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ABSTRACT In some electricity markets, individual wind farms are obliged to provide point forecasts
to the power purchaser or system operator. These decentralized forecasts are usually based on on-site
meteorological forecasts and measurements, and thus optimized for local conditions. Simply adding decen-
tralized forecasts may not capture some of the spatial and temporal correlations of wind power, thereby
lowering the potential accuracy of the aggregated forecast. This paper proposes the explanatory variables
that are used to train the kernel density estimator and conditional kernel density estimator models to derive
day-ahead aggregated point and probabilistic wind power forecasts from decentralized point forecasts of
geographically distributed wind farms. The proposed explanatory variables include (a) decentralized point
forecasts clustered using the clustering large applications algorithm to reduce the high-dimensional matrices,
(b) hour of day andmonth of year to account for diurnal and seasonal cycles, respectively, and (c) atmospheric
states derived from self-organizing maps to represent large-scale synoptic circulation climatology for a study
area. The proposed methodology is tested using the day-ahead point forecast data obtained from 29 wind
farms in South Africa. The results from the proposed methodology show a significant improvement as
compared to simply adding the decentralized point forecasts. The derived predictive densities are shown to be
non-Gaussian and time-varying, as expected given the time-varying nature of wind uncertainty. The proposed
methodology provides system operators with a method of not only producing more accurate aggregated
forecasts from decentralized forecasts, but also improving operational decisions such as dynamic operating
reserve allocation and stochastic unit commitment.

INDEX TERMS Aggregated wind power forecasting, diurnality, large-scale atmospheric circulations,
probabilistic, seasonality.

I. INTRODUCTION
The electricity generation from wind energy is increasing
worldwide, as different regions continue with the transi-
tion towards a decarbonized future. Wind power forecasting
remains one of the most effective methods of reducing the
impacts of wind power intermittency on power system opera-
tions. Traditionally, wind power forecasts consist of one value
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(also called point or deterministic forecasts) for each wind
farm [1], [2], [3]. These are usually based on on-site mete-
orological forecasts and measurements, and thus optimized
for local conditions [4]. However, as wind capacity continues
to increase in a region, producing accurate aggregated wind
power forecasts becomes a concern for system operators. One
of the key considerations in aggregated wind power fore-
casting is spatial-temporal correlations between wind farms
that are geographically distributed. The power from geo-
graphically distributed wind farms exhibits spatial-temporal
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correlations, the degree of which can vary based on numerous
factors such as separation distance and direction, timescale,
diurnal weather variations andmovement of synoptic weather
systems [1], [2], [5]. Recent literature has shown the poten-
tial benefit of incorporating spatial-temporal correlations in
wind forecasting, especially in terms of improving forecast-
ing accuracy [1], [2], [3], [6], [7], [8]. Another factor to
consider is that uncertainty in wind power forecasting is
unavoidable due to time-varying meteorological conditions,
weather-to-power conversion process, and dynamic behavior
of wind turbines [7]. Based on this realization, utilities are
moving away from only focusing on increasing the accu-
racy of wind power forecasts towards also quantifying the
uncertainty inherent in the forecast and incorporating this
into their decisions [1], [2], [7], [9], [10], i.e. attaching a risk
metric to the forecast. This is also referred to as probabilistic
forecasting.

Probabilistic wind power forecasting approaches that
incorporate spatial-temporal correlations can be divided into
two main categories: physical and statistical [1], [7], [11],
[12], [13]. Physical approaches typically use numerical
weather prediction (NWP) models and current weather con-
ditions to predict wind speed [7], [8], [14]. NWP models
formulate the problem of wind speed prediction as a set
of mathematical equations describing the atmosphere and
oceans. In [7], a recursively backtracking framework based
on the particle filter was used to estimate the atmospheric
state (with near-surface measurements) and forecast samples
of aggregated wind power. The samples were used to derive
predictive densities using a kernel density estimator (KDE).
In [3], weighted Euclidean distance was proposed to search
for similar wind characteristics in historical NWP data, and
used corresponding aggregated wind power measurements to
construct probabilistic forecasts based on distance-weighted
KDE. Weather ensemble predictions based on atmospheric
models and time series were used together with Gaussian
KDE [15], normalized prediction risk index [16], and gen-
eralized autoregressive conditional heteroscedasticity [17]
to derive wind power forecasts and associated uncertainty.
In [18], Gaussian processes combined with NWP were used
to derive day-ahead wind power forecasts. In [19], the poor
man’s ensemble was used to estimate forecast errors for
one wind farm while in [20] used input from 16 different
European meteorological services for Previento to derive
probabilistic forecasts for Germany. More studies based on
physical models can be found in literature reviews conducted
in [11], [12], [21], [22], and [23]. Statistical approaches,
on the other hand, take historical wind power data and/or
NWP as inputs and use machine learning algorithms and/or
other statistical models to generate aggregated wind fore-
casts [7], [8], [14]. These approaches assume that historical
data can be used to infer spatial-temporal correlations among
wind farms. In [8], machine learning algorithms were used
to generate point forecasts of wind farms, the copula method
to build spatial-temporal correlated aggregated wind power
forecasts, and Bayesian theory to derive predictive densities.

In [2], Bayesian hierarchical models were used for obtaining
spatial-temporal correlated probabilistic wind power fore-
casts. In [1], the alternating direction method of multipliers
was proposed to capture spatial-temporal correlations of geo-
graphically distributed wind farms and used multiple quantile
regression to derive predictive densities. In [24] and [25],
the resampling approach is used to estimate the confidence
intervals for wind power forecasts. In [26], local quantile
regression is compared with the local Gaussian model and
the Nadaraya-Watson Estimator. In [27], historical forecast
error distributions were used to obtain scenarios for stochastic
wind power generation. In [10], time adaptive conditional
KDE was proposed for probabilistic wind power forecast-
ing. In [28], [29], and [30], the beta distribution was used
to estimate forecast errors at different wind power forecast
bins while in [31] the gamma-like distributions were used to
achieve the same. In [32], the logit transformation approach
was used to estimate the confidence intervals of forecast
errors. More studies based on statistical models can be found
in literature reviews conducted in [11], [12], [21], [22],
and [23].

The first observation made from the literature is that the
majority of proposed forecasting methodologies assume that
the problem of aggregated wind power forecasting is solved
in a centralized manner, i.e., forecasts of all wind farms in
a region are derived centrally by one forecasting company
(facilitated by the system operator). A centralized forecaster
will often use a consistent forecasting approach for all wind
farms, leading to more consistent results [33]. In addition,
a forecaster will have access to measurements from all wind
farms, making it easier to incorporate spatial-temporal cor-
relations between wind farms into their forecasting method-
ologies [1]. However, in some markets (e.g. South Africa),
individual wind farms are obliged to provide point forecasts
to the power purchaser or system operator [34]. These decen-
tralized point forecasts are optimized for local conditions and
therefore simply adding these decentralized point forecasts
may not capture some of the common spatial and temporal
correlations of wind power, thereby lowering the potential
accuracy of the aggregated wind power forecast. It is well
known that the correlation of wind power from geograph-
ically distributed wind farms depends on the proximity of
wind farms [2]. Wind farms in close proximity are highly
correlated, whereas wind farms that are further apart are not.
In addition, wind power profiles exhibit a high degree of sta-
tistical regularity along diurnal and seasonal timescales in the
literature [35], [36], [37], [38], [39], [40], [41]. These spatial
and temporal correlations form the basis of understanding
wind power variability and ultimately improving wind power
forecasting. Therefore, there is a need for a model that aggre-
gates decentralized point forecasts while considering these
correlations.

The second observation made from the literature is that
most forecasting methodologies are based on the microscale
and/or mesoscale NWP models. However, it was illustrated
in [42], [43], and [44] that the probabilistic properties of wind
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FIGURE 1. Outline of this paper.

power generators’ output, along with the level of correlation
between wind generators’ output, are dependent on the dom-
inant large-scale atmospheric circulation archetypes. Thus,
the information contained in large-scale atmospheric circu-
lations can be useful in improving wind power forecasting.
Large-scale atmospheric circulations have been incorporated
in medium- to long-termwind forecasting [15], [45], [46], but
have only been alluded to in short-term wind forecasting [7],
[15], [47]. There is a need for more applied research on the
potential benefits of incorporating large-scale atmospheric
circulations in short-term wind power forecasting.

In light of the two aforementioned needs, the primary
hypothesis of this paper is that: the accuracy of aggregated
forecasts can be improved by training machine learning
models with features that account for some of the common
spatial and temporal correlations of wind power, includ-
ing those correlations caused by large-scale atmospheric
circulations.

To test this hypothesis, a methodology is proposed that
trains machine learning models using the explanatory vari-
ables listed below to derive aggregated point and probabilistic
wind power forecasts:
(a) Decentralized point forecasts – To eliminate dupli-

cate features and reduce the high dimension matrices
required to model a high number of wind farms in a
region (without losing important spatial information),
the correlated point forecasts are first clustered into
k clusters using the clustering large applications algo-
rithm (CLARA).

(b) The hour of day andmonth of year – These are included
to model the well-known statistical regularity of wind
profiles along diurnal and seasonal timescales.

(c) Atmospheric states – These are derived from
self-organizing maps (SOMs) to represent large-scale
synoptic circulation climatology for a study area.

The machine learning models proposed to test the hypoth-
esis are: (a) the k-nearest neighbor (k-NN) to derive the
aggregated wind power point forecast and (b) conditional
KDE to derive aggregated wind power predictive densities.
It should be noted here that there are numerous machine
learning models that have been applied for wind power fore-
casting as shown in the literature review conducted above.
However, the k-NN- and KDE-based approaches are pro-
posed to test this hypothesis because they are common and
easy to implement. In addition, the conditional KDE is a
nonparametric approach for predicting wind power densities
and thus can account for the time-varying and non-Gaussian
nature of wind power uncertainty. The proposed methodol-
ogy is demonstrated using the day-ahead point forecast data
obtained from 29 wind farms in South Africa.

An overview of this paper is shown in Fig. 1, with the
paper organized as follows: Section II provides a theoretical
framework of the methodology for aggregated wind power
forecasting. Section III defines the forecasting evaluation
framework used in this paper. Section IV introduces the case
study used for illustrating the proposed methodology and
presents the results and discussions. Section V gives conclu-
sions and identifies further research that may arise from this
work.

The most significant contribution made by this paper is
in proposing a simple approach to improve the accuracy
of aggregated point and probabilistic wind power forecasts
that can be derived from decentralized point forecasts. This
is particularly important in regions where individual wind
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farms generate their own forecasts and do not necessarily
have access to the measurements from other wind farms. The
proposed approach provides system operators with a way of
aggregating these forecasts while taking into account spatial
and temporal correlations of wind power. In addition, the
derived predictive densities can be used to improve opera-
tional decisions such as dynamic operating reserve allocation
and stochastic unit commitment.

An additional contribution of the paper is contained in the
proposed approach towards atmospheric states, derived from
SOMs, which demonstrates another way in which large-scale
atmospheric circulation patterns can be incorporated into
short-term wind power forecasting.

II. FORECASTING METHODOLOGY
A. FEATURE SELECTION
1) CLUSTERS OF WIND POWER POINT FORECASTS
There can be hundreds of wind farms within a region and thus
the dataset containing individual wind power point forecasts
can be high dimensional. In most machine learning algo-
rithms, as the number of features grows, the amount of data
required to generalize accurately grows exponentially (also
known as the ‘curse of dimensionality’). In addition, wind
farms that are in close proximity are highly correlated as
(mentioned in Section I) and therefore, the machine learn-
ing model might not learn anything insightful by consid-
ering these wind farms independently. To mitigate against
this phenomenon, this paper clusters wind farms with cor-
related point forecasts together. Some of the most com-
mon clustering algorithms that can be used to achieve this
include partitioning, include hierarchical, k-means, partition-
ing around medoids (PAM) and the clustering large applica-
tions algorithm (CLARA). Recent studies have shown that
the CLARA algorithm produces better clustering results for
large datasets [48], [49], and hence it is used in this paper.
The CLARA algorithm can be summarised in the following
steps:
• Creating random subsets with fixed size from original
dataset.

• Choosing the number of clusters k and corresponding k
medoids for each subset.

• Calculating the dissimilarity matrix and assigning each
observation of the dataset to the closest medoid.

• Calculating the mean of the dissimilarities of the obser-
vations to their closest medoid.

• Repeating the process while retaining the sub-dataset for
which the mean is minimal.

The silhouette coefficient is used in this paper to find the
optimal number of clusters k , while the distance metric used
is the Euclidean distance (as also recommended for wind
resource clustering in [48]).

2) ATMOSPHERIC STATES
A useful way to classify atmospheric circulation is by
using SOMs, which are a class of self-learning artificial
neural networks [50]. The classification output from the

SOM procedure is a two-dimensional array of nodes, spaced
on a lattice topology, which may be interpreted as maps
showing typical patterns within a dataset. SOMs have often
been used in meteorology and climatology [51], and may
indeed be preferential to other commonly employed clas-
sification procedures (e.g. k-means clustering or principal
component analysis (PCA)), notably principal components
analysis, as it does not discretise data and does not force
orthogonality [52].

The SOM training process is based on a competitive learn-
ing algorithm which successively measures the Euclidean
distance between a predefined set of SOM-nodes (or refer-
ence vectors) and the input feature vectors. For each itera-
tion of the training process, the best matching unit’s (BMU)
weight, along with the weights of nodes located in the BMUs
proximity on the SOM lattice, is updated towards that of the
feature vector. Reference nodes on the SOM lattice thereby
develop towards a generalized configuration of the training
dataset. Once the training process has been completed, each
feature vector in the classification time-series may be clus-
tered based on the weighted Euclidean to each node on the
SOM map. In other words, each time-step in the input-data
is retroactively clustered by being assigned the node number
(or atmospheric state in this instance), to which it is most
similar.

3) HOUR OF DAY AND MONTH OF YEAR
The cyclical nature of the processes responsible for diurnal
and seasonal variability – i.e., the rotation of the earth around
its axis and around the sun – however does imbue these pro-
cesses with a measure of statistical regularity. This statistical
regularity increases the wind power predictability associated
with such cyclical diurnal and seasonal processes. The value
of modelling these variations in wind power forecasting has
been shown in the recent literature [53]. This paper captures
these variations by including the attributes ‘hour of day’ (for
diurnal variations) and ‘month of year’ (for seasonal vari-
ations), which takes the values 0, 1, . . . 23 and 0, 1, . . . 11,
respectively.

B. K-NN ALGORITHM
The k-NN algorithm is a non-parametric method that aver-
ages the k closest training examples in feature space to
predict the new data point (also known as the query point).
This method resembles the similar-day approach that is still
used by many system operators for short term load demand
forecasting [53]. The similar-day approach predicts the load
demand using historical days with similar weather conditions
and day types to the day of forecast. In the same way, the
k-NN algorithm is used in this paper to predict the aggregated
wind power using historical examples with similar month of
year, hour of day, point forecasts (of wind farm clusters) and
atmospheric states. The k-NN algorithm can be summarised
in three steps:
• Calculating the distance between the query point and
each training point.
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• Selecting the k nearest neighbors from the training set
with k smallest distances.

• Predicting the aggregated wind power output based on a
weighted average of k nearest neighbors.

If X1,X2, . . . ,XK are the k nearest neighbors and
P1,P2, . . . ,PK are their corresponding aggregated wind
power observations, then the aggregated wind power predic-
tion p̂(x) can be derived using the estimator given by:

p̂(x) =

∑K
k=1 K (x,Xk) .Pk∑K
k=1 K (x,Xk )

(1)

where K (x,Xk ) is a kernel function that assigns weights on
aggregated wind power observations Pk based on the distance
from the neighborXk to the query point x. The distancemetric
used in this paper is the Manhattan distance. The aggregated
wind power observations of the neighbor with the smallest
distance from the query point has more influence on the final
point prediction p̂ (x) , as compared to the other observations.
For a Gaussian kernel function (which is used in this paper)
with a smoothing bandwidth h, the function K (x,Xk ) can be
written as:

K (x,Xk) = e−
(x−Xk )

2

2h2 (2)

C. CONDITIONAL KERNEL DENSITY ESTIMATOR
Once the aggregated wind power point forecasts have been
determined using (5), the KDE-based approach is used to
derive the conditional aggregated wind power predictive
density. This involves estimating the conditional probability
density function of aggregated wind power P, given that
the explanatory variable X is equal to x. The main advan-
tage of KDE is that it is a non-parametric and data driven
approach that can estimate the density of a random vari-
able without distribution hypothesis. As a result, KDE-based
approaches are becoming popular in recent developments of
probabilistic wind power forecasting [3], [10], [53], [54],
[55], [56]. The main drawback of KDE-based approaches
is the difficulty in selecting good bandwidths, especially in
the presence of large datasets and high dimensionality. For
this reason, this paper considers different combinations of
explanatory variables (explained in 2.1) to avoid using all
variables at once (and thus reducing the dimensionality of the
dataset).

The standard conditional KDE (also known as the
Nadaraya-Watson Conditional Estimator) can be written as:

f̂ (p |X = x) =
1
hp

N∑
i=1

K
(
p− Pi
hp

)
.wi(x) (3)

Having

wi (x) =
K
(
x−Xi
hx

)
∑N

i=1 K
(
x−Xi
hx

) (4)

where hp and hx are bandwidths controlling the smoothness
of each conditional density in p and x directions, respectively,

Xi is a point in a training set andPi is the corresponding aggre-
gated wind power observation, and K is a kernel function.

The choice of a kernel function K and bandwidths hp
and hx has a significant influence on estimated conditional
densities. For most applications, Gaussian kernel function
is the popular choice. However, it is well known that wind
power output follows a non-Gaussian distribution [10], [53].
In general, themean squared error of the Epanechnikov kernel
function is optimal [55], [57], and hence it is used in this
paper. The Epanechnikov kernel function can be written as:

K (∂) =


3
4
(1− ∂2), ∂ ∈ [−1, 1]

0, otherwise
(5)

where ∂ = p−Pi
hp

and ∂ = x−Xi
hx

in p and x directions,
respectively.

To select the bandwidths hp and hx , this paper uses the
least-squares cross-validation (LSCV) method. The method
is based on selecting hp and hx that minimises the integrated
squared error (ISE) given by:

ISE(hp, hx) =
∫ (

f̂ (p | x)− f (p | x)
)2
dp

=

∫
(f̂ (p | x))

2
dp− 2

∫
f̂ (p | x) f (p | x) dp

+

∫
(f (p | x))2dp (6)

Therefore, minimising ISE is equivalent to minimising the
first two terms,

∫
(f̂ (p | x))

2
dp−2

∫
f̂ (p | x) f (p | x) dp, since

the last term does not involve hp and hx . Thus, a cross-
validated estimate of ISE is given by:

LSCV (hp, hx)=
1
n

n∑
i=1

∫
(f̂−i (p |Xi))

2
dp−

2
n

n∑
i=1

f̂−i (Pi |Xi)

(7)

where, f̂−i is f̂ evaluated with (Xi,Pi) left out.

D. SUMMARY OF THE PROPOSED METHODOLOGY
In summary, a methodology is proposed that trains k-NN and
conditional KDEmodels to derive aggregated point and prob-
abilistic wind power forecasts, respectively. The explanatory
variables considered in training these models include: decen-
tralized point forecasts (clustered using CLARA), atmo-
spheric states (derived using SOMs), month of year and hour
of day. Fig. 2 shows the flowchart summarising the proposed
methodology for aggregated wind power forecasting.

III. EVALUATION FRAMEWORK
A. POINT FORECASTS
There are many metrics that can be used to evaluate the accu-
racy of wind power point forecasts. The most frequently used
metrics are mean absolute error (MAE), root mean squared
error (RMSE) and coefficient of determination (R2) [8], [13],
[14], [55]. The same metrics are used in this paper to evaluate
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FIGURE 2. Flowchart summarizing the proposed methodology.

the accuracy of aggregated wind power point forecasts, and
are calculated as:

MAE =
1
N

N∑
i=1

∣∣∣∣Pi − p̂iCt

∣∣∣∣ (8)

RMSE =

√√√√ 1
N

N∑
i=1

(
Pi − p̂i
Ct

)2

(9)

R2 = 1−

∑N
i=1 (Pi − p̂i)

2∑N
i=1 (Pi − P̄)

2 (10)

where Pi and p̂i are the i-th actual and forecasted values of
aggregated wind power, respectively, N is the total number
of forecasting samples and Ct is the total wind capacity in
a region. Note that the total wind capacity Ct is used as a
denominator for (8) and (9) instead of actual wind power Pi
to avoid the effects of aggregated wind power that is close to
zero. In general, smaller MAE and RMSE, and R2 value that
is close to 1, indicate better performance of the forecasting
model.

B. PROBABILISTIC FORECASTS
To evaluate the aggregated wind power predictive den-
sities, this paper adopts the framework defined in [58].

The framework is based on three metrics: reliability or cal-
ibration, sharpness and skill score. Evaluating probabilistic
forecasts based on these metrics requires the evaluation set
consisting of quantile forecasts (of various nominal propor-
tions) and observations.

1) RELIABILITY OR CALIBRATION
This metric measures the statistical consistency between
quantile forecasts and observations. For example, a quantile
forecast with a nominal level of 0.5 should contain 50% of
the observed values lower or equal to its value. For a given
quantile forecast q̂(α)t at time t with nominal level α, and the
corresponding observation pt , the indicator variable ξ (α)t is
given by:

ξ
(α)
t =

{
1, if pt < q̂(α)t

0, otherwise
(11)

The empirical level a(α)k is obtained by calculating the mean
of indicator variable ξ (α)t over a set of T quantile forecasts.

a(α)k =
1
T

T∑
t=1

ξ
(α)
t (12)

In a ‘perfect’ calibration, the empirical levels match the nom-
inal proportions.

2) SHARPNESS
This metric measures how tight or concentrated the predictive
densities are. Let δ(β)t = q̂(1−α/2)t − q̂α/2t be the width of
a given prediction interval estimated at time t . The sharp-
ness is obtained by calculating the average width δ̄(β)t of
the prediction interval over a set of T quantile forecasts.
Mathematically, this is given by:

δ̄
(β)
t =

1
T

T∑
t=1

δ
(β)
t (13)

In general, narrow prediction intervals (subject to calibration)
are preferred because they suggest that predictions have more
information content.

3) SKILL SCORE
This metric assesses probabilistic forecasts by a single score,
just like MAE and RMSE for the point forecasts. This score
incorporates a variety of aspects of probabilistic forecast
evaluation and hence allows for easier comparison between
probabilistic forecasting approaches. In this paper, the skill
score Sc for a set ofM quantiles is calculated as:

Sc =
1
T

T∑
t=1

M∑
i=1

(ξαit − αi).(pt − q̂
αi
t ) (14)

This score cannot be decomposed to provide contributions
of calibration, sharpness and other aspects of probabilistic
forecast evaluation. In general, a higher score means higher
skill of the probabilistic forecast approach and the score is
zero for a ‘perfect’ probabilistic forecast.
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FIGURE 3. Geographical locations of wind farms used for testing the
methodology.

IV. CASE STUDY
A. DESCRIPTION OF CASE STUDY
The proposed methodology for aggregated wind power fore-
casting is tested using the data obtained from 29 wind farms
in South Africa from 01 January 2018 to 31 March 2021.
The average installed capacity of these wind farms is 92 MW
(ranging between 13 MW and 140 MW) and their geograph-
ical locations are shown in Fig. 3. Since the individual wind
power point forecast data is sensitive and confidential, Eskom
(the utility company in South Africa) was only able to send
the day-ahead wind power point forecasts in groups of three
nearest wind farms (summed together). The challenge here is
that some of the wind farms may not fall in the same cluster
as its two nearest neighbors if CLARA was applied to the
original dataset, instead of applying it to already clustered
dataset (as received from the utility). This implies a drop in
resolution of the data, which may have impacted the perfor-
mance of the proposed methodology in this particular case
study.

The SOM Toolbox developed for Matlab by Helsinki Uni-
versity of Technology was used [59] for the classification of
atmospheric states. As classification parameter, the hourly
ERA5 850hPa geopotential height reanalysis dataset [60] was
selected, as geopotential heights provide a good represen-
tation of large scale atmospheric circulation, and is a wind
speed predictor e.g. [47] and [61]. It was further deemed
that the 850 hPa pressure level provides sufficient elevation
to capture circulation above the South African escarpment.
The classification area was bounded between 22-40◦S and
5-40◦E, which includes the South African subcontinent along
with significant areas of the Indian and Atlantic oceans so
as to adequately capture the large-scale circulation impacting
the study area. To illustrate the proposed aggregationmethod-
ology, a 4× 5 SOM-node topology was selected, which was
deemed to provide sufficient detail. It should however be
noted that the number of SOM nodes chosen represents what
is often a subjective trade-off between level of generalization
or detail required and quantization error.

The SOM was trained in two phases with a batch training
algorithm, using a rectangular lattice as recommended for
batch training [62]. The first (rough) training phase con-
sisted of 1000 iterations with the neighborhood decreasing

TABLE 1. Overall point prediction results of the proposed methodology.

from 5 to 1, which was followed by a fine-tuning phase of
5000 iterations where the neighborhood function decreased
from 2 to 1, thereafter remaining fixed after which only the
BMU was updated. A number of studies have showed the
starting point of the neighborhood function to have little
impact on patterns produced [63], however in continuing
the training once the radius parameter equals 1, the SOM
approach becomes the equivalent of the k-means clustering
procedure, which has been shown to be advantages in terms
of average classification error [64]. The Epanechikov neigh-
borhood function was used, as recommended by [62] when
training small SOM maps.

The full dataset (consisting of hour of day, month of year,
actual wind power generation, clusters of wind power point
forecasts, and atmospheric states) was split into a training
set (by randomly picking 90% rows from the full dataset)
and testing set (remaining 10% from the full dataset). The
seven-fold cross validation was used to determine the optimal
value of k in k-NN algorithm. The aggregated wind power
point forecast results obtained by training the k-NN algorithm
with the proposed explanatory variables were compared to the
results obtained by simply summing up the point forecasts.
In addition, the k-NN algorithm was trained using different
combinations of explanatory variables to evaluate the impact
of each variable on the accuracy of the resulting aggregated
forecasts. Furthermore, in order to assess the proposed model
under various conditions, its performance evaluated during
different hours of the day, months of the year, and atmo-
spheric states.

This paper trained the conditional KDE using various com-
binations of proposed explanatory variables, and the results
were compared to those obtained by training the conditional
KDE with just the sum of point forecasts. This was done
because it was difficult to train the conditional KDE using
all proposed explanatory variables at once (due to bandwidth
selection as explained in Section II-C).

B. EVALUATION OF POINT FORECASTS
In Table 1, the overall performance of training the k-NN
model with proposed explanatory variables is compared to
simply adding the point forecasts by individual wind farms.
The proposed methodology performs better than the sum of
point forecasts within the context of the proposed evaluation
metrics. The MAE and RMSE of the proposed methodol-
ogy are 55% and 47% less than those achieved by adding
the point forecasts, respectively. Likewise, the R2 values
show that 94% of the observed data fit the proposed model,
while 77% of the data fit the sum of point forecasts model.
Therefore, taking into account the spatial and temporal
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TABLE 2. Scenarios for explanatory variables to show how explanatory variables impact forecasting accuracy.

TABLE 3. Point prediction results for different hours of the day.

TABLE 4. Point prediction results for different months of the year.

TABLE 5. Point prediction results for different atmospheric states.

correlations through the proposed explanatory variables
improves the accuracy of aggregating decentralized point
forecasts.

Table 2 displays the results of the various scenarios for
explanatory variables to show how the proposed explanatory
variables impact forecasting accuracy. As shown in Table 2,
taking into account the spatial information found within var-
ious clusters result in better forecasting accuracy compared
to the sum of point forecasts. The accuracy improves further
when taking into account diurnal and seasonal cycles as well
as large-scale atmospheric circulations. The seasonal cycles
show superior impact followed by the large-scale atmospheric
circulations.

Tables 3, 4 and 5 shows the performance of the proposed
model during different hours of the day, months of the year
and atmospheric states, respectively. The proposed model
seems to perform better in the hours between 4h and 14h and
in the months between March and July (which is the autumn
and winter seasons). Fig. 4 shows the hourly average wind
power generation for January (summer), April (autumn), July
(winter) and October (spring). The average wind generation

profile shows daily ramp-up in wind power, especially during
summer, autumn, and spring seasons, from approximately 9h
to 18h, which is in turn followed by an equivalent ramp-
down during the evening. This ramp-up is likely associated
with daily surface heating due to the diurnal cycle. A possible
reason that prediction errors are comparatively small during
a period associated with significant variability in the wind
power profile (4h-14h), is due to the cyclical nature of said
variability, which is a function diurnal surface heating and
cooling. Notwithstanding diurnal variability, Fig. 4 shows
that the autumn and winter wind power profiles are com-
paratively flat throughout the day, which is in turn a pos-
sible reason for the better model performance during these
seasons.

The model also performs better during the atmospheric
states (2,4), (2,5), (3,1), (3,3), (3,4), (3,5), (4,2), (4.3) and
(4.4). Fig. 5 shows the 20 (4 × 5) node SOM representing
the 20 classified atmospheric states together with the fre-
quency of SOM node occurrence as a percentage above each
node. It is evident that the nodes where the proposed model
performs better tends to represent atmospheric circulation
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FIGURE 4. Hourly average wind generation for different months representing different
seasons.

FIGURE 5. SOM geopotential heights together with frequency of SOM node occurrence over Southern Africa.

dominated by high pressure conditions. Such conditions are
associated with clear skies and more stable weather condi-
tions, and thus less variability over different timescales which
increases predictive skill.

C. EVALUATION OF PROBABILISTIC FORECASTS
Fig. 6 shows the day-ahead prediction intervals (10-90%)
together with the actual observations of aggregated wind
power generation on 30 March 2021 (which is reflective

of a ‘typical’ autumn day in South Africa). Note that for
Fig. 6 only clusters of wind power point forecasts were
used as the explanatory variables for illustration purposes.
It can be seen that only two observations (at 7h and 21h)
falls outside the 90% prediction intervals. The width of the
prediction intervals is time-varying with the actual observa-
tions as expected. To get a different view on these results,
Fig. 7 shows the aggregatedwind power generation predictive
densities at 1h, 8h, 14h and 20h on 30 March 2021. It can
be seen from Fig. 7 that the predictive densities are not only

116190 VOLUME 10, 2022



N. Mararakanye et al.: Incorporating Spatial and Temporal Correlations to Improve Aggregation

FIGURE 6. Day-ahead prediction intervals of aggregated wind power and actual observations on 30 March
2021 using clusters of point forecasts as explanatory variables.

FIGURE 7. Day-ahead predictive densities of the aggregated wind power generation at 1h, 8h, 14h
and 20h on 30 March 2021 using clusters of point forecasts as explanatory variables.

time-varying, but also multimodal and asymmetric (and thus
non-Gaussian).

Fig. 8 shows the reliability diagrams of the probabilistic
forecasts using the proposed model for different explana-
tory variables scenarios. In Fig. 8 (a), the empirical lev-
els are plotted against the nominal proportions while also
showing the desired line (where the empirical levels are
equal to the nominal proportions). It can be seen from
Fig. 8 (a) that results achieved from all considered sce-
narios aligns well with the desired line (indicating reliable

probabilistic forecasts). To conduct a comparative analysis
between considered scenarios, Fig. 8 (b) plots the errors
between empirical levels and desired outcomes, against the
nominal proportions. A general conclusion from Fig. 8 (b) is
that the ‘sum’ scenario produces better reliability results than
all other scenarios. In addition, the reliability of forecasts
seems to drop with the increase in explanatory variables
considered in a scenario. One possible explanation for this is
the bandwidths selection that becomesmore complex for high
number of explanatory variables. As seen through negative
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FIGURE 8. Reliability diagrams of prediction intervals provided by the proposed model for different combinations of explanatory variables.

TABLE 6. Skill score results for different explanatory variables scenarios.

reliability results, the proposed model tends to underestimate
the aggregated wind power generation for the ‘sum’ scenario.
For the rest of scenarios, the model tends to underestimate
the aggregated wind power generation when nominal pro-
portion is below 60% and overestimate for larger nominal
proportions.

Fig. 9 shows the sharpness results of prediction inter-
vals for different explanatory variables scenarios. It can be
seen that the ‘clusters + month of year’ scenario achieves
the best sharpness results (ranging between 2% and 20%)
while the ‘sum’ scenario achieves the worst sharpness results
(ranging between 2% and 28%). The results show a sig-
nificant improvement from the ‘sum’ scenario to the ‘clus-
ters’ scenario, followed by noticeable improvements from
the ‘clusters’ scenario to the rest of scenarios. This high-
lights the importance of considering spatial correlations,
larger atmospheric circulations, inter-hour and seasonal vari-
ations in aggregated wind power forecasting. However, good
sharpness results may lead to underestimation and overes-
timation of aggregated wind power uncertainty as deduced
from the reliability diagram in Fig. 8. Therefore, there is
a need for a trade-off between reliability and sharpness
depending on the specific requirements of the grid and its
customers.

Table 6 shows the skill score results for different combina-
tions of explanatory variables. It can be seen that the ‘clus-
ters + month of year’ scenario achieves the best skill score
(−0.148) while, the lowest skill score (−0.283) is achieved on

FIGURE 9. Sharpness results with different nominal coverage rates for
different combinations of explanatory variables.

‘sum’ scenario. The results show a significant improvement
from the ‘sum’ scenario to the ‘clusters’ scenario, followed
by smaller improvements from the ‘clusters’ scenario to the
rest of scenarios.

The results above show that taking into account the spatial
and temporal correlations through the proposed explanatory
variables also improves the accuracy of aggregated proba-
bilistic forecasts that can be derived from decentralized fore-
casts.
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V. CONCLUSION
This paper proposed explanatory variables that were used to
train the k-NN and conditional KDE models to derive day-
ahead aggregated point and probabilistic wind power fore-
casts from decentralized point forecasts of geographically
distributed wind farms. The proposed explanatory variables
include clusters of point forecasts (to account for spatial
correlations between wind farms), hour of day (to account for
diurnal cycles), month of year (to account for seasonal cycles)
and, atmospheric states (to account for correlations due to
large-scale atmospheric circulations). The main findings of
this paper can be summarized as follows:
• The results from the proposed approach showed a sig-
nificant improvement (47% less RMSE) as compared to
simply adding the decentralized point forecasts. There-
fore, the proposed well-known spatial and temporal cor-
relations as well as large-scale atmospheric circulations
can be effective in capturing some spatial and temporal
correlations that are not accounted for by simply adding
the decentralized forecasts.

• In the case study, the proposed approach performed bet-
ter in hours between 4h and 14h. One possible reason for
this can be that the variability of the wind power profile
between these hours is a function of diurnal surface heat-
ing and cooling, and this was incorporated by includ-
ing the hour of day feature in the proposed approach.
In addition, the autumn and winter wind power profiles
are comparatively flat throughout the day, which can
be a possible reason for the better performance of the
approach during these seasons. Furthermore, the pro-
posed approach performed better in SOM nodes that
tends to represent atmospheric circulation dominated by
high pressure conditions.

• The predictive densities obtained from the proposed
approach were shown to be non-Gaussian and time-
varying as expected given the time-varying nature
of wind uncertainty. The probabilistic forecasts from
the considered scenarios were relatively reliable (less
than 8% in error between empirical levels and desired
outcomes). However, the reliability of forecasts appears
to drop with the increase in explanatory variables
considered in a scenario. This can be due to band-
widths selection that becomes more complex in the pro-
posed KDE approach for a high number of explanatory
variables.

• The sharpness and skill score results showed a sig-
nificant improvement when the proposed explana-
tory variables were considered as compared to simply
adding decentralized forecasts. In addition, the month
of year feature produce slightly better sharpness and
skill scores compared to the hour of day and atmo-
spheric state features, which highlights the importance
of incorporating effects of seasonality in aggregated
forecasting.

The most significant contribution made by this paper is
in proposing an approach for incorporating some spatial and

temporal correlations to improve accuracy of aggregated fore-
casts derived from decentralized point forecasts. In addition,
knowing the hours, months, and atmospheric states under
which the proposed approach performs better together with
the derived predictive densities can be used as inputs to
operational processes such as stochastic unit commitment and
dynamic operating reserve allocation. This paper also demon-
strated a way in which large-scale atmospheric circulation
patterns can be incorporated into short-termwind power fore-
casting – which has been lacking in the literature. In future,
one can test the proposed methodology using ungrouped
wind data to see if there can be further improvements on the
results. In addition, more work needs to be done in terms of
bandwidths selection of high dimensional dataset in KDE-
based approaches.
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