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ABSTRACT In view of the low classification accuracy of the minority class in imbalanced data, an algorithm
called DPF-EL (density peaks and fitness combined with ensemble learning) based on density peaks
clustering and fitness is proposed. Firstly, this method uses the density peaks clustering algorithm to divide
the majority class into different sub-clusters, the local density calculated in the clustering process is used
to assign weights to each sub-cluster, and the number of under-sampling is determined by the weights.
Secondly, the concept of fitness is introduced into the sub-clusters, the selection probability of the samples is
calculated according to the size of their fitness, and the majority class is under-sampled based on the selection
probability. Finally, combined with boosting algorithm, iterative training is performed on the balanced data
set. Experimental tests were conducted with KEEL imbalanced data sets, and the experimental results show
that the performance of DPF-EL algorithm is better than other algorithms, which indicates the feasibility of

the proposed algorithm.

INDEX TERMS Imbalanced data, density peaks clustering, fitness, under-sampling, classification.

I. INTRODUCTION

Classification is one of the most extensively used machine
learning (ML) techniques. Traditional ML classification algo-
rithms usually assume that the sample number of each class
in data sets is balanced and treats the samples of different
classes equally to improve the overall classification accu-
racy [1]. However, in real applications, the number of samples
in various classes in data sets is often imbalanced. When
the number of samples in one or more classes (the majority
class) is far more than others (the minority class), the classi-
fication algorithm will tilt toward the majority class, causing
low classification accuracy for the minority class [2]. The
classification accuracy of the minority class is essential in
many cases yet. For example, in medical diagnosis [3], [4],
[5], people suffering from malignant diseases are the minority
class, suppose the traditional ML classification algorithm is
used for auxiliary diagnosis of malignant diseases. In that
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case, the classification accuracy of the malignant diseases
are low, which may lead to misdiagnosis and delay the
treatment timing of the patients. Today, with the increasing
usage of ML technology, the low classification accuracy of
the minority class caused by the data imbalance problem
has existed in many fields, such as intrusion detection [6],
[7], [8], fraud detection [9], [10], [11], and target detection
[12], [13], [14], etc.

Many methods have been presented to solve the problem
of data imbalanced, and these methods can be categorized
into three classes: (a) data resampling, (b) improving the
classification algorithms and (c) data resampling combined
with ensemble learning [15]. The method of data resampling
mainly synthesizes the minority class samples or removes
the majority class samples to reduce the data imbalance
rate. For example, the minority class synthetic algorithm,
synthetic minority over-sampling technique (SMOTE) [16],
and the random under-sampling (RUS) method [17]. The
method of improving of the classification algorithm is mainly
to improve the existing classification algorithm so that it
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can be applied to deal with imbalanced data sets, such as
cost-sensitive approach [18], [19], [20], fuzzy support vector
machine [21], [22], [23], [24], and improved random for-
est [25], [26], [27]. Due to the effectiveness of data resam-
pling and the diversity of data brought by ensemble learning,
the method of data resampling combined with ensemble
learning has become one of the main methods to deal with
the problem of data imbalance at present, this paper is also
based on this method for research.

The method of data resampling combined with ensem-
ble learning mainly uses different data resampling meth-
ods to balance the training data sets at the beginning of
ensemble learning training [28]. Reference [29] proposed an
algorithm that combines SMOTE with AdaBoost (adaptive
boosting algorithm) called SMOTEBoost (synthetic minor-
ity over-sampling technique with AdaBoost). This algo-
rithm uses SMOTE to oversample the minority class during
the iterative training of AdaBoost, to alleviate the effect
caused by data imbalance. However, during the oversam-
pling, SMOTE algorithm has a marginal problem, which
makes the classification boundary fuzzy and the accuracy
of minority classification worse. Reference [30] proposed
an algorithm called RUSBoost (random under-sampling with
AdaBoost) that combines RUS with AdaBoost. It was sim-
ilar to SMOTEBoost, and the difference is that random
under-sampling is used to balance the data sets during the
iterative training. Though this algorithm can deal with the
imbalanced data effectively, but due to the uncertainty of
the randomly under-sampling method, the samples carrying
important information may be lost during under-sampling.
Reference [31] proposed an under-sampling method based
on density peaks. First, the majority class of samples in the
overlapping areas are identified and removed. Second, the
clustering is performed on the majority class of samples
with the overlap region removed, and each generated sub-
cluster is under-sampling according to its size. Finally, the
bagging algorithm is used to integrate the classifier so that
better classification performance is obtained. Reference [32]
proposed a clustering-based under-sampling method, which
takes the centers of the sub-cluster as the representative sam-
ples to replace the whole majority class samples, and then
combines the AdaBoost for iterative training. This method
improves the classification accuracy of imbalanced data to
a certain extent. The deficiency of this method is that it only
considers the cluster centers as the representative samples and
ignores the selection of samples in the boundary area, which
leads to the loss of samples near the decision boundary and
affects the accuracy of classification.

To solve the problems existing in the above methods, this
paper proposed an algorithm called DPF-EL based on den-
sity peaks clustering and fitness. The density peaks cluster-
ing algorithm [33] is a density-based clustering algorithm
proposed by Rodriguez and Laio. The main advantages of
this algorithm are that it does not need iteration, can find
cluster centers at one time, and can identify clusters with
any shape. Due to its simple implementation and superior
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clustering performance, the algorithm has been applied to
many fields [34]. The algorithm in this paper uses the density
peaks clustering to divide the majority class into several dif-
ferent sub-clusters, and the number of under-sampling in each
sub-cluster is determined by the weight of the sub-clusters.
To select the representative samples in the clusters, the local
density of the samples is used as its fitness, and the selection
probability of samples is calculated according to the fitness.
The experiment was conducted on 13 imbalanced data sets
with different actual application backgrounds, and the results
show that the DPF-EL algorithm has better classification
performance than other contrast algorithms.

The rest of this paper is arranged as follows: Section II
introduces the theory of density peaks clustering and the
decision tree algorithm. Section III introduces this paper’s
theory, steps, and algorithm design. Section IV introduces the
experimental design and result analysis. Section V concludes
the entire paper and points out its limitations.

Il. RELATED THEORIES
A. DENSITY PEAKS CLUSTERING ALGORITHM
The basic idea of the density peaks clustering is to form
clusters by calculating the local density of sample points and
finding density peak points. This algorithm is based on the
following assumptions:
1) Samples with high local density may be cluster centers.
2) The distance between cluster centers should be larger.

According to the above assumptions, the local density p;
and the minimum distance §; to other points with higher
density are first needed to calculate to select the clustering
centers. The method is given below.

Assume that the data set D = {x, xp, - - -, xn}T, for the
local density p; of any sample x;, can be calculated using the
Gaussian kernel function, as shown in (1).

di\?
=Y exp (_ (d—f> ) (1)
j C

where dj; is the Euclidean distance between any two samples
x; and x;, d, is the cutoff distance, generally set to 2% of the
Euclidean distance descending sort.

The minimum distance §; to other points with higher den-
sity is defined as follows:

[ min(dy) pj > pi
= {max (dy) , pj < pi @

The density peaks clustering algorithm takes the samples
with higher local density and higher minimum distance as
cluster centers. After the cluster centers are determined, the
remaining samples are assigned to the cluster to which the
nearest with higher local density belongs.

B. DECISION TREE ALGORITHM

Decision tree [35] is a common classification model, which
has been widely used in ensemble learning due to its sim-
ple structure and high classification accuracy. The ensemble
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learning algorithm proposed in this paper uses the C4.5 algo-
rithm to generate the base classifier.

C4.5 algorithm is a frequently used method to generate
decision tree, and it takes the information gain ratio as the
partition metric of the optimal feature. The information gain
ratio is calculated as follows:

Assume that the data set D has k categories, where k = 1,
2,---, K, pr denotes the rate of the number of k-type samples
to the total number of samples in data set D, data set D
is divided into V sub-datasets by the eigenvalues of feature
a, ID"l is the number of samples in the v sub-datasets, the
information gain ratio of feature a is calculated as shown
in (3).

Ent(D) - YV_, ‘l%l'Em (DY)

vV D] ID'|
== D1 1082
where Ent(D) refers to information entropy, which is used

to measure the information purity of data set D, and the
calculation formula is as shown in (4).

Gain_ratio(D, a) =

3

K
Ent(D) = — Z pi log, pi @

ill. THE PROPOSED ALGORITHM

A. ADAPTIVE UNDER-SAMPLING WEIGHT CALCULATION
BASED ON DENSITY

In the existing clustering-based under-sampling methods, the
under-sampling number of each cluster is usually determined
according to a certain proportion or number, without con-
sidering the density of the samples in the cluster. To make
the distribution of the data set consistent before and after
sampling, the sampling number of the area with dense sam-
ples should be larger, and the sampling number of the area
with sparse samples can be smaller. Therefore, the sampling
weights are assigned to clusters according to it samples local
density in this paper. The denser the sub-clusters, the larger
their sampling weight, and the sparser the sub-clusters, the
smaller their sampling weight.

According to formulas (1) and (2), the local density p; and
minimum distance §; of the majority class samples in data set
D are calculated to generate C different sub-clusters Dlr‘na/,
where k = 1, 2, , C, for each the majority sub-cluster
formed by clustermg, the density Rhoma] and sampling weight

Welght were calculated by formulas (5) and (6).

maj

‘Dmaj
O = Z pi ©)
Rhok .
Welghtma] # (6)
maj

At last, the sampling weight Wezghtk . of the sub-clusters
is multiplied by the number of the mmorlty class in date set D
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FIGURE 1. Density peaks clustering algorithm in two dimensions. (a) Data
distribution. (b) Rank of density for the data.

to calculate the under-sampling number US} k of each sub-
cluster, as shown in formula (7).
USY = Weight*, . x |Dyin| (7

maj maj

B. UNDER-SAMPLING METHOD BASED ON FITNESS

This paper used fitness based on samples to choose the sam-
ples distributed among the center and periphery of the sub-
clusters as much as possible. Because to some extent, the
importance of samples can be approximately measured by
density, if a sufficient number of high-density instances are
selected, the learning models will have better classification
performance.

For the sub-clusters generated using the density peaks clus-
tering, the samples with higher local density are the central
or peripheral points of the sub-clusters, and the samples with
lower local density are boundary or outlier (or noise) points.
It can be seen from Figure 1 that the local densities of the
sub-cluster center and peripheral points are higher than that
of boundary points. Points 26 to 28 are far from most of the
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points and have lower local densities, which are regarded as
outliers or noise points.

To make the center and peripheral points of sub-clusters
have a larger selection chance, the local density of the samples
is taken as their fitness. For instance, the fitness of sample
point x; in a sub-cluster is defined as formula (8).

f&)=pi (8

In genetic algorithms [36], fitness measures an individual’s
ability to adapt to the environment, and it is proportional to
the selection probability. For point x;, its fitness is defined
as f(x;), and the selection probability p(x;) can be calculated
using the formula (9).

S (x)

k

maj

Y [ ()

px) = ©))

From the formulas (8) and (9), it can be concluded that the
density of the samples in the sub-cluster is proportional to
their selection probability. Hence, the central and peripheral
points of the sub-clusters have a higher selection probability
than the boundary and outlier points. In addition, the samples
in the boundary region also have a certain probability of being
selected, which will not result in the loss of useful samples
related to the decision. For the convenience of description,
the steps of the under-sampling method for a single cluster
are given below.

Step1: calculate the selection probability p(x;) of the sam-
ples in this cluster according to the formulas (8) and (9).

Step2: calculate the cumulative probability P; for the sam-
ples according to the formula (10).

Pi=Y px) (10)
j=1

Step3: generates a random number r within the interval
[0, 1]. If r < Py, select sample x1; otherwise, select the
sample x; that satisfies condition P;_1 < r < P;.

Step4: repeat Step3 until the number of under-sampling in
this cluster is satisfied.

The pseudo code of the above steps can be summarized
as in Algorithm 1. Each cluster is under-sampled according
to Algorithm 1, and the samples obtained by under-sampling
are merged with the minority class samples in data set D to
form a balanced data set D’.

C. BASE CLASSIFIER GENERATION

C4.5 algorithm is used to train the decision tree classifier on
the balanced data set D', and the depth of the decision tree
is set to d. The steps for generating a decision tree using the
C4.5 algorithm are given below:

Stepl: for the data set D', the information gain ratio of all
features is calculated according to the formulas (3) and (4),
and the feature with the maximum information gain ratio is
taken as the optimal partition, which is used to establish the
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Algorithm 1 Under-Sampling Method Based on Fitness

. . . k .
Input: the majority class cluster, D} , o under-sampling num-

ber of the cluster, US 51 aj
Output: the new majority class samples, new_majority
1: new_majority=[];
2 N <« size(D’;wj);
3: h < size(new_majority);
4. while h<US}, . do
5 m <— 0; // m is the cumulative probability
6 r < Random(0, 1);
7. fori=1toN do
8 m < m+ p(x;);
9 if » < m then

10: return x;;
11: end if
12:  end for

13:  new_majority < x;; // if x; is not in new_majority
14: end while

root node, and the child nodes are generated according to the
different values of the optimal partition feature.

Step2: in the same way as Stepl, the feature with the
maximum information gain ratio is selected as the optimal
partition feature for generated the sub-nodes, and the subse-
quent branches are recursively established until the samples
of nodes all belong to the same class or reach the set depth d.

Step3: the classification rules are extracted to obtain the
corresponding base classifier.

D. ALGORITHM DESIGN

The algorithm design of DPF-EL mainly brings the
Algorithm 1 into the training framework of ensemble
learning, and improves the classification performance for
imbalanced data by repeatedly sampling and training corre-
sponding classifiers. The pseudo code of DPF-EL algorithm
designed can be summarized as in Algorithm 2.

E. DPF-EL TIME COMPLEXITY ANALYSIS
The time complexity of DPF-EL mainly concentrated in two
aspects, the analysis is as follows.

1) The time complexity of clustering the majority class
using density peaks clustering. Since the time complex-
ity of the density peaks algorithm is O(n?), so the time
complexity of clustering the majority class using the
density peaks clustering is O(n?).

2) The time complexity of T-round base classifier train-
ing. This paper uses the C4.5 algorithm to train and
generate the base classifier. The time complexity of the
C4.5 algorithm is related to the size of the balanced
training set D', which is O(p|D’|log|D’|), where p is
the number of features contained in D’. Therefore, the
training time complexity of 7-round base classifier is
O(Tp|D'|log|D')).
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Algorithm 2 DPF-EL Design
Input: imbalanced data set, D = {(x1,y1), ---, (Xn, )},
number of clustering, C, number of iterations, T
Output: classification results
1: initialize the weight of x;: Wi (i) = 1/n,i=1,2,---,n;
2: clustering the majority class in data set D using density
peaks clustering algorithm;
3: calculating the under-sampling number of each cluster
according to formulas (5) to (7);
4: fort =1to T do
create a balance data set D} according to the under-
sampling method in Algorithm 1;
6:  use Dj as the training data to train the base classifier
hes
7:  calculate the error rate of h;: e =
Yol Wi (hy (x;) # i), where [ is indicator
function;
8:  calculate the weight of h;: oy = %ln (

1—¢;
er ’

. N N — W: (i) exp(—aryih: (xi) .
9: update Wi (i): Wi (i) = s S o e e v

10: end for To use the ensemble classifier to classify sample,
X_test:

11: initialize weight of each class to O;

12: fort =1to T do

13: ¢ = hy(x_test); /lc is the class predicted by A;

14:  add weight o to class c;

15: end for

16: return the class with the largest weight;

TABLE 1. Confusion matrix.

Predicted positive
Actual positive TP FN
Actual negative FP TN

Predicted negative

To sum up, the time complexity of DPF-EL algorithm is
O(n*) + O(Tp|D'|log|D')).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EVALUATION METHODS
G-mean [37], AUC [38], and Balance [39] are commonly
used to assess the classification performance of algorithms
for imbalanced data. It can be represented by using a confu-
sion matrix. The method is given below.

According to Table 1, the following evaluation metrics can
be obtained.

True Positive Rate, the percentage of positive samples that
are correctly classified.

TP
= (11)
TP + FN

False Positive Rate, the percentage of negative samples that
are misclassified.

TPR

FP
FPR= ———— (12)
FP+ TN
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TABLE 2. KEEL data sets description.

Dataset Size Feature =~ N_maj, N_min IR
abalone9-18 731 8 689, 42 16.4
dermatology-6 358 34 338, 20 16.9
glassl 214 9 138,76 1.82
glass4 214 9 201, 13 15.46
haberman 306 3 225, 81 2.78
new-thyroidl 215 5 180, 35 5.14
new-thyroid2 215 5 180, 35 5.14
pima 768 8 500, 268 1.87
segment( 2308 19 1979, 329 6.02
vowelO 988 13 898, 90 9.98
wine 178 13 130, 48 2.71
winequalityred8vs6 656 11 638, 18 35.44
yeastl 1484 8 1055, 429 2.46

Specificity, the percentage of negative samples that are
correctly classified, which is to measure the ability to identify
negative classes.

TN

Specificity = FPTIN (13)

G-mean, the geometric mean of true positive rate and
specificity. If an algorithm achieves a higher G-mean value,
it means that the algorithm has better classification perfor-
mance for imbalanced data, and the method of calculation is
given in (14).

G — mean = \/TPR x Specificity (14)

AUC, the area under the ROC curve. The higher the AUC
value, the higher the positive rate, meanwhile, the lower the
false positive rate. The calculation formula is shown in (15).

14 TPR — FPR
AUC = ————— 15)

Balance, Balance is a method to measure the classification
performance of algorithms for imbalanced data. A higher Bal-
ance value means the algorithm gets a better comprehensive
classification performance. The calculation formula is shown
in (16).

TPR + Specificity
2

Balance = (16)
B. EXPERIMENT DATA SETS

This paper uses 13 groups of imbalanced data sets from
KEEL data set repository [40] to train and evaluate the algo-
rithm. Since this paper only studies the two-category prob-
lem, the category ““3” is selected as the minority class, and the
other categories are selected as the majority class on the wine
data set. The imbalance ratio distribution of the experimental
data sets ranged from 1.82 to 35.44. See Table 2 for detailed
information.

C. EXPERIMENTAL DESIGN AND COMPARATIVE RESULTS

In the experiment, this paper compared the proposed
algorithm with AdaBoost [41], SMOTEBoost [29],
RUSBoost [30], cluster-based under-sampling with boosting
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TABLE 3. Average G-mean comparison of different method.

Dataset AdaBoost SMOTEBoost RUSBoost CUSBoost NCL CBU-NN DPF-EL
abalone9-18 0.562 0.631 0.679 0.506 0.624 0.714 0.761
dematology-6 0.994 0.981 0.975 0.941 0.969 0.989 0.972
glassl 0.733 0.730 0.715 0.651 0.716 0.715 0.740
glass4 0.715 0.728 0.879 0.613 0.725 0.821 0.794
haberman 0.519 0.530 0.562 0.511 0.564 0.553 0.635
new-thyroid1l 0.982 0.984 0.994 0.935 0.979 0.983 0.955
new-thyroid2 0.977 0.979 0.981 0.927 0.979 0.985 0.974
pima 0.567 0.603 0.582 0.611 0.603 0.593 0.640
segment( 0.989 0.987 0.995 0.974 0.988 0.983 0.988
vowel0 0.949 0.949 0.978 0.894 0.931 0.953 0.960
wine 0.957 0.956 0.961 0.872 0.942 0.943 0.962
winequalityred8vs6 0.323 0.404 0.455 0.612 0.344 0.624 0.676
yeastl 0.629 0.674 0.637 0.679 0.697 0.658 0.702

TABLE 4. Average AUC comparison of different method.

Dataset AdaBoost SMOTEBoost RUSBoost CUSBoost NCL CBU-NN DPF-EL
abalone9-18 0.674 0.696 0.741 0.724 0.706 0.716 0.816
dematology-6 0.990 0.994 0.989 0.995 0.987 0.987 0.998
glassl 0.745 0.748 0.721 0.686 0.722 0.732 0.797
glass4 0.875 0.829 0.920 0.934 0.817 0.861 0.827
haberman 0.551 0.564 0.531 0.607 0.580 0.595 0.647
new-thyroid1l 0.982 0.980 0.990 0.996 0.982 0.983 0.998
new-thyroid2 0.975 0.983 0.992 0.986 0.983 0.984 0.998
pima 0.609 0.608 0.602 0.668 0.620 0.581 0.674
segment( 0.987 0.988 0.994 0.993 0.989 0.980 0.995
vowel0 0.942 0.951 0.983 0.988 0.932 0.958 0.992
wine 0.955 0.967 0.978 0.977 0.945 0.954 0.988
winequalityred8vs6 0.624 0.634 0.625 0.650 0.626 0.639 0.670
yeastl 0.662 0.684 0.658 0.781 0.708 0.738 0.782

TABLE 5. Average Balance comparison of different method.

Dataset AdaBoost SMOTEBoost RUSBoost CUSBoost NCL CBU-NN DPF-EL
abalone9-18 0.676 0.696 0.695 0.659 0.690 0.713 0.764
dematology-6 0.989 0.990 0.974 0.945 0.984 0.989 0.976
glass] 0.735 0.758 0.794 0.678 0.733 0.721 0.771
glass4 0.871 0.810 0.926 0.734 0.823 0.862 0.824
haberman 0.527 0.540 0.561 0.571 0.571 0.546 0.641
new-thyroid1l 0.984 0.982 0.983 0.951 0.981 0.989 0.960
new-thyroid2 0.981 0.983 0.990 0.932 0.982 0.986 0.970
pima 0.593 0.611 0.608 0.617 0.618 0.589 0.643
segment( 0.988 0.986 0.995 0.974 0.988 0.983 0.989
vowel0 0.936 0.953 0.966 0.906 0.939 0.950 0.969
wine 0.961 0.947 0.968 0.870 0.940 0.949 0.968
winequalityred8vs6 0.616 0.619 0.550 0.524 0.629 0.654 0.677
yeastl 0.665 0.668 0.643 0.686 0.700 0.665 0.712

(CUSBoost) [42], neighborhood cleaning rule (NCL) [43],
and clustering-based under-sampling (CBU) [32]. Among
them, the reference [32] uses two strategies for under-
sampling, this paper chooses the second strategy called
CBU-NN (clustering-based under-sampling with nearest
neighbors of the cluster centers) with better classification
performance as comparison algorithm, and the number of
clusters is set to the quantity of the minority class samples. All
algorithms use the C4.5 algorithm training the base classifier,
G-mean, AUC, and Balance as the method of evaluation.
To make the experimental results fair and objective, the
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algorithm in this paper is run ten times with ten-fold cross-
validation, and their mean evaluation metrics values are
shown in Table 3 to Table 5. The bold value is the highest
under this evaluation metrics.

From Table 3 to Table 5, it can be seen that the DPF-EL
algorithm has achieved high G-mean and Balance evaluation
values on 7 data sets and high AUC evaluation values on
12 data sets, compared with G-mean and Balance, the effect
of DPF-EL algorithm is more obvious when using AUC for
evaluation. On the data sets abalone9-18, haberman, pima,
wine, winequalityred8vs6 and yeastl, the comprehensive
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FIGURE 2. The mean value bars of the different methods on the metrics.

classification performance of DPF-EL algorithm is better,
their G-mean, AUC, and Balance values are all the highest,
especially on the winequalityred8vs6 data set with imbalance
rate as high as 35.44, the performance of this algorithm is
well, compared with CBU-NN algorithm, the G-mean value
is increased by 5.2%, the AUC value is increased by 3.1%,
and the Balance value is increased by 2.3%. It shows that
the classification performance of the proposed algorithm is
still better on the data set with high imbalance rate, at the
same time, it is proved that under-sampling combined with
ensemble learning is a better method to solve the imbalanced
data classification problem.

In order to more visually compare the classification per-
formance between different methods, Figure 2 shows the
mean values of the different evaluation metrics of 7 methods
on 13 data sets. It can be seen in Figure 2 that compared
with other methods, the mean value of the different eval-
uation metrics of the proposed method has been improved
to a certain extent, which shows that the classification
performance of the proposed method is better than other
methods.

On the whole, compared with other methods, the G-mean,
AUC and Balance evaluation values of the proposed method
are higher, which indicates that this method has a higher
classification accuracy and better classification performance
for imbalanced data.
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FIGURE 3. Effect of different d. on evaluation metrics.

D. THE IMPACT OF CUTOFF DISTANCE

In the under-sampling phase, the selection probability of the
samples is a positive correlation with their local density.
To observe the influence of the parameter d. value on the
algorithm performance, the parameter was set with different
values. Figure 3 shows the changes of evaluation metrics
values of the DPF-EL algorithm under different d. (1%, 2%,
3%, 4%, 5%). The evaluation metrics values in Figure 3 are
the sum of the different metrics values on 13 groups data sets.
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As can be seen from Figure 3, when d. = 1%, the sum value
of all metrics are lowest, and when d. changes from 2% to
5%, the line chart changes gently, and the evaluation metrics
values that increase or decrease are small. On the whole, when
the d. changes little, it has a limited effect on the performance
of the algorithm.

V. CONCLUSION

Under-sampling combined with ensemble learning can effec-
tively solve the problems of imbalanced data learning and
bring about the diversity of data. However, the existing algo-
rithms usually have two problems: the size of clusters after
clustering is different, how to reasonably allocate the number
of under-sampling and select representative samples.

This paper proposed an algorithm called DPF-EL. This
algorithm calculates the number of under-sampling for each
sub-cluster according to the density of samples in the cluster,
which keeps the consistency of data distribution before and
after sampling. The fitness concept of genetic algorithm is
used to model the samples of the sub-clusters, so that the
central and the surrounding samples of the sub-clusters have
a larger selection probability, and the representative samples
in the cluster are reserved as much as possible. At last, the
feasibility of this method is verified through the experiments.

In real-life applications, imbalanced data may have multi-
ple classification circumstances. The following work will use
the DPF-EL algorithm to study the classification of multi-
class imbalanced data sets. In addition, since the method in
this paper uses the density peaks clustering algorithm, the
running time of the algorithm in this paper is slightly longer
in the data set with a large amount of data. It is also worth
studying how to shorten the running time in a parallel way.

REFERENCES

[1] S.Dhar and V. Cherkassky, ‘‘Development and evaluation of cost-sensitive
universum-SVM,” [EEE Trans. Cybern., vol. 45, no. 4, pp. 806-818,
Apr. 2015.

[2] P. Liu, M. Hong, D. Huang, Y. Luo, and S. Wang, “Joint ADASYN
and AdaBoost SVM for imbalanced learning,” J. Beijing Univ. Technol.,
vol. 43, no. 3, pp. 368-375, Mar. 2017.

[3] M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker,
and G. D. Tourassi, “Training neural network classifiers for medical
decision making: The effects of imbalanced datasets on classification
performance,” Neural Netw., vol. 21, nos. 2-3, pp. 427-436, Mar. 2008.

[4] M. Sharifmoghadam and H. Jazayeriy, ‘‘Breast cancer classification using
AdaBoost-extreme learning machine,” in Proc. 5th Iranian Conf. Signal
Process. Intell. Syst. (ICSPIS), Dec. 2019, pp. 1-5.

[5] S. Saxena, S. Shukla, and M. Gyanchandani, ‘“‘Breast cancer histopathol-
ogy image classification using kernelized weighted extreme learning
machine,” Int. J. Imag. Syst. Technol., vol. 31, no. 1, pp. 168-179,
Mar. 2021.

[6] V. Engen, J. Vincent, and K. Phalp, “Enhancing network based intrusion

detection for imbalanced data,” Int. J. Knowl.-Based Intell. Eng. Syst.,

vol. 12, nos. 5-6, pp. 357-367, 2008.

J. Liu, J. He, W. Zhang, T. Ma, Z. Tang, J. P. Niyoyita, and W. Gui,

“ANID-SEoKELM: Adaptive network intrusion detection based on selec-

tive ensemble of kernel ELMs with random features,” Knowl.-Based Syst.,

vol. 177, pp. 104-116, Aug. 2019.

[8] R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. AbuMallouh,
“Deep and machine learning approaches for anomaly-based intrusion
detection of imbalanced network traffic,” IEEE Sensors Lett., vol. 3, no. 1,
pp. 1-4, Jan. 2019.

[7

VOLUME 10, 2022

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

U. Fiore, A. De Santis, F. Perla, P. Zanetti, and F. Palmieri, “Using
generative adversarial networks for improving classification effectiveness
in credit card fraud detection,” Inf. Sci., vol. 479, pp. 448-455, Apr. 2019.
A. C.Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost sensitive
credit card fraud detection using Bayes minimum risk,” in Proc. 12th Int.
Conf. Mach. Learn. Appl. (ICMLA), vol. 1, Dec. 2013, pp. 333-338.

M. Di Martino, F. Decia, J. Molinelli, and A. Fernandez, ‘“‘Improving
electric fraud detection using class imbalance strategies,” in Proc. Int.
Conf. Pattern Recognit. Appl. Methods, vol. 2, 2012, pp. 135-141.

Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, ““Class-balanced loss
based on effective number of samples,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 9268-9277.

K. Rujirakul and C. So-In, “Histogram equalized deep PCA with ELM
classification for expressive face recognition,” in Proc. Int. Workshop Adb.
Image Technol. (IWAIT), Jan. 2018, pp. 1-4.

X. Ximeng, Y. Rennong, and Y. Yang, “Threat assessment in air combat
based on ELM neural network,” in Proc. IEEE Int. Conf. Artif. Intell.
Comput. Appl. (ICAICA), Mar. 2019, pp. 114-120.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 42, no. 4, pp. 463-484, Jul. 2012.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321-357, Jan. 2002.

G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the
behavior of several methods for balancing machine learning training data,”
ACM SIGKDD Explor. Newslett., vol. 6, no. 1, p. 20-29, Jun. 2004.

F. Feng, K.-C. Li, J. Shen, Q. Zhou, and X. Yang, “Using cost-sensitive
learning and feature selection algorithms to improve the performance of
imbalanced classification,” IEEE Access, vol. 8, pp. 69979-69996, 2020.
C. L. Castro and A. P. Braga, “Novel cost-sensitive approach to improve
the multilayer perceptron performance on imbalanced data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 6, pp. 888-899, Jun. 2013.

H. Yu, C. Sun, X. Yang, S. Zheng, Q. Wang, and X. Xi, “LW-ELM: A fast
and flexible cost-sensitive learning framework for classifying imbalanced
data,” IEEE Access, vol. 6, pp. 28488-28500, 2018.

S. Datta and S. Das, “Near-Bayesian support vector machines for imbal-
anced data classification with equal or unequal misclassification costs,”
Neural Netw., vol. 70, pp. 39-52, Oct. 2015.

R. Batuwita and V. Palade, “FSVM-CIL: Fuzzy support vector machines
for class imbalance learning,” IEEE Trans. Fuzzy Syst., vol. 18, no. 3,
pp. 558-571, Jun. 2010.

H. Yu, C. Sun, X. Yang, S. Zheng, and H. Zou, “Fuzzy support vec-
tor machine with relative density information for classifying imbalanced
data,” IEEE Trans. Fuzzy Syst., vol. 27, no. 12, pp. 2353-2367, Dec. 2019.
X. Fan and Z. He, “A fuzzy support vector machine for imbalanced data
classification,” in Proc. Int. Conf. Optoelectron. Image Process. (ICOIP),
Nov. 2010, pp. 11-14.

C. Su, S. Ju, Y. Liu, and Z. Yu, “Improving random forest and rotation
forest for highly imbalanced datasets,” Intell. Data Anal., vol. 19, no. 6,
pp. 1409-1432, Jan. 2015.

S. Bo, “Research on the classification of high dimensional imbalanced
data based on the optimizational random forest algorithm,” in Proc. 9th
Int. Conf. Measuring Technol. Mechatronics Autom. (ICMTMA), Jan. 2017,
pp. 228-231.

M. P. Paing and S. Choomchuay, “Improved random forest (RF) classifier
for imbalanced classification of lung nodules,” in Proc. Int. Conf. Eng.,
Appl. Sci., Technol. (ICEAST), Jul. 2018, pp. 1-4.

L. Nanni, C. Fantozzi, and N. Lazzarani, “Coupling different methods
for overcoming the class imbalance problem,” Neurocomputing, vol. 158,
pp. 48-61, Jun. 2015.

N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTEBoost:
Improving prediction of the minority class in boosting,” in Proc. PKDD,
vol. 2838, 2003, pp. 107-119.

C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “RUS-
Boost: A hybrid approach to alleviating class imbalance,” IEEE Trans.
Syst., Man, Cybern. A, Syst, Humans, vol. 40, no. 1, pp. 185-197,
Jan. 2010.

C. Y. Cui, F Y. Cao, and J. Y. Liang, “Adaptive under-sampling based
on density peak clustering,” Pattern Recognit. Artif. Intell., vol. 33, no. 9,
pp. 811-819, Sep. 2020.

116127



IEEE Access

H. Xu, Q. Liu: Ensemble Learning Algorithm Based on Density Peaks Clustering and Fitness for Imbalanced Data

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, “‘Clustering-based under-
sampling in class-imbalanced data,” Inf. Sci., vols. 409-410, pp. 17-26,
Oct. 2017.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492-1496, Jun. 2014.

M. Parmar, D. Wang, X. Zhang, A. H. Tan, C. Miao, J. Jiang, and Y. Zhou,
“REDPC: A residual error-based density peak clustering algorithm,” Neu-
rocomputing, vol. 348, pp. 82-96, Jul. 2019.

J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, 1986.

K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: Concepts and
applications [in engineering design],” IEEE Trans. Ind. Electron., vol. 43,
no. 5, pp. 519-534, Oct. 1996.

H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.

A. P.Bradley, “The use of the area under the ROC curve in the evaluation of
machine learning algorithms,” Pattern Recognit., vol. 30, pp. 1145-1159,
Jul. 1997.

K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The bal-
anced accuracy and its posterior distribution,” in Proc. 20th Int. Conf.
Pattern Recognit., Aug. 2010, pp. 3121-3124.

J. Alcald-Fdez, A. Fernandez, J. Luengo, J. Derrac, and S. Garcia, “Keel
data-mining software tool: Data set repository, integration of algorithms
and experimental analysis framework,” J. Multiple-Valued Log. Soft Com-
put., vol. 17, no. 23, pp. 255-287, 2011.

Y. Freund and R. E. Schapire, ‘“Experiments with a new boosting algo-
rithm,” in Proc. 13th Int. Conf. Mach. Learn., vol. 96, 1996, pp. 148-156.
F. Rayhan, S. Ahmed, A. Mahbub, R. Jani, S. Shatabda, and D. M. Farid,
“CUSBoost: Cluster-based under-sampling with boosting for imbalanced
classification,” in Proc. CSITSS, Dec. 2017, pp. 1-5.

J. Laurikkala, “Improving identification of difficult small classes by bal-
ancing class distribution,” in Proc. Conf. AI Med. Eur., Artif. Intell. Med.,
2001, pp. 63-66.

116128

HUI XU is currently pursuing the master’s degree
with Yantai University. His research interests
include machine learning and data mining.

QICHENG LIU received the Ph.D. degree in engi-
neering from the China University of Petroleum,
Beijing. He is currently a Professor with the
School of Computer and Control Engineering,
Yantai University. His research interests include
big data, multi-agent systems, and data mining.

VOLUME 10, 2022



