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ABSTRACT The rapid development of virtual reality applications continues to urge better compression of
360◦ videos owing to the large volume of content. These videos are typically converted to 2-D formats using
various projection techniques in order to benefit from ad-hoc coding tools designed to support conventional
2-D video compression. Although recently emerged video coding standard, Versatile Video Coding (VVC)
introduces 360◦ video specific coding tools, it fails to prioritize the user observed regions in 360◦ videos,
represented by the rectilinear images called the viewports. This leads to the encoding of redundant regions
in the video frames, escalating the bit rate cost of the videos. In response to this issue, this paper proposes a
novel 360◦ video coding framework for VVCwhich exploits user observed viewport information to alleviate
pixel redundancy in 360◦ videos. In this regard, bidirectional optical flow, Gaussian filter and Spherical
Convolutional Neural Networks (Spherical CNN) are deployed to extract perceptual features and predict user
observed viewports. By appropriately fusing the predicted viewports on the 2-D projected 360◦ video frames,
a novel Regions of Interest (ROI) aware weightmap is developed which can be used to mask the source
video and introduce adaptive changes to the Lagrange and quantization parameters in VVC. Comprehensive
experiments conducted in the context of VVC Test Model (VTM) 7.0 show that the proposed framework
can improve bitrate reduction, achieving an average bitrate saving of 5.85% and up to 17.15% at the same
perceptual quality which is measured using Viewport Peak Signal-To-Noise Ratio (VPSNR).

INDEX TERMS 360◦ video, perceptual coding, Regions of Interest, viewport prediction, Versatile Video
Coding.

I. INTRODUCTION
In recent years, virtual reality (VR) technology has rapidly
grown in public markets, providing solutions to immersive
in-home experiences and elevating the standards of media
consumption [1], [2], [3]. In addition to the entertainment
sector, VR technology also supports other business endeav-
ours such as travel, education, and real estate. Consequently,
the proliferation of high-resolution 360◦ videos required to
boost VR-based multimedia applications demands higher
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bandwidth requirements. Therefore, there is a great need for
efficient compression of such video content.

A 360◦ video can be regarded as a sequence of surface
information that encloses a point source. The viewpoints on
the virtual 360◦ surface are subjected to change as a user
varies the head position. In the event that these viewpoints are
uniformly distributed and placed at a constant distance from
the point source, then the 360◦ surface becomes isotropic,
hence can be defined as a spherical surface. A 360◦ surface
can be represented by the spherical coordinate system and
its parameters latitude θ [−π/2, π/2], longitude φ [−π , π ]
and unit radius r . Moreover, 360◦ videos are converted to
2-D representations, mostly the EquiRectangular Projection
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(ERP) format, in order to use 2-D video encoders to compress
the video contents [4]. However, in 360◦ videos, the Field
of View (FOV) of the user encloses only a portion of the
spherical information, also known as the viewport which is
a rectilinear image generated from the user’s head position.
Because the remaining surface information is redundant to
the user, it is expected that video compression technologies
will effectively remove such information and save bitrates.

Video-compression technologies continue to evolve and
facilitate new video-communication trends. The Versatile
Video Coding (VVC) standard [5] is the latest initiative
of the Joint Video Experts Team (JVET) which introduces
numerous coding tools to improve the video compression
efficiency [5], [6], [7], [8], [9], [10], [11]. VVC not only
target high coding gains, but also targets versatility, and as
such it supports encoding of various types of videos such
as natural videos, screen content, Standard Dynamic Range
(SDR), High Dynamic Range (HDR) and 360◦ videos and
video formats such as 4:2:0, 4:4:4, lossless video formats,
etc. In order to support 360◦ videos, VVC introduces specific
coding tools including several re-projection, packaging and
padding tools [12]. Particularly for ERP videos, VVC
introduces Motion Vector (MV) wrap-around and vertical
edge padding features to provide continuity in the 2-D plain
as similar to that in a spherical surface [12]. The VVC Test
Model (VTM) 7.0 is capable of improving the compression
gains of 360◦ videos by 28.91% compared to its predecessor,
High Efficiency Video Coding (HEVC). However, VVC does
not account for the user perception when encoding an ERP
video which could otherwise further improve the perceptual
compression gains.

Perceptual video coding has been a vastly researched area
in the video coding domain which focuses on enhancing
the user perceived visual quality by improving the fidelity
of human interested regions, also called the Region of
Interests (ROI) [13], [14], [15]. In the context of 2-D videos,
perceptual characteristics can be directly exploited using
video compression techniques. However, ROI based coding
can be a challenging problem for 360◦ videos because the
FOV of the user is limited to the viewports as opposed
to the conventional ERP representation of 360◦ videos as
illustrated in FIGURE 1. Therefore, failure to utilize viewport
information during the encoding of an ERP video can
result in an abundance of non-observed video information
being coded, incurring an additional transmission cost.
Also, individual encoding of several viewports of a given
ERP frame cannot address this problem because different
users can opt to view different viewports. In response, this
paper proposes a novel viewport dependent ERP coding
framework that exploits viewport information in VVC
encoding processes. To this end, in light of the success
of image processing tools and data-driven technologies,
this research employs a hybrid technique incorporating
Gaussian filtering technique and bidirectional optical flow
estimation [16], and a deep learning network constructed
from the components of Spherical Convolutional Neural

FIGURE 1. 360◦ video: EquiRectangular Projection (ERP) format
representation (top) and four random user observed viewports (bottom).

Network (Spherical CNN) [17] and Salient Resnet [18] in
order to predict the user observed viewports. Furthermore,
this paper also illustrates the generation a VVC compliant,
ROI aware weightmap by non-linearly fusing the predicted
viewports. Subsequently, the developed weightmap is used in
the removal of spatial redundancy in the ERP videos and the
optimization of the video coding parameters.

The novel contributions provided in the proposed ERP
coding framework are summarized as follows.
• Hybrid viewport prediction technology for video coding
that fuses bidirectional optical flow estimation and
Gaussian filtering techniques.

• Deep learning based viewport prediction technique for
video coding that incorporates Spherical CNN and
Salient Resnet components.

• VVC compliant weightmap derivation from non-linear
fusion of predicted viewports to mask the source video.

• Application of the weightmap in Lagrange optimization
and adaptive Quantization Parameter (QP) derivation for
VVC.

The remainder of this paper is organized as follows.
Section II describes the related work in the area, Section III
describes the proposed encoding framework, and Section IV
illustrates the experiments and results, followed by conclud-
ing remarks in Section V.

II. RELATED WORK
360◦ video coding is a growing area of research and numerous
solutions have been proposed in the literature to boost the
compression efficiency of the 360◦ videos. In general, these

VOLUME 10, 2022 118381



J. Adhuran et al.: Deep Learning and Bidirectional Optical Flow Based Viewport Predictions for 360◦ Video Coding

research works on 360◦ video coding can be classified
into three categories namely, pre and post coding, context
adaptive coding and perceptual coding. Pre and post coding
primarily discusses the re-projection techniques of existing
2-D projected 360◦ video contents as well as the packaging
mechanisms of the video frames. In contrast, in context
adaptive coding, the spherical properties of the 360 videos
are exploited and used by video compression tools such as
quantization and motion compensation in order to improve
the coding efficiency. Finally, perceptual coding addresses
the deployment of user perceptual models, specifically
viewport dependent encoding approaches during the video
coding procedures.

The pre and post coding tools for 360◦ videos play a
major role in the 360◦ video coding domain. The main
functionalities of the pre-coding tools are to convert the 360◦

videos into 2-D space, and rearrange them in rectilinear
formats which are suitable for subsequent encoding. Their
respective inverse operations at the decoder are performed
by the post-coding tools. In this regard, the projection
and packaging techniques such as rhombus dodecahedron
projection [19], CubeMap (CMP) [20], octahedron projection
[21], Truncated Square Pyramid (TSP) [22], icosahedron
projection [23], and rotated sphere projection [24] have been
studied. In contrast to the pre-coding techniques used in the
literature, the proposed framework applies a viewport based
weightmap on the input ERP video frame, to provide user
perception to the codec.

Context based 360◦ video coding incorporates spherical
characteristics during the video coding processes. Moreover,
it is also vital to understand that the locations and magnitudes
of the reference pixels pointed in the spatial and temporal
domains by the 2-D codecs may not be accurate in a spherical
projected 360◦ video as opposed to a conventional 2-D video.
In general, the spherical projected 360◦ videos introduce
artifacts such as discontinuity in the boundaries, shape
distortion and redundancy in pixel samples. These can result
in the encoding of invalid pixels, spatial prediction issues,
and inefficient motion estimation and motion compensation,
thereby not being able to achieve the potential maximum
compression efficiency. In this regard, the application of
spherical objective quality metrics and related algorithms
in adaptive quantization techniques, Lagrange optimization,
quantization parameter optimization, residual weighting,
adaptive resolution techniques and Rate-Distortion Opti-
mization (RDO) have been studied in numerous research
works [4], [25], [26], [27], [28], [29], [30]. Furthermore,
few studies report that the use of spherical characteristics in
motion vector candidate selection, motion compensation and
pixel padding can boost coding performance in the temporal
domain [12], [31], [32]. As opposed to the aforementioned
studies which incorporate spherical properties in video
compression processes, the proposed research incorporates
perceptual characteristics to the video coding tools.

Perceptual coding in 360◦ videos includes ROI detection
which can be very challenging because the viewports are

instantly constructed based on the user’s head movements.
Therefore, in 360◦ videos, ROI can be approximated by
predicting viewport information. In the context of leverag-
ing user observed viewports, many state-of-the-art studies
primarily focus on video streaming applications and place
less emphasis on the encoding of video content. The
literature categorizes, the viewport centric 360◦ video stream-
ing/coding techniques as tiled and non-tiled approaches.
Benefiting from parallel processing features, tiled approaches
aremainly applicable in streaming of the 360◦ video contents.
As such, tiled approaches either follow a scalable coding
solution [33], [34], [35], [36] or assign high bitrates to the
tiles that represent primary viewports [37]. Moreover, there
are research works that combines both solutions by encoding
the viewport dependent tiles at a higher bitrate and proving
scalable support to further enhance the Quality of Experience
(QoE) of users [38], [39]. Furthermore, multi-layer streaming
system with base and enhancement layers have also been
studied [5], [35], [40]. Although tiled based coding systems
are useful for streaming purposes, reducing transmission
delays, providing higher flexibility and improving the QoE,
the associated coding losses remain an issue. Furthermore,
viewport driven RDO strategies for 360◦ video streaming
have also been studied [35], [36]

Coding losses can be improved using non-tiled approaches.
However, viewport dependent non-scalable non-tiled driven
coding approaches have not been a popular research topic
owing to problems related to generalization of viewport
prediction, viewport mapping with ERP video frames and
associated coding delays. Among the JVET approved pro-
jection schemes for VVC, TSP [22] is the only viewport
dependent projection technique that specifically prioritizes
the front viewport during the packaging of 360◦ video in
2-D platform. Furthermore, Sreedhar et al. [41] proposed a
multiple viewport resolution centric, rectilinear packaging
technique for ERP in which the front viewport has been
biased with higher resolution as opposed to the other
viewports. These two studies make an assumption that users
tend to view the front viewport more often than the other
viewports. In contrast, Facebook developed Barrel layout
based on AI-driven saliency maps to identify user interested
regions prior to encoding [42]. Furthermore, Hu et al. [43]
reports learned weights driven viewport dependent Lagrange
optimization and adaptive quantization techniques at Coding
Tree Unit (CTU) level which improves the perceptual
compression gains of HEVC by 26%.

Building on the non-tiled approach for 360◦ video coding,
this paper proposes several novel approaches that differ
from the state-of-the-art techniques [22], [41], [42], [43],
in number of ways. Firstly, the proposed research applies
two different techniques for viewport prediction; a hybrid
approach that combines bi-directional optical flow estimation
and a Gaussian filtering technique to extract saliency features
in both spatial and temporal domains and an Spherical
CNN incorporated deep learning approach to obtain spherical
features only in the spatial domain. Secondly, the proposed
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FIGURE 2. Sequential flow of the tasks in the proposed viewport dependent ERP coding framework.

research employs a Gaussian based viewport non-linear
fusion technique in order to detect the ROI on the ERP video
frames and generate a weightmap. Thirdly, the proposed
research also adopts the generated ROI based weightmap in,
1) masking the input ERP frames, 2) adaptive quantization
and 3) Lagrange optimization.

III. METHODOLOGY
A. OVERVIEW OF THE PROPOSED 360◦ VIDEO
CODING FRAMEWORK
This paper proposes a novel ERP coding framework that
exploits viewport information in 360◦ videos to perceptually
improve the compression efficiency. The sequential flow of
the tasks in the proposed framework is shown in FIGURE 2.
The proposed framework first predicts a set of user observed
viewports. Once a set of viewports is obtained, they are
mapped onto an ERP frame to generate Quality Emphasis
Regions (QERs) on the ERP frame. Subsequently, QERs
are fused using Gaussian operation in order to identify
the ROI on the ERP frame. Thereafter, an ROI aware
weightmap is generated for each frame and it is used to
mask the corresponding video frame prior to encoding using
VVC. Furthermore, the proposed framework also employs an
adaptive Lagrange and quantization parameter optimization
techniques based on the generated weightmap in order to
further improve the compression efficiency of the encoded
bitstream.

B. OVERVIEW OF VIEWPORT PREDICTION TECHNIQUES
The proposed framework experiments two different
approaches for predicting the viewports which would be used
to detect the ROI on an ERP frame. The first approach,
Viewport Prediction Hybrid (VPredHyb) applies a hybrid
implementation between bidirectional optical flow estimation
and Gaussian filtering technique in obtaining a set of
viewports from a predefined viewport set. The magnitudes
of the optical flow vectors and the filtered pixels obtained
respectively are weighted and the resulting magnitude is used
in the selection of the required number of viewports. The
second approach called the Viewport Prediction Spherical
CNN (VPredSCNN) deploys a deep learning technique
incorporating Spherical CNN and Salient Resnet components
to directly predict a set of viewports as opposed to the
viewport prediction procedure used in VPredHyb where
viewports are selected from a predefined viewport set.
In VPredSCNN, a k-means clustering technique is used after

FIGURE 3. Overview diagram of Viewport Prediction Hybrid (VPredHYB).

the viewport prediction process in order to obtain the required
number of viewports.
Viewport Generation: A user observed viewport in a 360◦

video frame is defined by the viewport centre (φo, θo), its
width Wvp, its height Hvp, horizontal FOV angle Fh and
vertical FOV angle Fv [44]. Here, the viewport centre (φo, θo)
is derived from a given pair of spherical coordinates (φ, θ) of
the 360◦ video frame. During viewport generation, the pixel
values at location (x, y) in the ERP frame that corresponds to
the sampling location (m, n) on the viewport are determined
using interpolation techniques. In this context, the mapping
relationship provided by [44] is used in this research for the
generation of viewports.

C. VIEWPORT PREDICTION HYBRID
VPredHYB is one of the proposed viewport prediction
techniques that fuses viewports predicted using bidirectional
optical flow vectors and Gaussian filtered pixels to extract
both spatial and temporal features. Optical flow provides a
better estimate of the motion trajectory leading to a better
approximation of human interest regions. As opposed to
many available optical flow estimationmethods, bidirectional
optical flow utilizes the information from past frames as
well as future frames during flow vector estimation, hence
used in the proposed VPredHYB. Furthermore, a Gaussian
filter is included to capture the low frequencies in the
signal which are more sensitive to the human visual
system.

FIGURE 3. illustrates the overview of the proposed VPred-
HYB technique. Although an arbitrary number of viewports
can be constructed, doing so is impractical due to their
high computational complexities and can also result in the
generation of redundant viewports. Therefore, in VPredHYB,
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FIGURE 4. Estimation of optical flow vectors using bidirectional viewports with DragonTale sequence at (φ0, θ0) = (0.0◦,0.0◦).

TABLE 1. Percentage of area of an ERP enclosed when mapping
viewports onto EPR.

a set of viewports VT with length NT are constructed at first.
Here, the value of NT is chosen such that the majority of the
regions on the ERP can be enclosedwhile reducing the impact
of the encoding complexity. Table 1. illustrates the percentage
of the area that the number of viewports can enclose when
projected onto an ERP at standardized coding resolution of
4432×2216. In the proposed VPredHYBNT is set to 20, as it
can provide a good trade off between the area enclosed and
the complexity of search. Furthermore, the initial viewport
centres are defined such that θo and φo take values in the
ranges of [−π/2, π/2] and [−π, π) at π/4 and π/2 intervals
respectively.

Each of the prediction techniques in VPredHYB is
sequentially applied on all of the viewports in VT. In the
case of the Gaussian filtering technique, only a particular
viewport from a given video frame is generated. In contrast,
the viewports corresponding to the previous and subsequent
frames are constructed during the estimation of optical flow
vectors, hence this technique cannot be applied to the first
and the last frames. Moreover, a weighting factor ξ is applied
to the magnitudes of the optical flow vectors and the filtered
pixels during the fusion of the two techniques. The resulting
fused magnitude EvT for a given viewport v (∈ VT) can be
obtained as shown in Eq. (1).

EvT =

{
Evf , if f = 1,N f

ξEvf + (1− ξ )Evo, otherwise
(1)

where Evf , E
v
o , f and N f are the total magnitudes of the

Gaussian filtered pixels, optical flow vectors, the frame
number and the number of frames respectively. Furthermore,
a viewport set VP(⊂ VT) with length N p for the frame f is
constructed usingN p viewports that exhibit greater EvT values
in order to be used in the generation of ROI aware weightmap
for the ERP frame.

D. VIEWPORT PREDICTION BIDIRECTIONAL OPTICAL
FLOW ESTIMATION
Viewport Prediction Bidirectional Optical Flow Estimation
(VPredBOFE) is one of the techniques used in VPredHYB
that applies flow vector estimation to predict the user
observed viewports. An example of bidirectional opti-
cal flow estimation for a given viewport constructed at
(φo, θ0) = (0.0◦, 0.0◦) is shown in FIGURE 4.
Let pixel intensity of a viewport at time t, t0 and t1

( t0 < t < t1) be I t , I t0 and I t1 respectively. Then, using
the bidirectional optical flow concept [16], I t can be written
in terms of I t0 and I t1,

I t = I t0 − Gx t0Vx t0(t − t0)− Gyt0Vyt0(t − t0) (2)

I t = I t1 − Gx t1Vx t1(t − t1)− Gyt1Vyt1(t − t1) (3)

where Gx tm, Gytm, Vx tm, and Vytm are the horizontal image
gradient, vertical image gradient, and horizontal and vertical
optical flow vector components of a given viewport at time
tm (m ∈ {0, 1}) respectively.
Furthermore, because only the previous and successive

viewports are used in estimation in the proposed approach,
the temporal difference becomes one, thus t−t0 = t1−t = 1.
Furthermore, assuming that the motion is along the trajectory
and there would not be greater variation of flow information
between two successive viewports, the optical flow vector
components can be written as Vx t1 = Vx t0 = Vx and
Vyt1 = Vyt0 = Vy. Then, from Eq. (2). and Eq. (3)., the
error 1i,j at the pixel location (i, j) in the viewport can be
derived as,

1i,j = Gti,j + Gxi,jVxi,j + Gyi,jVyi,j = 0 (4)

where Gxi,j = Gx t1i,j + Gx t0i,j , Gyi,j = Gyt1i,j + Gyt0i,j and
Gti,j = I t1i,j − I

t0
i,j .

In order to approximate Vxi,j and Vyi,j at pixel location
(i, j), the spatial gradients Gxi,j,Gyi,j and the temporal
gradient Gti,j need to be obtained. The temporal gradient
is estimated by the pixel intensity difference between the
viewport at t0 and t1. Moreover, by convolving horizontal
and vertical Sobel filters of size 3×3 over the entire viewport
in the respective direction using a local window � of size
9 × 9, the individual spatial gradients of the viewports at
t0 and t1 can be obtained. These can be used to extract the
combined spatial gradients Gxi,j and Gyi,j.
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Furthermore, in order to obtain a closer approximation
of the optical flow vectors, the error 1i,j can be minimized
inside the window using least square estimation such that

min

(∑
�

12
(i,j)

)
However, given that there are many viewports to be pro-
cessed, the least square estimation process can be complex.
Therefore, the optical flow vectors can be estimated by setting
the partial derivatives of 12

(i,j) with respect to Vxi,j and Vyi,j
to zero. Then the optical flow vectors at pixel location (i, j)
(denoted as a in Eq. (5)), Vxi,j and Vyi,j can be estimated from
the spatial and temporal gradients as given in Eq. (5).

Vxa =

∑
�

GtaGya
∑
�

GxaGya −
∑
�

GtaGxa
∑
�

Gy2a

δ +
∑
�

Gx2a
∑
�

Gy2a −
(∑
�

GxaGya

)2

Vya =

∑
�

GtaGxa
∑
�

GxaGya −
∑
�

GtaGya
∑
�

Gx2a

δ +
∑
�

Gx2a
∑
�

Gy2a −
(∑
�

GxaGya

)2 (5)

where δ is the denominator correction factor with a value of
0.0001. The total magnitude of the optical flow vectors Evo for
each viewport v is then determined using Eq. (6).

Evo =
Hvp∑
j=0

Wvp∑
i=0

√
Vx2i,j + Vy

2
i,j (6)

E. VIEWPORT PREDICTION GAUSSIAN FILTERING
Viewport Prediction Gaussian Filtering (VPredGF) is the
second technique used in VPredHYB, that uses the Gaussian
filtered pixels to predict the viewports. A visual example of
the obtained Gaussian filtered pixels using this technique is
shown in FIGURE 5.
The Gaussian filter in spatial domain hx,y can be defined

as,

hx,y =
1

2πσ 2 exp
(
−(x2 + y2)

2σ 2

)
(7)

where (x, y) are the spatial coordinates and σ is the standard
deviation. In predicting the viewports, Gaussian filter hx,y of
size N × N , (N = 7) and σ = 1 is used to convolve over
the entire viewport image. Furthermore, a local window �

with central pixel coordinates (i, j) and an equal size to the
Gaussian filter, spanning N 2 pixels in the viewport image is
used in the identification of the mean intensity. The mean
intensity µi,j of a particular window� is computed as shown
in Eq. (8).

µi,j =
1
N 2

(N−1)
2∑

y= (1−N )
2

(N−1)
2∑

x= (1−N )
2

Igi+x,j+y (8)

where Igi+x,j+y is the Gaussian filtered pixel intensity
at location (x, y) in the window � with central pixel

FIGURE 5. Application of Gaussian filtering technique for the viewport of
DragonTale sequence at (φ0, θ0) = (0.0◦,0.0◦).

coordinates (i, j). However, the mean intensity must be
removed prior to the computation of the magnitude of the
filtered pixels as it can be a bias to the low frequency signal
components within the particular window [45]. Subsequently,
the magnitude of the filtered pixels Evf of viewport v can be
determined using Eq. (9).

Evf =
Hvp∑
j=0

Wvp∑
i=0

√√√√√√
(N−1)

2∑
y= (1−N )

2

(N−1)
2∑

x= (1−N )
2

gx,y
(
Igi+x,j+y − µi,j

)2 (9)

where

gx,y =
hx,y∑N−1

y=0
∑N−1

x=0 hx,y

F. VIEWPORT PREDICTION SPHERICAL CNN
Viewport Prediction Spherical CNN (VPredSCNN) is an
alternative approach to the VPredHYB, that can precisely
predict a set of viewports. Although an arbitrary number of
viewports can be generated from a single 360◦ video frame,
user interest can be limited to only fewer viewports with their
centres located close to one another. In such cases, the use
of VPredHYB becomes a disadvantage as viewports selected
would at least have a predefined distance between them
which may hinder in enclosing the user interested regions.
Moreover, the dual process of VPredBOFE and VPredGF in
VPredHYB consumes a large amount of computational time
in evaluating each viewport separately. In order to address
these issues, as opposed to selecting a viewport subset VP

from the viewport set VT, in VPredSCNN the viewport set
VP is directly predicted using trained deep learning models.
In this regard, a deep learning architecture composed of
Spherical CNN [17] and Salient-Resnet [18] components is
employed.
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FIGURE 6. Spherical CNN based proposed VPredSCNN network diagram.

1) SPHERICAL CNN
Spherical CNN [17] is a special type of convolutional
neural network that defines rotation-equivariant spherical
cross-correlation for spherical signals. As opposed to the
planer CNN which applies cross-correlation on a 2D image,
Spherical CNN is developed to support the signal on the
sphere S2. Here, S2 can be defined as a set of points
in 3D space R3 and can be parameterized by spherical
coordinates α ∈ [−π, π] and β ∈ [−π/2, π/2]. Moreover,
a set of rotations called the SO(3) is parameterized using
α ∈ [−π, π], β ∈ [−π/2, π/2] and γ ∈ [0, 2π ] where γ
performs rotation around the axis for a particular (α, β). In
order to represent S2 and SO(3), Spherical CNN defines two
types of cross-correlation called the S2Conv and SO3Conv
respectively. Both S2Conv and SO3Conv output feature maps
on SO(3) space. However, S2Conv receives its input as
spherical signals with k channels as opposed to SO3Conv
which takes in featuremapswith k rotations from SO(3) space
itself.

2) SALIENT-RESNET
Salient-Resnet [18] used in the proposed VPredSCNN is a
CNN based architecture with Resnet [46] as its backbone
which uses skip connection to address vanishing gradient
problems. In the context of Salient-Resnet, a Salient block
featuring Global pooling, batch normalization and relu unit
has been used as the residual block of the Resnet.

3) PROPOSED VPredSCNN
The key idea of VPredSCNN is to extract spherical and salient
features from the luma component of 360◦ video. In doing
so, the proposed VPredSCNN is made up of two branch
deep learning pipelines consisting of Spherical CNN based
cross-correlation blocks, Salient-Resnet and Fully Connected
Layers (FCN) as shown in FIGURE 6(a). Firstly, in the first

branch, a single layer of S2Conv and three layers of SO3Conv
have been used with equatorial grids as visual information
is densely concentrated along the equator. In this regard,
for S2Conv α is set from −π to π at 1024 intervals while
β = 0. In the case of SO3Conv α is set from −π to π at
32 intervals, while β = 0 and γ takes values −π/8 and
π/8. Moreover, the input to the network is a single channel
luma component of an ERP frame. In each layer, features
are increased to 32, 32, 64 and 128 while the bandwidths
are reduced from 512 to 64, 32, 16 and 10. The bandwidth
is initially set at 512 to maintain a higher resolution of
the spatial grid as ERP frames are high resolution images.
Furthermore, after the final layer, the signal is integrated over
SO3 to obtain a tensor of 1 × 128 which is concatenated
with the outputs from the Salient-Resnet. Here, Salient-
Resnet is defined as a 34 layer network in order to reduce
the computational time. Furthermore, this Salient Resnet
block takes in the luma component of an ERP frame, learns
the salient features and outputs 128 features. The features
resulting from the Spherical CNN and Salient-Resnet are
concatenated and passed through two layers of FCN before
delivering the VT with 20 viewports.

The prediction of the 20 viewports can be treated as a
regression problem. Both the networks are trained using a
loss function to learn from the subjective data that offers
HeadMovement (HM) information in terms of φo and θo. The
loss function L is defined as a combination of greater circle
distance dg and Euclidean distance de as sown in Eq. (10).

L = λg
ns∑
s=1

min
∀v

dg
(
Vs,Vpred,v

)
+ λe

ns∑
s=1

min
∀v

de
(
Vs,Vpred,v

)
(10)

where s, ns, Vs and Vpred,v are the subject, number of
subjects, ground truth viewport coordinate obtained from
subject s and predicted viewport coordinate of viewport
v(∈ VT) respectively. Furthermore, during the training of the
network, a validation set is used to tune the hyper-parameters
of the model. In this regard, training followed gradient
descent algorithm with Adam optimizer with following
hyperparameters: initial learning rate 1 × 10−3, weight
decay 1 × 10−5, coefficient of greater circle distance
λg = 100, coefficient of Euclidean distance λe = 1, batch
size 1 and epochs 30. Batch size and epochs were limited
by the computational complexity of the training process and
availability of the resources.

Furthermore, the predicted viewports are clustered using
k-means clustering to obtain a viewport set VP. Here k is
the same as the required number viewports NP. Furthermore,
centre coordinates of each cluster are obtained as pairs of
(φo, θo) which are then used for QER generation on the ERP.

G. VIEWPORT FUSION
The viewports predicted using VPredHYB and VPredSCNN
need to be mapped onto an ERP frame for encoding. The
mapped viewports can then be fused to generate a pooled
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region of QERs that represent generalized ROIs of users.
The generalized ROI represent the user interest on the ERP
and are used to emphasize user interested regions during the
encoding.

QER is a rectilinear region on the ERP with the centre
known as the Quality Emphasis Centre (QEC) that represents
an area corresponding to a viewport. In order to identify a
QER on the ERP frame, the centre coordinates of the viewport
(Wvp/2,Hvp/2) and the four vertices (0, 0), (Wvp, 0), (0,Hvp)
and (Wvp,Hvp) of the viewport are projected onto the ERP
frame using the mapping relationship provided in [44].
Furthermore, the identified QERs cannot be directly used to
construct the mask as it would cause undesirable edges in
the ERP frame, disrupting the prediction schemes in VVC.
Therefore, a Gaussian operation is performed to fuse all of
the QERs as it does not cause a sudden decrease in pixel
intensities along the spatial direction. By fusing all of the
QERs, an ROI aware weightmap wx,y can be generated using
Eq. (11).

wx,y = max
∀q

(
exp

{
−
dx2q,x,y + dy

2
q,x,y

2σ 2
q

})
(11)

where dxq,x,y, dyq,x,y and σ 2
q are the shortest distance between

the centre of QER q, QECq and the pixel coordinates (x, y)
in ERP, and variance respectively. Unlike the Gaussian filter
operation where a filter is convolved over the entire viewport
image, here entire ERP image is considered as a single unit
where performing the Gaussian operation such that σ 2

q is
computed as shown in Eq. (12).

σ 2
q =

1
WH

H−1∑
y=0

W−1∑
x=0

(
dx2q,x,y + dy

2
q,x,y

)
(12)

Furthermore, when computing dxq,x,y, dyq,x,y and σ 2
q , the

continuity of a 360◦ image along the vertical edges of ERP
frame is also considered. For example, consider a QECq
positioned near the left vertical edge of an ERP frame;
then the shortest distance between that and a pixel located
near the right vertical edge, would be measured through the
vertical edges considering the fact that an ERP represents a
spherical image and it is continuous along the normal to the
longitude. Furthermore, in fusing the QERs, a max operation
is performed in order to give priority to the nearest QER in
enclosing all possible pixels in the ROI. An example of fusion
of three QERs, corresponding ROI aware weightmap and a
mesh diagram of the weightmap are shown in FIGURE 7(a).,
FIGURE 7(b). and FIGURE 7(c). respectively.

Since VVC encoding includes spatial prediction, the error
can be propagated from the quality degraded pixels to
the neighbouring pixels including those enclosed in ROI.
Therefore, a quality factor ρ is introduced to the weightmap
in order to compensate for the quality degradation that may
occur in the neighbouring pixels to the ROI during the
encoding processes. Themodifiedweightmap ŵx,y, hence can

FIGURE 7. Fusion of QERs and generation of ROI aware weightmap.

FIGURE 8. Mesh plot of the weightmap with quality factor ρ.

be defined as Eq. (13).

ŵx,y = max
∀q

(
min

(
ρ exp

{
−
dx2q,x,y + dy

2
q,x,y

2σ 2
q

}
, 1

))
(13)

Themin operation used here duplicates a clipping mechanism
that restricts the weights to one. Furthermore, the visualiza-
tion of the weightmap after introducing the quality factor is
shown in FIGURE 8.

H. LAGRANGE OPTIMIZATION AND ADAPTIVE
QUANTIZATION
The proposed ERP coding framework further incorporates a
Lagrange Optimization and Adaptive Quantization (LOAQ)
techniques to enhance the RDO process in VVC. Denote D
and R are the distortion and the bitrate required for a given
coding process, then RDO in VVC is performed as,

minimize (J = D+ λR) (14)

where J is the cost of the coding process and λ is the
Lagrange multiplier. The optimization problem can be solved
for different Coding Units (CU) selection in VVC. In this
context, the proposed weightmap is introduced to the cost
function in order to account for the perceptual characteristics.
In this regard, the cost function for a given CU selection can
be modified as,

minimize (Jcu = wcuDcu + λbaseRcu) (15)
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where, Dcu,Rcu, λbase and wcu are the distortion, bitrate,
original Lagrange parameter and the proposed weights
at CU level respectively. This can also be represented
by Eq (16) [29].

minimize (Jcu = Dcu + λcuRcu) (16)

where λcu is the new Lagrange parameter of the CU which is
given by λcu =

λbase
wcu

Furthermore, the quantizer design in VTM is based on
scalar quantization [10]. Here, quantization step Q is defined
as,

Q2
= 2(QP−12)/3 (17)

Furthermore, since Q2 is proportional to λbase [47], λbase and
λcu can also be written in terms of original QPQPbase and the
adaptive QP QPcu as given in Eq. (18) and Eq. (19).

λbase = c · 2(QPbase−12)/3 (18)

λcu = c · 2(QPcu−12)/3 (19)

where c is a constant. Using equations Eq. (16), Eq. (18) and
Eq. (19), the QPcu can be derived as,

QPcu = QPbase − 3log2wcu (20)

Furthermore, λcu andQPcu can be deployed at CU level for
the optimization of coding process. Although the weight wcu
adopts the weightmap derived for masking, it cannot be used
in its normative form as greater pixel intensity variation may
be seen inside a CU. wcu is therefore defined as,

wcu =
1

WcuHcu

∑
cu

w̃x,y (21)

where,

w̃x,y =

{
1, if ∀q (x, y) ∈ QERq
ψŵx,y, otherwise

and Wcu, Hcu, ψ are the width, height of CU and a constant
CU weighting factor respectively. Furthermore, an offset
value of 10 pixels to QERs have been used in this process
in order to compensate for any projection error that occurred
during the generation of the QERs.
Signalling:Signalling is important for the reconstruction

of the encoded video sequence at the decoder. Because
the proposed framework primarily involves preprocessing,
there is no requirement to send any information to the
decoder. However, the weights contributing to the adaptive
quantization must be known at the decoder to predict the
correct QP value. Since information including NP,Wvp, Hvp,
Fh and Fv can be present at the decoder, only the viewport
centre (φo, θo) need to be signalled to the decoder for each
frame encoded. In the case of VPredHYB, the index of
the viewport set VT is signalled to the decoder. However,
viewport coordinates predicted using VPredSCNN cannot be
signalled it their normative forms as the decimal point values
can increase the cost of transmission. Therefore, (φo, θo) are
rounded to the nearest integer and QERs are constructed from
the resulting values to be used in the derivations of wcu.

FIGURE 9. SI vs TI plot of 360◦ video sequences in VQA-ODV dataset. Test
sequences are marked with distinctive objects and listed in the legend.

IV. EXPERIMENTS AND RESULTS
360◦ video sequences from the VQA-ODV dataset [48] are
used during the experiments. It has 60 reference sequences
with HM and Eye Movement (EM) data extracted from
more than 200 subjects. Since VPredSCNN requires prior
training, the dataset is split into train and test sets. Initially,
the test set is determined using Spatial Information (SI ) and
Temporal Information (TI ) such that each video sequence
falls in each quadrant of the SI vs TI graph. As shown in
the SI vs TI graph in FIGURE 9. three sequences from
each quadrant, (high SI , low TI ), (low SI , high TI ), (low
SI , low TI ) and (high SI , high TI ) are selected as the
test sequences in order to represent all four quadrants in
the experiments. Subsequently, the remaining 48 sequences
are used for the training of VPredSCNN. Moreover, the
selected test sequences vary in resolution between 4K and 8K
resolutions.

A. TESTING
The proposed framework is developed using the 360 library
version 10.0 [49] and incorporated in VTM 7.0. Both
VPredSCNN and VPredHYB have been developed for VVC
independent of each other and tested accordingly, using
the same test sequences. The test sequences are coded
in 4432 × 2216 resolution as per the Common Testing
Conditions (CTC) recommended by JVET. Furthermore,
the viewports are also constructed as per the following
instruction from CTC: Wvp = 1920, Hvp = 1080,
Fh = 78.1◦ and Fv = 49.1◦. The experiments are
conducted under the All-Intra (AI) configuration since the
ROI is determined only from the spatial distance between
the QEC and the pixel coordinates. Moreover, based upon
the several proposed viewport prediction techniques and
Lagrange optimization techniques, eight different variants
from the proposed framework are derived and experimented.
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TABLE 2. Variants of the proposed framework.

The derived variants and corresponding coding parameters
are listed in Table 2.

B. CODING PERFORMANCE
The coding performance is evaluated using Bjontegaard
Bit Rates (BDR-Y) [50] for the luma component, Encoder
Time (ET) and the Decoder Time (DT) with respect to the
VTM 7.0 reference software. Here, in BDR-Y calculations,
Viewport Peak Signal-To-Noise Ratio (VPSNR) [35], [36],
[51] is used to measure the video quality as opposed to
the conventional spherical objective quality metrics which
do not have the ability to assess objective video quality
of the 360◦ videos at viewport level. VPSNR constructs
viewports from the HMdata of the subjects and applies PSNR
calculations between the reference viewport and the tested
viewport, both constructed from the same HM coordinates.
In this research, the HM data presented in the VQA-ODV
dataset have used in the video quality assessment. Formally,
let Ori(s,f ,v)(i,j) and Imp(s,f ,v)(i,j) denote the pixel values of original
and impaired sequences at (i, j) coordinates of viewport v
of frame f , and s represents a subject. Then the Viewport
Mean Square Error (VMSEf ) and VPSNR (VPSNR) are
given by,

VMSEf =

∑
∀s

∑
∀v∈f

∑
∀i,j∈v

(
Ori(s,f ,v)(i,j) − Imp

(s,f ,v)
(i,j)

)2
nsnvWvpHvp

VPSNR = 10 log

 2552N f∑
∀f
VMSEf

 (22)

where nv and N f are the number of viewports sampled
per frame and number of frames respectively. Furthermore,
change in quality between the anchor and the proposed
algorithms (1VPSNR) has also been used in the assessments
of the coding performance. Here, positive value for1VPSNR
indicates quality loss with respect to the anchor while a
negative value for BDR-Y indicates an overall compression
gain.

The coding performances of the proposed variants are
shown in Table 3. and Table 4. Table 3. illustrates the
performance of the proposed methods without the LOAQ
component whereas Table 4. shows results with the inclusion
of the proposed LOAQ. It is evident that all our proposed
variants outperform the anchor implementation of the ref-
erence software. VPredSCNN has outperformed the other
variants achieving an overall bitrate savings of 4.99% (and up
to 15.96% for the CougourTreats sequence) with no adverse
effect in the decoding times. This is further improved to
5.85% by the addition of LOAQ. However, this comes at
a cost of increased computational complexity both at the
encoder and the decoder. Especially, the decoding times
has risen up by a factor of 2.65 to perform the necessary
calculation in the reconstruction of the QPs. Moreover, in the
case of VPredSCNN, the sequences with higher SI produce
higher bitrate savings whereas those with lower SI such as
ConcertLive, AuroraQuaatzLake and BuddhaCave produce
low to no gain. This is due to the fact that the VPredSCNN
model is only trained to extract features from the spatial
domain.

Furthermore, VPredBOFE and VPredGF produce con-
sistent gains across all the sequences and achieve up to
3.97% and 3.84% (for PandaBaseChengdu sequence) gains
respectively. When they are combined to form VPredHYB,
average compression gain increase to 2.10% and up to 9.43%
(for CougourTreats sequence). Moreover, LOAQHYB could
not improve the coding performance both in isolation and
in combination with VPredHYB. This is mainly because
the sparsely predicted coordinates can disrupt the intra
prediction process owing to the biased pixel intensities
of the non-neighbouring CUs. Furthermore, it is observed
that VPredBOFE, VPredGF and VPredHYB suffer heavy
encoding complexity which is in excess of 200% result-
ing from the use of an exhaustive search on all the
viewports in VT.

Table 5. illustrates the performance comparison between
the state-of-the-art [22], [41], [43]1 works and the VPred-
SCNN + LQAOSCNN. It is evident that the proposed
variant outperforms the state-of-the-art methods in terms
of perceptual compression efficiency, however it remains
computationally complex. Aforementioned state-of-the-art
researches, perceptually suffer losses resulting from the
inaccurate prediction of QERs in the ERP.2 Furthermore,
other than Hu et al. [43],3 both Sreedhar et al. [41] and
TSP [22] show inconsistent gains and heavy losses (up to
10.15 dB and 12.52 dB respectively) in viewport quality
due to the application of re-sampling and re-packaging of

1Note that state-of-the-art works by Hu et al. [43] and Sreedhar et al. [41]
are self implemented with VTM 7.0 by the authors due to the unavailability
of the sources.

2Note that the state-of-the-art research works can produce significant
gains with respect to codec PSNR (PSNR measure of the coded ERP) for
VVC.

3The original results in Hu et al. [43] is generated with respect to
HEVC Test Model 16.15. However the authors recreated this work for VTM
7.0 which is nearly 40% higher in compression efficiency.
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TABLE 3. Coding performance of the proposed variants without Lagrange optimization and adaptive quantization.

TABLE 4. Coding performance of the proposed variants with Lagrange optimization and adaptive quantization.

TABLE 5. Coding performance comparison between state-of-the-art and proposed VPredSCNN + LOAQSCNN.

poorly predicted QERs in their methodologies. Moreover, the
35% compression performance achieved for CourgarsTreats

sequences by TSP [22] comes at perceptual quality loss of
5.47dB. Furthermore, the HM data for the test sequences
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FIGURE 10. Visual analysis of viewports generated with respect to Manhattan sequence: Anchor, Hu et al. [43] and VPredSCNN + LOAQSCNN
only exhibit the compression artefacts. Additionally, Sreedhar et al. [41] and TSP [22] also demonstrate seam artefacts as enclosed by
yellow rectangles.

comprise of both fine and coarse distributions of user
observed viewport coordinates. The re-sampling strategies
in Sreedhar et al. [41] and TSP [22] are cable of exploiting
the fine distribution of viewport coordinates as opposed
to the coarse distributions, which explains the variations
in their respective perceptual compression performances
and quality losses. Also, the idea of viewport dependent
coding parameter adaptation at CTU level followed by
Hu et al. [43] is not an efficient strategy for VVC due its
finer QTBT+multi tree type partitioning structure.Moreover,
for a better understanding, a visual comparison of a given
viewport generated from the reference, anchor, state-of-the-
art works and VPredSCNN + LOAQSCNN with respect
to ManHattan sequence is shown in FIGURE 10. In the

figure, it is noticeable that the anchor, Hu et al. [43]
and the proposed VPredSCNN + LQAOSCNN display the
common compression artefacts. As presented in Table 5.,
they do not exhibit greater variations in the viewport quality
assessments. Moreover, the seam artefacts that appear for
Sreedhar et al. [41] and TSP [22] are also illustrated in the
figure.

FIGURE 11. illustrates Rate-Distortion curves for a
selected sequence. It is observed that the proposed variants
show improved performance compared with the anchor.
An important observation from these plots are the behaviour
of Sreedhar et al. [41] and TSP [22]. Both approaches tend
to saturate in quality when bitrates are increased. They attain
a crossover with the anchor at low bitrates, suggesting the
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FIGURE 11. Comparison of Rate-Distortion Curves of viewport dependent 360◦ video coding techniques.

TABLE 6. Variation of bitrate saving for VPredSCNN.

the re-sampling and the re-packaging strategies can bring
benefits for low bitrate sequences. However, the proposed
variants can produce gains at high bitrate ranges which can
be a real benefit for 360◦ videos which need to be encoded at
higher resolutions.

Furthermore, the variation of bitrate savings of VPred-
SCNN for various values of the quality factor ρ and N p is
presented in Table 6. When considering the BDR-Y values
for the VP with N p

≥ 6, a parabolic pattern with the
minimum value at (N p

= 8, ρ = 3.0) can be observed in
both horizontal and vertical directions. This indicates that an
increase in number of viewports and ρ can result in increased
cost of bitrates. Conversely, a smaller number of viewports

TABLE 7. Variation of bitrate saving for VPredHYB.

and smaller ρ values can also have a negative impact on the
objective viewport quality, resulting in minor coding gains.
Furthermore, Table 6. also report significant coding gains
with the use of fewer viewports (i.e 6 < N p). However,
these results are inconsistent across all the sequences as
similar to the results obtained for Sreedhar et al. [41] and
TSP [22]. Here, for certain sequences, the fusion of the
QERs has accounted all the user observed viewports which
resulted in massive gains. However, the smaller the number
of viewports, the wider the predicted viewport centres would
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FIGURE 12. IoU and IoG scores of VPredHYB and VPredSCNN.

FIGURE 13. Comparison between 20 predicted coordinates from
VPredHYB and VPredSCNN and the subject data for AuroraQuartzLake
and CougourTreats sequences.

be. This would hinder the intra prediction as some regions
in between two QERs can be adversely affected from the
proposed masking process.

Table 7(a). and Table 7(b). present the variation of bitrate
saving for VPredHYB for various values of the number of
viewports N p and the quality factor ξ at ρ = 3.5 respectively.
Unlike in the case of VPredSCNN, the increase of viewports

does not result in an increased gain. Since the initial
coordinates are predefined at constant intervals, it is likely
that additional redundant information is being coded when
using a greater number of viewports. Conversely, visually
degraded results are obtained when a lower number of
viewports are deployed. Furthermore, the impact of ξ can be
great when both VPredGF and VPredBOFE are combined,
but the gain is likely to be saturated between ξ = 0.4 and
ξ = 0.75.

C. VIEWPORT PREDICTION ACCURACY
The accuracy of viewport prediction techniques can be
measured usingmetrics such as Intersection over Union (IoU)
and Intersection over Ground truth (IoG). IoU measures the
ratio between the intersection area and union area. Here, the
intersection and the union areas are measured with respect to
the QERs generated from the predicted viewport coordinates
and the ground truth data. In this context, for a given set of
predicted viewports VP, IoU is measured by constructing N p

QERs from the predicted coordinates and ns QERs from the
ground truth data. Hence, the number of elements in VP is
increased to obtain a better intersection. In doing so, IoU
score of a given sequence is affected by the additional number
of viewports used as the distribution of the viewport centres
may vary from one sequence to another. Hence, for fixed
number of viewports, IoU would not be able to accurately
estimate the solitary measure of intersection across different
sequences which accounts for the information loss in video
coding approaches. As opposed to IoU, IoG measures the
ratio between the intersection area and the QERs generated
from the ground truth data, negating the effect of the
union area. This provides a better estimate of whether user
observed viewports are actually covered by the predicted
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FIGURE 14. Distribution of predicted coordinates of proposed variants for
CougourTreats sequence.

viewports when the number of viewport is fixed for all
sequences.

The scores of the viewport prediction accuracy measures,
IoU and IoG for VPredHYb and VPredSCNN are illustrated
in FIGURE 12. In this figure, the variations of IoU and
IoG with respect to the number of viewports, N p are also
shown in FIGURE 12(a)., FIGURE 12(b)., FIGURE 12(d).
and FIGURE 12(e)., for both VPredSCNN and VPredHYB
respectively. Furthermore, FIGURE 12(c). and FIGURE
12(f). show the variation of these measures for various
values of ξ in VPredHYB for N p

= 6. Since prediction
techniques produce fewer number of viewports than the
actual subjects, it is apparent that IoU scores in all scenarios
exhibit lower values. However, in the context of video
coding, it is sufficient if the predicted QERs can account
for the subject’s viewports and avoid disruption to the intra
prediction of the video codec. In support of this norm,
the IoG scores exhibit higher values for both VPredSCNN
and VPredHYB as the number of viewports increases. This
is because an increased number of viewports can improve
the overlapping of generated QERs with the subject’s HM
coordinates. Moreover, for VPredHYB, there is no greater
difference in the IoU and IoG scores obtained for the several
variations in ξ .
The distribution between the subject’s HM coordinates

(Subject data), the 20 viewports predicted using VPredSCNN
and the predefined 20 viewports used in VPredHYB are
illustrated in FIGURE 13 for 1st , 9th and 17th frames of
CougourTreats and AuroraQuartzLake sequences. The two
sequences are chosen as one produces very high coding

gains for the proposed variants, while the other does not.
It is evident that distribution of the viewport coordinates
are much closer to ground-truth HM data for CougourTreats
sequence compared to AuroraQuartzLake sequence. Hence,
it can be concluded that the subset of viewports selected
from the 20 viewports in both VPredSCNN and VPredHYB
have demonstrated better performance for CougourTreats
sequence compared to AuroraQuartzLake sequence. Further-
more, the distribution of the predicted viewport coordinates
from the proposed variants without LOAQ are shown in
FIGURE 14. In this figure, it can be observed that the
coordinates predicted using VPredSCNN (N p

= 8) are
found to be closer to the subject data than the other proposed
variants which substantiate the bitrate improvements with
VPredSCNN in comparison with the other variants.

V. CONCLUSION
Existing perceptual video coding algorithms cannot be
applied to 360◦ videos which are not represented in their
visually observed format when encoding. In response, a novel
360◦ video coding framework has been developed to leverage
the user observed viewport information in the VVC coding
pipeline in order to reduce the bitrates at the same perceptual
quality. To this end, the proposed framework first applies
a deep learning architecture incorporating Spherical CNN
components and a fusion between bi-directional optical flow
estimation and a Gaussian filtering technique in order to
develop two viewport prediction techniques namely, VPred-
SCNN and VPredHYB respectively. Furthermore, based on
the predicted viewports, the proposed framework also gen-
erates QERs, to identify the ROI on the ERP. Subsequently,
by fusing QERs, an ROI aware weightmap is developed
and applied as a mask to the source video. Furthermore,
the proposed framework also employs the weightmap to
support the Lagrange optimization and adaptive quantization
procedures in VVC.

In the context of 360 Lib 10.0 integrated VTM 7.0, the
experiments conducted for different variants of the pro-
posed framework outperform the state-of-the-art techniques
and report significant coding gains. VpreddSCNN when
combined with LOAQ yield the highest compression gains
with average bitrate savings of 5.85% (and up to 17.15%)
with an increase of 249% and 265% encoder and decoder
complexities respectively. Additionally, it has been reported
that the removal of LOAQ from the coding framework can
nullify the decoder complexity and reduce the encoding
time with a slight drop in coding gain. Moreover, temporal
domain support to VPredSCNN, integration of the proposed
VPredSCNN and VPredHyb techniques, several other view-
port prediction techniques and inter coding compatibility for
the proposed 360◦ video framework can be explored in the
future.
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