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ABSTRACT Coordination of multi-agent systems is an active and ongoing research topic. In particular,
there exist several coordination strategies for multi-agent systems, in which the interaction between the
agents is via static couplings, i.e. couplings that are constructed using static feedback. In contrast, this
paper presents a novel coordination strategy, which introduces the use of dynamic couplings to coordinate
a group of unicycle robots following a desired trajectory. The proposed control-scheme is composed by
a nonlinear tracking controller and a first-order dynamic coupling. One advantage of this scheme is that,
with respect to an energy index, the energy required by the dynamic coupling to perform a cooperative
task is lower than the energy required by a traditional scheme based on static coupling. The stability of
the closed-loop system is formally demonstrated by using the Lyapunov theory and the obtained theoretical
results are illustrated with numerical simulations and validated through experiments. Also, a comparison of
the proposed strategy against a coordination scheme reported in the literature, which is based on traditional
static coupling, is provided. The results show that the proposed scheme has some practical implications,
including reduction of the steady state error and reduced overshoot during the transient.

INDEX TERMS Coordination, dynamic coupling, energy index, synchronization, unicycle robot.

I. INTRODUCTION
There are many examples in nature, in which the living beings
work together: a group of ants carrying food to their nest,
groups of animals hunting, flocks in flight or a school of fish
swimming to evade the attack of a predator [1]. In the above
examples, coordinated motion is the key.

Coordination has the following advantages: great effi-
ciency, scalability, robustness and energy reduction [2], [3].
Therefore, engineers and researchers explore new ways to
reproduce the advantages of coordination in multi-agent
systems (MAS).

Coordination of MAS is an active and ongoing research
topic. Multi-agent systems is composed by: intelligent
agents and a distributed computation [4]. The agents can
communicate with each other and with the environment,
whereas the distributed computation aims to solve comput-
ing problems [4]. Also, in the distributed computation, the
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fundamental goal is to reach a parallelism and synchroniza-
tion of the involved systems by using data linked for the
solving problem [4]. Thus, several works have been reported,
in which coordination ofMAS is studied for different systems
such as: manipulator robots [5], [6], aerial robots [7], mobile
robots [8], [9], [10], among others.

Furthermore, there exist different techniques to coor-
dinate mobile robots, v.g. distributed optimization [11],
distributed estimation and control [2], [12], [13], [14], dis-
tributed formation [15], [16], [17], [18], and the use of neural
networks [19], [20].

The swarm control is other technique used to coordinate
mobile robots. This technique is proposed to use the advan-
tages of coordination for large groups of relatively simple
robots [21]. Moreover, this method uses simple rules to make
decisions and plans for actual environment or process [22].

In this context, there exist works where swarm control is
designed by using sliding-mode control to coordinate omni-
directional mobile robots [22]. In [23], a cooperative control
protocol is used to coordinate subgroups of mobile robots
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surrounding the assigned targets. The case of robust coor-
dination of robot swarms under the presence of unknown
disturbances has also been addressed, see e.g. [24], where a
robust adaptive controller is proposed, in which the coupling
gains are dynamically adjusted.

Consensus is other technique used to solve coordina-
tion problems. This is a method in which the agents reach
a common agreement [25]. There exist a vast literature
on consensus of mobile robotics. For example, in [26],
a cooperative adaptive consensus protocol is designed by
using backstepping and sliding modes, which allows to
cope with the unmoddelled dynamics in the robots. In the
case of leader follower schemes, there exist some works
where the formation control is achieved by using distributed
estimators [27] or input saturation [28]. The case of clus-
ters of mobile robots moving in circular trajectories has
also been studied [29]. In [30] and [31], a stabilization in
predefined time is considered to achieve the consensus of
robots.

Furthermore, the consensus problem of mobile robots is
also studied taking into account switching topologies [32],
[33], [34], [35], communication load [36], and denial-of-
services (DoS) attacks [37]. For these cases, recent results
show that the effects of the latency can be reduced by syn-
chronizing the communication of the systems [38], [39].

According to [25], it is common to find overlapped
approaches to improve results. In [9], [10], and [8], syn-
chronization is developed using a virtual structure scheme
where the controller is designed with the Lyapunov redesign
method.

The related works to consensus, synchronization, and
swarm control have a common characteristic: the systems are
coupled. The coupling is defined like a channel by which the
agents/systems can communicate to each other [3].Moreover,
this channel can be either static or dynamic [40].

Currently, the schemes based on consensus, synchroniza-
tion, and swarm control use the static couplings to communi-
cate the mobile robots, see [8], [9], [10], [22], [23], [24], [26],
[28], [29], [30], [31], [32], [33], [34], [35], [36], and [37].
The static coupling only weights the differences between the
systems and the result is directly applied to the control law,
i.e. there is a direct interaction between the systems [41].

On the other hand, the dynamic coupling conveys an
indirect interaction between the involved systems, since the
coupling signal is dynamically generated [40], [42], [43],
[44], [45], [46]. According to [40], the dynamic coupling has
some advantages. For example, although the static coupling
is easy to implement, in certain cases, it may fail to induce
synchronization in some systems or synchronization can be
induced in a network only for a narrow range of coupling
strength values. Instead, a dynamic coupling can solve these
limitations.

In this work, a nonlinear tracking controller with dynamic
coupling for inducing cooperative behaviour in a network of
nonholonomic mobile robots, is presented. The main contri-
butions of this work are described as follows:

• A novel coordination strategy for mobile robots is pro-
posed, in which the interaction between the agents takes
place via a first order dynamic coupling. This dynamic
interaction makes the proposed scheme different form
the well-known and widely applied scheme based on
static feedback, see [8], [9], [10], [22], [23], [24], [26],
[28], [29], [30], [31], [32], [33], [34], [35], [36], and
[37].

• A global stability analysis for the closed-loop system by
using the Lyapunov theory is conducted. In addition, it is
analytically demonstrated that the close-loop is stable
for any strongly connected graph and N differential-
mobile robots.

• It is provided numerical and experimental evidence,
that shows some practical advantages that the proposed
scheme has over other one reported in the literature,
which is based on static coupling. These advantages
include: smaller steady state error, reduced overshoot
during the transient, and with respect to an energy index,
the energy required by the dynamic coupling to perform
a cooperative task is lower than the energy required by a
traditional coordination scheme with static coupling.

The outline of this work is as follows: Section 2 shows the
preliminaries. The proposed controller and the corresponding
stability analysis are presented in Section 3. Section 4 shows
the performance of the proposed controller. Section 5 exposes
the experimental results and after that, Section 6 provides a
comparison of the proposed dynamic coordination scheme to
a scheme based on static couplings. Finally, some conclusions
are given in Section 7.

II. PRELIMINARIES
Consider a network of N unicycle mobile robots within a
formation via a virtual-structure scheme, see Fig. 1. The
kinematic model for each robot is given by

q̇i =

cos θi 0sin θi 0
0 1

[vi
ωi

]
, i = 1, . . . ,N , (1)

where qi(t) = [pi(t), θi(t)]T is the robot pose respect to the
global reference frame (GRF), pi = [xi(t), yi(t)]T is the
position vector, and θi(t) is the orientation. The control inputs
vi and ωi are the linear and angular velocities of the robot,
respectively. Moreover, each unicycle robot has the following
well-known nonholonomic constraint

ẏi cos θi − ẋi sin θi = 0, (2)

where ẋi and ẏi are the linear velocities on the x and y axis,
respectively. Furthermore, the orientation can be obtained
from (2), which yields

θi = arctan
ẏi
ẋi
. (3)

The formation in the virtual-structure scheme has a virtual-
center (VC), which follows a desired pose with respect to the
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FIGURE 1. Virtual structure scheme. The robots are represented by the
red circles and they are located in positions respect to the virtual center,
which is following a desired pose (orange dashed line).

GRF, described by qvc = [pTvc, θvc]
T where pvc = [xvc, yvc]T

is the position of the VC and θvc is its orientation, see Fig. 1.
Moreover, each robot has a position p̂i = [x̂i, ŷi]T

with respect to the VC. The reference pose qri (t) =
[pri (t), θri (t)]

T (i = 1, . . . ,N ) for each robot with respect
to the GRF, is given by the homogeneous transformation

qri (t) =
[
pri (t)
θri

]
=

[
pvc(t)+ R(θvc)p̂i
arctan

(
ẏri (t)
ẋri (t)

) ]
, (4)

where pri (t) = [xri , yri ]
T is the reference position for each

robot and R(θvc) ∈ R2×2 is a rotational matrix which is given
by

R(θvc) =
[
cos θvc − sin θvc
sin θvc cos θvc

]
. (5)

The reference orientation θri of each robot, see (4), depends
on the reference velocities on each axis. These velocities can
be obtained by

ṗri = ṗvc + θ̇vcSR(θvc)p̂i, i = 1, . . . ,N , (6)

where S is a 2× 2 skew-symmetric matrix given by

S =
[
0 −1
1 0

]
. (7)

It is considered constant positions p̂i (i = 1, . . . ,N ), for
that reason it is not added the time-derivative of p̂i.
The robots and their references have the same constraints,

compare (3) and (4). Therefore, each reference pose (qri ) has
the same kinematic model for the unicycle robot, i.e.

q̇ri =

cos θri 0sin θri 0
0 1

[vri
ωri

]
, i = 1, . . . ,N . (8)

where vri and ωri are the reference velocities given by

vri = ‖ṗri‖2, ωri = −

〈
ṗri ,Sp̈ri

〉
v2ri

, i = 1, . . . ,N , (9)

with ṗri and S defined in (6) and (7), respectively, and

p̈ri = p̈vc +
(
θ̈vcS− θ̇2vcI

2×2
)
R(θvc)p̂i, i = 1, . . . ,N ,

(10)

with I2×2 as the identity matrix.

A. TRACKING ERRORS
The tracking errors are defined by[

ei
eθi

]
=

[
RT (θi) 02×1

01×2 1

] (
qri − qi

)
, i = 1, . . . ,N , (11)

where ei = [exi , eyi ]
T is the error in position, eθi is the error

in orientation, andR(θi) is the rotational matrix respect to the
GRF for the i-th robot which is given by

R(θi) =
[
cos θi − sin θi
sin θi cos θi

]
, i = 1, . . . ,N . (12)

Then, the errors on the GRF are transformed to the robot
reference frame (RRF), in (11), for easing the computing of
the control law, see [8].

The dynamic of the tracking errors can be obtained by the
time-derivative of (11) where q̇i and q̇ri are given by (1) and
(8), respectively. Therefore,[

ėi
ėθi

]
=

[
ωiSei +Gi
ωri − ωi

]
, i = 1, . . . ,N , (13)

where

Gi =

[
vri cos eθi − vi
vri sin eθi

]
. (14)

B. SYNCHRONIZATION ERRORS
The connections in the network can be defined in terms of the
Laplacian matrix

L =


∑N

i=2 l1i −l12 . . . −l1N
−l21

∑N
i=1,i6=2 l2i . . . −l2N

...
...

. . .
...

−lN1 −lN2 . . .
∑N−1

i=1 lNi

 , (15)

where lij ≥ 0 ∀ i 6= j, (i, j) = 1, . . . ,N .
Furthermore, let S = {1, . . . ,N } be the set of all the robots

in a network and S2 the set for all pairs of robots. Considering
S2, there is a set N = {(i, j)}, for all of the connections,
in which lij > 0 or lji > 0. This set is given by

N = {(i, j) ∈ S2|lij > 0 ∪ lji > 0}. (16)

The synchronization errors are defined pairwise as follows[
εxyij
εθij

]
=

[
ei
eθi

]
−

[
ej
eθj

]
, (i, j) ∈ N , (17)

where εxyij = [εxij , εyij ]
T are the synchronization errors for

the x and y axis, and the εθij are the synchronization errors in
orientation.

Also, note that the synchronization errors (17) satisfy[
εxyji
εθji

]
= −

[
εxyij
εθij

]
, (i, j) ∈ N . (18)

Finally, the dynamic behaviour of (17) is given by[
ε̇xyij
ε̇θij

]
=

[
ωiSei − ωjSej +Gi −Gj
ωri − ωrj − ωi + ωj

]
, (19)

with (i, j) ∈ N .
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FIGURE 2. Proposed control-scheme. It can be seen that each robot has a
tracking controller (gray rectangles) and a dynamic coupling (orange
rectangles). The tracking controller will follow the reference pose (4)
meanwhile the dynamic coupling will synchronize the robots to keep the
formation.

C. PROBLEM STATEMENT
Given a network of unicycle robots defined in (1), the prob-
lem to be addressed in this work is how to achieve tracking
of a desired trajectory while maintaining a desired formation
in the robots.

To solve this problem, it is proposed a coordination
scheme, in which each robot is endowed with a first order
dynamic controller (dynamic coupling) such that the interac-
tions between the robots become indirect. This is schemati-
cally depicted in Fig. 2, where the dynamic interconnections
for inducing synchronization are indicated by the orange
rectangles, whereas the tracking controllers are indicated by
the gray boxes.

Furthermore, besides proving the global stability of the
closed-loop system and providing an experimental valida-
tion, it is desired to determine the potential advantages of
the proposed dynamic coordination scheme by means of a
comparison to a scheme reported in the literature, which uses
classical static feedback.

III. PROPOSED CONTROL
The proposed controller is given by

vi = vri cos eθi + kxexi + Cizxi , (20)

ωi = ωri + kθeθi +
Kky
αi

vrieyi sinc eθi , (21)

for i = 1, . . . ,N , where vri and ωri are the linear and angular
velocities defined in (13), kx > 0, ky > 0 are weighting
gains for the errors on x and y axis, respectively, whereas
kθ > 0 weights the orientation errors. The function sinc(·) is
defined as follows: sinc eθi =

(
sin eθi

)
/eθi , with αi given by

αi =

√
K 2 + e2xi + e

2
yi , (22)

where K is a constant introduced to avoid indefiniteness of
(21) when exi = eyi = 0. Moreover, Ci is defined by

Ci =

{
1, lii 6= 0
0, lii = 0,

(23)

with lii being an element of themain diagonal of the Laplacian
matrix (15).

Finally, the coupling signal zxi in (20) is dynamically gen-
erated by the following first-order system

żxi = −αzxi + µ
∑

(i,j)∈N
σijεxij , i = 1, . . . ,N , (24)

where α > 0 is a design parameter, µ > 0 is the coupling
strength, εxij (i, j) ∈ N are the synchronization errors on the
x-axis in (17), and

σij =

{
lij, i < j
−lji, i > j,

∀ (i, j) ∈ N (25)

with lij and lji being elements of the Laplacian matrix (15).
Remark 1: From (24) it follows that, when the synchro-

nization errors εxij vanish then all the dynamic coupling
signals zxi will decay asymptotically.
By replacing (20)-(21) in (13) and (19), and considering

(24) also as an ‘error’ due to Remark 1, we obtain the
following extended error dynamics, which are composed by
tracking errors, synchronization errors and the states of the
dynamic interconnections

ėx = �rey + kθeyθ + 0sinc θ0αey2 − kxex − Cζ x , (26)

ėy = γ sin θ −�rex − kθexθ − 0sinc θ0αexy, (27)

ėθ = −kθeθ − 0sinc θ0αey, (28)

ζ̇ x = −αζ x + µL̂εx , (29)

ε̇x = D
(
�rey + kθeyθ + 0sinc θ0αey2

)
− kxεx

−DCxζ x , (30)

ε̇y = D
(
γ sin θ −�rex − kθexθ − 0sinc θ0αexy

)
, (31)

ε̇θ = −kθεθ − D0sinc θ0αey, (32)

where: ex = [ex1 , . . . , exN ]
T , ey = [ey1 , . . . , eyN ]

T , eθ =
[eθ1 , . . . , eθN ]

T , ζ x = [zx1 , . . . , zxN ]
T , ey2 = [e2y1 , . . . , e

2
yN ]

T ,
exy = [ex1ey1 , . . . , exN eyN ]

T , exθ = [ex1eθ1 , . . . ,
exN eθN ]

T , eyθ = [ey1eθ1 , . . . , eyN eθN ]
T , C = diag(C1, . . . ,

CN ), �r = diag(ωr1 , . . . , ωrN ) whit ωri defined in

(9), γ sin θ = [vr1 sin eθ1 , . . . , vrN sin eθN ]
T , 0sinc θ =

diag
(
vr1 sinc eθ1 , . . . , v

r
N sinc eθN

)
, 0α = diag

(
Kky/α1, . . . ,

Kky/αN
)
.

Furthermore, the synchronization errors εx , εy, and εθ , see
(30)-(32), are given by

εx = Dex , εy = Dey, εθ = Deθ , (33)

where matrix D ∈ Rcard(N )×N is a transformation matrix
from tracking errors to synchronization errors according
to (17).

On the other hand, L̂ ∈ RN×card(N ) is formed by the
weights of σij, see (25), and in this work, it is referred to
as extended Laplacian matrix, and satisfies the following
relationship:

L = L̂D. (34)
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A. STABILITY ANALYSIS
The stability properties of the extended error dynamics
(26)-(32) are determined using standard Lyapunov analysis
and are summarized in the following result.
Theorem 1: Consider a network of N unicycle robots as

given in (1) with control inputs (20)-(21) and dynamic inter-
connections (24). Then, if the controller gains kx , ky, kθ , K
and Ci and the coupling parameters α,µ are positive, then
the origin of the extended error dynamics (26)-(32) is globally
asymptotically stable.

Proof: Consider the Lyapunov function

V (ϑ) = Vsys(ϑ)+ Vcou(ϑ)+ Vsyn(ϑ), (35)

where ϑ = [eTx , e
T
y , e

T
θ , ζ

T
x , ε

T
x , ε

T
y , ε

T
θ ]
T and

Vsys(ϑ) =
1
2

(
eTx ex + eTy ey + eTθ eθ

)
, (36)

Vcou(ϑ) =
1
2
ζ Tx ζ x , (37)

Vsyn(ϑ) =
1
2

(
εTx εx + ε

T
y εy + ε

T
θ εθ

)
. (38)

The time derivative of (35) along the solutions of the extended
error dynamics (26)-(32) is given by

V̇ (ϑ) = V̇sys(ϑ)+ V̇cou(ϑ)+ V̇syn(ϑ), (39)

with

V̇sys(ϑ) = −kxeTx ex − eTx Cζ x − kθe
T
θ eθ

− γ Tsin θBey, (40)

V̇cou(ϑ) = −αζ Tx ζ x + µζ
T
x L̂εx , (41)

V̇syn(ϑ) = −kxεTx εx − ε
T
x DCζ x − kθε

T
θ εθ

+ εTy Dγ sin θ +W , (42)

where

W = εTx D
(
�rey + kθeyθ + 0sinc θ0αey2

)
− εTy D

(
�rex + kθexθ + 0sinc θ0αexy

)
− εTθ D0sinc θ0αey, (43)

B = diag
(
Kky1/α1 − 1, . . . ,KkyN /αN − 1

)
.

Also, it is considered that 0sinc θeθ = γ sin θ and e
T
y γ sin θ =

γ Tsin θey to simplify (40). Finally, a compact form of (39) is
obtained after replacing (40)-(42), this is

V̇ (ϑ) = −ξTx Hξ x − kθ ξ
T
θ ξ θ −

(
eTy B− ε

T
y D
)
γ sin θ

−εTMexyθ , (44)

where ξ x = [eTx , ε
T
x , ζ

T
x ]
T , ξ θ = [eTθ , ε

T
θ ]
T , ε =

[εTx , ε
T
y , ε

T
θ ]
T , exyθ = [eTx , e

T
xy, e

T
xθ , e

T
y , e

T
y2
, eTyθ ]

T and

H =

kxIN×N 0N×ϑ C
0ϑ×N kxIϑ×ϑ DC
0N×N −µL̂ αIN×N

 , (45)

M =

 0ϑ×3N −M12
M12 0ϑ×3N

0card(ϑ×3N M32

 , (46)

with ϑ = card(N ), 0 ∈ Rn×m is a null matrix, and M12 =

[D�r D0sinc θ0α kθD] and M32 = [D0sinc θ0α 0ϑ×2N ].
Moreover, H is a positive definite matrix for µ > 0.
In (44) it is considered the following facts:

• The term
(
eTy B− ε

T
y D
)
γ sin θ is bounded because the

elements in B have an operating range which depends
on the controller gain ky, i.e. bii ∈ (−1, ky − 1], i =
1, . . . ,N , and D has only zeros and ones. On the other
hand, the elements in γ sin θ are bounded by γ sin θi ∈

[−vri , vri ], i = 1, . . . ,N .
• Matrix M is also bounded. The terms D�r and kθD in
M12 are bounded by the reference angular-velocities and
gain kθ , respectively. Also, the terms in 0sinc θ and 0α
are bounded because sinc eθi ∈ (0, 1] and Kky/αi ∈
(0, ky], i = 1, . . . ,N .

• Moreover, these terms tend to zero when the trajectories
are reached. Therefore, (44) is semidefinite negative
along ξx and ξθ trajectories as

V̇ ≤ −ξTx Hξ x − kθ ξ
T
θ ξ θ . (47)

Now, the Lemma of Barbalat is used to prove that
the close-loop system (26)-(32) converges globally asymp-
totically to zero. The following bounds are found after
integrating (47)

0 ≥
∫
∞

0
dV (ϑ(t)) = −

∫
∞

0

[
ξTx Hξ x + kθ ξ

T
θ ξ θ

]
dt, (48)

where V (ϑ(t)) is lower bounded by the initial conditions
(ϑ(0) = [eTx (0), eTy (0), eTθ (0), ζ Tx (0), εTx (0), εTy (0),
εTθ (0)]

T ), i.e. it exists and it is finite. Then,

lim
t→∞

[
ξTx Hξ x + kθ ξ

T
θ ξ θ

]
= 0, (49)

which implies

lim
t→∞

[
‖ξ x‖1 + ‖ξ θ‖1

]
= 0. (50)

The above equation implies that

lim
t→∞

(ex , eθ , εx , εθ , ζ x) = (0, 0, 0, 0, 0). (51)

The next step is to show that the remaining errors also
vanish asymptotically. For this, it is enough to show that ey =
0. To show this, let replace (51) into the set of equations (26),
which yields

ėx = �rey + 0sinc θ0αey2 . (52)

Furthermore, note that (51) also implies that ėx = 0. There-
fore, the only solution of (52) satisfying this is

ey = 0. (53)

Finally, since εy = Dey, see (33), it follows that

εy = 0. (54)

Using this and (51), it is clear to see that the only asymp-
totic solution of system (26)-(32) is

(ex , ey, eθ , ζ x , εx , εy, εθ ) = (0, 0, 0, 0, 0, 0, 0). (55)

�

116788 VOLUME 10, 2022



I. Ruiz-Ramos et al.: Coordination of a Swarm of Unicycle Robots via First-Order Dynamic Couplings

TABLE 1. Values of the controller gains.

FIGURE 3. Energy index of system (1) with controls (20)-(24), as a
function of µ and α.

IV. PERFORMANCE OF THE PROPOSED SCHEME IN
TERMS OF AN ENERGY-LIKE INDEX
In this section, the performance of the proposed controller
(20)-(24) is investigated by means of numerical simulations,
as a function of the following energy-like index E .I . [47]

E .I . =
1
2

∫ T

0

N∑
i=1

(v2i + R
2ω2

i )dt (56)

where R is the radius of the transmission axis, and vi, ωi (i =
1, . . . ,N ) are the linear and angular velocities, respectively.
The study is conducted for an all-to-all network topology,

and is divided in two cases:

a) impact of dynamic coupling parameters
b) performance as a function of the number of robots in

the network.

In all the cases the VC trajectory is a parameterized circle, i.e.

pvc(t) = rvc

[
cos(θvc(t))
sin(θvc(t))

]
, θvc(t) = ωvct, (57)

where rvc = 1.4 m is the distance between the origin of GRF
and the VC, and ωvc = 2π/T̂ with T̂ = 100 s, is the period
of the trajectory.

The position of each robot with respect to the VC is
described by

p̂i = r̂i

[
cos θ̂i
− sin θ̂i

]
, i = 1, . . . ,N , (58)

where r̂i = 0.5 m is the distance between the robot and the
VC, and θ̂i = [2(i− 1)π ] /N (i = 1, . . . ,N ).

FIGURE 4. Numerical results for system (1) with controls (20)-(24) as a
function of the number of robots N and the parameters α and µ of the
dynamic coupling (24). (a) α v.s. N , and (b) µ v.s. N . When the number of
robots is large and µ is fixed, the energy index can be lowered by
increasing α (top figure). In contrast, for a large number of robots and α
fixed, reducing the parameter µ results in reducing the energy index.

The initial conditions are computed by

qi(0) =

[
pvc(0)+ R(θvc(0))p̃i

arctan
1−ωvcp̂xi
ωvcp̂yi

]
, (59)

where pvc(t), θvc(t) and ωvc(t) are defined in (57) and p̃i is
defined by

p̃i = r̃i

[
cos θ̂i
− sin θ̂i

]
, i = 1, . . . ,N , (60)

with r̃i given by

r̃i =

{
1 m ∀ i ∈ Sodd ,
0.1 m ∀ i ∈ Seven,

(61)

where Sodd = {i ∈ S|i = 1, 3, . . . ,N − 1} is the odd subset
of robots and Seven = {i ∈ S|i = 2, 4, . . . ,N } is the even
subset of robots.

VOLUME 10, 2022 116789



I. Ruiz-Ramos et al.: Coordination of a Swarm of Unicycle Robots via First-Order Dynamic Couplings

FIGURE 5. Experimental setup. The setup is composed by 12 Optitrack
cameras, a central computing, and three unicycle robots from the iRobot
company. For a reference r (t), the control laws û(t) are calculated by the
central computer and are sent, via Bluetooth protocol (u(t)), to the robots
whose output is a pose (y (t)). The sensor (Optitrack system) obtains the
real pose of the robots q̂(t) which is sent to the central computing via
Wi-Fi protocol (q(t)).

The gains of the controller (20)-(24) are summarized in
Table 1. The reference orientation θri , is obtained by integrat-
ing the angular velocityωri in (9). Finally, the whole system is
integrated by using the Runge-Kutta method with T = 100 s
and a time-step 1t = 2 ms.

A. IMPACT OF DYNAMIC COUPLING PARAMETERS
The study presented here considers 4 robots, i.e. N = 4.
Furthermore, the initial conditions are given by (59) and the
parameters α and µ in the dynamic coupling (24) are varied
as follows

0.01 ≤ α ≤ 200, 1α = 1 s−1, (62)

0.01 ≤ µ ≤ 1000, 1µ = 20 s−1. (63)

The results are shown in Fig. 3. It can be seen that there
exist an inverse relationship between the coupling param-
eters: for small α and large µ, the energy index is large,
whereas for large α and small µ, the energy index is low.
Thus, in order to have a minimum energy index in the con-
troller, the gains α and µ in (24) should be chosen within the
navy blue region in Fig. 3.

B. PERFORMANCE AS A FUNCTION OF THE NUMBER OF
ROBOTS IN THE NETWORK
Now, the influence of the number of robots in the energy
index of the controller is investigated. To this end, the number

FIGURE 6. XY-plane for the experimental results. The �, ◦ and × markers
are the reference trajectories for the first, second and third robots,
respectively. Also, the −, −− and −· lines are for the real positions of
first, second and third robots, respectively, the initial conditions are
marked with +.

of robots is varied as follows

2 ≤ N ≤ 100, 1N = 2, (64)

In a first study, all parameters are as before, except for α,
which is varied in the interval 0.01 ≤ α ≤ 200 in intervals
of 1α = 1 s−1 and µ is set to µ = 1000 s−1, whereas in the
second study, α is fixed to α = 60 s−1 and µ is varied in the
interval 0.01 ≤ µ ≤ 1000 in steps of 1µ = 5 s−1. Finally,
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FIGURE 7. Experimental results. (a)-(c) show the tracking errors for the x-axis, y-axis and orientation, respectively, and (d)-(f) show the
corresponding synchronization errors. The tracking errors show the individual behaviour of the robots and the synchronization errors show the
collective behaviour.

similar to the previous case, the initial conditions are given
in (59).

The obtained results are shown in Fig. 4a and Fig. 4b,
respectively, from which two opposite effects can be seen:

a) For lowering the energy index when the number of
robots is large and µ is fixed, it seems necessary to
increase the damping factor α, see Fig. 4a.

b) In contrast, when the number of robots is large and
α is fixed, lowering the energy index of the con-
troller requires to decrease the coupling strengthµ.

V. EXPERIMENTAL RESULTS
This section provides an experimental validation for the pro-
posed controller (20)-(24) for a group of N = 3 robots in an
all-to-all configuration.

The experimental setup, which is depicted in Fig. 5, is com-
posed by an Optitrack system with 12 cameras to get the
pose of each robot and a central computer to calculate its
control law, see Fig. 5a. The Optitrack system and the central
computer are connected by the Ethernet protocol, whereas
the central computer uses the Bluetooth protocol to send

the control law to each robot, see Fig. 5b. The robots are
the iRobot model 4812 whose axis have a length of bw =
0.2605 m and a limit velocity of ±0.5 rad/s. The controller
gains are in Table 1 and the coupling parameters are α =
30 s−1 and µ = 75 s−1. The VC trajectory is a circle, see
(57), with p̂i (i = 1, 2, 3) defined in (58) for N = 3. The
reference orientation is computed by integrating the angular
velocity (ωri ) given in (9). The experiment time is T = 50 s
with a sample frequency Fs = 30 Hz.

Fig. 6 shows snapshots of the trajectories of the robots in
the XY-plane, for an experiment lasting 50 s. The robots reach
their respective trajectories after some transient and they keep
the formation along the experiment.

Figs. 7a-7c show the tracking errors, whereas the synchro-
nization errors are presented in Figs. 7d-7f. It can be seen that
within the first 10 s of the experiment all the errors almost
vanish. Particularly, the errors on the x-axis (Figs. 7a and 7d)
converge faster than the errors on the y-axis (Figs. 7b and 7e)
and orientation (Figs. 7c and 7d), this is attributed to
the fact that the coupling is only applied in the x-axis
direction.
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FIGURE 8. Comparison of synchronization errors on the x-axis. After transient, the synchronization errors are relatively smaller for the
proposed dynamic controller (20)-24 than those corresponding to the static controller (65)-(66).

FIGURE 9. Energy index for the traditional static controller (65)-(66) (solid
black line) and the proposed dynamic controller (20)-(24) (blue dotted
line).

VI. COMPARISON TO A STATIC CONTROLLER
In this section, the performance of the proposed controller
(20)-(24) is compared against the following static controller
reported in [10]

vi = vri cos eθi + kxexi + Cx
∑

(i,j)∈N
lijεxij , (65)

ωi = ωri + kθeθi +
Kkyvri
βi

eyi sinc eθi , (66)

where vri and ωri are the reference velocities defined in (9);
kx , ky and kθ are gains for the nonlinear tracking control;Cx is
the coupling strength for the static coupling on the x-axis and
lij are elements of the Laplacian matrix (15), and εxij is the
synchronization error on the x-axis defined in (17). K ∈ R+
is a constant and βi is

βi =

√
K 2 + e2xi + e

2
yi +

∑
(i,j)∈N

ε2xij . (67)

FIGURE 10. Performance of the controllers for large initial conditions in
terms of the energy index (56). a) Controller with static coupling (65)-(66)
reported in [10]. b) Proposed controller (20)-(21) with dynamic
coupling (24).

Note that the static controller (65)-(66) uses tracking and
synchronization errors in the term βi, see (67). In contrast, the
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FIGURE 11. Numerical results for a large initial conditions. (a)-(c) show the tracking errors for the x-axis, y-axis and orientation, respectively,
with the static controller (65)-(66) and (d)-(f) show the corresponding tracking errors for the dynamic controller (65)-(24). Both controllers have a
similar performance. The difference, however, is in the energy required by the controllers to achieve the desired behavior, as already shown in
Fig. 10.

dynamic controller (20)-(24) only uses the tracking errors in
αi, see (22).

A. EXPERIMENTAL COMPARISON
For the sake of comparison, the same experiment presented in
the previous section has been conducted, but this time using
the static control (65)-(66), and using the same parameters
and initial conditions. The obtained results are presented in
Fig. 8a. It can be seen that, after the transient, the syn-
chronization errors are slightly larger than those obtained
with the proposed dynamic controller, which are depicted
in Figs. 7d, and 8b.

However, the real difference between both controllers can
be appreciated when using the proposed energy index (56),
as clearly seen in Fig. 9, where the energy index of the
proposed dynamic controller (20)-(24), see blue dotted line,
is lower than the energy index corresponding to the traditional
static controller (65)-(66), see solid black line.

Finally, it is worth mentioning that during the experiments,
it was found that the static controller (65)-(66) saturates faster

the robots, when increasing the coupling strength, than the
proposed controller (20)-(24).

B. LARGE INITIAL CONDITIONS
In this section, the performance of the proposed controller
(20)-(21) with dynamic coupling (24) is numerically com-
pared against the static controller (65)-(66), for large initial
conditions. The comparison is made in terms of the energy
index (56).

The controller gains are given in Table 1, the coupling
parameters are those used for experiments:Cx = 3 s−1 for the
static coupling in (65)-(66), and α = 30 s−1 and µ = 75 s−1

for the dynamic coupling (24). Finally, the initial conditions
are established by using (59) with

0 ≤ ri ≤ 1 1ri = 0.005 m ∀ i ∈ Sodd , (68)

0 ≤ ri ≤ 1 1ri = 0.005 m ∀ i ∈ Seven, (69)

The obtained results are shown in Fig. 10. It can be seen
that for the case of the static controller (65)-(66), the energy
index increases considerably as the initial conditions are fare
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away from the desired trajectory. In contrast, for the proposed
controller with dynamic coupling (24), the value of the energy
index is almost independent of the initial conditions and
remains small.

Hence, with respect to the energy index (56), the dynamic
controller presented here requires less energy to achieve the
coordination task than the static controller (65)-(66). Finally,
note that numerical results shown in Fig. 10b are in good
agreement with the experimental results shown in Fig. 9:
in both cases the energy index of the proposed controller is
smaller.

On the other hand, the results in terms of tracking errors
show the behaviour is equal with both couplings for the large
initial conditions ri = 0.9, (i = 1, 2, 3), see Fig. 11. The
tracking errors on the x-axis reach to zero in lower time, see
Figs. 11a for static coupling and 11b for dynamic coupling,
whereas the tracking errors on the y-axis and orientation take
long time to reach the origin, see Figs. 11b and 11c, respec-
tively for the static coupling and Figs. 11e and Figs. 11f,
respectively, for the dynamic one.

VII. DISCUSSIONS AND CONCLUSION
This work has presented a coordination scheme for uni-
cycle robots using dynamic couplings. The proposed
strategy (20)-(24), is composed by two parts: a nonlin-
ear controller for tracking and a dynamic coupling for
synchronization/coordination.

The stability analysis shows that the extended error dynam-
ics, which are composed by the tracking and synchronization
errors, are globally asymptotically stable, independently on
the number of robots.

The obtained numerical and experimental results show the
following: for the proposed coordination scheme, the syn-
chronization errors in steady state are lower than the ones
observed when using traditional coordination scheme with
static coupling given in (65)-(66), see Fig. 8. Moreover, the
energy index of the proposed dynamic coupling is lower than
the index obtained with a static coupling regardless of the
initial conditions of the robots, see Figs. 9 and 10.

In summary, the results presented here have shown that the
proposed coordination strategy exhibits a good performance
and it can be seen as a potential alternative for coordinat-
ing multi-agent systems. It would be interesting to formally
investigate the applicability of this coordination scheme in
the context of other MAS. This, however, is the topic of other
ongoing research.
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