |Hu| = 1 then
3 if there is an eligible neighbor vertex v then
4 v add toHu, H′u← Hu
5 elseHu = u
6 end if
7 else returnHu
8 end if
9 returnH′u

u and v into a cluster (lines 1-4). If there is no unmatched
adjacent vertex of u, then vertex u remains unmatched, i.e.,
u remains as a singleton cluster(line 5). If u has already been
clustered (i.e. |Hu| > 1) it is not considered the source of a
new clustering (line 7). Here, two vertices u and v are said to
be adjacent if they share at least oneVi, i.e., V[u]∩V[v] 6= ∅.

2) THE INITIAL PARTITIONING PHASE
k − way hypergraph partition is achieved by recursive bisec-
tion (bidirectional partition) and a multi-level hypergraph
bisection algorithm is used in each bisection step. In recursive
dichotomy, a bisection ofHm is first obtained, and then each
part of this bisection is further recursively partition. After
log2k steps, the hypergraphHm is divided into k parts.

Algorithm 2 The Multilevel k − way Hypergraph Partition
Algorithm
Input:Hm = (Vm, Em)
Output: k − way hypergraph partitioning 5 ={
H1
m,H2

m, . . . ,H3
m
}

1 for vus ∈ Vi do
2 add vus to priority queue //according to their FM gain;
3 if vus move to growing clusters;
4 cutsize reduce;
5 then select the highest gain vertex in priority queue;
6 while a vertex moves to a growing cluster
7 update the gain of vusnear ;
8 insert vertices that are not in the priority queue;
9 end while //reach the preset value;
10 returnH1

m
11 end for

In the k−way partitioning stage, we first generate a cluster
around randomly selected vertices. In the rough course of
the algorithm, selected and unselected vertices divide theHm
into two parts. Unselected vertices(vus) connected to growing
clusters are inserted into the priority queue according to their
Fiduccia-Mattheyses(FM) gain [60] (line 2). If vertices are
moved to growing clusters, the gain of unselected vertices
corresponds to the cut-size reduction of the current bipartition
(lines 3 and 4). The vertex with the highest gain is selected
from the priority queue. When a vertex moves to a growing
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FIGURE 6. An example of scheduling multiple tasks across a geographically distributed data center by using HPTP .

cluster, the gain of its currently unselected neighbors(vusnear )
in the priority queue is updated, and those vertices that
are not in the priority queue are inserted, and this cluster
growing operation continues until a predetermined balancing
the criteria (lines 5-9). At this time, the result of the first
hypergraph partition is obtained and breadth-first search is
used for the remaining graphs. The above process is repeated
to obtain the hypergraph partition sequence (line 1and10).

3) THE MULTILEVEL UNCOARSENING PHASE
After multi-level k − way hypergraph partition, the obtained
k subgraphs need to be mapped back to the original
hypergraph through multi-level fine-grained partition. Before
each mapping, the Boundary FM (BFM) algorithm [61] is
used to adjust the vertices between the k subgraphs, so that
the hypergraph division result is further optimized and the
load balancing constraints are satisfied. In the fine-grained
process, the coarse-grained hypergraph Hm can be mapped
back to the fine-grained hypergraph of theHm−1 layer, which
is executed iteratively until the hypergraph is mapped to the
H0 layer.

D. TALD AND DHD
Though HPTP can obtain a feasible solution, it has a
limitation in gaining the optimal makespan. We hereby give a
simple example to point out the defect of HPTP as shown
in Figure 6. There are two data centers C1 and C2 with
processing capability of 50 and 40, respectively. The two data
centers are linked by a bandwidth of 50 MB/s. The data file
f1 is stored on C1, and f2 is located on C2. The size of the data
file is 40 MB and 50 MB respectively. At certain time, when
tasks start to request data files. The task size of T1 is 50 MB,
which requires data file f1, and the task size of T2 is 40 MB,
which requires data file f2.
We give the results by HPTP listed in Table 2. Apparently,

solely leveraging on HPTP generates a numerous cost by
data file transfer that substantially results in longer makespan.
Based on (5) and (6), the weight on C1 and C2 is computed
as 4 and 5, respectively. In this case, due to the intuition that

TABLE 2. Comparison of HPTP and Optimal with data transfer and
makespan.

HPTP depended on processing capability of the data center,
the task T1 is allocated on C2, and task T2 is placed onto C1,
causing a poor performance on gaining makespan.

Therefore, we also need to process the partition results.
TALD is mainly based on the idea of Min-Min algorithm
to iteratively optimize the scheduling scheme. In this stage
the current task is allocated and the tasks in the data center
with the longest total task completion time is continuously
forwarded to other data centers to find the optimal allocation.
We then use DHD to optimize the transferring strategy of
data files. Algorithm 3 describes the specific process of task
scheduling and data transferring.

The algorithm initially traverses theCl data file list (line 2),
finds the currently executable task tel , joins the ExecuteTask
queue (line 3), and adds the file to be transferred to items:
items is a collection of files to be transferred, finds the
file with the most occurrences from items and adds it to
MaxoccuringChars. DHD compares the size of the data
file in MaxoccuringChars, finds the smallest data file, then
traverses the Cl list again, finds the Cl that stores this
file, and adds the file to the transferring queue of the Cl
(lines 4-5). At this time, the ExecuteTask pop, the execution
time of the task is calculated, and the Cl is updated with
the task list and transferring time on the above. Then, the
completion time of the Cl at this time is calculated, and the
next cycle is entered (lines 6-8); when the ExecuteTask queue
and the Transfer queue are empty simultaneously, the cycle
is ended.
TALD adopts the idea of Min-Min algorithm. Its main

scheduling assigns and processes tasks in the fastest time.
It allocates tasks to the data center with the shortest
processing time to ensure the shortest time to complete
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Algorithm 3 Task Allocation Scheme in Terms of the Lowest
Dependency (TALD), and Data Aware With the Highest
Dependency Transferring Scheme (DHD)
Input: task set based on hypergraph partitioning
Output: task scheduling strategy
1 hypergraph partition // According to Algorithm 1 and
Algorithm 2;
2 for Tl ∈ T do
3 add tel to ExcuteTask queue;
4 add file of tel to items;
5 find f lmax and add it to Transfer queue;
6 for Cl ∈ C do
7 CTl = ETl + WTl + CDTl //calculate the complete
time according to formula (4);
8 tel and f lmax pop respectively;
9 end for
10 end for //whileExcuteTask queue and Transfer queue
are both empty;
11 calculate the respective completion times of Cl ;
12 for Tl ∈ Cl do
13 transfer tmdd to other data center //find a suitable data
center based on the Min-Min algorithm;
14 minimize : 0Jk //minimize makespan according to
formula (7a);
15 end for
16 return the task scheduling strategy //if the makespan
is successfully shortened, the scheduling is done.

the task. It compares the respective task completion times
of C , and finds the longest. The task tmdd on the long
Cl is the task with the least dependence on the data file
(lines 11-14). Transferring it can effectively reduce the
completion time, schedule it to the Cl with the shortest
complete time, and it will not cause too much impact on
other tasks.

Finally, when the makespan is shortened, the allocation
is completed, otherwise the allocation is cancelled, until the
makespan cannot be further shortened, and the final task
allocation is obtained (line 16).

E. COMPLEXITY ANALYSIS
The JHTD proposed in this paper mainly consists of
two parts. (1) hypergraph-based partition method for task
placement (HPTP). (2) task allocation scheme in terms of the
lowest dependency (TALD) and data aware with the highest
dependency transfer scheme (DHD). Since the coarsening
phase takes a linear time complexity: O(|V |) [56] and the
Fiduccia-Mattheyses heuristic in top-level partitioning phase
takes time O(|E|) [57], so the time complexity of the k-way
hypergraph partitioning algorithm we used is O((|V | +
|E|)log2N ). We assume that the number of tasks is N , and
the number of data centers is constantM then the complexity
of Algorithm 3 is O(Nlog2M ). Therefore, the overall time
complexity is O((|V | + |E |)log2N + Nlog2M ).

TABLE 3. List of configurations on data centers from China-VO.

TABLE 4. Dataset and its characteristics.

V. PERFORMANCE EVALUATION
In this section, we present our experimental setup and
parameter settings in the geographically distributed data
centers, and detailed experimental results on real workloads.
We use a simulated cloud environment from the real
configuration of the China-VO project [13] for evaluation,
the data file and task size can be generated from this dataset.
We repeated each experiment 10 times and took the average
result as our final result.

A. EXPERIMENTAL SETUP AND PARAMETERS SETTING
As the study work [13], we performed extensive simulations
using real-world configurations and dataset from the China-
VO project. The cloud system consisted of five data centers:
Beijing (BJ), Nanjing (NJ), Yunnan (YN), Shanghai (SH),
and Xinjiang (XJ), connected by high-capacity network links.
Table 3 shows the configuration of these data centers. The
computing capability and storage capacity vary between data
centers. We normalized each data center capability combined
by the number of cores and capability per core to calculate
the hypergraph weights. The higher normalization value the
a stronger the process capability. The data file transfer times
for within data center were ignored because these are much
smaller than the inter-data center transfer times.

The relevant dataset for our experiments is derived
from [58], Table 4 shows its characteristics. the size of the
data files randomly generated were in the range of 200 MB
to 5,000 MB. The generated data files were randomly
allocated to various locations of the data centers. For the task
generation, according to Facebook’s experience, more than
90% of the tasks are completed within 1000 seconds [59].
Therefore, the size of tasks randomly generated were in
the range of [1,10000] based on the processing capability
of the data center. In addition, we set the Datadependency
to represent the dependency of the task on the number
of data files, that is, when the task only needs one data
file, Datadependency equals to 1. In our experiment, the
Datadependency was set within [1,4]. The task with higher
Datadependency makes the joint optimization issue more
complex.
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FIGURE 7. Comparison on the makespan of the proposed JHTD with
Greedy , Hypergraph, and Fast − Newman on the different
Datadependency (a) Datadependency ≤ 2, and (b) Datadependency > 2.

B. COMPARATIVE ALGORITHMS
We compared our proposed JHTD with other algorithms:
Greedy, improved hypergraph partitioning algorithms
Hypergraph [14], and community detection algorithm
Fast−Newman [15]. All algorithms are implemented in Java.
To obtain the results by Hypergraph partitioning algorithm,
we adopted the partition toolkit (PaToH). The following are
the brief details of the comparative algorithms:
• Greedy: The greedy algorithm is a classic scheduling
algorithm that is often used as a comparison algorithm.
The main concept of Greedy is to select the data center
with the shortest completion time for the current task and
transfer the required data files for that task.

• Hypergraph: This algorithm assigns tasks to data centers
using a hypergraph partitioning method, which evenly
divides the tasks into balanced partitions according to
the number of data centers.

• Fast − Newman: By considering the task scheduling
problem as a community detection problemwith the goal
of reducing data transfer cost, this algorithm iteratively
places tasks into communities while maximizing the
modularity measure Q [47], where the greater modular-
ity Q gains a better performance of community division.

FIGURE 8. Comparison on the imbalance ratio of the proposed JHTD with
Greedy , Hypergraph, and Fast − Newman on the different
Datadependency (a) Datadependency ≤ 2, and (b) Datadependency > 2.

C. RESULTS COMPARISON AND ANALYSIS
1) COMPARISON OF RESULTS
We compared the proposed JHTDwith three other algorithms
Greedy, Hypergraph, and Fast − Newman in terms of
makespan under different Datadependency. As shown in
the Figure 7, it is clear that the makespan of algorithms is
increasing with the number of tasks and Datadependency.
Greedy performs best when the number of tasks is small,
especially the when the number of tasks is 20. Under a small-
scale situation, theGreedy algorithm achieves an optimal task
placement solution. In contrast, since JHTD has the ability
of maintaining the load balance of the data centers, it cannot
gain optimal results in this situation. However, JHTD still
outperforms Hypergraph and Fast − Newman. Hypergraph
outperforms Fast − Newman at low Datadependency. When
Datadependency becomes greater than 2, the performance of
Hypergraph gets worse than that of Fast−Newman. It shows
the advantage of Fast − Newman in dealing with tasks with
greater Datadependency.

In summary, as the number of tasks increase, our proposed
JHTD has the best performance in achieving the shortest
makespan under various Datadependency.
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FIGURE 9. Comparison on the total data file transfer volume of the
proposed JHTD with Greedy , Hypergraph, and Fast − Newman on the
different Datadependency (a) Datadependency ≤ 2, and
(b) Datadependency > 2.

2) IMPACT OF IMBALANCE RATIO
Data centers with stronger processing power can perform
more tasks and reasonable load balancing can also reduce
the waiting time of tasks. Therefore, we also evaluated the
impact on the imbalance ratio on the data centers with the
four algorithms in Figure 8. JHTD performed better than
Greedy and Fast − Newman under different number of
tasks with various Datadependency. However, Hypergraph
outperformed our JHTD because the intuition of Hypergraph
is to balance each hypergraph partition by compromising the
makespan.

3) IMPACT OF TOTAL VOLUME OF DATA FILES BY
TRANSFERRING
Because the transfer time of a data file partially relies on the
size of the data file, the total volume of data files is the sum
of each data file size to be transferred. It is indicated that a
larger total volume of data files consumes higher time cost.

Figure 9 demonstrates the results on the total volume
of data file transferred across data centers under various
Datadependency by the four algorithms. From the results,
the performance of Hypergraph is not good enough between
the algorithms because the balance of the partition could

FIGURE 10. Comparison on the makespan of the proposed JHTD with
Greedy , Hypergraph, and Fast − Newman on the different CTP (a) CTP =
20%, and (b) CTP = 80%.

increase the volume of the data file transferred. As the scale of
the tasks increases, performances of Hypergraph and Fast −
Newman are getting close. Greedy achieved optimal results
with a small group of tasks. Apparently, JHTD has the least
data transfer volume because of the two-stage processing of
tasks and data file by JHTD, it succeeds in minimizing the
volume of data file transferred.

4) IMPACT OF CTP , COMPLEX TASK PROPORTION
To further evaluate the performance of JHTD, since the size
of task also has impact to the makespan results, based on
the parameters we set, we classified task with sizes larger
than 1000 and Datadependency > 2 as complex tasks.
We defined a metric, complex task proportion (CTP), which
is the complex task number divided by the total number of
tasks.

In Figure 10, in the case of a small number of tasks,
the makespan of each algorithm was almost the same.
As the number of tasks increased, JHTD performed the best
in makespan. Greedy had poor performance on complex
tasks (a longer makespan). This situation worsened with the
growth in the number of tasks as Greedy easily got trapped
in local optimal solutions while dealing with large-scale
problems. Fast − Newman showed better performance than
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TABLE 5. Comparison on the performance of JHTD, Greedy , Hypergraph, and Fast − Newman under different CTP (the number of tasks is 100), JHTD
with better performance has been highlighted in the table.

Hypergraph. The performance of Fast − Newman largely
depended on the task number to maximize modularity metric
Q. In contrast, with the aim of balancing each hypergraph
partition, Hypergraph increased the amount of data file
transfer, which resulted in the increase in makespan.

Overall, under the case of CTP = 20% and CTP =
80%, JHTD had the most improvement of 20.6% and 15.2%
compared to Fast − Newman accordingly.

5) COMPARISON OF TIME COMPLEXITY
We eventually compared the time complexity in Figure 11
by the running time of each algorithm. Since Hypergraph
does not need to experience the stage of task reallocation,
the running time totally depends on the partition result by
the hypergraph; the time complexity is the smallest of the
compared algorithms. Fast − Newman has the worst time
complexity. This is because most time is consumed by the
computation on the modularity measure Q. In comparison,
though JHTD is a two-stage scheduling framework with task
placement and data transfer, it still has a shorter running time
than Greedy and Fast − Newman, due to the fact that JHTD
does not need to traverse all tasks and data files.

VI. DISCUSSION
In the last section, the results have demonstrated the outper-
formance of JHTD while comparing with other algorithms.
To further validate the extensibility of JHTD under various
portion of complex tasks (CTP), we fixed the number of tasks
to 100 and made the discussion of JHTD performance. As it
is listed in Table 5, JHTD still shows a better performance
in most cases. Greedy is difficult to deal with large-scale and
complex tasks, and it does not perform well under multiple
metrics. This is because it only makes the current optimal
choice and cannot consider the impact of subsequent tasks.
Hypergraph has good imbalance ratio, because this itself is
its optimization goal, but because it focuses too much on
the balance between data centers, resulting in increased data
transfer, which requires a longer makespan. Fast − Newman
always places tasks on data centers with more data files,

FIGURE 11. Comparison on the running time of the proposed JHTD with
Greedy , Hypergraph, and Fast − Newman at different task scales.

so the execution time of tasks in the current data center is
always short. However, as the number of data files required
by the task increases, Fast−Newmanwill unbalance the load
between the data centers and need to transmit a large number
of data files, resulting in an increase in makespan. As a
joint scheduling framework, JHTD not only fully considers
the execution efficiency of tasks, but also considers the data
file transfer between data centers, and slightly adjusts the
workload between data centers, thereby greatly reducing the
volume of makesapn and data transferring.

VII. CONCLUSION AND FUTURE WORK
This paper explored the joint optimization issue of task
placement and data transfer across GDDCs. With the
connection of task, data file and data center, we adopted
hypergraphs to establish a system model and task model.
On this basis, we proposed a joint scheduling framework,
JHTD, to optimize task placement and data transfer problems
and achievemaksepanminimization. In JHTD, we introduced
and improved hypergraph partitioning techniques to partition
tasks. In addition, we designed an algorithm to iteratively
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optimize the hypergraph partitioned results to minimize
makespan. Finally, we conducted simulation evaluations of
the proposed method on real-world datasets and compared it
with well-known algorithms, JHTD balanced the workload
between data centers well, and its data transfer volume was
also the smallest. Most importantly, JHTD had the lowest
makespan regardless of the complexity or size of the tasks.
Moreover, we discussed the effectiveness of JHTD under
various portions of complex tasks. The goal of minimizing
maksepan was achieved.

There are several future avenues for ourwork. First, wewill
considermultiple requirements from tasks, e.g., the privacy of
the data files required by the tasks, the deadline of the tasks,
and the task’s requirement on the capacity of the data center.
Also, we will further establish the task model as spillable or
non-spillable. At the same time, the network environment is
also a worthy direction for exploration, such as flow control
or task migration due to latency requirements among data
centers. Furthermore, as GDDCs will continue to grow in
size and multiple types of jobs emerge, we will integrate
reinforcement learning-based methods into JHTD to improve
adaptability and accelerate the speed of processing.
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