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ABSTRACT This paper considers the 1-bit compressed sensing (1-bit CS) of signals that are simultaneously
sparse and gradient sparse. Since L1-norm and total variation (TV) penalties are beneficial for reconstructing
element-sparse and gradient-sparse signals, respectively, we combine both to propose the L1-TV regular-
ization model for 1-bit CS. We show that the proposed model has a closed-form solution so that one can
easily calculate. Despite the apparent simplicity, our theoretical analysis reveals that the solution provides an
approximate estimate for the underlying signal. Besides, in the case of introducing a dither vector, we develop
an adaptive algorithm to accelerate the decay rate of recovery error. The key idea is that generating the dither
for each iteration relying on the last estimate. In addition to theoretical analysis, we conduct a series of
experiments on both synthetic and real-world data to show the superiority of our algorithms.

INDEX TERMS 1-bit compressed sensing, L1-norm, total variation, adaptivity.

I. INTRODUCTION
In the past decade, 1-bit CS [1], [2], [3], [4], [5], [6], [7] has
drawn extensive attraction as a new paradigm in classic com-
pressed sensing [8]. Instead of assuming infinite-precision
real-valued measurements as in classic compressed sensing,
1-bit CS only retains the signs of real-valued measurements,
leading to low-cost implementation in hardware and fast
sampling speed. For the above reasons, it has a broad applica-
tion prospect in massive multiple-input multiple-output sys-
tems [9], wireless sensor networks [10], synthetic aperture
radar systems [11], and so on, where large-scale sparse data
is usually involved.

Mathematically, 1-bit CS aims to recover the direction of
the underlying sparse signal x ∈ Rn (i.e., x/‖x‖2) from binary
measurements

y = sign(Ax), (1)
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where A ∈ Rm×n denotes the sensing matrix and sign(·)
applies componentwise on Ax, satisfying

sign(v) :=

{
1, if v ≥ 0,
−1, if v < 0.

To this end, Jacques et al. [2] show that the solution to
an L0-minimization problem provides a robust estimate of
the original signal, where the L0-norm, ‖u‖0, counts the
number of non-zero entries in u ∈ Rn. They also design a
binary iterative hard threshold (BIHT) algorithm to solve the
problem approximately. Plan and Vershynin [3] employ the
L1-norm as sparsity promotion to propose a convex program-
ming approach and provide a theoretical guarantee for it.
After that, in an early work [7], we propose an Lp(0< p< 1)-
minimization method and prove that this method requires
fewer measurements than the L1-norm based counterpart.
Unfortunately, the above-mentioned methods are computa-
tionally complex. They either involve iterative procedures or
rely on some toolboxes for convex problems, e.g., CVX [12],
resulting in low efficiencywhen processing high-dimensional
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signals. To enhance the solving efficiency, Zhang et al. [4]
suggest the following optimization model

û := argmin
‖u‖2≤1

−
1
m
〈AT y,u〉 + λ‖u‖1. (2)

It has the closed-form solution Pλ(AT y)/‖Pλ(AT y)‖2 where

Pλ(t) := sign(t)�max(|t| − λ,0) (3)

is the soft-thresholding operator with� denoting a Hadamard
product.

On the other hand, 1-bit measurements (1) lose all informa-
tion on the magnitude of x (i.e., ‖x‖2). For full recovery (both
direction and magnitude), we shall consider the thresholded
binary measurements [5]

y = sign(Ax+ τ ), (4)

where τ ∈ Rm denotes a known dither vector. With this
setting, References [5], [6], and [13] provide different selec-
tion strategies for τ . Specifically, Baraniuk et al. [6] show
that an adaptive choice method of the thresholds used for
quantization can significantly lower the error decay rate.

The above results rely on the sparsity prior assumption of
the underlying signal, and they can be extended to signals
synthesized by a linear combination of some atoms in a
(redundant) dictionary with incoherent atoms [14]. However,
there are numerous signals possessing other structure infor-
mation that can not fall into the category in the aforemen-
tioned theoretical work. One representative example is the
signal consisting of piecewise constants (i.e., its gradient is
sparse), which arises widely in image restoration [15] and
image reconstruction [16], [17]. Let Dx ∈ Rn−1 denote the
finite difference of x ∈ Rn defined by [Dx]i = xi+1 − xi
for i = 1, · · · , n − 1 where D ∈ Rn−1×n is a differential
matrix. In fact, D is extracted from the first n − 1 rows of
the row circulant matrix of (−1, 1, 0, · · · , 0) ∈ Rn. The
piecewise constant property of x means that Dx is sparse.
In this situation, to reconstruct x, one usually borrows the idea
of the element-sparse case to solve

min
x
‖Dx‖1 subject to y = Ax,

where A ∈ Rm×n is a sensing matrix and ‖Dx‖1 is called
the total variation of x, denoted as ‖x‖TV . The method of
TV-minimization has been analyzed in recent years [18],
[19], [20] for compressed sensing of gradient-sparse signals
and some optimization algorithms are designed to solve it,
such as proximal gradient descent algorithm and projected
subgradient algorithm [21].

Besides separately sparse or gradient sparse signals, there
also exists a type of signals, involving both of the two
properties simultaneously, such as Electrocardiogram (ECG)
signals [22] and some slow time-varying signals [23]. In this
situation, neither the L1-term penalty nor the TV-term
penalty can comprehensively character both properties,
which inspires us to combine them. An intuitive combination

method is to use addition, namely solving the following
problem

min
x

1
2
‖y− Ax‖22 + λ1‖x‖1 + λ2‖Dx‖1, (5)

where λ1, λ2 > 0 denote penalty parameters. The model
relates to the fused LASSO model in statistics and has
obtained some applications in biological research, such as
gene classification [24] and coefficient selection for the colon
tumor data set [25]. It has also been used for the compressed
sensing of some slow time-varying signals [23], exhibiting a
great potential.

In this paper, we aim to introduce the L1-TV penalty model
in 1-bit CS framework to solve the reconstruction problem of
signals possessing both element sparse and gradient sparse
properties. We employ − 1

m 〈A
T y, x〉 as the loss function

following the suggestion by [3] and combine it with the
L1-penalty term and the TV-penalty term simultaneously as
the regularizer, leading to the following optimization problem

min
‖x‖2≤1

−
1
m
〈AT y, x〉 + λ1‖x‖1 + λ2‖Dx‖1, (6)

where λ1 and λ2 are regularization parameters, whose value
will be discussed later. We will provide the closed-form
solution to (6) and prove that it is an approximate direction
estimate of the underlying signal of both sparse and gradient
sparse.

To our knowledge, in the literature, there are few related
works in the field of 1-bit CS. Though References [26]
and [27] have employed the L1-TV term penalty in their
methods, they aim at the compressed sensing of block-sparse
signals, leading their models to distinguish from ours. In addi-
tion, their methods are intuition-driven without providing
theoretical analysis. The main contributions of this paper are
listed bellow
• This paper first proposes an L1-TV method for 1-bit CS
and shows that the signal simultaneously being element
sparse and gradient sparse can be approximately esti-
mated by solving the proposed optimization problem.

• The proposed model has a closed-form solution, ensur-
ing it can be easily obtained. Furthermore, we introduce
a quantization scheme that chooses the dither vector
adaptively, thus exponentially accelerating the recovery
error decay rate.

• We conduct experiments on both synthetic and real-
world datasets where the experimental results show that
the proposed algorithms perform better than their coun-
terparts.

The rest of this paper is organized as follows. In Section II,
we define some notations and give some important lem-
mas that will be utilized in the proof process of our main
results. In Section III, we present the proposed methods with
corresponding theoretical guarantees. Comparisons between
different algorithms on synthetic data, ECG signals, and
gray images are conducted in Section IV. Section V con-
cludes the paper and presents some future research problems.
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Appendix provides detailed proofs for the proposed lemmas
and theorems.

II. NOTATIONS AND PRELIMINARY
A. NOTATIONS
We begin with some necessary notations used throughout the
paper. Scalars are denoted with lowercase or capital letters
(e.g., x or X ), vectors with boldface lowercase letters (e.g., x),
and matrices with boldface capital letters (e.g.,X). We denote
xi or (x)i as the i-th element of the vector x. The field of real
numbers is denoted as R. Sn−1 = {u ∈ Rn

: ‖u‖2 = 1}
denotes the unit hypersphere in Rn and Bn = {u ∈ Rn

:

‖u‖2 ≤ 1} denotes the unit ball in Rn. [n] denotes the index
set {1, 2, · · · , n}. Throughout the paper, we denoteA ∈ Rm×n

as the sensing matrix and ai as its i-th row where i ∈ [m].
We define the Lp norm of x ∈ Rn as ‖x‖p = (

∑n
i=1 |xi|

p)1/p

where p ≥ 1.

B. PRELIMINARIES
In this part, we define some operations and provide some
lemmas which may be used in the following sections. First,
we consider the optimization problem

x̂ := argmin
u∈Rn

1
2
‖x− u‖22 + λ‖u‖1. (7)

As is known, (7) has the closed-form solution x̂ = Pλ(x)
wherePλ(·) is defined in (3). Besides, for the TV-term penalty
based optimization problem

Tλ(x) := argmin
u∈Rn

1
2
‖x− u‖22 + λ‖u‖TV , (8)

Condat [28] shows that Tλ(x) can be exactly (numerically)
computed by some dynamic programming approaches, such
as the taut-string algorithm [28]. Throughout the paper,
we keep that Pλ(·) is defined as in (3) and Tλ(·) is defined
as in (8).

When considering both penalties, Liu et al. [29] show that
the L1-TV regularized problem

x̂ := argmin
u∈Rn

1
2
‖x− u‖22 + λ1‖u‖1 + λ2‖Du‖1 (9)

also has a closed-form solution described in the following
lemma.
Lemma 1 (See [29]): One has that x̂ = Pλ1 (Tλ2 (x)) is the

solution to (9) where λ1 > 0 and λ2 > 0 are parameters
balancing two penalties.

The operatorPλ1 (Tλ2 (·)) has the following property, which
is proved in Appendix A.
Lemma 2: For any y ∈ Rn, we have

〈y, x∗〉 = ‖x∗‖22 + λ1‖x
∗
‖1 + λ2‖Dx∗‖1,

where x∗ := Pλ1 (Tλ2 (y)).
In this paper, we need to solve the optimization problem of

the form

argmin
u∈Rn

−〈v,u〉 + λ1‖u‖1 + λ2‖Du‖1 s.t. ‖u‖2 ≤ 1,
(10)

where v ∈ Rn is a known vector. Note that the following
lemma shows that (10) has a closed-form solution, which is
proved in Appendix A.
Lemma 3: For any λ1, λ2 ≥ 0, the solution u∗ to (10) is

given by

u∗ =
Pλ1 (Tλ2 (v))
‖Pλ1 (Tλ2 (v))‖2

.

For the underlying signal x ∈ Rn and each measurement ai
(i ∈ [m]), following [3], we assume each sign measurement
yi ∈ {−1, 1} is drawn independently at random satisfying

E(yi|ai) = θ (xT ai), i ∈ [m], (11)

where the function θ (·) may be unknown or unspecified,
which automatically must satisfy 0 ≤ θ (z) ≤ 1. Suggested
by [3], we define

E
g∼N (0,1)

(θ (g)g) := γ > 0 (12)

to capture the relation between xT ai and yi. Standard 1-bit
measurement becomes a special case of the model (11) with
θ (·) = sign(·). In this case, we have γ = E(|g|) =

√
2/π ,

achieving the maximum relation.

III. MAIN RESULTS
Since the method for direction recovery is the foundation of
themethod for full recovery, we first consider direction recov-
ery from standard binary measurement given by model (1)
and then extend it to full recovery from thresholded binary
measurement given by model (4). Furthermore, we introduce
an adaptive quantization scheme to improve recovery accu-
racy and reduce the number of 1-bit measurements.

A. DIRECTION RECOVERY
As indicated by Lemma 3, the problem in (6) has the closed-
form solution

x̂ =
Pλ1 (Tλ2 (AT y/m))
‖Pλ1 (Tλ2 (AT y/m))‖2

.

Define Ks1,s2 := {u ∈ Rn
: ‖u‖1 ≤

√
s1, ‖Du‖1 ≤

2
√
s2}. The following result implies that any signals in the

set Ks1,s2 ∩ Sn−1 can be approximately recovered by solving
the optimization problem (6).
Theorem 4: Assume

λ1 = 2c

√
t + log(n)

m
(13)

for some constant c > 0, λ2 = kλ1 where k > 0 is also a
constant, t > 0 is a pre-chosen parameter. If x ∈ Ks1,s2 ∩

Sn−1, with a probability at least 1 − e1−t , the solution x̂ to
the optimization problem (6) satisfies

‖x− x̂‖2 ≤

√
3λ1
√
s1 + 4λ2

√
s2

γ

= O
(

4

√
(s1 + s2)(log(n)+ t)

m

)
.
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The proof of Theorem 4 is provided in Appendix B.
Remark 5: For fixed t = log(n), Theorem 4 suggests

a recovery accuracy ε ∈ (0, 1) provided m = O((s1 +
s2)log(n)/ε4). This is the first theoretical result for the L1-TV
solver in 1-bit CS. When λ2 = 0, the optimization problem
(6) reduces to the L1-norm based model proposed in [4] and
Theorem 4 is also consistent with the theory result in [4].
When λ1 = 0, the optimization problem (6) reduces to
a TV-seminorm based model fitting to signals of gradient
sparsity.

B. FULL RECOVERY
In this part, we consider full recovery based on the estab-
lished recovery strategy of direction. To facilitate discussion,
we first define the sets

Us1,s2 := {u ∈ Rn
: ‖u‖1/‖u‖2 ≤

√
s1,

‖Du‖1/‖u‖2 ≤ 2
√
s2}

and

Vs1,s2 (`) = Us1,s2 ∩ `B
n

and always assume x ∈ Vs1,s2 (`), i.e., the underlying signal
satisfies the prior ‖x‖2 ≤ `. To achieve full recovery of x,
we have to allow a well-chosen threshold vector in 1-bit
measurements, i.e.,

y = sign(Ax+ τ ), (14)

where τ ∈ Rm denotes the dither vector whose entries are
generated from N (0, `2). Define Ã ∈ Rm×(n+1) as Ãi,: =
[Ai,:; τi/`] and D̃ ∈ Rn×(n+1) as the differential matrix.
Let x̃ = [x; `] ∈ Rn. Then the measurements (14) can be
reshaped as

y = sign(Ã̃x). (15)

Intuitively, both ‖̃x‖1/‖̃x‖2 and ‖D̃̃x‖1/‖̃x‖2 are bounded,
and thuswe can recover x̃ from (15) by solving the established
optimization problem (6). Indeed, the desired upper bounds
on them are guaranteed by the following lemma proved
in Appendix A.
Lemma 6: One has ‖̃x‖1/‖̃x‖2 ≤

√
s1 + 1 and

‖D̃̃x‖1/‖̃x‖2 ≤ 2
√
s2 + 1.

Thus, we can solve

x̃# = argmin
u∈Rn+1

−
1
m
〈ÃT y,u〉 + λ1‖u‖1 + λ2‖D̃u‖1 (16)

to reconstruct the underlying signal x̃. Full recovery of x relies
on the following lemma which combines direction recovery
error and full recovery error.
Lemma 7 (See [14]): For f , g ∈ Rn, f̂ , ĝ denote the vec-

tors that are lifted by one dimension, taking the form of

f̃ := (f ; fn+1) ∈ Rn+1 and g̃ := (g; gn+1) ∈ Rn+1

with fn+1 6= 0, gn+1 6= 0. One has∥∥∥∥ f
fn+1
−

g
gn+1

∥∥∥∥
2
≤
‖̃f ‖2‖̃g‖2
|fn+1||gn+1|

∥∥∥∥∥ f̃

‖̃f ‖2
−

g̃
‖̃g‖2

∥∥∥∥∥
2

.

Lemma 7 indicates that fn+1g/gn+1 is an approximate
estimate of f provided the direction recovery error ‖̃f /‖̃f ‖2−
g̃/‖̃g‖2‖2 is small enough and ‖̃f ‖2, ‖̃g‖2/|gn+1| are above
bounded. Inspired by this fact, the following theorem pro-
vides a method for the full recovery of signals with a theo-
retical guarantee.
Theorem 8: Consider ` > 0 and x ∈ Vs1,s2 (`). Let λ1 and

λ2 be defined the same as Theorem 4. If m ≥ Cε−4γ−2(s1 +
k2s2)(t + log(n)) for some constant C > 0, then with a
probability at least 1 − e1−t , the solution x̃# = (x#; x#) to
the optimization problem (16) satisfies∥∥∥∥`x#x# − x

∥∥∥∥
2
≤ Rε. (17)

The proof of Theorem 8 is provided in Appendix B.
Remark 9: Theorem 8 implies that `x#/x# is an approxi-

mate estimate of the underlying signal x. For fixed t = log(n),
the method also inherits the sample complexity O((s1 +
s2) log(n)/ε4) with full recovery error relating to the prior
magnitude upper `. Via dividing Eq.(17) by `, we have that∥∥∥∥`x#x# − x

∥∥∥∥
2
/` ≤ ε.

Since ` is usually in the same order of ‖x‖2, we conclude that
the relative recovery error ‖`x#/x# − x‖2/‖x‖2 turns to be
above bounded by a quantity independent of `.
From Theorem 8, the proposed method exhibits polyno-

mial error decay in the oversampling factor µ = m/[(s1 +
s2) log(n)], which sometimes may be unsatisfactory. Next,
we aim to obtain an exponential decay. To this end, borrow-
ing the idea from [6], we provide a new 1-bit quantization
scheme that adaptively chooses the dither vector at each iter-
ation. Before explaining this idea, we clarify some notations.
We define the projection operator PK(·) as

PK(x) := argmin
u
‖x− u‖2 s.t. u ∈ K,

and let 1(y) denote the reconstruction operator that recovers
the underlying signal from thresholded 1-bit measurements y
by solving the problem (16). Moreover, we set x0 = 0,

xk := PVs1,s2 (`)(xk−1 + ̂x− xk−1)

for each k = {1, · · · ,K } where K denotes the maximum
number of iterations, and define

̂x− xk−1 := 1(sign(A(k)(x− xk−1)+ τ (k))).

For any x ∈ Vs1,s2 (`) and 0 < η ≤ 1
4 , we may choose

q1 = O(η−4γ−2(s1 + k2s2)(t + log(n))) (18)

to generate standard Gaussian measurement matrix A(1)
∈

Rq×m and observe y(1) via y(1) = sign(A(1)x + τ (1)) where
(τ (1))i ∼ `N (0, 1) for each i ∈ [q1]. Then Theorem 8 implies
that

‖x̂− x0 − x‖2 ≤ η`
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holds with a probability at least 1− e1−t . Since x ∈ Vs1,s2 (`)
and x1 is the best approximation to x̂− x0 in the setVs1,s2 (`),
using triangle inequality indicates that

‖x1 − x‖2 ≤ 2‖x̂− x0 − x‖2 ≤ 2η`. (19)

Then we regard the signal x − x1 ∈ Us′1,s
′

2
∩ 2η`Bn :=

Vs′1,s
′

2
(2η`) as the target signal to be reconstructed and con-

duct another q2 measurements via

y(2) = sign(A(2)(x− x1)+ τ (2))

where (τ (2))i ∼ 2η`N (0, 1) for each i ∈ [q2]. Utilizing
Theorem 8 again indicates that

‖x̂− x1 − (x− x1)‖2 ≤ 2η2`

holds with a high probability, provided q2 ≥ Cη−4γ−2(s′1 +
k2s′2)(t+ log(n)). A similar discussion to the proof of Eq.(19)
shows that

‖x2 − x‖2 ≤ (2η)2`. (20)

Repeating this process, in the l-th iteration, we have that

‖xl − x‖2 ≤ (2η)l`

holds with a high probability. Through the above discussion,
it is not hard to find that the recovery error converges to 0 at an
exponential rate with the increase in the number of iterations
provided

ql ≥ Cη−4γ−2(1+ k2)s′l−1 log(n). (21)

We summarize the quantization process in Algorithm 1 and
the recovery process in Algorithm 2 to fit the common
paradigm of compressed sensing.

It should be noted that achieving the projection oper-
ation PVs1,s2 (`)(·) is not easy. In practice, we may con-
sider the convex set `Ks1,s2 and thus replace PVs1,s2 (`)(·)
by P`Ks1,s2

(·) so that it can be solved by existing convex
optimization software, such as the CVX toolbox. Since R is
in the same order of ‖x‖2, this modification is acceptable
though it relaxes the approximately sparse constraint to some
extent. Moreover, for ease of applying, we usually fix qi =
q, (i ∈ [L]) with a well-chosen q and thus m = Lq in
practice.

The proposed adaptive quantization/recovery scheme is
guaranteed by the following theorem which is proved
in Appendix B.
Theorem 10: For any x ∈ Vs1,s2 (`) and 0 < η ≤ 1

4 , let
α = min{|xi| : i ∈ supp(x)} and {q1, q2 · · · , qL} is defined
as in Algorithm 1, where L denotes the maximum number
of iterations. Suppose we have m :=

∑L
i=1 q

(i) independent
measurement vectors ai ∈ Rn(i ∈ [m]) which are populated
by independent random standard Gaussian entries. Then with
a probability at least 1− Le/n, the output xL of Algorithm 2
satisfies

‖x− xL‖2 ≤ (2η)L`.

Algorithm 1 Adaptive Quantization Process
Input: x ∈ Rn, `, s1, s2, η, L, α;
Output: A, y, τ .
1: Initialize: Choose q1 according to (18), generate A(1)

∈

Rq1×n such that (A(1))ij ∼ N (0, 1) for any (i, j) ∈ [n1]×
[n2], generate τ (1) ∈ Rq1 such that (τ (1))i ∼ `N (0, 1)
for all i ∈ [q1].

2: y(1) = sign(A(1)x+ τ (1));
3: x̂− x0 = 1(y(1));
4: x1 = PVs1,s2 (`)(x̂− x0);
5: for l = 2 : L do
6: Calculate αl−1 = min{|(xl−1)i| : i ∈ supp(xl−1)} and

s′l−1 =
`(αl−1/α+1)

√
s1

αl−1
, and set ql according to (21);

7: Generate A(l)
∈ Rql×n such that (A(l))ij ∼ N (0, 1) for

any (i, j) ∈ [n1] × [n2], generate τ (l) ∈ Rql such that
(τ (l))i ∼ (2η)l`N (0, 1) for all i ∈ [ql];

8: δ(l) = A(l)xl−1;
9: y(l) = sign(A(l)x− δ(l) + τ (l));
10: ̂x− xl−1 = 1(y(l));
11: xl = PVs1,s2 (`)(xl−1 + ̂x− xl−1);
12: end for
13: return the sensingmatrixA = (A(1)

; · · · ;A(L)), the sign
observations y = (y(1); · · · ; y(L)), and the dither vector
τ = (τ (1); · · · ; τ (L)).

Algorithm 2 Adaptive Recovery Process
Input: A, y, τ , s1, s2, L;
Output: x̂;
1: x(0) = 0;
2: for l = 1 : L do
3: Update xl via xl = PVs1,s2 (`)(xl−1 +1(y(l)))
4: end for
5: return x̂ := xL .

IV. EXPERIMENTS
In this section, we conduct a series of experiments on syn-
thetic data and real-world data to test the validity of the
proposed algorithms and the correctness of the theoretical
results. For simplicity, we use the same notations between
models and algorithms, calling the proposed nonadaptive
algorithm L1-TV and the adaptive algorithm Adap L1-TV
(i.e., Algorithm 1, 2). To show the superiority of the pro-
posed model, we compare L1-TV with the algorithm for
solving only L1-penalty based optimization model and the
algorithm for solving only TV-penalty based optimization
model, respectively. Specifically, we employ the algorithm
proposed in [4] to solve the L1-penalty based model and call
the algorithm L1 for simplicity. For the TV-penalty based
model, there is no existing related research. Thus we zero
the penalty parameter for the L1-term in L1-TV to get the
corresponding algorithm, naming it TV.

In Section IV-A, we conduct some simulations to explain
how to select proper parameters for L1-TV and Adap L1-TV.
In Section IV-B and Section IV-C, we apply the proposed
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algorithms to ECG signal recovery and gray image recovery,
respectively. For the underlying signal x and its estimate x̂,
we define the direction error as DirError := ‖x̂/‖x̂‖2 −
x/‖x‖2‖2 and the relative error as RelError = ‖x̂−x‖2/‖x‖2.
Note that in 1-bit quantization, it is meaningful to acquire sign
measurements at high, super-Nyquist rates since the mea-
surements are cheap and fast. Thus, we conduct experiments
at the oversampling rate m/n more than 1. We perform all
experiments on a PC with 32 GB of RAM and Intel Core i7-
8700M(3.2GHz) and always fix t = 10 in assumption (13).

A. SYNTHETIC EXPERIMENTS
This part conducts some synthetic experiments to help clarify
the parameter setting and verify our theoretical results. In the
first experiment, three signals are generated at random as
shown in FIGURE 1 (a),(b),(c). With fixed m = 20n and
λ2 = 0.15

√
(t + log(n))/m, the constant c in Eq.(13) values

in the range [0, 1.5], and thus the parameter λ1 also varies.
The average direction errors for different values of c are
reported in FIGURE 1 (d) over 50 repeated trials. From
the experimental results, we may choose c = 0.075 in
different cases since it almost always achieves relatively good
performance.

FIGURE 1. (a)-(c) are signal 1, signal 2, and signal 3, respectively;
(d) shows direction errors for different values of c .

Next, we select the value of parameter λ2 over synthetic
experiments. First, we generate four signals of different
lengths (n = 500,n = 1000,n = 1500, and n = 2000)
at random, termed as signal 1, signal 2, signal 3, and
signal 4, respectively (They are generated in a similar way
to FIGURE 1 (a),(b),(c). Due to limited space, we do not
plot them here). We fix the constant c = 0.075, parameters
λ1 = 2c

√
(t + log(n))/m, λ2 = kλ1 and test the performance

of the proposed method for different values of k . FIGURE 2
plots the direction errors, and TABLE 1 lists the values of
4
√
s1/s2 for different tested signals x where s1 := ‖x‖0 and

s2 := ‖Dx‖0. Observed from the numerical results, we may
approximately set k = 4

√
s1/s2 in general cases.

FIGURE 2. Direction errors obtained by L1-TV with different values of λ2.

TABLE 1. Values of 4√s1/s2 of different signals.

With the above parameter setting, we conduct an exper-
iment to compare the proposed L1-TV algorithm with the
methods of L1 and TV by calculating the direction recov-
ery errors for different sampling rates. FIGURE 3 (a) plots
the original signal and FIGURE 3 (b) reports the average
direction errors over 50 trials. As expected, the experimental
results show that L1-TV performs better than the compared
algorithms since the former penalizes both sparsity and gra-
dient sparsity.

FIGURE 3. (a) is the original signal; (b) plots direction errors obtained by
different algorithms at varying sampling rates.

The above experiments only consider the recovery of
directions of signals. In the following, we further test the
performance of the proposed algorithms for recovering the
full signal (including both direction and magnitude). Firstly,
we give a convenient choice for the standard deviation σ of
the dither vector τ in the measurement model (14). Though
Theorem 8 provides a theoretical guarantee for the case that
σ equals to the known upper bound ` of ‖x‖2, the setting
may not be optimal in practice. In fact, the standard deviation
σ should be smaller than the real value of ‖x‖2. To see it,
we generate three signals of different lengths (n = 500,n =
1000,n = 1500) at random, termed signal 1, signal 2, and
signal 3, respectively (we do not plot them due to limited
space). Then we fix m = 20n and test the performance of
L1-TV for different values of σ/‖x‖2. The relative errors
are plotted in FIGURE 4 over 100 trials. It can be seen
that too large or too small values of σ all tend to result in
poor performance. We find that L1-TV performs the best
when σ is about 0.2‖x‖2 and behaves acceptably in the
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FIGURE 4. Relative errors obtained by L1-TV with different values
of σ/‖x‖2.

range [0.1‖x‖2, ‖x‖2]. The observation inspires us to choose
the value of σ in the following way: (i) For synthetic exper-
iments, we first generate 100 vectors with the same scale
and sparsity as the underlying signals at random and obtain
the average value ˆ̀ of their magnitude. Then we empiri-
cally set σ = 0.2 ˆ̀. (ii) For experiments on image process-
ing, since the maximum of the underlying signal is known,
e.g., 255, we may assume ˆ̀ = 255

√
n/2 and easily set

σ = 255
√
n/10 where n denotes the number of pixels.

Besides, some other methods, such as cross-validation, can
also be employed to tune σ , which may also obtain good
performance.

With the above setting on parameters, we experiment to
compare the proposed algorithms, L1-TV and Adap L1-TV,
with the competitive algorithms, L1 and TV. Note that for
Adap L1-TV, we easily set q1 = q2 = · · · = q10 = 3n
for the sampling complexity of each iteration. For a ran-
domly generated signal x of dimension 1000, we calculate
the average relative errors over 100 random trials at each
sampling rate and plot the results in FIGURE 5. One can
easily observe that L1-TV outperforms both L1 and TV at
all sampling rates. Besides, the introduction of an adap-
tive quantization/recovery scheme (i.e. Adap L1-TV) signif-
icantly improves the recovery performance of L1-TV, which
coincides to the conclusion reflected by Theorem 10.

FIGURE 5. Relative errors obtained by different algorithms at varying
sampling rates.

B. APPLICATION TO ECG SIGNALS RECOVERY
In this part, we employ the proposed method for ECG signals
recovery. The ECG signals were collected from the MIT-BIH
Arrhythmia Database [30] and are windowed to 1000 sam-
ples in the experiment. FIGURE 6 (a) displays a segment
of such ECG signals which is tested as the underlying
signal.

FIGURE 6. (a) is a segment from ECG signals; (b) shows relative errors for
different values of k .

FIGURE 7. Reconstructed results by different methods. (a) shows the
result obtained by L1 (RelError=0.1909); (b) shows the result obtained by
TV (RelError=0.1638); (c) shows the result obtained by L1-TV
(RelError=0.1192); (d) shows the result obtained by Adap L1-TV
(RelError=0.0053).

The upper bound R on the magnitude is selected using the
cross-validation on the tested set. The parameter λ1 is set as
λ1 = 0.15

√
(t + log(n))/m, suggested by the experimental

results in Section IV-A. It remains to determine the ratio
k = λ2/λ1. To this end, we fix m = 20n and calculate
the average relative errors for different values of k . The
results are plotted in FIGURE 6 (b), which indicates that
k = 3may be an appropriate choice. For TV, a similar exhaus-
tive test suggests us to choose the regularization parame-
ter 0.30

√
(t + log(n))/m. For L1, we follow the suggestion

by [4] that is λ =
√
(t + log(n))/m. Under such parameter

setting, we compare the proposed L1-TV and Adap L1-TV
with L1 and TV at the sampling rate m/n = 30 and report
the experimental results in FIGURE 7. We observe that Adap
L1-TV performs the best, behaving with great advantages.
L1-TV also achieves better performance than either L1 or TV,
attributed to considering both signal sparsity and sparsity in
the difference between consecutive components of the signal.

C. APPLICATION TO GRAY IMAGES RECOVERY
Next, we test the recovery performance of the proposed algo-
rithms on gray images. Five images of size 256 × 256 are
considered as examples, named as Barbara, Lenna, Pepper,
and House, respectively (see FIGURE 8 (a)). Note that the
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TABLE 2. Comparison of the PSNR and SSIM at different sampling rates.

FIGURE 8. The original image and the corresponding recovered results by different algorithms with the sampling
rate m/n = 30. (a) is the original image; (b) shows the result obtained by L1; (c) shows the result obtained by TV;
(d) shows the result obtained by L1-TV; (e) shows the result obtained by Adap L1-TV.
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recovery process is not performed directly on the whole
image but small disjoint segments. Specifically, we first
decompose the original image into 64 parts of size 32×32 and
then restore these segments one by one. These segments are
sparse in some bases, such as discrete cosine transform (DCT)
or wavelet basis. In this experiment, we exploit the MAT-
LAB command, dct2, to generate the desired sparse basis
and then use different algorithms to reconstruct the induced
sparse coefficients from thresholded binary measurements at
sampling rates m/n = 10, m/n = 20, and m/n = 30,
respectively. We set the maximum number of iterations
K = 5 for Adap L1-TV. TABLE 2 exhibits the PSNR
and SSIM values of the tested images obtained by differ-
ent algorithms. From FIGURE 8 (b) to FIGURE 8 (e),
we plot the recovered visual results by different algorithms
respectively at the sampling rate m/n = 30. Whether from
a visual or quantitative perspective, our algorithms equip
more powerful recovery ability than classic sparse and
gradient sparse based methods. Indeed, the superiority of
L1-TV benefits from the combined utilization of sparse and
local-smooth properties of image data while the outstand-
ing performance of Adap L1-TV comes from the integrated
use of an L1-TV regularizer and an adaptive measurement
scheme.

V. CONCLUSION AND FUTURE WORK
This paper proposed a recovery method for 1-bit compressed
sensing based on the L1-TV regularizer with an efficient
solving algorithm. We also provide theoretical guarantees for
the proposed method by detailed analysis. Compared with
existing methods, our algorithms can better process signals
that are element sparse and gradient sparse. In addition, the
proposed adaptive algorithm achieves a significantly faster
recovery error decay rate.

It is worth mentioning that some signals are sparse
under particular linear transformations rather than them-
selves. We may consider linear transforms in the L1-norm
penalty to fit more data in applications in future work. It is
interesting to provide a corresponding theoretical analysis
and consider how to design an efficient algorithm in this
case.

APPENDIX
In this part, we present proofs for the proposed lemmas and
theorems.

A. PROOFS OF THE PROPOSED LEMMAS
Proof of Lemma 1: We first define SGN(·) such that:

if t > 0, SGN(t) = 1; if t < 0, SGN(t) = −1; and if
t = 0, SGN(t) = [−1, 1] that is projecting a element onto
an interval. Define

g(u) :=
1
2
‖u− y‖22 + λ1‖u‖1 + λ2‖Du‖1

and let ∂g(u∗) denote the subdifferential of g(·) at u∗ (refer to
e.g. [31] for details of subdifferential). Noting that SGN(·) is

the subgradient of ‖ · ‖1, we then have

∂g(u∗) = u∗ − y+ λ1SGN(u∗)+ λ2DTSGN(Du∗).

For any u ∈ ∂g(u∗), using the definition of SGN(·), we can
easily check that

〈u,u∗〉 = ‖u∗‖2 − 〈y,u∗〉 + λ1‖u∗‖1 + λ2‖Du∗‖1.

(22)

From Lemma 1, we know u∗ = argminu∈Rn g(u). Since
the objective function g(u) is strictly convex, it admits a
unique minimizer by u∗. The optimality condition implies
that

0 ∈ ∂g(u∗).

Thus, Eq.(22) holds for u = 0, indicating that

〈y,u∗〉 = ‖u∗‖2 + λ1‖u∗‖1 + λ2‖Du∗‖1.

We have completed the proof. �
Proof of Lemma 3: Following the standard analysis of

convex optimization [32], the Lagrange dual function L(µ)
of the optimization problem (10) is given by

L(µ)

= min
x∈Rn
−〈x, v〉 + λ1‖x‖1 + λ2‖Dx‖1 + µ(‖x‖22 − 1)

= min
x∈Rn

2µ

(
1
2

∥∥∥∥x− v
2µ

∥∥∥∥2
2
+
λ1

2µ
‖x‖1 +

λ2

2µ
‖Dx‖1

)

−
‖v‖22
4µ
− µ

= 2µ

(
min
x∈Rn

1
2

∥∥∥∥x− v
2µ

∥∥∥∥2
2
+
λ1

2µ
‖x‖1 +

λ2

2µ
‖Dx‖1

)

−
‖v‖22
4µ
− µ

= 2µp(µ)−
‖v‖22
4µ
− µ,

where

p(µ) := min
x∈Rn

1
2

∥∥∥∥x− v
2µ

∥∥∥∥2
2
+
λ1

2µ
‖x‖1 +

λ2

2µ
‖Dx‖1

= min
x∈Rn

1
4µ2

(
1
2
‖2µx− v‖22 + λ1‖2µx‖1

+ λ2‖D(2µx)‖1

)
.

Using Lemma 1, we have

p(µ) =
1

8µ2

∥∥u∗ − v∥∥22 + λ1

4µ2 ‖u
∗
‖1 +

λ2

4µ2 ‖D(u
∗)‖1,

where

u∗ = Pλ1 (Tλ2 (v)).
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The Lagrange dual problem of (10) is given by

max
µ≥0
−µ−

1
4µ

(‖v‖22 −
∥∥u∗ − v∥∥22 − 2λ1‖u∗‖1

− 2λ2‖Du∗‖1)

= max
µ≥0
−µ−

1
4µ

(2〈u∗, v〉 − ‖u∗‖22 − 2λ1‖u∗‖1

− 2λ2‖Du∗‖1)

= max
µ≥0
−µ−

‖u∗‖22
4µ

,

where the final equality utilizes Lemma 2. Obviously, the
optimal dual solution is

µ∗ =
‖u∗‖2
2
=
‖Pλ1 (Tλ2 (v))‖2

2
.

Therefore, using Lemma 1, the optimal solution is

x∗ = argmin
x∈Rn

1
2

∥∥∥∥x− v
2µ∗

∥∥∥∥2
2
+

λ1

2µ∗
‖x‖1 +

λ2

2µ∗
‖Dx‖1

= argmin
x∈Rn

1
2

∥∥2µ∗x− v∥∥22 + λ1‖2µ∗x‖1 + λ2‖2µ∗Dx‖1
=

Pλ1 (Tλ2 (v))
2µ∗

=
Pλ1 (Tλ2 (v))
‖Pλ1 (Tλ2 (v))‖2

.

The proof is completed. �
Proof of Lemma 6: Since ‖x‖1/‖x‖2 ≤

√
s1, we have

‖̃x‖1 = ‖x‖1 + `

≤
√
s1‖x‖2 + `

=

√
s1‖x‖22 + `

2 + 2
√
s1`‖x‖2

≤

√
(s1 + 1)‖x‖22 + (s1 + 1)`2

=

√
s1 + 1‖̃x‖2.

Besides, since xn ≤ ‖x‖2 ≤ `, we have

‖D̃̃x‖1 = ‖Dx‖1 + |xn − `|

≤ 2(
√
s2‖x‖2 + `)

= 2
√
s2 + 1‖̃x‖2.

The proof is completed. �

B. PROOFS OF THE PROPOSED THEOREMS
Proof of Theorem 4: The proof is fundamentally built

upon the following observation between 1
mA

T y and γ x, which
is shown in [29].
Lemma 11 (See [29]): Let A ∈ Rm×n be a random matrix

whose entries are independently generated from standard
Gaussian distribution, x ∈ Rn, and y = sign(Ax). With a
probability at least 1− e1−t , we have∥∥∥∥ 1mAT y− γ x

∥∥∥∥
∞

≤ c

√
t + log(n)

m

for some constant c > 0.

Since x̂ is the optimal solution, we have

−
1
m
〈AT y, x̂〉 + λ1‖x̂‖1 + λ2‖Dx̂‖1

≤ −
1
m
〈AT y, x〉 + λ1‖x‖1 + λ2‖Dx‖1.

Thus, one has

λ1‖x‖1 + λ2‖Dx‖1

≥ 〈x− x̂,
AT y
m
〉 + λ1‖x̂‖1 + λ2‖Dx̂‖1

= 〈x− x̂, γ x〉 + 〈x− x̂,
AT y
m
− γ x〉 + λ1‖x̂‖1

+ λ2‖Dx̂‖1

≥ γ (1− 〈x̂, x〉)− c

√
t + log(n)

m
‖x̂− x‖1 + λ1‖x̂‖1

+ λ2‖Dx̂‖1,

which implies

γ (1− 〈x̂, x〉) ≤ λ1(‖x‖1 − ‖x̂‖1)+ λ2(‖Dx‖1 − ‖Dx̂‖1)

+ c

√
t + log(n)

m
‖x̂− x‖1.

Recalling x ∈ Ks1,s2 ∩ Sn and λ1 = 2c
√

t+log(n)
m , one has

γ (1− 〈x̂, x〉) ≤
3
2
λ1‖x‖1 −

1
2
λ1‖x̂‖1 + λ2‖Dx‖1

≤
3
2
λ1
√
s1 + 2λ2

√
s2.

Thus we have

‖x̂− x‖22 ≤ 2(1− 〈x̂, x〉)

≤
1
γ
(3λ1
√
s1 + 4λ2

√
s1).

So, we conclude that

‖x̂− x‖2 ≤

√
3λ1
√
s1 + 4λ2

√
s1

γ

= O
(

4

√
(s1 + s2)(log(n)+ t)

m

)
.

The proof is thus completed. �
Proof of Theorem 8: Using Lemma 6 indicates that

‖̃x‖1/‖̃x‖2 ≤
√
s1 + 1 and ‖D̃̃x‖1/‖̃x‖2 ≤ 2

√
s2 + 1. Thus,

applying Theorem 4 implies∥∥∥∥ x̃#

‖̃x#‖2
−

x̃
‖̃x‖2

∥∥∥∥
2
≤

√
3λ1
√
s1 + 1+ 4λ2

√
s2 + 1

γ
≤ ε′,

provided m ≥ C ′ε′−4γ−2(s1 + k2s2)(t + log(n)) =
Cε−4γ−2(s1 + k2s2)(t + log(n)), where ε′ = 1

2
√
2
ε and

C = 64C ′.
In particular, looking at the last coordinate, this inequality

yields ∥∥∥∥∥ x̃#n+1‖̃x#‖2
−

`

‖̃x‖2

∥∥∥∥∥
2

≤ ε′.
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Since ‖̃x‖2 ≤
√
2`, we thus have

|̃x#n+1|

‖̃x#‖2
≥

`

‖̃x‖2
− ε′ ≥

1
√
2
− ε ≥

1
2
,

provided ε′ is small enough.
In turn, applying Lemma 7 while taking f̃ := x̃ = (x;R)

and g̃ := x̃# = (x#; x#) into consideration gives∥∥∥∥x#x# − x
`

∥∥∥∥
2
≤ 2
√
2ε′ = ε.

Multiplying on both sides of this inequality by ` completes
the proof. �

Proof of Theorem 10: For any x ∈ Vs1,s2 (`), we shall
prove by induction on l ∈ [[0 : L]] that

‖x− xl‖F ≤ (2η)l` (23)

holds with a high probability. When l = 0, Eq.(23) holds
since xl = 0 and ‖x‖F ≤ `. When l = 1, triangle inequality
indicates

‖x− x1‖2 ≤ ‖x− x̂‖2 + ‖x̂− x1‖2.

Since x1 = PVs1,s2 (`)(x̂) is the best approximation to x̂ in
Vs1,s2 (`) and x ∈ Vs1,s2 (`), we have

‖x− x1‖2 ≤ 2‖x− x̂‖2,

which combining Theorem 8 implies that

‖x− x1‖2 ≤ 2η`

hold with a probability at least 1 − e(1−t), provided q1 ≥
Cη−4γ−2(s1 + k2s2)(t + log(n)).

Now assume that Eq.(23) holds for l − 1, l ∈ {2, · · · ,L},
we next prove that Eq.(23) holds for l. Define αl−1 =
min{|(xl−1)i| : i ∈ supp(xl−1)}. Noting that x, xl−1 ∈
Vs1,s2 (`), we have

‖x− xl−1‖1 ≤

√
‖x‖1
α
+
‖xl−1‖1
αl−1

‖x− xl−1‖2

≤

√
`(αl−1 + α)

√
s1

ααl−1
‖x− xl−1‖2

and

‖D(x− xl−1)‖1 ≤ 2‖x− xl−1‖1

≤ 2

√
`(αl−1 + α)

√
s1

ααl−1
‖x− xl−1‖2.

Thus, we get x − xl−1 ∈ Us′l−1,s
′

l−1
∩ (2η)l−1`Bn :=

Vs′l−1,s
′

l−1
((2η)l−1`), where

s′l−1 =
`(αl−1 + α)

√
s1

ααl−1
.

Using Theorem 8 with q(l) ≥ Cη−4γ−2(1 + k2)s′l−1(t +
log(n)) implies

‖x− xl−1 − ̂x− xl−1‖2 ≤ 2l−1ηl`. (24)

Combining xl = PVs1,s2 (`)(xl−1 + ̂x− xl−1) with Eq.(24),

triangle inequality indicates that

‖x− xl‖2 ≤ (2η)l`

holds with a probability at least 1 − e(1−t). This shows that
the induction hypothesis for the iteration l. Fixing t = log(n),
a union bound over all K iterations completes this proof. �
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