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ABSTRACT Let p 6= 5 be any odd prime. Using the algebraic structures of all cyclic codes of length 5ps over
the finite commutative chain ringR = Fpm + uFpm , in this paper, the exact values of Hamming distances of
all cyclic codes of length 5ps over R are established. As an application, we identify all maximum distance
separable cyclic codes of length 5ps.

INDEX TERMS Constacyclic codes, cyclic codes, dual codes, chain rings, hamming distance, singleton
bound, MDS codes.

I. INTRODUCTION
The class of constacyclic codes is an important class of
linear codes in coding theory. Many optimal linear codes are
directly derived from constacyclic codes. Constacyclic codes
have practical applications as they are effective for encoding
and decoding with shift registers.

For a unit λ of Fpm , λ-constacyclic codes of length n over
Fpm are ideals of the ringRλ =

Fpm [x]
〈xn−λ〉 . The constacyclic codes

of length n over Fpm are said to be simple-root constacyclic
codes if gcd(n, p) = 1. Otherwise, the constacyclic codes
are said to be repeated-root constacyclic codes. In 1967, [4]
initiated the study of repeated-root constacyclic codes. After
that, many researchers studied repeated-root constacyclic
codes over finite fields [9], [35], [40], [43].

In 1994, [38] showed that Kerdock and Preparata codes can
be constructed from linear codes over Z4 via the Gray map.
After that, codes over finite chain rings received attention
because of their new role in algebraic coding theory and their
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successful applications. Since 2003, special classes of codes
over certain classes of finite chain rings have been studied by
numerous other authors (see, for example, [1], [5], [26], [45],
and [47]).

Linear and cyclic codes over the finite commutative chain
ring F2 + uF2, where u2 = 0 are studied in [3]. In general,
the class of finite rings of the form R = Fpm + uFpm
has been widely used as alphabets of certain constacyclic
codes. The classification of codes plays an important role in
studying their structures, but in general, it is very difficult.
In 2010, [12] classified all constacyclic codes of length ps

overR. In addition, in 2015, the authors of [30] studied nega-
cyclic codes of length 2ps over R. Moreover, the algebraic
structures of all λ-constacyclic codes of length 2ps over R
are determined in [10] and provided the number of codewords
and the dual of every λ-constacyclic code. In 2018, all nega-
cyclic and constacyclic codes of length 4ps overR are estab-
lished successfully in [21], [22], [23], and [24]. In 2020, [20]
studied all λ-constacyclic codes of length 3ps over R. After
that, some authors extended these problems to many more
general lengths and alphabets (see, e.g., [6] and [7]).
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However, till now very little amount of works on com-
putation of the Hamming distances have been done due
to computational complexity. In [14], Dinh obtained the
Hamming distances of all the cyclic codes of prime power
lengths over Fpm . Later, in [25] and [34], Dinh et al. computed
the Hamming distances of all constacyclic codes of lengths
3ps, 5ps over Fpm . In addition, Dinh [12] provided Hamming
distances of all (α + uβ)-constacyclic codes of prime power
lengths over R. Moreover, Dinh et al. [27] determined the
Hamming distances of all γ -constacyclic codes of prime
power lengths over R. In 2020, the Hamming distance of λ-
constacyclic codes of length 3ps over R is given in R [20],
where λ = α + uβ is not a cube.

Motivated from all these works, we compute Hamming
distance distribution for all cyclic codes of length 5ps overR.
As an application, we identify all theMDS codes among such
codes.

The rest of this paper is organized as follows.
Section 2 contains some basic definitions and preliminary
results about constacyclic codes of length 5ps over R.
In Section 3, we obtain the Hamming distances of cyclic
codes of length 5ps overR and identify all MDS cyclic codes
of length 5ps over R when p ≡ 2, 3 (mod 5). In Section 4,
we determine the Hamming distances and provide all MDS
codes for all cyclic codes of length 5ps over R, where p ≡ 1
(mod 5). In Section 5, we study the Hamming distances
for all cyclic codes of length 5ps over R when p ≡ 4
(mod 5). We also give all MDS cyclic codes among such
codes. In Section 6, we conclude the paper.

II. PRELIMINARIES
Let R = Fpm + uFpm (u2 = 0) be a finite chain ring. A code
C of length n over R is a non-empty subset of Rn. The code
C is said to be linear over R if it is an R-submodule of Rn.

Let λ ∈ R be a unit element and νλ be a map fromRn toRn

defined by

νλ(v0, v1, v2, . . . , vn−1) = (λvn−1, v0, v1, . . . , vn−2).

A linear code C is said to be a λ-constacyclic code overR if
νλ(C) = C . If λ = 1, then C is cyclic, and if λ = −1, then C
is negacyclic code overR.
Consider a code C of length n over R and let v =

(v0, v1, v2, . . . , vn−1) ∈ C be a codeword, then it can be
represented as the polynomial v(x) = v0 + v1x + v2x2 +
· · ·+vn−1xn−1 of the ringRλ =

R[x]
〈xn−λ〉 . Denote the Hamming

weight of v is denoted bywtH (v). ThenwtH (v) is given by the
total number of nonzero components of v, i.e.,

wtH (v) = |{j : vj 6= 0}|.

The smallest weight among all its nonzero codewords is the
minimum weight of the code C and is denoted by wtH (C).
The Hamming distance of the code C is denoted by dH(C)
and is defined as dH(C) = min{wtH (v)| v 6= 0, v ∈ C}.
The following result is one of the most important fact about
λ-constacyclic codes.

Proposition 2.1: [8] Let C be a linear code C of length n
over R. Then C is a λ-constacyclic code of length n over R
if and only if C is an ideal of the ringRλ =

R[x]
〈xn−λ〉 .

The ring R can be expressed as R = Fpm [u]
〈u2〉

= {a +
ub | a, b ∈ Fpm}. Over the last few years, in a series of papers,
Dinh et al. ( [20], [21], [22], [23], [24]) have done the job
of classifying classes of constacyclic codes of certain lengths
overR. In 2010, [12] gave the construction of all constacyclic
codes of ps length overR.
Theorem 2.2 (cf. [12]): Let λ be a unit of the ring R, i.e.,

λ is of the form α + uβ or γ , where 0 6= α, β, γ ∈ Fpm .
1) If λ = α + uβ, there exists 0 6= α0 ∈ Fpm
such that αp

s

0 = α. Then the ring R[x]
〈xps−(α+uβ)〉

is
a finite chain ring with maximal ideal 〈α0x − 1〉,
and 〈(α0x−1)p

s
〉 = 〈u〉. The (α+uβ)-constacyclic

codes of ps length overR are the ideals 〈(α0x−1)j〉,
0 ≤ j ≤ 2ps, of the finite chain ring R[x]

〈xps−(α+uβ)〉
.

2) If λ = γ ∈ Fpm \ {0}, there exists 0 6= γ0 ∈ Fpm
such that γ p

s

0 = γ. Then the ring
R[x]
〈xps−γ 〉

is a local
ring with the maximal ideal 〈u, x− γ0〉, but it is not
a chain ring. The γ -constacyclic codes of ps length
overR, i.e., ideals of the ring R[x]

〈xps−γ 〉
, are given by

four types.
• Type 1 are the trivial ideals, i.e.,
C = 〈0〉, C = 〈1〉. Number of
codewords in theses codes are 1 and p2mp

s

respectively.
• Type 2 are the principal ideals generated
by nonmonic polynomials, i.e., Cj =
〈u(x − γ0)j〉, where 0 ≤ j ≤ ps − 1. In this
case, |Cj| = pm(p

s
−j).

• Type 3 are the principal ideals generated
by monic polynomials, i.e., Cj = 〈(x −
γ0)j + u(x − γ0)th(x) 〉, where 1 ≤ j ≤
ps − 1, 0 ≤ t < j, and either h(x) is 0 or
h(x) is a unit in F[x]

〈xps−γ 〉
. In this case,

|Cj| =

• p
2m(ps−j), if 1 ≤ j ≤ ps−1 + b t2c

• pm(p
s
−t),

if ps−1 + b t2c < j ≤ ps − 1.

• Type 4 are the nonprincipal ideals, i.e.,
〈(x − γ0)j + u(x − γ0)th(x), u(x − γ0)κ 〉,
with h(x) as in Type 3, deg h(x) ≤ κ−t−1,
and κ < T , where T is the smallest integer
such that u(x − γ0)T ∈ 〈(x − γ0)j +
u(x − γ0)th(x) 〉; or equivalently, T = j,
if h(x) = 0, otherwise T = min{j, ps−j+
t}. The cardinality of C is given by
|C| = pm(2p

s
−j−κ).

Theorem 2.3: (cf. [10, Section 3])
(i) If λ is a square in R and λ = δ2, then it follows
from the Chinese Reminder Theorem that

<(2ps, λ) =
R[x]
〈x2ps − λ〉

∼=
R[x]
〈xps + δ〉

⊕
R[x]
〈xps − δ〉

= <(ps,−δ)⊕<(ps, δ).
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It means that any λ-constacyclic code of length 2ps

over R, i.e., an ideal C of <(2ps, λ), is represented
as a direct sum of C+ and C−: C = C+ ⊕
C−, where C+ and C− are ideals of <(ps,−δ)
and <(ps, δ), respectively. Thus, the classification,
detailed structure, and number of codewords of
constacyclic codes C of length 2ps over R can
be obtained from that of the direct summands
C+ and C−.
(ii) If λ is not a square in R, and λ = α + uβ,
α, β ∈ F∗pm , let α

ps

0 = α, then the ring <(2ps, α +
uβ) = R[x]

〈x2ps−(α+uβ)〉
is a chain ring whose ideals are

〈1〉 ) 〈x2 − α0〉 ) · · · ) 〈(x2 − α0)2p
s
−1
〉 )〉

= 〈0〉.

In other words, (α + uβ)-constacyclic codes of
length 2ps over R are precisely the ideals 〈(x2 −
α0)i〉 ⊆ <(2ps, α + uβ), where 0 ≤ i ≤ 2ps.
Each (α + uβ)-constacyclic code C = 〈(x2 −
α0)i〉 has p2m(2p

s
−i) codewords, its dual C⊥ is the

(α−1 − uα−2β)-constacyclic code

C⊥ =
〈
(x2 − α−10 )2p

s
−i
〉
⊆ <(2ps, α−1 − uα−2β),

which contains p2mi codewords.Moreover, the ideal
〈u〉<(2ps,α+uβ) is the unique self-dual (α + uβ)-
constacyclic code of length 2ps overR.
(iii) If λ is not a square inR and λ = γ ∈ F∗pm , then
γ -constacyclic codes are classified by categorizing
the ideals of the local ring<(2ps, γ ) = R[x]

〈x2ps−γ 〉
into

4 distinct types, where γ p
s

0 = γ .
• Type 1 (trivial ideals): 〈0〉, 〈1〉.
• Type 2 (principal ideals with nonmonic
polynomial generators):

〈
u(x2 − γ0)i

〉
,

where 0 ≤ i ≤ ps − 1.
• Type 3 (principal ideals with monic
polynomial generators):〈

(x2 − γ0)i + u(x2 − γ0)th(x)
〉
,

where 1 ≤ i ≤ ps−1, 0 ≤ t < i, and either
h(x) is 0 or h(x) is a unit in<(2ps, γ ) which
can be represented as h(x) =

∑
j(h0jx +

h1j)(x2 − γ0)j, with h0j, h1j ∈ Fpm , and
h00x + h10 6= 0.
• Type 4 (nonprincipal ideals):〈
(v(x))i + u(v(x))th(x), u(v(x))ω

〉
, with

v(x) = x2 − γ0, and h(x) as in Type 3,
deg h(x) ≤ ω − t − 1, and ω < T , where
T is the smallest integer such that u(x2 −
γ0)T ∈ 〈(x2−γ0)i+u(x2−γ0)th(x)〉; i.e.,
such T can be determined as

T =

{
i, if h(x) = 0
min{i, ps − i+ t}, if h(x) 6= 0 .

Furthermore, the number of distinct γ -constacyclic
codes of length 2ps over R, i.e., distinct ideals of

the ring <(2ps, γ ), is 2(p2m+1)pm(p
s
−1)
−2p4m−2

(p2m−1)2

+
(2p2m+3)pm(p

s
−1)
−2ps−1

p2m−1
+ pm(p

s
−1)
+ 2.

When γ ∈ F∗pm , it is easy to see that for any γ -constacyclic
code C of length 2ps over R, its residue code Res(C) and
torsion code Tor(C) are γ -constacyclic codes of length 2ps

over Fpm , respectively. By [16], each γ -constacyclic code of
length 2ps over Fpm is an ideal of the form 〈(x2− γ0)i〉 of the
finite chain ring

Fpm [x]
〈x2ps−γ 〉

, where 0 ≤ i ≤ ps, and each code

〈(x2 − γ0)i〉 contains p2m(p
s
−i) codewords. Therefore, we can

determine the size of all γ -constacyclic codes of length 2ps

over R in Theorem 2.3 by multiplying the sizes of Res(C)
and Tor(C) in each case.
Theorem 2.4 (cf. [10, Section 3]): Let γ ∈ F∗pm

and C be a γ -constacyclic code of length 2ps over R in
Theorem 2.3, then the number of codewords of C , denoted
by nC , is determined as follows.

• If C = 〈0〉, then nC = 1.
• If C = 〈1〉, then nC = p4mp

s
.

• If C = 〈u(x2 − γ0)i〉, where 0 ≤ i ≤ ps − 1, then
nC = p2m(p

s
−i).

• If C = 〈(x2 − γ0)i〉, where 1 ≤ i ≤ ps − 1, then
nC = p4m(p

s
−i).

• If C = 〈(x2 − γ0)i + u(x2 − γ0)th(x)〉, where
1 ≤ i ≤ ps − 1, 0 ≤ t < i, and h(x) is a unit, then

nC =

{
p4m(p

s
−i), if 1 ≤ i ≤ ps−1 + t

2
p2m(p

s
−i), if ps−1 + t

2 < i ≤ ps − 1
.

• If C = 〈(x2−γ0)i+u(x2−γ0)th(x), u(x2−γ0)κ 〉,
where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, either h(x) is 0 or
h(x) is a unit, and

κ < T =

{
i, if h(x) = 0
min{i, ps − i+ t}, if h(x) 6= 0 ,

then nC = p2m(2p
s
−i−κ).

It is well-known from Proposition 2.2 that cyclic codes
of length 5ps over R are ideals of the ring R1 =

R[x]
〈x5ps−1〉

.

We see that x5 − 1 = (x − 1)
(
x4 + x3 + x2 + x + 1

)
.

Let ξ be a primitive (pm − 1)th root of unity, so that
Fpm = {0, ξ, ξ2, . . . , ξp

m
−2, ξp

m
−1
= 1}. Assume that

pm ≡ 1 (mod 5), where m is a positive integer. This
means that pm ≡ 1 (mod 10) and pm ≡ 1 (mod 2).

Hence, ξ
pm−1

2 = −1. We see that (−ξ
(pm−1)

10 )5 = 1, i.e.,
−ξ

(pm−1)
10 is a root of the equation x5 − 1 = 0. Similar to

−ξ
(pm−1)

10 , it is easy to see that−ξ
3(pm−1)

10 ,−ξ
7(pm−1)

10 ,−ξ
9(pm−1)

10

are also roots of the equation x5 − 1 = 0. Then the
equation x5 − 1 = 0 has five distinct roots in R. They

are 1,−ξ
(pm−1)

10 ,−ξ
3(pm−1)

10 ,−ξ
7(pm−1)

10 ,−ξ
9(pm−1)

10 . Put γ2 =

−ξ
(pm−1)

10 , γ3 = −ξ
3(pm−1)

10 , γ4 = −ξ
7(pm−1)

10 , and γ5 =

−ξ
9(pm−1)

10 . Then (x4 + x3 + x2 + x + 1)p
s
can express as
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follows:

(x4 + x3 + x2 + x + 1)p
s
=

(
xp

s
− γ

ps

2

) (
xp

s
− γ

ps

3

)
×

(
xp

s
− γ

ps

4

) (
xp

s
− γ

ps

5

)
.

This implies that

x5p
s
− 1 =

(
x5 − 1

)ps
=

(
xp

s
− 1

) (
xp

s
− γ

ps

2

) (
xp

s
− γ

ps

3

)
×

(
xp

s
− γ

ps

4

) (
xp

s
− γ

ps

5

)
.

By Chinese Reimainder Theorem, we have

R1 =
R [x]
〈x5ps − 1〉

∼=
R [x]
〈(xps − 1)〉

⊕ R [x]

〈(xps − γ p
s

2 )〉

⊕ R [x]

〈(xps − γ p
s

3 )〉⊕ R [x]

〈(xps − γ p
s

4 )〉

⊕ R [x]

〈(xps − γ p
s

5 )〉
∼= R+

⊕
Rγ2

⊕
Rγ3

⊕
Rγ4

⊕
Rγ5 ,

where R+ =
R[x]
〈(xps−1)〉

and Rγi =
R[x]

〈(xps−γ p
s

i )〉
(i = 2, 3, 4, 5). Hence, ideals of R1 are of the form
C1
⊕

C2
⊕

C3
⊕

C4
⊕

C5, where C1 is a cyclic code of
length ps over R and Ci is a γi-constacyclic code of length
ps overR (i = 2, 3, 4, 5). Then the algebraic structures of all
constacyclic codes of length ps over R studied in [12] allow
us to determine the algebraic structure of all cyclic codes
of length 5ps over R when p ≡ 1 (mod 5). In [12], Dinh
determined the number of codewords in each constacyclic
code of length ps overR. Therefore, the number of codewords
in each cyclic code of length 5ps over R can be obtained.
Then we have the following theorem.
Theorem 2.5: Let C be a cyclic code of length 5ps overR.

Then

C = C1

⊕
C2

⊕
C3

⊕
C4

⊕
C5,

where C1 is a cyclic code, C2 is a γ2-constacyclic
code, C3 is a γ3-constacyclic code, C4 is a γ4-
constacyclic code, C5 is a γ5-constacyclic code of length
ps over R. Moreover, |C| = |C1||C2||C3||C4||C5| and
C⊥ = C⊥1

⊕
C⊥2

⊕
C⊥3

⊕
C⊥4

⊕
C⊥5 .

We see that x5 − 1 can be expressed as x5 − 1 = (x −
1)(x4+ x3+ x2+ x+ 1). Assume that (x4+ x3+ x2+ x+ 1)
is reducible over Fpm . Then there exists α ∈ Fpm such that
α4 + α3 + α2 + α + 1 = 0. This implies that α5 − 1 = 0,
i.e., α5 = 1. From p 6= 5, we have α 6= 1. Since p ≡ 2
(mod 5) or p ≡ 3 (mod 5) (pm 6≡ 1 (mod 5)), the order of
the multiplicative group of Fpm is not divisible by 5. It follows
that α 6∈ Fpm , which is a contradiction. Therefore, (x4+ x3+
x2 + x + 1) is irreducible over Fpm . Assume that (x4 + x3 +
x2 + x + 1) is reducible over R. Then there exists η ∈ R
satisfying η4 + η3 + η2 + η+ 1 = 0, where η = λ+ uβ and
λ, β ∈ Fpm . Since η4+η3+η2+η+1 = 0, we have η5 = 1.

Hence, we have β = 0. This implies that η = λ ∈ Fpm .
Hence, λ4 + λ3 + λ2 + λ + 1 = 0, which is a contradiction
because (x4+x3+x2+x+1) is irreducible over Fpm . It means
that the polynomial (x4+ x3+ x2+ x+ 1) is irreducible over
R. We have the following result.
Theorem 2.6: Let C be a cyclic code of length 5ps overR.

Then cyclic codes of length 5ps overR can be represented as
C = C1

⊕
C2, where C1 is an ideal of the ring

R[x]
〈xps−1〉

which

is determined in [12] and C2 is an ideal of the ring
R[x]
〈(t(x))ps 〉

,

where t(x) = x4 + x3 + x2 + x + 1. Ideals of R[x]
〈(t(x))ps 〉

are

• Type 1: (trivial ideals)

〈0〉, 〈1〉.

• Type 2: (principal ideals with nonmonic polyno-
mial generators) 〈

u(t(x))i
〉
,

where 0 ≤ i ≤ ps − 1.
• Type 3: (principal ideals with monic polynomial
generators) 〈

(t(x))i + u(t(x))th(x)
〉
,

where 1 ≤ i ≤ ps − 1, 0 ≤ t < i, and either h(x)
is 0 or h(x) is a unit which can be represented as
h(x) =

∑
j(h3jx

3
+ h2jx2 + h1jx + h0j)(t(x))j, with

h3j, h2j, h1j, h0j ∈ Fpm , and h30x3+ h20x2+ h10x+
h00 6= 0.
• Type 4: (nonprincipal ideals)〈

(t(x))i + u
ω−1∑
j=0

(v(x))(t(x))j, u(t(x))ω
〉
,

where v(x) = ajx3 + bjx2 + cjx + dj, 1 ≤ i ≤
ps − 1, aj, bj, cj, dj ∈ Fpm , and ω < T , where T is
the smallest integer such that

u(t(x))T ∈ 〈(t(x))i + u
i−1∑
j=0

(v(x))(t(x))j〉;

or equivalently,〈
(t(x))i + u(t(x))th(x), u(t(x))ω

〉
,

with h(x) as in Type 3, and deg h(x) ≤ ω − t − 1.

In addition, the enumeration of elements in each ideal of the
ring R[x]

〈(t(x))ps 〉
is given as follows. Let I be an ideal of the ring

R[x]
〈(t(x))ps 〉

. Then the numbers of elements of I , denoted by nI is
determined as follows.

• If I = 〈0〉, then nI = 1.
• If I = 〈1〉, then nI = p8mp

s
.

• If I = 〈u(t(x))i〉, where 0 ≤ i ≤ ps − 1, then
nI = p4m(p

s
−i).

• If I = 〈(t(x))i〉, where 1 ≤ i ≤ ps − 1, then
nI = p8m(p

s
−i).
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• If I = 〈(t(x))i + u(t(x))th(x)〉, where 1 ≤ i ≤
ps − 1, 0 ≤ t < i, and h(x) is a unit, then

nI =

{
p8m(p

s
−i), if 1 ≤ i ≤ ps−1 + t

2
p4m(2p

s
−i−T ), if ps−1 + t

2 < i ≤ ps − 1
.

• If I = 〈(t(x))i+u(t(x))th(x), u(t(x))κ 〉, where 1 ≤
i ≤ ps − 1, 0 ≤ t < i, either h(x) is 0 or h(x) is a
unit, and

κ < T =

{
i, if h(x) = 0
min{i, ps − i+ t}, if h(x) 6= 0 ,

then nI = p4m(2p
s
−i−κ).

When p ≡ 4 (mod 5), we consider the map 21 :
R[x]

〈(x2+(1−γ )2−1x+1)ps 〉
→

R[x]
〈(x2+(5+γ )2−3)ps 〉

defined by f (x) →

f (x − (1 − γ )2−2). For polynomials f (x), g(x) ∈ R [x],
then f (x) ≡ g(x) (mod

(
x2 + (1− γ ) 2−1x + 1

)ps
) if and

only if there exists q(x) ∈ R [x] such that f (x) − g(x) =
q(x)

((
x2 + (1− γ ) 2−1x + 1

)ps)
. Put α = 1 − γ . Then we

have

f (x − (α) 2−2)− g(x − (α) 2−2)

= q
(
x − (α) 2−2

) [(
x − (α) 2−2

)2
+ (α) 2−1

(
x − (α) 2−2

)
+ 1

]ps
= q

(
x − (α) 2−2

) [
x2 − (α)2 2−4 + 1

]ps
= q

(
x − (1− γ ) 2−2

) [
x2 − (6− 2γ ) 2−4 + 1

]ps
= q

(
x − (1− γ ) 2−2

) (
x2 + (5+ γ ) 2−3

)ps
.

This implies that f (x − (1 − γ )2−2) ≡ g(x − (1 −
γ )2−2 (mod (x2 + (5 + γ )2−3)p

s
). Hence, 21(f (x)) =

21(g(x)) in
R[x]

〈(x2+(5+γ )2−3)ps 〉
if and only if f (x) ≡ g(x) in

R[x]
〈(x2+(1−γ )2−1x+1)ps 〉

. Therefore, 21 is well-defined and one-
to-one. It is easy to see that 21 is onto and 21 is a ring
homomorphism. It means that 21 is a ring isomorphism.
Similar to the map 21, we consider the map 22 :

R[x]
〈(x2+(1+γ )2−1x+1)ps 〉

→
R[x]

〈(x2−(γ−5)2−3)ps 〉
defined by f (x) →

f (x − (1 + γ )2−2). Then we can prove that 22 is a ring
isomorphism. The algebraic structures of all constacyclic
codes of lengths ps, 2ps overR studied in [10] and [12] allow
us to determine the algebraic structure of all cyclic codes of
length 5ps over R. Moreover, [12] and [10] determined the
number of codewords in each constacyclic code of lengths
ps, 2ps over R. Therefore, the number of codewords in each
cyclic code of length 5ps over R can be obtained in the
following theorem.
Theorem 2.7: If C is a cyclic code of length 5ps over

R, then C can be represented as C = C+
⊕

Cα1
⊕

Cα2 ,
where C+ is a cyclic code of length ps over R, Cα1 is an
α1-constacyclic code and Cα2 is an α2-constacyclic code of
length 2ps over R. Moreover, |C| = |C+||Cα1 ||Cα2 | and

C⊥ = C⊥+
⊕

C⊥α1
⊕

C⊥α2 . In particular, C = 〈u〉 is a self-
dual cyclic code of length 5ps overR.
The Hamming distance of all λ-constacyclic codes of

length ps overR is given in the following theorem.
Theorem 2.8 ([12], [19], [28]): Let C be a λ-constacyclic

code of length ps over R. Then Hamming distance of all λ-
constacyclic codes C is determined as follows.

1) [12] If λ = α + uγ , then C =

〈(α0x−1)i〉 ⊆ R[x]
〈xps−(α+uγ )〉

, for i ∈ {0, 1, . . . , 2ps},
and the Hamming distance dH(C) is completely
determined by

dH(C)

=



• 1, if 0 ≤ j ≤ ps

• (δ + 1)pk ,
if 2ps − ps−k + (δ − 1)ps−k−1 + 1 ≤ j
and j ≤ 2ps − ps−k + δps−k−1

where 1 ≤ δ ≤ p− 1,
and 0 ≤ k ≤ s− 1
• 0, if j = 2ps.

2) ( [19, Theorem 3.2] and [28, Appendix]) If
λ ∈ Fpm \ {0}, the λ-constacyclic codes of length
ps over R, i.e., ideals of the ring R[x]

〈xps−λ〉
have

their Hamming distances completely determined as
follows.
• Type 1 (trivial ideals): 〈0〉, 〈1〉; dH(〈0〉) = 0,
dH(〈1〉) = 1.
• Type 2 (principal ideals with nonmonic
polynomial generators):
C = 〈u(x − λ0)j〉, where 0 ≤ j ≤ ps − 1. Then
dH(C) = dH(〈(x − λ0)j〉F ) and

dH(C) =



• 1, if j = 0
• (δ + 1)pk ,
if ps − ps−k + (δ − 1)ps−k−1 + 1 ≤ j
and j ≤ ps − ps−k + δps−k−1

where 1 ≤ δ ≤ p− 1,
and 0 ≤ k ≤ s− 1

• Type 3 (principal ideals with monic polynomial
generators): C3 =

〈
(x − λ0)j + u(x − λ0)th(x)

〉
,

where 1 ≤ j ≤ ps − 1, 0 ≤ t < j, and either
h(x) is 0 or h(x) is a unit in

Fpm [x]
〈xps−λ〉

, where 1 ≤
T ≤ i ≤ ps − 1, 0 ≤ t < T , either h(x) is 0 or
h(x) is a unit and T is the smallest integer satisfying
u(x − λ0)T ∈ C3, i.e.,

T =

{
j, if h(x) = 0
min{j, ps − j+ t}, if h(x) 6= 0

.

Then dH(C3) = dH(〈(x − λ0)T 〉F ).
Moreover,
(a) If h(x) is 0 or h(x) is a unit and 1 ≤ j ≤ ps+t

2 ,
then

dH(C3) = dH(〈(x − λ0)j〉F )

= (δ + 1)pk ,
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where ps − pr + (δ − 1)r + 1 ≤ j ≤ ps − pr + δr,
1 ≤ δ ≤ p− 1, r = ps−k−1, and 0 ≤ k ≤ s− 1.
(b) If h(x) is a unit and ps+t

2 < j ≤ ps − 1, then

dH(C3) = dH(〈(x − λ0)p
s
−j+t
〉F )

= (δ + 1)pk ,

where t + pr − δr ≤ j ≤ t + pr − (δ − 1)r − 1,
1 ≤ δ ≤ p− 1, and 0 ≤ k ≤ s− 1.
• Type 4 (nonprincipal ideals):
C =

〈
(x − λ0)j + u(x − λ0)th(x), u(x − λ0)κ

〉
,

with h(x) as in Type 3, deg(h) ≤ κ − t − 1, and
κ < T , where T is the smallest integer such that
u(x − λ0)T ∈

〈
(x − λ0)j + u(x − λ0)th(x)

〉
; i.e.,

such T can be determined as

T =

{
j, if h(x) = 0
min{i, ps − j+ t}, if h(x) 6= 0.

Then

dH(C) = dH(〈(x − λ0)κ 〉F ) = (δ + 1)pk ,

where ps − ps−k + (δ − 1)ps−k−1 + 1 ≤ κ ≤ ps −
ps−k+δps−k−1, 1 ≤ δ ≤ p−1, and 0 ≤ k ≤ s−1.

The Hamming distance of all non-trivial cyclic codes of
length 5ps over Fpm which are of the form (x − 1)i(x4+ x3+
x2 + x + 1)j is given in the following theorem.
Theorem 2.9: [34, Theorem 5.16] Assume that 0 ≤

β0, β1 ≤ p−2, and 0 ≤ τ1 ≤ τ0 ≤ s−1. Let 0 ≤ i ≤ j ≤ ps.
Then the codes C =

〈
(x − 1)i(x4 + x3 + x2 + x + 1)j

〉
have

the following Hamming distances:

dH(C) =



•1, if i = j = 0,
•2, if i = 0 and 0 < j ≤ ps−1,
•3, if i = 0 and ps−1 < j ≤ 2ps−1,
•4, if i = 0 and 2ps−1 < j ≤ 3ps−1,
•5, if i = 0 and 3ps−1 < j ≤ ps,
•min{(β0 + 2)pτ0 , 5(β1 + 2)pτ1},
if ps − ps−τ0 + β0ps−τ0−1 + 1 ≤ i
and i ≤ ps − ps−τ0 + (β0 + 1)ps−τ0−1,
ps − ps−τ1 + β1ps−τ1−1 + 1 ≤ j
and j ≤ ps − ps−τ1 + (β1 + 1)ps−τ1−1,
•5(β1 + 2)pτ1 ,
if j = ps,
ps − ps−τ1 + β1ps−τ1−1 + 1 ≤ i
and j ≤ ps − ps−τ1 + (β1 + 1)ps−τ1−1,
•0, if i = j = ps.

In [42], the Hamming distance of cyclic codes of length
2ps over Fpm is studied. Using Theorem 2 (Table 1) in [42],
the Hamming distance of cyclic codes of length 2ps over Fpm
when 0 ≤ i = j ≤ ps is determined as follows.
Theorem 2.10: [42, Theorem 2] Let p be an odd prime, and

m, s, τ be intergers. The cyclic codes Ci,i of length 2ps over

Fpm are of the form Ci,i = 〈(x2 − 1)i〉 for i = 0, 1, · · · , ps.
Then the Hamming distance dH(Ci,i) is determined by:

dH(Ci,i) =



•1, if i = 0
•(γ + 1)pe1 ,
if ps − ps−e1 + γ ps−e1−1 + 1 ≤ i
and i ≤ ps − ps−e1 + (γ + 1)ps−e−1

where 0 ≤ γ ≤ p− 2, and 0 ≤ e1 ≤ s− 1
•0, if i = ps.

In 1998, the Singleton bound for finite chain ring R with
respect to the Hamming distance dH(C) is given in [41].
We review it as follows.
Theorem 2.11(Singleton Bound With Respect to Hamming

Distance): [41] Let C be a linear code of length n over R
with Hamming distance dH(C). Then |C| ≤ p2m(n−dH(C)+1).
In addition, C is said to be a maximum distance separable
(MDS) code with respect to the Hamming distance if
|C| = |R|n−dH(C)+1.

In this paper, the Hamming distances of cyclic codes of
length 5ps over R are given in the following table.

III. HAMMING DISTANCES AND MDS CODES OF CYCLIC
CODES OF LENGTH 5ps OVER R WHEN p ≡ 2, 3 (mod 5)
It is well-known that Fpm is a subring of R. From now on,
we denote dH(CF ) as the Hamming distance of the code C
over Fpm . For each codeword c = (c0, c1, c2, · · · , cn−1)
over R, the polynomial representation of c(x) is given by
c(x) = ã(x) + ub̃(x), where ã(x), b̃(x) are two arbitrary
polynomials over Fpm , with corresponding codewords ã =
(ã0, ã1, ã2, · · · , ãn−1) and b̃ = (b̃0, b̃1, b̃2, · · · , b̃n−1) over
Fpm , respectively. As ci = ãi + ub̃i, ci = 0 if and
only if ãi = b̃i = 0. It implies that wtH(c(x)) ≥
max{wtH(ã(x)),wtH(b̃(x))}.
Throughout this section, we denote x4 + x3 +

x2 + x + 1 = α(x). By Theorem 2.6, the structure of cyclic
codes of length 5ps over R when p ≡ 2 or 3 (mod 5) is
provided. In order to compute theHamming distance of cyclic
codes of length 5ps over R when p ≡ 2 or 3 (mod 5),
we need to determine the Hamming distance for each type
of ideals of R[x]

〈(α(x))ps 〉
one by one. Obviously, the Hamming

distances of the trivial ideals 〈0〉, 〈1〉 are given by 0 and 1,
respectively.

The Hamming distance of ideals of Type 2 of R[x]
〈(α(x))ps 〉

can
be determined in the following result.
Theorem 3.1: Let C = 〈u(α(x))j〉, 0 ≤ j ≤ ps − 1 be an

ideal of Type 2 of R[x]
〈(α(x))ps 〉

. Then dH(C) = dH(〈(α(x))j〉F ),
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and dH(C) is given by

dH(C) =



•1, if i = j = 0,
•2, if i = 0 and 0 < j ≤ ps−1,
•3, if i = 0 and ps−1 < j ≤ 2ps−1,
•4, if i = 0 and 2ps−1 < j ≤ 3ps−1,
•5, if i = 0 and 3ps−1 < j ≤ ps.

Proof:We consider the following two cases:
Case 1: If j = 0, then dH(C) = 1.
Case 2: If ps − ps−ς + (δ − 1)ps−ς−1 + 1 ≤ j ≤ ps −

ps−ς + δps−ς−1, the codewords of the code C = 〈u(α(x))j〉
are exactly same as the codewords of the constacyclic codes
〈(α(x))j〉 in

Fpm [x]
〈(α(x))ps 〉

multiplied by u, where 0 ≤ j ≤

ps − 1. Hence, we have dH(C) = dH(〈(α(x))j〉F ). Using
Theorem 2.9,

dH(C) =



•1, if i = j = 0,
•2, if i = 0 and 0 < j ≤ ps−1,
•3, if i = 0 and ps−1 < j ≤ 2ps−1,
•4, if i = 0 and 2ps−1 < j ≤ 3ps−1,
•5, if i = 0 and 3ps−1 < j ≤ ps,

completing our proof. �
Next, we discuss the Hamming distance of ideals

of Type 3 of R[x]
〈(α(x))ps 〉

.

Theorem 3.2: Let C = 〈(α(x))j+ u(α(x))tv(x)〉 be an ideal
of Type 3 of R[x]

〈(α(x))ps 〉
, where 1 ≤ j ≤ ps − 1, 0 ≤ t < j

and either v(x) is a unit in R[x]
〈(α(x))ps 〉

or 0. Then, we have

dH(C) = dH(〈(α(x))R〉F ), where R is the smallest integer
satisfying u(α(x))R ∈ 〈(α(x))j + u(α(x))tv(x)〉 and

R =

{
j, if v(x) = 0
min{j, ps − j+ t}, if v(x) 6= 0.

Moreover,
(1) If v(x) is 0 or v(x) is a unit and 1 ≤ j ≤ ps+t

2 , then

dH(C) =



•1, if i = j = 0,
•2, if i = 0 and 0 < j ≤ ps−1,
•3, if i = 0 and ps−1 < j ≤ 2ps−1,
•4, if i = 0 and 2ps−1 < j ≤ 3ps−1,
•5, if i = 0 and 3ps−1 < j ≤ ps.

(2) If v(x) is a unit and ps+t
2 < j ≤ ps − 1, then

dH(C) =



•1, if i = j = 0,
•2, if i = 0 and ps − ps−1 + t < j ≤ ps + t ,
•3, if i = 0 and ps − 2ps−1 + t < j
and j ≤ ps − ps−1 + t ,
•4, if i = 0 and ps − 3ps−1 + t < j
and j ≤ ps − 2ps−1 + t ,
•5, if i = 0 and t < j ≤ ps − 3ps−1 + t .

Proof. Since R is the smallest integer satisfying u(α(x))R ∈
〈(α(x))j + u(α(x))tv(x)〉, therefore we have,

dH(C) ≤ dH(〈u(α(x))R〉)

= dH(〈(α(x))R〉F ).

This implies that dH(C3) ≤ dH(〈(α(x))R〉F ). Now, let us
take an arbitrary polynomial c(x) ∈ C . So, there exist two
polynomials f0(x) and fu(x) over Fpm satisfying

c(x) = [t(x)][(α(x))j + u(α(x))tv(x)]

= f0(x)(α(x))j + u[f0(x)(α(x))tv(x)+ fu(x)(α(x))j],

where t(x) = f0(x)+ ufu(x). Now, we consider two cases:
Case 1:When v(x) = 0, then we have

wtH(c(x)) ≥ max
{
wtH(f0,λ1 (x)),wtH(fu,λ1 (x))

}
≥ max

{
wtH(f0,λ1 (x)),wtH(f0,λ1 (x))

}
≥ dH(〈(α(x))j〉F ),

= dH(〈(α(x))R〉F ),

where f0,λ1 (x) = f0(x)(α(x))j and fu,λ1 (x) = fu(x)(α(x))j.

Case 2:When v(x) 6= 0, then we have

wtH(c(x)) ≥ max
{
wtH(f0,λ1 (x)),wtH(h(x))

}
≥ max

{
wtH(f0,λ1 (x)),wtH(f0(x)(α(x))

ps−j+t )
}

≥ dH(〈(α(x))min{j, ps−j+t}
〉F ),

= dH(〈(α(x))R〉F ),

where f0,λ1 (x) = f0(x)(α(x))j, and h(x) = f0(x)(α(x))tv(x) +
fu(x)(α(x))j. Hence, by combining both the cases, we get
dH(〈(α(x))R〉F ) ≤ dH(C), which implies that,
dH(〈(α(x))R〉F ) = dH(C).
If v(x) is 0 or v(x) is a unit and 1 ≤ j ≤ ps+t

2 , we have

dH(C) =



•1, if i = j = 0,
•2, if i = 0 and 0 < j ≤ ps−1,
•3, if i = 0 and ps−1 < j ≤ 2ps−1,
•4, if i = 0 and 2ps−1 < j ≤ 3ps−1,
•5, if i = 0 and 3ps−1 < j ≤ ps.

If v(x) is a unit and ps+t
2 < j ≤ ps − 1, then

dH(C) =



•1, if i = j = 0,
•2, if i = 0 and ps − ps−1 + t < j ≤ ps + t ,
•3, if i = 0, ps − 2ps−1 + t < j
and j ≤ ps − ps−1 + t ,
•4, if i = 0, ps − 3ps−1 + t < j
and j ≤ ps − 2ps−1 + t ,
•5, if i = 0 and t < j ≤ ps − 3ps−1 + t .

�
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We compute the Hamming distance of ideals of Type 4
of R[x]
〈(α(x))ps 〉

.

Theorem 3.3: Let C = 〈(α(x))j + u(α(x))tv(x), u(α(x))ω〉
be an ideal of Type 4 of R[x]

〈(α(x))ps 〉
, where v(x) is same as given

in Type 3, deg(v) ≤ ω − t − 1, ω < R, and R is the smallest
integer such that u(α(x))R ∈ 〈(α(x))j + u(α(x))tv(x)〉, i.e.,
R = j, if v(x) = 0 and otherwise R = min{j, ps− j+ t}. Then,
we have dH(C) = dH(〈(α(x))ω〉F ), and

dH(C) =


•1, if i = j = 0,
•2, if i = 0 and 0 < ω ≤ ps−1,
•3, if i = 0 and ps−1 < ω ≤ 2ps−1,
•4, if i = 0 and 2ps−1 < ω ≤ 3ps−1,
•5, if i = 0 and 3ps−1 < ω ≤ ps.

Proof: It is easy to see that C = 〈(α(x))j +
u(α(x))tv(x), u(α(x))ω〉 ⊇ 〈u(α(x))ω〉 ⊇ 〈u(α(x))j〉, since
ω < R ≤ j. Therefore, dH(C) ≤ dH(〈u(α(x))ω〉) =
dH(〈(α(x))ω〉F ). To prove that dH(〈(α(x))ω〉F ) ≤ dH(C),
we take an arbitrary polynomial c(x) ∈ C and proceed to
show that wtH(c(x)) ≥ dH(〈(α(x))ω〉F ). Now, there exist
polynomials f0(x), fu(x), g0(x) and gu(x) over Fpm such that

c(x) = [f0(x)+ ufu(x)]

× [(α(x))j+u(α(x))tv(x)+u(α(x))ω][g0(x)+ ugu(x)]

= f0(x)(α(x))j + u[f0(x)(α(x))tv(x)]+ ufu(x)(α(x))j

+ ug0(x)(α(x))ω

= f ′0(x)(α(x))
ω
+ u[f0(x)(α(x))tv(x)+ g′0(x)(α(x))

ω],

where f ′0(x) = f0(x)(α(x))j−ω ∈ Fpm [x], g′0(x) =

fu(x)(α(x))j−ω + g0(x) ∈ Fpm [x]. Hence,

wtH(c(x)) ≥ max
{
wtH(a(x)),wtH(h′(x))

}
≥ max {wtH(a(x)),wtH(a(x))}

≥ dH(〈(α(x))ω〉F ),

where a(x) = f ′0(x)(α(x))
ω) and h′(x) = f0(x)(α(x))tv(x) +

g′0(x)(α(x))
ω. It implies that dH(C) = dH(〈(α(x))ω〉F ). Hence

dH(C) =


•1, if i = j = 0,
•2, if i = 0 and 0 < ω ≤ ps−1,
•3, if i = 0 and ps−1 < ω ≤ 2ps−1,
•4, if i = 0 and 2ps−1 < ω ≤ 3ps−1,
•5, if i = 0 and 3ps−1 < ω ≤ ps.

�
Applying Theorems 3.1-3.3, we give the Hamming dis-

tance of λ-constacyclic codes of length 5ps over R when
p ≡ 2, 3 (mod 5).
Theorem 3.4: Let C = C1 ⊕ C2 be a non-zero cyclic code

of length 5ps over R as in Theorem 2.4. Then the Hamming
distances dH(C) = min{dH(C1), dH(C2)}, where C1 6= 〈0〉
and C2 6= 〈0〉.
Proof: Without loss of generality, assume that dH(C1) =

d1 = min{dH(C1), dH(C2)} (that means C1 6= 〈0〉). Let d be
the Hamming distance of C = C1 ⊕ C2. Let c1 be a non-
zero codeword of minimum weight in C1, i.e., d1 = wtH(c1).
Since (c1, 0) ∈ C and wtH(c1, 0) = d1, we have d ≤ d1. Let

z = (z1, z2) be an arbitrary non-zero codeword in C1 ⊕ C2.
If z1 6= 0, then wtH(z) = wtH(z1) + wtH(z2) ≥ wtH(z1) ≥
d1. Thus, d ≥ d1 when z1 6= 0. If z1 = 0, then z2 6= 0.
Since dH(C1) = d1 = min{dH(C1), dH(C2)}, the Hamming
weight of z is wtH(z) = wtH(z1) + wtH(z2) = wtH(z2) ≥
dH(C2) ≥ d1. It implies that d ≥ d1 when z1 = 0. Since z
is an arbitrary non-zero codeword, we have d ≥ d1. Thus,
d = d1, completing our proof. �
Let C = C1 ⊕ C2 be a λ-constacyclic code overR, where

C1 is a cyclic code of length ps over R, C2 is an ideal of
R[x]
〈(α(x))ps 〉

. Then the MDS codes of cyclic codes over R are
determined by the following propositions.
Proposition 3.5: Let C = C1⊕C2 be a cyclic code of length

5ps overR, where C1 = 〈0〉 is a cyclic code of length ps over
R, and C2 is any ideal of

R[x]
〈(α(x))ps 〉

. Then C is not an MDS
code.
Proof: Using Theorem 3.4, we have dH(C) = dH(C2) ≤ 5.

We see that |C| = p` ≤ p8mp
s
. By Theorem 2.11, C is an

MDS code when ` = 2m(5ps − dH(C2)+ 1). If dH(C2) = 1,
then ` = 10mps, which is a contradiction. If dH(C2) = 2,
then ` = 2m(5ps−1). This is impossible since 2m(5ps−1) >
8mps ≥ `. Thus, C is not an MDS code when dH(C2) = 2.
If dH(C2) = 3, then ` = 2m(5ps − 2). Since dH(C2) =
3, we have C2 6= 〈1〉, i.e., |C| = p` < p8mp

s
. Since

2m(5ps − 2) > `, by Theorem 2.11, C is not an MDS code
when dH(C2) = 3. If dH(C) = 4, then ` = 2m(5ps−4). Since
dH(C2) = 4, we have C2 6= 〈1〉, i.e., |C| = p` < p8mp

s
. Since

2m(5ps − 4) > `, by Theorem 2.11, C is not an MDS code
when dH(C2) = 4. If dH(C2) = 5, then ` = 2m(5ps − 5).
Since dH(C2) = 5, we have C2 6= 〈1〉, i.e., |C| = p` < p8mp

s
.

Since 2m(5ps − 5) > `, by Theorem 2.11, C is not an MDS
code when dH(C2) = 5. �
Proposition 3.6: Let C = C1⊕C2 be a cyclic code of length

5ps overR, where C1 = 〈1〉 is a cyclic code of length ps over
R, C2 is any ideal of

R[x]
〈(α(x))ps 〉

. Then C is an MDS code if
C = 〈1〉.
Proof: By applying Theorem 3.4, we see that dH(C) = 1.

We have |C| = p2mp
s
· p`5 , where |C2| = p`5 ≤ p8mp

s
.

By Theorem 2.11, C is an MDS code when 2mps + `5 =
2m(5ps). It implies that `5 = 8mps. Therefore, C is an MDS
code if and only if C1 = 〈1〉 and C2 = 〈1〉, i.e., C = 〈1〉. �
Proposition 3.7: Let C = C1⊕C2 be a cyclic code of length

5ps overR, where C1 = 〈(x−γ0)j1〉 is a λ0-constacyclic code
of length ps overR, C2 is any ideal of

R[x]
〈(α(x))ps 〉

(j1 is defined
as in Theorem 2.2). Then C is not an MDS code.
Proof:We have two cases: C2 = 〈0〉 and C2 6= 〈0〉.
Case 1: C2 = 〈0〉. FromTheorem 3.4, we see that dH(C) =

dH(C1). We have |C| = pm(p
s
−j1). Using Theorem 2.3,

dH(C) = dH(〈(x − 1)j1〉F ) and

dH(C) =



• 1, if j1 = 0
• (δ1 + 1)pk1 ,
if ps − ps−k1 + (δ1 − 1)ps−k1−1 + 1 ≤ j1
and j1 ≤ ps − ps−k1 + δ1ps−k1−1

where 1 ≤ δ1 ≤ p− 1, and 0 ≤ k1 ≤ s− 1.
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If dH(C) = 1, thenC is anMDS codewhenm(ps) = 2m(5ps),
which is a contradiction. Hence, C is not an MDS code when
dH(C) = 1. If dH(C) = (δ1 + 1)pk1 , then C is an MDS code
when m(ps − j1) = 2m(5ps − (δ1 + 1)pk1 + 1), i.e., j1 =
−9ps+2(δ1+1)pk1 −2. Since−9ps+2(δ1+1)pk1 −2 < 0,
we see that j1 6= −9ps + 2(δ1 + 1)pk1 − 2. Thus, C is not an
MDS code in this case.
Case 2: C2 6= 〈0〉. Using Theorem 3.4, dH(C) =

min{dH(C1), dH(C2)}. By Theorems 3.1-3.3, we see that
dH(C) = 1 or dH(C) = 2 or dH(C) = 3 or dH(C) = 4 or
dH(C) = 5. We have |C| = pm(p

s
−j4) · p`2 , where |C2| =

p`2 ≤ p8mp
s
. If dH(C) = 1, then C is an MDS code when

m(ps − j1) + `2 = 2m(5ps), i.e., `2 = m(9ps − j1), which is
a contradiction since 1 ≤ j1 ≤ ps− 1 and `2 ≤ 8mps. Hence,
C is not an MDS code when dH(C) = 1. If dH(C) = 2, then
C is an MDS code when m(ps − j1) + `2 = 2m(5ps − 1),
i.e., `2 = m(9ps − 2+ j1) > 8mps, which is a contradiction.
Thus, C is not an MDS code when dH(C) = 2. If dH(C) = 3,
then `2 < 8mps. By Theorem 2.11, C is an MDS code when
m(ps − j4) + `2 = 2m(5ps − 2), i.e., `2 = m(9ps − 4 + j1).
It is easy to check that if j1 ≥ 3, then `2 = m(9ps −
4 + j1) ≥ m(9ps − 1) > 8mps, which is a contradiction.
Thus, we must consider two cases: j1 = 1 and j1 = 2.
If j1 = 1, by Theorem 2.3, then dH(C1) = 2 < dH(C).
This is a contradiction. Hence, C is not an MDS code when
j1 = 2 and dH(C) = 3. If j1 = 2, then `2 = m(9ps−2). Since
m(9ps − 2) ≥ 8mps, C is not an MDS code when j1 = 2 and
dH(C) = 3. Thus, C is not an MDS code when dH(C) = 3.
If dH(C) = 4, then `2 < 8mps. Hence, C is not an MDS
code when dH(C) = 4. If dH(C) = 5, then `2 < 8mps.
Therefore, C is not an MDS code. Combining Cases 1 and 2,
we conclude that C is not an MDS code. �
Combining Propositions 3.5-3.7, we have the following

theorem.
Theorem 3.8: Let C be a cyclic code of length 5ps overR,

where C1 is a cyclic code of length ps over R, C2 is an ideal
of R[x]
〈(α(x))ps 〉

. Then C is an MDS code when C1 = 〈1〉 and
C2 = 〈1〉.
We give an example to illustrate our work in this section.
Example 3.9: Put R = F11 + uF11. We consider cyclic

codes of length 55 over R. Let C be a cyclic code of length
55 over R. Then C = C1 ⊕ C2, where C1 is a cyclic code of
length 11 over R and C2 is an ideal of

R[x]
〈(α(x))11〉

.

1) Let C1 = 〈(x − 1)3〉 and C2 = 〈u(α(x))6〉. By using
Theorem 2.3, we have dH(C1) = 4. Applying Theorem 3.2,
we have dH(C2) = 5. From Theorem 3.4, we have dH(C) =
4. Then C has parameters [55, 1118, 4].
2) Let C1 = 〈(x − 1)5〉 and C2 = 〈(α(x))8, u(α(x))6〉.

By using Theorem 2.3, we have dH(C1) = 6. Applying
Theorem 3.3, we have dH(C2) = 5. From Theorem 3.4,
we have dH(C) = 5. Then C has parameters [55, 1122, 5].

IV. HAMMING DISTANCE AND MDS CODES
WHEN p ≡ 1 (mod 5)
As in Theorem 2.5, cyclic codes of length 5ps over R is of
the form C = C1

⊕
C2
⊕

C3
⊕

C4
⊕

C5. We compute the

Hamming distance of cyclic codes of length 5ps overRwhen
p ≡ 1 (mod 5) as follows.
Theorem 4.1: Let C = C1 ⊕ C2 ⊕ C3 ⊕ C4 ⊕ C5 be a

non-zero cyclic code of length 5ps overR as in Theorem 2.5.
Then the Hamming distance dH(C) = min{dH(Ci)|i ∈
{1, 2, 3, 4, 5},Ci 6= 〈0〉}.
Proof: Without loss of generality, assume that dH(C1) =

d1 = min{dH(Ci)} (that means C1 6= 〈0〉). Let d be the
Hamming distance ofC = C1⊕C2⊕C3. Let c1 be a non-zero
codeword ofminimumweight inC1, i.e., d1 = wtH(c1). Since
(c1, 0, 0, 0, 0) ∈ C and wtH(c1, 0, 0, 0, 0) = d1, we have
d ≤ d1. Let z = (z1, z2, z3, z4, z5) be an arbitrary non-zero
codeword in C1 ⊕ C2 ⊕ C3 ⊕ C4 ⊕ C5. If z1 = 0, then
there exists t ∈ {2, 3, 4, 5} such that zt 6= 0. Since dH(C1) =
d1 = min{dH(Ci)}, we have wtH(zt ) ≥ dH(Ct ) ≥ d1. Hence,
the Hamming weight of z is wtH(z) = wtH(z1) + wtH(z2) +
wtH(z3) + wtH(z4) + wtH(z5) ≥ wtH(zt ) ≥ dH(Ct ) ≥ d1.
It implies that d ≥ d1 when z1 = 0. If z1 6= 0, then the
Hamming weight of z is wtH(z) = wtH(z1) + wtH(z2) +
wtH(z3)+wtH(z4)+wtH(z5) ≥ d1. It means that d ≥ d1 when
z1 6= 0. Since z is an arbitrary non-zero codeword, we have
d ≥ d1. Thus, d = d1. �
Since γ2, γ3, γ4, γ5 ∈ Fpm , there exist α2, α3, α4, α5 ∈ Fpm

such that αp
s

i = γi. By Theorem 2.2, we classify all
Ci (i = 2, 3, 4, 5) as follows.

• Type 1: (trivial ideals)

〈0〉, 〈1〉.

• Type 2: (principal ideals with nonmonic polyno-
mial generators) 〈

u(x − αi)ji
〉
,

where 0 ≤ ji ≤ ps − 1.
• Type 3: (principal ideals with monic polynomial
generators)〈

(x − αi)ji + u(x − αi)tihi(x)
〉
,

where 1 ≤ ji ≤ ps − 1, 0 ≤ ti < ji, and either hi(x)
is 0 or hi(x) is a unit.
• Type 4: (nonprincipal ideals) 〈(x − αi)ji +
u(x − αi)ti hi(x), u(x − α0)κi〉, with hi(x) as in
Type 3, deg(hi) ≤ κi − ti − 1, and κi < Ti,
where Ti is the smallest integer such that u(x −
αi)Ti ∈

〈
(x − αi)ji + u(x − αi)tihi(x)

〉
; or equiv-

alently, Ti = ji, if hi(x) = 0, otherwise
Ti = min{ji, ps − ji + ti}.

To getMDS codes, we consider the following propositions.
Proposition 4.2: Let C = C1⊕C2⊕C3⊕C4⊕C5 be a cyclic

code of length 3ps over R, where C1,C2,C3,C4,C5 are
defined as in Theorem 2.5 such that there exists Ci = 〈0〉
for i ∈ {1, 2, 3, 4, 5}. Then C is not an MDS code.
Proof: Without loss of generality, assume that C1 = 〈0〉.

From Theorem 4.1, dH(C) = min{dH(Cj)} ≤ ps, where j =
2, 3, 4, 5.We have |C| = |C2|×|C3|×|C4|×|C5| = p`2 ·p`3 ·
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p`4 ·p`5 , where |C2| = p`2 , |C3| = p`3 , |C4| = p`4 , |C5| = p`5
and 0 ≤ `2, `3, `4, `5 ≤ 2mps. We see that `2+`3+`4+`5 ≤
8mps and 2m(5ps−dH(C)+1) > 8mps. Thus, `2+`3+`4+
`5 < 2m(5ps − dH(C) + 1). Using Theorem 2.11, C is an
MDS code when `2 + `3 + `4 + `5 = 2m(5ps − dH(C)+ 1).
Since `2 + `3 + `4 + `5 < 2m(5ps − dH(C)+ 1), C is not an
MDS code. �
Proposition 4.3: Let C = C1⊕C2⊕C3⊕C4⊕C5 be a cyclic

code of length 5ps over R, where C1,C2,C3,C4,C5 are
defined as in Theorem 2.5 such that there exists Ci = 〈1〉
for i ∈ {1, 2, 3, 4, 5}. Then C is an MDS code if and only if
C = 〈1〉.
Proof: Without loss of generality, assume that C1 = 〈1〉

and |C2| = p`2 , |C3| = p`3 , |C4| = p`4 , and |C5| = p`5 ,
where 0 ≤ `2, `3, `4, `5 ≤ 2mps. Using Theorem 4.1,
dH(C) = dH(C1) = 1. By Theorem 2.11, C is an MDS
code when p2mp

s
· p`2 · p`3 · p`4 · p`5 = p2m(5p

s
−1+1), where

0 ≤ `2, `3, `4, `5 ≤ 2mps. It implies that 2mps + `2 + `3 +
`4 + `5 = 10mps. Thus, `2 + `3 + `4 + `5 = 8mps. Hence,
`2 = `3 = `4 = `5 = 2mps. Then C is an MDS code when
C1 = 〈1〉, C2 = 〈1〉, C3 = 〈1〉, C4 = 〈1〉 and C5 = 〈1〉, i.e.,
C = 〈1〉. �
By Propositions 4.2 and 4.3, if Ci = 〈0〉 or Ci = 〈1〉 for

i ∈ {1, 2, 3, 4, 5}, then C is an MDS code when C = 〈1〉.
Thus, we consider the case when all Ci 6= 〈0〉 and Ci 6= 〈1〉
for i ∈ {1, 2, 3, 4, 5} in the following propositions.
Proposition 4.4: Let C = C1⊕C2⊕C3⊕C4⊕C5 be a cyclic

code of length 5ps over R, where C1,C2,C3,C4,C5 are
defined as in Theorem 2.5 such that all Ci are constacyclic
codes of Type 2 of length ps over R for i ∈ {2, 3, 4, 5}. Then
C is not an MDS code.
Proof: We have C1 = 〈(x − 1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈u(x − γ3)j3〉,C4 = 〈u(x − γ4)j4〉,C5 = 〈u(x − γ5)j5〉
(j2, j3, j4, j5 are defined as in Theorem 2.2). We see that
|C| = pm(p

s
−j1) · pm(p

s
−j2) · pm(p

s
−j3) · pm(p

s
−j4) · pm(p

s
−j5).

From Theorem 4.1, dH(C) ≤ ps. Using Theorem 2.11, C
is an MDS code when m(ps − j1) + m(ps − j2) + m(ps −
j3)+m(ps − j4)+m(ps − j5) = 2m(5ps − dH(C)+ 1). Since
m(ps − j1)+m(ps − j2)+m(ps − j3)+m(ps − j4)+m(ps −
j5) < 8mps and 2m(5ps − dH(C) + 1) > 8mps, we have
m(ps−j1)+m(ps−j2)+m(ps−j3)+m(ps−j4)+m(ps−j5) <
2m(5ps − dH(C)+ 1). Hence, C is not an MDS code. �
Proposition 4.5: Let C = C1 ⊕ Ci ⊕ Cj ⊕ Ck ⊕ Ct

be a cyclic code of length 5ps over R, where Ci,Cj,Ck ,Ct
are defined as in Theorem 2.5 and i, j, k, t are different
numbers in {2, 3, 4, 5}. If Ci, Cj, and Ck are constacyclic
codes of Type 2 of length ps over R, then C is not an
MDS code.
Proof: If Ct is a constacyclic code of Type 2 of length

ps over R, then C is not an MDS code by Proposition 4.4.
Thus, Ct is a constacyclic code of Type 3 or Type 4 of
length ps over R. Without loss of generality, assume that
C2 = 〈u(x − γ2)j2〉,C3 = 〈u(x − γ3)j3〉,C4 = 〈u(x − γ3)j3〉
andC5 = 〈(x−γ5)j5+u(x−γ5)t5h5(x)〉 orC5 = 〈(x−γ5)j5+
u(x− γ5)t5 h5(x), u(x− γ5)κ5〉 (j1, j2, j3, j4, t5, κ5 are defined
as in Theorem 2.2).

Case 1: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,C3 =

〈u(x − γ3)j3〉,C4 = 〈u(x − γ4)j4〉 and C5 = 〈(x − γ5)j5 +
u(x−γ5)t5h5(x)〉.Wehave |C| = pm(p

s
−j1)·pm(p

s
−j2)·pm(p

s
−j3)·

pm(p
s
−j4) · p2m(p

s
−j5) or |C| = pm(p

s
−j1) · pm(p

s
−j2) · pm(p

s
−j3) ·

pm(p
s
−j4) · pm(p

s
−t5). By applying Theorem 4.1, dH(C) ≤ ps.

Using Theorem 2.11, C is an MDS code when m(ps − j1) +
m(ps− j2)+m(ps− j3)+m(ps− j4)+2m(ps− j5) = 2m(5ps−
dH(C)+ 1) or m(ps− j1)+m(ps− j2)+m(ps− j3)+m(ps−
j4)+m(ps − t5) = 2m(5ps − dH(C)+ 1). Since m(ps − j1)+
m(ps − j2)+m(ps − j3)+m(ps − j4)+ 2m(ps − j5) < 8mps,
m(ps − j1)+m(ps − j2)+m(ps − j3)+m(ps − j4)+m(ps −
t5) < 8mps and 2m(5ps − dH(C) + 1) > 4mps, we see that
m(ps−j1)+m(ps−j2)+m(ps−j3)+m(ps−j4)+2m(ps−j5) 6=
2m(5ps − dH(C)+ 1) and m(ps − j1)+m(ps − j2)+m(ps −
j3)+m(ps− j4)+m(ps− t5) < 2m(5ps−dH(C)+1). Hence,
C is not an MDS code in this case.
Case 2: C1 = 〈(x−γ1)j1〉,C2 = 〈u(x−γ2)j2〉,C3 = 〈u(x−

γ3)j3〉,C4 = 〈u(x− γ4)j4〉 and C5 = 〈(x− γ5)j5 + u(x− γ5)t5
h5(x), u(x − γ5)κ5〉. We see that |C| = pm(p

s
−j1) · pm(p

s
−j2) ·

pm(p
s
−j3) · pm(p

s
−j4) · pm(2p

s
−j5−κ5). Applying Theorem 4.1,

dH(C) ≤ ps. By Theorem 2.11, C is an MDS code when
m(ps− j1)+m(ps− j2)+m(ps− j3)+m(ps− j4)+m(2ps−
j5 − κ5) = 2m(5ps − dH(C)+ 1). Since m(ps − j1)+m(ps −
j2) + m(ps − j3) + m(ps − j4) + m(2ps − j5 − κ5) < 8mps

and 2m(5ps − dH(C) + 1) > 8mps, we have m(ps − j1) +
m(ps − j2)+ m(ps − j3)+ m(ps − j4)+ m(2ps − j5 − κ5) <
2m(5ps − dH(C)+ 1). Hence, C is not an MDS code. �
Proposition 4.6: Let C = C1 ⊕ Ci ⊕ Cj ⊕ Ck ⊕ Ct be

a cyclic code of length 5ps over R, where Ci,Cj,Ck ,Ct are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in {2, 3, 4, 5}. If Ci, Cj are constacyclic codes of Type 2 of
length ps overR, then C is not an MDS code.
Proof: If Ck ,Ct are constacyclic codes of Type 2 of length

ps over R, then C is not an MDS code by Proposition 4.5.
Thus, Ck ,Ct are constacyclic codes of Type 3 or Type 4 of
length ps over R. Without loss of generality, assume that
C1 = 〈(x− 1)j1〉,C2 = 〈u(x− γ2)j2〉,C3 = 〈u(x− γ3)j3〉 and
C4 = 〈(x − γ4)j4 + u(x − γ4)t4h4(x)〉 or C4 = 〈(x − γ4)j4 +
u(x − γ4)t4 h4(x), u(x − γ4)κ4〉 and C5 = 〈(x − γ5)j5 + u(x −
γ5)t5h5(x)〉 orC5 = 〈(x−γ5)j5+u(x−γ5)t5 h5(x), u(x−γ5)κ5〉
(j1, j2, j3, j4, t5, κ5 are defined as in Theorem 2.2).
Case 1: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,C3 =

〈u(x− γ3)j3〉, C4 = 〈(x− γ4)j4 + u(x− γ4)t4h4(x)〉 and C5 =

〈(x−γ5)j5+u(x−γ5)t5h5(x)〉. Then we have |C| = pm(p
s
−j1) ·

pm(p
s
−j2) · pm(p

s
−j3) · p2m(p

s
−j4) · p2m(p

s
−j5) or |C| = pm(p

s
−j1) ·

pm(p
s
−j2) ·pm(p

s
−j3) ·p2m(p

s
−j4) ·pm(p

s
−t5) or pm(p

s
−j1) ·pm(p

s
−j2) ·

pm(p
s
−j3) ·pm(p

s
−t4) ·p2m(p

s
−j5) or pm(p

s
−j1) ·pm(p

s
−j2) ·pm(p

s
−j3) ·

pm(p
s
−t4) · p2m(p

s
−j5). By applying Theorem 4.1, dH(C) ≤ ps.

Using Theorem 2.11, C is an MDS code when m(ps − j1) +
m(ps − j2) + m(ps − j3) + 2m(ps − j4) + 2m(ps − j5) =
2m(5ps − dH(C) + 1) or m(ps − j1) + m(ps − j2) + m(ps −
j3) + 2m(ps − j4) + m(ps − t5) = 2m(5ps − dH(C) + 1) or
m(ps−j1)+m(ps−j2)+m(ps−j3)+m(ps−t4)+2m(ps−j5) =
2m(5ps−dH(C)+1) orm(ps− j1)+m(ps− j2)+m(ps− j3)+
m(ps− t4)+m(ps− t5) = 2m(5ps− dH(C)+ 1). We see that
m(ps−j1)+m(ps−j2)+m(ps−j3)+2m(ps−j4)+2m(ps−j5) <
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8mps, m(ps − j1)+m(ps − j2)+m(ps − j3)+ 2m(ps − j4)+
m(ps − t5) < 8mps, m(ps − j1)+ m(ps − j2)+ m(ps − j3)+
m(ps − t4)+ 2m(ps − j5) < 8mps, m(ps − j1)+m(ps − j2)+
m(ps − j3) + m(ps − t4) + m(ps − t5) < 8mps. It is easy
to see that 2m(5ps − dH(C) + 1) > 8mps. Then we see that
|C| < p2m(5p

s
−dH(C)+1). Hence, C is not an MDS code in this

case.
Case 2: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈u(x− γ3)j3〉,C4 = 〈(x− γ4)j4 + u(x− γ4)t4h4(x)〉 and
C5 = 〈(x−γ5)j5+u(x−γ5)t5 h5(x), u(x−γ5)κ5〉.We see that
|C| = pm(p

s
−j1) · pm(p

s
−j2) · pm(p

s
−j3) · p2m(p

s
−j4) · pm(2p

s
−j5−κ5)

or |C| = pm(p
s
−j1) ·pm(p

s
−j2) ·pm(p

s
−j3) ·pm(p

s
−t4) ·pm(2p

s
−j5−κ5).

Applying Theorem 4.1, dH(C) ≤ ps. By Theorem 2.11, C is
an MDS code when m(ps − j1)+ m(ps − j2)+ m(ps − j3)+
2m(ps − j4) + m(2ps − j5 − κ5) = 2m(5ps − dH(C) + 1) or
m(ps−j1)+m(ps−j2)+m(ps−j3)+m(ps−t4)+m(2ps−j5−
κ5) = 2m(5ps−dH(C)+1). It is easy to check thatm(ps−j1)+
m(ps−j2)+m(ps−j3)+2m(ps−j4)+m(2ps−j5−κ5) < 8mps

andm(ps−j1)+m(ps−j2)+m(ps−j3)+m(ps−t4)+m(2ps−
j5 − κ5) < 8mps. We see that 2m(5ps − dH(C)+ 1) > 8mps.
Hence, |C| < p2m(5p

s
−dH(C)+1). Hence,C is not anMDS code

in this case.
Case 3: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈u(x−γ3)j3〉,C4 = 〈(x−γ4)j4+u(x−γ4)t4 h4(x), u(x−
γ4)κ4〉 and C5 = 〈(x−γ5)j5+u(x−γ5)t5h5(x)〉. Then we have
|C| = pm(p

s
−j1) · pm(p

s
−j2) · pm(p

s
−j3) · pm(2p

s
−j4−κ4) · p2m(p

s
−j5)

or |C| = pm(p
s
−j1) ·pm(p

s
−j2) ·pm(p

s
−j3) ·pm(2p

s
−j4−κ4) ·pm(p

s
−t5).

By applying Theorem 4.1, dH(C) ≤ ps. Using Theorem 2.11,
C is an MDS code when m(ps − j1) + m(ps − j2) + m(ps −
j3)+m(2ps− j4−κ4)+2m(ps− j5) = 2m(5ps−dH(C)+1) or
m(ps−j1)+m(ps−j2)+m(ps−j3)+m(2ps−j4−κ4)+m(ps−
t5) = 2m(5ps − dH(C) + 1). We have m(ps − j1) + m(ps −
j2)+ m(ps − j3)+ m(2ps − j4 − κ4)+ 2m(ps − j5) < 8mps,
m(ps−j1)+m(ps−j2)+m(ps−j3)+m(2ps−j4−κ4)+m(ps−
t5) < 8mps. It is easy to see that 2m(5ps−dH(C)+1) > 8mps.
Then we see that |C| < p2m(5p

s
−dH(C)+1). Hence, C is not an

MDS code in this case.
Case 4: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈u(x − γ3)j3〉, C4 = 〈(x − γ4)j4 + u(x − γ4)t4
h4(x), u(x − γ4)κ4〉 and C5 = 〈(x − γ5)j5 + u(x − γ5)t5
h5(x), u(x − γ5)κ5〉. We see that |C| = pm(p

s
−j1) · pm(p

s
−j2) ·

pm(p
s
−j3) ·pm(2p

s
−j4−κ4) ·pm(2p

s
−j5−κ5). Applying Theorem 4.1,

dH(C) ≤ ps. By Theorem 2.11, C is an MDS code when
m(ps − j1) + m(ps − j2) + m(ps − j3) + m(2ps − j4 −
κ4) + m(2ps − j5 − κ5) = 2m(5ps − dH(C) + 1). We have
m(ps−j1)+m(ps−j2)+m(ps−j3)+m(2ps−j4−κ4)+m(2ps−
j5 − κ5) < 8mps. We see that 2m(5ps − dH(C)+ 1) > 8mps.
Hence, |C| < p2m(5p

s
−dH(C)+1). Hence,C is not anMDS code

in this case. �
Proposition 4.7: Let C = C1 ⊕ Ci ⊕ Cj ⊕ Ck ⊕ Ct be

a cyclic code of length 5ps over R, where Ci,Cj,Ck ,Ct are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in {2, 3, 4, 5}. If Ci is a constacyclic code of Type 2 of length
ps overR, then C is not an MDS code.
Proof: If Cj,Ck ,Ct are constacyclic codes of Type 2

of length ps over R, then C is not an MDS code by

Proposition 4.5. Thus, Cj,Ck ,Ct are constacyclic codes of
Type 3 or Type 4 of length ps over R. Without loss of
generality, assume that C1 = 〈(x− 1)j1〉,C2 = 〈u(x− γ2)j2〉,
C3 = 〈(x − γ3)j3 + u(x − γ3)t3h3(x)〉 or C3 = 〈(x − γ3)j3 +
u(x − γ3)t3 h3(x), u(x − γ3)κ3〉 and C4 = 〈(x − γ4)j4 + u(x −
γ4)t4h4(x)〉 orC4 = 〈(x−γ4)j4+u(x−γ4)t4 h4(x), u(x−γ4)κ4〉
andC5 = 〈(x−γ5)j5+u(x−γ5)t5h5(x)〉 orC5 = 〈(x−γ5)j5+
u(x− γ5)t5 h5(x), u(x− γ5)κ5〉 (j1, j2, j3, j4, t5, κ5 are defined
as in Theorem 2.2).
Case 1: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,C3 =

〈(x − γ3)j3 + u(x − γ3)t3h3(x)〉, C4 = 〈(x − γ4)j4 + u(x −
γ4)t4h4(x)〉 and C5 = 〈(x − γ5)j5 + u(x − γ5)t5h5(x)〉. Then
we have |C| = pm(p

s
−j1) · pm(p

s
−j2) · p2m(p

s
−j3) · p2m(p

s
−j4) ·

p2m(p
s
−j5) or |C| = pm(p

s
−j1) ·pm(p

s
−j2) ·p2m(p

s
−j3) ·p2m(p

s
−j4) ·

pm(p
s
−t5) or pm(p

s
−j1) ·pm(p

s
−j2) ·p2m(p

s
−j3) ·pm(p

s
−t4) ·p2m(p

s
−j5)

or pm(p
s
−j1) · pm(p

s
−j2) · p2m(p

s
−j3) · pm(p

s
−t4) · pm(p

s
−t5) or

|C| = pm(p
s
−j1) · pm(p

s
−j2) · pm(p

s
−t3) · p2m(p

s
−j4) · p2m(p

s
−j5)

or |C| = pm(p
s
−j1) · pm(p

s
−j2) · pm(p

s
−t3) · p2m(p

s
−j4) · pm(p

s
−t5)

or pm(p
s
−j1) · pm(p

s
−j2) · pm(p

s
−t3) · pm(p

s
−t4) · p2m(p

s
−j5) or

pm(p
s
−j1) ·pm(p

s
−j2) ·pm(p

s
−t3) ·pm(p

s
−t4) ·pm(p

s
−t5). By applying

Theorem 4.1, dH(C) ≤ ps. Using Theorem 2.11,C is anMDS
code when |C| = p2m(5p

s
−dH(C)+1). We see that |C| < 8mps

and 2m(5ps − dH(C) + 1) > 8mps. Then we see that |C| <
p2m(5p

s
−dH(C)+1). Hence, C is not an MDS code in this case.

Case 2: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,
C3 = 〈(x − γ3)j3 + u(x − γ3)t3h3(x)〉, C4 = 〈(x − γ4)j4 +
u(x − γ4)t4h4(x)〉 and C5 = 〈(x − γ5)j5 + u(x − γ5)t5
h5(x), u(x − γ5)κ5〉. We see that |C| = pm(p

s
−j1) · pm(p

s
−j2) ·

p2m(p
s
−j3) · p2m(p

s
−j4) · pm(2p

s
−j5−κ5) or |C| = pm(p

s
−j1) ·

pm(p
s
−j2)·p2m(p

s
−j3)·pm(p

s
−t4)·pm(2p

s
−j5−κ5) or |C| = pm(p

s
−j1)·

pm(p
s
−j2)·pm(p

s
−t3)·p2m(p

s
−j4)·pm(2p

s
−j5−κ5) or |C| = pm(p

s
−j1)·

pm(p
s
−j2)·pm(p

s
−t3)·pm(p

s
−t4)·pm(2p

s
−j5−κ5). Applying Theorem

4.1, dH(C) ≤ ps. By Theorem 2.11, C is an MDS code when
m(ps−j1)+m(ps−j2)+2m(ps−j3)+2m(ps−j4)+m(2ps−j5−
κ5) = 2m(5ps−dH(C)+1) orm(ps−j1)+m(ps−j2)+2m(ps−
j3)+m(ps− t4)+m(2ps− j5−κ5) = 2m(5ps−dH(C)+1) or
m(ps−j1)+m(ps−j2)+m(ps−t3)+2m(ps−j4)+m(2ps−j5−
κ5) = 2m(5ps−dH(C)+1) orm(ps−j1)+m(ps−j2)+m(ps−
t3)+m(ps− t4)+m(2ps− j5− κ5) = 2m(5ps− dH(C)+ 1).
It is easy to check thatm(ps− j1)+m(ps− j2)+2m(ps− j3)+
2m(ps−j4)+m(2ps−j5−κ5) < 8mps,m(ps−j1)+m(ps−j2)+
2m(ps−j3)+m(ps−t4)+m(2ps−j5−κ5) < 8mps,m(ps−j1)+
m(ps−j2)+m(ps−t3)+2m(ps−j4)+m(2ps−j5−κ5) < 8mps,
andm(ps−j1)+m(ps−j2)+m(ps−t3)+m(ps−t4)+m(2ps−
j5 − κ5) < 8mps. We see that 2m(5ps − dH(C)+ 1) > 8mps.
Hence, |C| < p2m(5p

s
−dH(C)+1). Thus, C is not an MDS code

in this case.
Case 3: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈(x−γ3)j3+u(x−γ3)t3h3(x)〉,C4 = 〈(x−γ4)j4+u(x−
γ4)t4 h4(x), u(x − γ4)κ4〉 and C5 = 〈(x − γ5)j5 + u(x − γ5)t5
h5(x), u(x− γ5)κ5〉. Then we have |C| = pm(p

s
−j1) · pm(p

s
−j2) ·

p2m(p
s
−j3) · pm(2p

s
−j4−κ4) · pm(2p

s
−j5−κ5) or |C| = pm(p

s
−j1) ·

pm(p
s
−j2) · pm(p

s
−t3) · pm(2p

s
−j4−κ4) · pm(2p

s
−j5−κ5). By applying

Theorem 4.1, dH(C) ≤ ps. Using Theorem 2.11, C is an
MDS code when m(ps − j1) + m(ps − j2) + 2m(ps − j3) +
m(2ps− j4− κ4)+m(2ps− j5− κ5) = 2m(5ps− dH(C)+ 1)
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or m(ps − j1) + m(ps − j2) + m(ps − t3) + m(2ps − j4 −
κ4) + m(2ps − j5 − κ5) = 2m(5ps − dH(C) + 1). We have
m(ps − j1) + m(ps − j2) + 2m(ps − j3) + m(2ps − j4 −
κ4) + m(2ps − j5 − κ5) < 8mps, m(ps − j1) + m(ps − j2) +
m(ps − t3) + m(2ps − j4 − κ4) + m(2ps − j5 − κ5) < 8mps

and 2m(5ps − dH(C) + 1) > 8mps. Then we see that
|C| < p2m(5p

s
−dH(C)+1). Hence, C is not an MDS code in

this case.
Case 4: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈(x − γ3)j3 + u(x − γ3)t3 h3(x), u(x − γ3)κ3〉,
C4 = 〈(x − γ4)j4 + u(x − γ4)t4h4(x)〉 and C5 = 〈(x − γ5)j5 +
u(x − γ5)t5h5(x)〉. Similar to Case 2, we can conclude that C
is not an MDS code.
Case 5: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈(x − γ3)j3 + u(x − γ3)t3 h3(x), u(x − γ3)κ3〉, C4 =

〈(x−γ4)j4+u(x−γ4)t4h4(x)〉 andC5 = 〈(x−γ5)j5+u(x−γ5)t5
h5(x), u(x−γ5)κ5〉. Similar to Case 3, C is not an MDS code.
Case 6: C1 = 〈(x − γ1)j1〉,C2 = 〈u(x − γ2)j2〉,

C3 = 〈(x − γ3)j3 + u(x − γ3)t3 h3(x), u(x − γ3)κ3〉,
C4 = 〈(x − γ4)j4 + u(x − γ4)t4 h4(x), u(x − γ4)κ4〉 and
C5 = 〈(x − γ5)j5 + u(x − γ5)t5 h5(x), u(x − γ5)κ5〉. Then we
have |C| = pm(p

s
−j1) · pm(p

s
−j2) · pm(2p

s
−j3−κ3) · pm(2p

s
−j4−κ4) ·

pm(2p
s
−j5−κ5). By applying Theorem 4.1, dH(C) ≤ ps. Using

Theorem 2.11, C is an MDS code when m(ps − j1)+m(ps −
j2)+m(2ps− j3−κ3)+m(2ps− j4−κ4)+m(2ps− j5−κ5) =
2m(5ps − dH(C)+ 1). We see that m(ps − j1)+m(ps − j2)+
m(2ps− j3−κ3)+m(2ps− j4−κ4)+m(2ps− j5−κ5) < 8mps

and 2m(5ps − dH(C) + 1) > 8mps. Thus, C is not an MDS
code. �
Proposition 4.8: Let C = C1⊕C2⊕C3⊕C4⊕C5 be a cyclic

code of length 5ps over R, where C1,C2,C3,C4,C5 are
defined as in Theorem 4.1 such that all Ci are constacyclic
codes of Type 3 of length ps over R for i ∈ {2, 3, 4, 5}. Then
C is not an MDS code.
Proof:We have C1 = 〈(x−1)j1〉,C2 = 〈(x−γ2)j2+u(x−

γ2)t2h2(x)〉,C3 = 〈(x−γ3)j3+u(x−γ3)t3h3(x)〉,C4 = 〈(x−
γ4)j4+u(x−γ4)t4h4(x)〉,C5 = 〈(x−γ5)j5+u(x−γ5)t5h5(x)〉
(j2, j3, j4, j5 are defined as in Theorem 2.2). If |C2| =

pm(p
s
−t2), then |C| = pm(p

s
−j1) · pm(p

s
−t2) · |C3| · |C4| · |C5|.

From Theorem 4.1, dH(C) ≤ ps. Using Theorem 2.11, C is
an MDS code when pm(p

s
−j1) · pm(p

s
−t2) · |C3| · |C4| · |C5| =

p2m(5p
s
−dH(C)+1). It is easy to check that pm(p

s
−j1) · pm(p

s
−t2) ·

|C3| · |C4| · |C5| < p8mp
s
. Since 2m(5ps−dH(C)+1) > 8mps,

we have |C| < p2m(5p
s
−dH(C)+1). Hence, C is not an MDS

code if |C2| = pm(p
s
−t2). It is easy to see that if there exists

` ∈ {2, 3, 4, 5} such that |C`| = pm(p
s
−t`), then C is

not an MDS code. Thus, we need to consider the case
|C| = pm(p

s
−j1) · p2m(p

s
−j2) · p2m(p

s
−j3) · p2m(p

s
−j4) · p2m(p

s
−j5).

By Theorem 2.11, C is an MDS code when m(ps − j1) +
2m(ps − j2) + 2m(ps − j3) + 2m(ps − j4) + 2m(ps − j5) =
2m(5ps − dH(C) + 1). Hence, C is an MDS code when
j1 + 2j2 + 2j3 + 2j4 + 2j5 = −ps + 2 dH(C) − 2. Applying
Theorem 4.1, we see that dH(C) = min{dH(Ci)}, where
i = {1, 2, 3, 4, 5}. Then we have dH(C) = dH(C1) or
dH(C) = dH(C2) or dH(C) = dH(C3) or dH(C) = dH(C4)
or dH(C) = dH(C5).

Case 1: dH(C) = dH(C1). From Theorem 2.3,
dH(C1) = 1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, 2j2+2j3+2j4+

2j5 = −ps, which is a contradiction. Hence, C is not an MDS
code in this subcase.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that

2j2 + 2j3 + 2j4 + 2j5 = −ps + 2(δ1 + 1)pk1 − 2 (1).
From (1), we have 2(δ1 + 1)pk1 > ps. Since δ1 + 1 ≤
p, we have ps < 2p · pk1 . It implies that ps−k1−1 < 2.
Hence, s − k1 − 1 = 0, i.e., s = k1 + 1. By asumption
ps−ps−k1+(δ1−1)ps−k1−1+1 ≤ j1 ≤ ps−ps−k1+δ1ps−k1−1,
we see that ps− p+ δ1− 1+ 1 ≤ j1 ≤ ps− p+ δ1. It follows
that j1 = ps−p+δ1. Put T1 = 2j2+2j3+2j4+2j5. Then T1 =
2j2+2j3+2j4+2j5 = −ps+2(δ1+1)ps−1−2−(ps−p+δ1).
Hence,

T1 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p+ 1 ≤ 0, we have [2ps−1 −
1][δ1 − p + 1] − 1 < 0. Thus, j1 + 2j2 + 2j3 + 2j4 + 2j5 6=
−ps + 2(δ1 + 1)pk1 − 2, i.e., C is not an MDS code when
dH(C) = dH(C1).
Case 2: dH(C) = dH(C2). When dH(C) = dH(C3),

dH(C) = dH(C4) and dH(C) = dH(C5) can be done similarly.
Using Theorem 2.3, we have 2 subcases.
Subcase 2.1: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is 0 or
h2(x) is a unit and 1 ≤ j2 ≤

ps+t2
2 . Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where ps − pr2 + (δ2 − 1)r2 + 1 ≤ j2 ≤ ps − pr2 + δ2r2,
1 ≤ δ2 ≤ p−1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s−1. Then C is
an MDS code when j1+2j2+2j3+2j4+2j5 = −ps+2(δ2+
1)pk2 − 2. Similar to Subcase 1.2 of Case 1, we can conclude
that j1+ 2j2+ 2j3+ 2j4+ 2j5 6= −ps+ 2(δ2+ 1)pk2 − 2, i.e.,
C is not an MDS code in this subcase.
Subcase 2.2: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is a

unit and ps+t2
2 < j2 ≤ ps − 1. Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where t2 + pr2 − δ2r2 ≤ j2 ≤ t2 + pr2 − (δ2 − 1)r2 − 1,
1 ≤ δ2 ≤ p− 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s− 1. Then C
is an MDS code when j1 + 2j2 + 2j3 + 2j4 + 2j5 = −ps +
2(δ2 + 1)pk2 − 2. From j2 >

ps+t2
2 , we have 2j2 > ps + t2.

We see that j1+2j2+2j3+2j4+2j5+ps−2(δ2+1)pk2+2 >
j1 + ps + t2 + 2j3 + 2j4 + 2j5 + ps − 2(δ2 + 1)pk2 + 2 > 0,
i.e., j1 + 2j2 + 2j3 + 2j4 + 2j5 > −ps + 2(δ2 + 1)pk2 − 2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code. �
Proposition 4.9: Let C = C1 ⊕ Ci ⊕ Cj ⊕ Ck ⊕ Ct be

a cyclic code of length 5ps over R, where Ci,Cj,Ck ,Ct are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in {2, 3, 4, 5}. If Ci, Cj, and Ck are constacyclic codes of
Type 3 of length ps overR, then C is not an MDS code.
Proof: If Ct is a constacyclic code of Type 3 of length

ps over R, then C is not an MDS code by Proposition 4.8.

119894 VOLUME 10, 2022



H. Q. Dinh et al.: On Hamming Distance Distributions of Repeated-Root Cyclic Codes

Thus, Ct is a constacyclic code of Type 4 of length ps overR.
Without loss of generality, assume that C2 = 〈(x − γ2)j2 +
u(x−γ2)t2h2(x)〉,C3 = 〈(x−γ3)j3+u(x−γ3)t3h3(x)〉,C4 =

〈(x − γ4)j4 + u(x − γ4)t4h4(x)〉 and C5 = 〈(x − γ5)j5 +
u(x− γ5)t5 h5(x), u(x− γ5)κ5〉 (j1, j2, j3, j4, t5, κ5 are defined
as in Theorem 2.2). If there exists ` ∈ {2, 3, 4} such that
|C`| = pm(p

s
−t`). Without loss of generality, assume that

|C2| = pm(p
s
−t2). Using Theorem 2.11, C is an MDS code

when pm(p
s
−j1) ·pm(p

s
−t2) · |C3| · |C4| · |C5| = p2m(5p

s
−dH(C)+1).

It is easy to check that pm(p
s
−j1) ·pm(p

s
−t2) · |C3| · |C4| · |C5| <

p8mp
s
because |C3|, |C4|, |C5| < 2mps. Since 2m(5ps −

dH(C)+1) > 8mps, we have |C| < p2m(5p
s
−dH(C)+1). Hence,

C is not an MDS code when |C2| = pm(p
s
−t2). Thus, C

is not an MDS code if there exists ` ∈ {2, 3, 4} such that
|C`| = pm(p

s
−t`). We consider the remaining case: |C| =

pm(p
s
−j1) · p2m(p

s
−j2) · p2m(p

s
−j3) · p2m(p

s
−j4) · pm(2p

s
−j5−κ5).

By Theorem 2.11, C is an MDS code when m(ps − j1) +
2m(ps− j2)+2m(ps− j3)+2m(ps− j4)+m(2ps− j5−κ5) =
2m(5ps − dH(C) + 1). Hence, C is not an MDS code when
j1 + 2j2 + 2j3 + 2j4 + j5 + κ5 = −ps + 2(dH(C) − 2.
Applying Theorem 4.1, we see that dH(C) = min{dH(Ci)},
where i = {1, 2, 3, 4, 5}. Then we have dH(C) = dH(C1) or
dH(C) = dH(C2) or dH(C) = dH(C3) or dH(C) = dH(C4) or
dH(C) = dH(C5).
Case 1: dH(C) = dH(C1). From Theorem 2.3, dH(C1) =

1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, 2j2+2j3+2j4+

j5 + κ5 = −ps, which is a contradiction. Hence, C is not an
MDS code in this subcase.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that
= −ps+2(δ1+1)pk1−2 (2). From (2), we have 2(δ1+1)pk1 >
ps. Since δ1 + 1 ≤ p, we have ps < 2p · pk1 . It implies that
ps−k1−1 < 2. Hence, s − k1 − 1 = 0, i.e., s = k1 + 1.
By asumption ps − ps−k1 + (δ1 − 1)ps−k1−1 + 1 ≤ j1 ≤
ps − ps−k1 + δ1ps−k1−1, we see that ps − p + δ1 − 1 + 1 ≤
j1 ≤ ps − p + δ1. It follows that j1 = ps − p + δ1. Put T2 =
2j2+2j3+2j4+ j5+κ5. Then T2 = 2j2+2j3+2j4+ j5+κ5 =
−ps + 2(δ1 + 1)ps−1 − 2− (ps − p+ δ1). Hence,

T2 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p + 1 ≤ 0, we have
[2ps−1 − 1][δ1 − p + 1] − 1 < 0. Thus, j1 + 2j2 + 2j3 +
2j4+ j5+κ5 6= −ps+2(δ1+1)pk1 −2, i.e., C is not an MDS
code when dH(C) = dH(C1).
Case 2: dH(C) = dH(C2).We see that dH(C) = dH(C3) and

dH(C) = dH(C4) can be done similarly. Using Theorem 2.3,
we have 2 subcases.
Subcase 2.1: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is

0 or h2(x) is a unit and 1 ≤ j2 ≤
ps+t2
2 . Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where ps− pr2+ (δ2− 1)r2+ 1 ≤ j2 ≤ ps− pr2+ δ2r2, 1 ≤
δ2 ≤ p − 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s − 1. Then C
is an MDS code when j1 + 2j2 + 2j3 + 2j4 + j5 + κ5 =

−ps + 2(δ2 + 1)pk2 − 2. Similar to Subcase 1.2 of Case 1,
we can conclude that j1 + 2j2 + 2j3 + 2j4 + j5 + κ5 6=
−ps + 2(δ2 + 1)pk2 − 2, i.e., C is not an MDS code in this
subcase.
Subcase 2.2: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is a

unit and ps+t2
2 < j2 ≤ ps − 1. Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where t2 + pr2 − δ2r2 ≤ j2 ≤ t2 + pr2 − (δ2 − 1)r2 − 1, 1 ≤
δ2 ≤ p − 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s − 1. Then C
is an MDS code when j1 + 2j2 + 2j3 + 2j4 + j5 + κ5 =
−ps+2(δ2+1)pk2−2. From j2 >

ps+t2
2 , we have 2j2 > ps+t2.

We see that j1+2j2+2j3+2j4+j5+κ5+ps−2(δ2+1)pk2+2 >
j1+ps+ t2+2j3+2j4+ j5+κ5+ps−2(δ2+1)pk2 +2 > 0,
i.e., j1+ 2j2+ 2j3+ 2j4+ j5+ κ5 > −ps+ 2(δ2+ 1)pk2 − 2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code.
Case 3: dH(C) = dH(C5) = dH(〈(x − γ5)κ5〉F ) =

(δ5 + 1)pk5 , where ps − ps−k5 + (δ5 − 1)ps−k5−1 + 1 ≤ κ5 ≤
ps−ps−k5 + δ5ps−k5−1, 1 ≤ δ5 ≤ p−1, and 0 ≤ k5 ≤ s−1.
Then C is an MDS code when j1+2j2+2j3+2j4+ j5+κ5 =
−ps+2(δ5+1)pk5 −2. From j1+2j2+2j3+2j4+ j5+κ5 =
−ps+2(δ5+1)pk5−2, we see that 2(δ5+1)pk5 > ps (5). Since
δ5+1 ≤ p, we have ps < 2p ·pk5 . It implies that ps−k5−1 < 2.
Hence, s = k5+ 1. From ps− ps−k5 + (δ5− 1)ps−k5−1+ 1 ≤
j5 ≤ ps − ps−k5 + δ5ps−k5−1, we see that j5 = ps − p + δ5.
From s = k5 + 1, (5) becomes 2(δ5 + 1)ps−1 > ps.
It implies that δ5 + 1 ≤ p < 2(δ5 + 1). By assumption,
(δ5 + 1)pk5 ≤ (δ5 + 1)pk5 . Hence, (δ5 + 1)ps−1 ≤ pk2+1.
It follows that k2+1 > s−1. Therefore, k2 > s−2. It shows
that k2 = s − 1 since k2 ≤ s − 1. Similarly, we see that
k1 = s− 1, k3 = s− 1 and k4 = s− 1. Since (δ5 + 1)pk5 ≤
(δ1 + 1)pk1 ≤ (δ2 + 1)pk2 ≤ (δ3 + 1)pk3 ≤ (δ4 + 1)pk4 ,
we have δ1 ≤ δ2 ≤ δ3 ≤ δ4. From this, j1 = ps − p + δ1,
j2 = ps−p+ δ2, j3 = ps−p+ δ3 and j4 = ps−p+ δ4. From
j1 + 2j2 + 2j3 + j4 + κ4 + j5 + κ3 = −ps + 2(δ5 + 1)pk5 − 2,
j1 = ps − p+ δ1 and j2 = ps − p+ δ2, j3 = ps − p+ δ3 and
j4 = ps−p+δ4, we see that (ps−p+δ1)+2(ps−p+δ2)+2(ps−
p+ δ3)+2(ps−p+ δ4)+ j5+κ5 = −ps+2(δ5+1)ps−1−2.
Hence,

j5 + κ5 = −8ps + 2(δ3 + 1)ps−1 − 2

+ 7p− δ1 − 2δ2 − 2δ3 − 2δ4
= [−2ps + 2(δ5 + 1)ps−1]

+ [p− δ1 − ps]+ [p− 2δ2 − ps]

+ [p− 2δ3 − ps]+ [p− 2δ4 − ps]

+ [3p− 2ps − 2].

If s ≥ 2, then j3 + κ3 < 0. This is a contradiction. If s = 1,
then k1 = k2 = k3 = k4 = 0. Hence, j1 = δ1, j2 = δ2,
j3 = δ3 and j4 = δ4. It implies that j1 + 2j2 + j3 + 2j4 +
j5+κ5 = 2δ5−p < 2δ1, which is a contradiction. Therefore,
j1+ 2j2+ 2j3+ 2j4+ j5+ κ5 6= −ps+ 2(δ5+ 1)pk5 − 2, i.e.,
C is not an MDS code. �
Proposition 4.10: Let C = C1 ⊕ Ci ⊕ Cj ⊕ Ck ⊕ Ct

be a cyclic code of length 5ps over R, where Ci,Cj,Ck ,Ct
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are defined as in Theorem 2.5 and i, j, k, t are different
numbers in {2, 3, 4, 5}. If Ci, Cj are constacyclic codes
of Type 3 of length ps over R, then C is not an
MDS code.
Proof: If Ck ,Ct are constacyclic codes of Type 3 of length

ps over R, then C is not an MDS code by Proposition 4.8.
Thus, Ck ,Ct are constacyclic codes of Type 4 of length ps

overR.Without loss of generality, we haveC2 = 〈(x−γ2)j2+
u(x−γ2)t2h2(x)〉,C3 = 〈(x−γ3)j3+u(x−γ3)t3h3(x)〉,C4 =

〈(x − γ4)j4 + u(x − γ4)t4 h4(x), u(x − γ4)κ4〉 and C5 = 〈(x −
γ5)j5 + u(x − γ5)t5 h5(x), u(x − γ5)κ5〉 (j1, j2, j3, j4, t5, κ5 are
defined as in Theorem 2.2). Assume that there exists ` ∈
{2, 3} such that |C`| = pm(p

s
−t`). If |C2| = pm(p

s
−t2), using

Theorem 2.11, then C is an MDS code when pm(p
s
−j1) ·

pm(p
s
−t2) · |C3| · |C4| · |C5| = p2m(5p

s
−dH(C)+1). It is easy to

check that pm(p
s
−j1)·pm(p

s
−t2)·|C3|·|C4|·|C5| < p8mp

s
because

|C3|, |C4|, |C5| < 2mps. Since 2m(5ps − dH(C) + 1) >
8mps, we have |C| < p2m(5p

s
−dH(C)+1). Hence, C is not an

MDS code when |C2| = pm(p
s
−t2). Thus, C is not an MDS

code if there exists ` ∈ {2, 3} satisfying |C`| = pm(p
s
−t`).

We consider the remaining case |C| = pm(p
s
−j1) · p2m(p

s
−j2) ·

p2m(p
s
−j3) · pm(2p

s
−j4−κ4) · pm(2p

s
−j5−κ5). By Theorem 2.11,

C is an MDS code when m(ps − j1) + 2m(ps − j2) +
2m(ps − j3) + m(2ps − j4 − κ4) + m(2ps − j5 − κ5) =
2m(5ps − dH(C) + 1). Hence, C is not an MDS code when
j1 + 2j2 + 2j3 + j4 + κ4 + j5 + κ5 = −ps + 2 dH(C) − 2.
Applying Theorem 4.1, we see that dH(C) = min{dH(Ci)},
where i = {1, 2, 3, 4, 5}. Then we have dH(C) = dH(C1) or
dH(C) = dH(C2) or dH(C) = dH(C3) or dH(C) = dH(C4) or
dH(C) = dH(C5).
Case 1: dH(C) = dH(C1). From Theorem 2.3,

dH(C1) = 1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, 2j2+ 2j3+ j4+

κ4+ j5+κ5 = −ps, which is a contradiction. Hence, C is not
an MDS code.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that j1 +

2j2 + 2j3 + j4 + κ4 + j5 + κ5 = −ps + 2(δ1 + 1)pk1 − 2
(4). From (4), we have 2(δ1 + 1)pk1 > ps. Since δ1 + 1 ≤ p,
we have ps < 2p · pk1 . It implies that ps−k1−1 < 2. Hence,
s− k1 − 1 = 0, i.e., s = k1 + 1. By asumption ps − ps−k1 +
(δ1 − 1)ps−k1−1 + 1 ≤ j1 ≤ ps − ps−k1 + δ1ps−k1−1, we see
that ps − p+ δ1 − 1+ 1 ≤ j1 ≤ ps − p+ δ1. It follows that
j1 = ps−p+ δ1. Put T4 = 2j2+2j3+ j4+κ4+ j5+κ5. Then
T4 = 2j2+ 2j3+ j4+ κ4+ j5+ κ5 = −ps+ 2(δ1+ 1)ps−1−
2− (ps − p+ δ1). Hence,

T4 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p+ 1 ≤ 0, we have [2ps−1 −
1][δ1−p+1]−1 < 0. Thus, j1+2j2+2j3+j4+κ4+j5+κ5 6=
−ps + 2(δ1 + 1)pk1 − 2, i.e., C is not an MDS code when
dH(C) = dH(C1).
Case 2: dH(C) = dH(C2).We see that dH(C) = dH(C3) can

be done similarly. Using Theorem 2.3, we have 2 subcases.

Subcase 2.1: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is
0 or h2(x) is a unit and 1 ≤ j2 ≤

ps+t2
2 . Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where ps− pr2+ (δ2− 1)r2+ 1 ≤ j2 ≤ ps− pr2+ δ2r2, 1 ≤
δ2 ≤ p− 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s− 1. Then C is an
MDS codewhen j1+2j2+2j3+j4+κ4+j5+κ5 = −ps+2(δ2+
1)pk2 − 2. Similar to Subcase 1.2 of Case 1, we can conclude
that j1+2j2+2j3+ j4+κ4+ j5+κ5 6= −ps+2(δ2+1)pk2−2,
i.e., C is not an MDS code in this subcase.
Subcase 2.2: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is a

unit and ps+t2
2 < j2 ≤ ps − 1. Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where t2+pr2−δ2r2 ≤ j2 ≤ t2+pr2−(δ2−1)r2−1, 1 ≤ δ2 ≤
p− 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s− 1. Then C is an MDS
code when j1+ 2j2+ 2j3+ j4+ κ4+ j5+ κ5 = −ps+ 2(δ2+
1)pk2 − 2. From j2 >

ps+t2
2 , we have 2j2 > ps + t2. We see

that j1+2j2+2j3+ j4+κ4+ j5+κ5+ps−2(δ2+1)pk2+2 >
j1+ps+t2+2j3+j4+κ4+j5+κ5+ps−2(δ2+1)pk2+2 > 0,
i.e., j1+2j2+2j3+ j4+κ4+ j5+κ5 > −ps+2(δ2+1)pk2−2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code.
Case 3: dH(C) = dH(C5) = dH(〈(x − γ5)κ5〉F ) = (δ5 +

1)pk5 , where ps − ps−k5 + (δ5 − 1)ps−k5−1 + 1 ≤ κ5 ≤ ps −
ps−k5 + δ5ps−k5−1, 1 ≤ δ5 ≤ p− 1, and 0 ≤ k5 ≤ s− 1.We
see that dH(C) = dH(C4) can be done similarly. If dH(C) =
dH(C5), thenC is anMDS code when j1+2j2+2j3+j4+κ4+
j5+κ5 = −ps+2(δ5+1)pk5−2. From j1+2j2+2j3+j4+κ4+
j5+κ5 = −ps+2(δ5+1)pk5−2, we see that 2(δ5+1)pk5 > ps

(5). Since δ5 + 1 ≤ p, we have ps < 2p · pk5 . It implies that
ps−k5−1 < 2. Hence, s = k5 + 1. From ps − ps−k5 + (δ5 −
1)ps−k5−1 + 1 ≤ j5 ≤ ps − ps−k5 + δ5ps−k5−1, we see that
j5 = ps−p+δ5. From s = k5+1, (3) becomes 2(δ5+1)ps−1 >
ps. It implies that δ5 + 1 ≤ p < 2(δ5 + 1). By assumption,
(δ5 + 1)pk5 ≤ (δ5 + 1)pk5 . Hence, (δ5 + 1)ps−1 ≤ pk2+1.
It follows that k2+1 > s−1. Therefore, k2 > s−2. It shows
that k2 = s − 1 since k2 ≤ s − 1. Similarly, we see that
k1 = s− 1, k3 = s− 1 and k4 = s− 1. Since (δ5 + 1)pk5 ≤
(δ1 + 1)pk1 ≤ (δ2 + 1)pk2 ≤ (δ3 + 1)pk3 ≤ (δ4 + 1)pk4 ,
we have δ1 ≤ δ2 ≤ δ3 ≤ δ4. From this, j1 = ps − p + δ1,
j2 = ps−p+ δ2, j3 = ps−p+ δ3 and j4 = ps−p+ δ4. From
j1 + 2j2 + 2j3 + j4 + κ4 + j5 + κ3 = −ps + 2(δ5 + 1)pk5 − 2,
j1 = ps − p+ δ1 and j2 = ps − p+ δ2, j3 = ps − p+ δ3 and
j4 = ps−p+δ4, we see that (ps−p+δ1)+2(ps−p+δ2)+2(ps−
p+δ3)+(ps−p+δ4)+κ4+j5+κ5 = −ps+2(δ5+1)ps−1−2.
Hence,

j5 + κ5 + κ4 = −7ps + 2(δ5 + 1)ps−1 − 2

+ 6p− δ1 − 2δ2 − 2δ3 − δ4
= [−2ps + 2(δ5 + 1)ps−1]+ [p− δ1 − ps]

+ [p− 2δ2 − ps]+ [p− 2δ3 − ps]

+ [p− δ4 − ps]+ [2p− ps − 2].

If s ≥ 2, then j3 + κ5 + κ4 < 0, which is a contradiction.
If s = 1, then k1 = k2 = k3 = 0. Hence, j1 = δ1, j2 = δ2,
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j3 = δ3. It implies that j1 + 2j2 + j3 + j4 + κ4 + j5 + κ5 =
2δ5 − p < 2δ1. This is a contradiction. Therefore, j1 + 2j2 +
2j3 + j4 + κ4 + j5 + κ5 6= −ps + 2(δ5 + 1)pk5 − 2, i.e., C is
not an MDS code. �
Proposition 4.11: Let C = C1 ⊕ Ci ⊕ Cj ⊕ Ck ⊕ Ct be

a cyclic code of length 5ps over R, where Ci,Cj,Ck ,Ct are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in {2, 3, 4, 5}. If Ci is a constacyclic code of Type 3 of length
ps overR, then C is not an MDS code.
Proof: If Cj,Ck ,Ct are constacyclic codes of Type 3

of length ps over R, then C is not an MDS code by
Proposition 4.10. Thus, Cj,Ck ,Ct are constacyclic codes of
Type 4 of length ps overR.Without loss of generality, assume
that C2 = 〈(x − γ2)j2 + u(x − γ2)t2h2(x)〉,C3 = 〈(x −
γ3)j3 + u(x − γ3)t3 h3(x), u(x − γ3)κ3〉,C4 = 〈(x − γ4)j4 +
u(x − γ4)t4 h4(x), u(x − γ4)κ4〉 and C5 = 〈(x − γ5)j5 + u(x −
γ5)t5 h5(x), u(x − γ5)κ5〉 (j1, j2, j3, j4, t5, κ5 are defined as in
Theorem 2.2). If |C2| = pm(p

s
−t2), by using Theorem 2.11,

C is an MDS code when pm(p
s
−j1) · pm(p

s
−t2) · |C3| · |C4| ·

|C5| = p2m(5p
s
−dH(C)+1). It is easy to check that pm(p

s
−j1) ·

pm(p
s
−t2) · pm(2p

s
−j3−κ3) · pm(2p

s
−j4−κ4) · pm(2p

s
−j5−κ5) <

p8mp
s
. Since 2m(5ps − dH(C) + 1) > 8mps, we have

|C| < p2m(5p
s
−dH(C)+1). Hence, C is not an MDS code when

|C2| = pm(p
s
−t2). We consider the remaining case |C| =

pm(p
s
−j1)·p2m(p

s
−j2)·pm(2p

s
−j3−κ3)·pm(2p

s
−j4−κ4)·pm(2p

s
−j5−κ5).

By Theorem 2.11, C is an MDS code when m(ps − j1) +
2m(ps− j2)+m(ps− j3− κ3)+m(2ps− j4− κ4)+m(2ps−
j5 − κ5) = 2m(5ps − dH(C) + 1), which is equivalent to
j1 + 2j2 + j3 + κ3 + j4 + κ4 + j5 + κ5 = −ps + 2 dH(C)− 2.
Applying Theorem 4.1, we see that dH(C) = min{dH(Ci)},
where i = {1, 2, 3, 4, 5}. Then we have dH(C) = dH(C1) or
dH(C) = dH(C2) or dH(C) = dH(C3) or dH(C) = dH(C4) or
dH(C) = dH(C5).
Case 1: dH(C) = dH(C1). From Theorem 2.3,

dH(C1) = 1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, 2j2 + j3 + κ3 +

j4 + κ4 + j5 + κ5 = −ps, which is a contradiction. Hence, C
is not an MDS code in this subcase.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that j1 +

j2+κ2+ j3+κ3+ j4+κ4+ j5+κ5 = −ps+2(δ1+1)pk1−2
(6). From (6), we have 2(δ1 + 1)pk1 > ps. Since δ1 + 1 ≤ p,
we have ps < 2p · pk1 . It implies that ps−k1−1 < 2. Hence,
s− k1 − 1 = 0, i.e., s = k1 + 1. By asumption ps − ps−k1 +
(δ1 − 1)ps−k1−1 + 1 ≤ j1 ≤ ps − ps−k1 + δ1ps−k1−1, we see
that ps − p+ δ1 − 1+ 1 ≤ j1 ≤ ps − p+ δ1. It follows that
j1 = ps − p+ δ1. Put T4 = 2j2 + j3 + κ3 + j4 + κ4 + j5 + κ5.
Then T4 = 2j2+ j3+ κ3+ j4+ κ4+ j5+ κ5 = −ps+ 2(δ1+
1)ps−1 − 2− (ps − p+ δ1). Hence,

T4 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p + 1 ≤ 0, we have
[2ps−1 − 1][δ1 − p + 1] − 1 < 0. Thus, j1 + 2j2 + j3 +
κ3 + j4 + κ4 + j5 + κ5 6= −ps + 2(δ1 + 1)pk1 − 2, i.e., C is
not an MDS code when dH(C) = dH(C1).

Case 2: dH(C) = dH(C2). Using Theorem 2.3, we have
2 subcases.
Subcase 2.1: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is

0 or h2(x) is a unit and 1 ≤ j2 ≤
ps+t2
2 . Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where ps − pr2 + (δ2 − 1)r2 + 1 ≤ j2 ≤ ps − pr2 + δ2r2,
1 ≤ δ2 ≤ p− 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s− 1. Then C
is an MDS code when j1+ j2+ j3+ κ3+ j4+ κ4+ j5+ κ5 =
−ps + 2(δ2 + 1)pk2 − 2. Similar to Subcase 1.2 of Case 1,
we can conclude that j1 + j2 + j3 + κ3 + j4 + κ4 + j5 + κ5 6=
−ps + 2(δ2 + 1)pk2 − 2, i.e., C is not an MDS code in this
subcase.
Subcase 2.2: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is a

unit and ps+t2
2 < j2 ≤ ps − 1. Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where t2+pr2−δ2r2 ≤ j2 ≤ t2+pr2−(δ2−1)r2−1, 1 ≤ δ2 ≤
p− 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s− 1. Then C is an MDS
code when j1+ 2j2+ 2j3+ j4+ κ4+ j5+ κ5 = −ps+ 2(δ2+
1)pk2 − 2. From j2 >

ps+t2
2 , we have 2j2 > ps + t2. We see

that j1+2j2+2j3+ j4+κ4+ j5+κ5+ps−2(δ2+1)pk2+2 >
j1+ps+t2+2j3+j4+κ4+j5+κ5+ps−2(δ2+1)pk2+2 > 0,
i.e., j1+2j2+2j3+ j4+κ4+ j5+κ5 > −ps+2(δ2+1)pk2−2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code.
Case 3: dH(C) = dH(C5) = dH(〈(x − γ5)κ5〉F ) = (δ5 +

1)pk5 , where ps − ps−k5 + (δ5 − 1)ps−k5−1 + 1 ≤ κ5 ≤ ps −
ps−k5 + δ5ps−k5−1, 1 ≤ δ5 ≤ p− 1, and 0 ≤ k5 ≤ s− 1.We
see that dH(C) = dH(C3) and dH(C) = dH(C4) can be done
similarly. If dH(C) = dH(C5), then C is an MDS code when
j1 + 2j2 + 2j3 + j4 + κ4 + j5 + κ5 = −ps + 2(δ5 + 1)pk5 − 2.
From j1+2j2+2j3+j4+κ4+j5+κ5 = −ps+2(δ5+1)pk5−2,
we see that 2(δ5 + 1)pk5 > ps (7). Since δ5 + 1 ≤ p, we have
ps < 2p · pk5 . It implies that ps−k5−1 < 2. Hence, s = k5+ 1.
From ps − ps−k5 + (δ5 − 1)ps−k5−1 + 1 ≤ j5 ≤ ps − ps−k5 +
δ5ps−k5−1, we have j5 = ps − p + δ5. From s = k5 + 1, (7)
becomes 2(δ5 + 1)ps−1 > ps. It implies that δ5 + 1 ≤ p <
2(δ5 + 1). By assumption, (δ5 + 1)pk5 ≤ (δ5 + 1)pk5 . Hence,
(δ5+1)ps−1 ≤ pk2+1. It follows that k2+1 > s−1. Therefore,
k2 > s−2. It shows that k2 = s−1 since k2 ≤ s−1. Similarly,
we see that k1 = s−1, k3 = s−1 and k4 = s−1. Since (δ5+
1)pk5 ≤ (δ1+1)pk1 ≤ (δ2+1)pk2 ≤ (δ3+1)pk3 ≤ (δ4+1)pk4 ,
we have δ1 ≤ δ2 ≤ δ3 ≤ δ4. From this, j1 = ps − p + δ1,
j2 = ps−p+ δ2, j3 = ps−p+ δ3 and j4 = ps−p+ δ4. From
j1 + 2j2 + 2j3 + 2j4 + j5 + κ3 = −ps + 2(δ5 + 1)pk5 − 2,
j1 = ps − p+ δ1 and j2 = ps − p+ δ2, j3 = ps − p+ δ3 and
j4 = ps−p+δ4, we see that (ps−p+δ1)+2(ps−p+δ2)+2(ps−
p+δ3)+(ps−p+δ4)+κ4+j5+κ5 = −ps+2(δ5+1)ps−1−2.
Hence,

j5 + κ5 + κ4 = −7ps + 2(δ3 + 1)ps−1 − 2

+ 6p− δ1 − 2δ2 − 2δ3 − δ4
= [−2ps + 2(δ5 + 1)ps−1]+ [p− δ1 − ps]

+ [p− 2δ2 − ps]+ [p− 2δ3 − ps]

+ [p− δ4 − ps]+ [2p− ps − 2].
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If s ≥ 2, then j3 + κ5 + κ4 < 0, which is a contradiction.
If s = 1, then k1 = k2 = k3 = 0. Hence, j1 = δ1, j2 = δ2,
j3 = δ3. It implies that j1 + 2j2 + j3 + j4 + κ4 + j5 + κ5 =
2δ5 − p < 2δ1. This is a contradiction. Therefore, j1 + 2j2 +
2j3 + j4 + κ4 + j5 + κ5 6= −ps + 2(δ5 + 1)pk5 − 2, i.e., C is
not an MDS code. �
Proposition 4.12: Let C = C1 ⊕ C2 ⊕ C3 ⊕

C4 ⊕ C5 be a cyclic code of length 5ps over R, where
C1,C2,C3,C4,C5 are defined as in Theorem 2.5 such that
all Ci are constacyclic codes of Type 4 of length ps over R
for i ∈ {2, 3, 4, 5}. Then C is not an MDS code.
Proof: We have C1 = 〈(x − 1)j1〉,C2 = 〈(x − γ2)j2 +

u(x−γ2)t2 h2(x), u(x−γ2)κ2〉,C3 = 〈(x−γ3)j3+u(x−γ3)t3
h3(x), u(x−γ3)κ3〉,C4 = 〈(x−γ4)j4+u(x−γ4)t4 h4(x), u(x−
γ4)κ4〉,C5 = 〈(x − γ5)j5 + u(x − γ5)t5 h5(x), u(x − γ5)κ5〉
(j2, j3, j4, j5 are defined as in Theorem 2.2). ByTheorem 2.11,
C is an MDS code when m(ps − j1) + m(2ps − j2 − κ2) +
m(2ps − j3 − κ3) + m(2ps − j4 − κ4) + m(ps − j5 − κ5) =
2m(5ps − dH(C) + 1). Hence, C is an MDS code when j1 +
j2 + κ2 + j3 + κ3 + j4 + κ4 + j5 + κ5 = −ps + 2 dH(C)− 2.
Applying Theorem 4.1, we see that dH(C) = min{dH(Ci)},
where i = {1, 2, 3, 4, 5}. Then we have dH(C) = dH(C1) or
dH(C) = dH(C2) or dH(C) = dH(C3) or dH(C) = dH(C4) or
dH(C) = dH(C5).
Case 1: dH(C) = dH(C1). From Theorem 2.3,

dH(C1) = 1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, j2 + κ2 + j3 +

κ3+ j4+κ4+ j5+κ5 = −ps, which is a contradiction. Hence,
C is not an MDS code in this subcase.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that j1 +

j2+κ2+ j3+κ3+ j4+κ4+ j5+κ5 = −ps+2(δ1+1)pk1−2
(8). From (8), we have 2(δ1 + 1)pk1 > ps. Since δ1 + 1 ≤ p,
we have ps < 2p · pk1 . It implies that ps−k1−1 < 2. Hence,
s− k1 − 1 = 0, i.e., s = k1 + 1. By asumption ps − ps−k1 +
(δ1 − 1)ps−k1−1 + 1 ≤ j1 ≤ ps − ps−k1 + δ1ps−k1−1, we see
that ps − p+ δ1 − 1+ 1 ≤ j1 ≤ ps − p+ δ1. It follows that
j1 = ps−p+δ1. Put T6 = j2+κ2+ j3+κ3+ j4+κ4+ j5+κ5.
Then T6 = j2 + κ2 + j3 + κ3 + j4 + κ4 + j5 + κ5 = −ps +
2(δ1 + 1)ps−1 − 2− (ps − p+ δ1). Hence,

T6 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p+ 1 ≤ 0, we have [2ps−1 −
1][δ1 − p+ 1]− 1 < 0. Thus, j1 + j2 + κ2 + j3 + κ3 + j4 +
κ4+ j5+ κ5 6= −ps+ 2(δ1+ 1)pk1 − 2, i.e., C is not an MDS
code when dH(C) = dH(C1).
Case 2: dH(C) = dH(C2).
Subcase 2.1: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is

0 or h2(x) is a unit and 1 ≤ j2 ≤ ps − 1.We have

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where ps − pr2 + (δ2 − 1)r2 + 1 ≤ j2 ≤ ps − pr2 + δ2r2,
1 ≤ δ2 ≤ p−1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s−1. Then C is
an MDS code when j1+2j2+2j3+2j4+2j5 = −ps+2(δ2+
1)pk2 − 2. Similar to Subcase 1.2 of Case 1, we can conclude

that j1+ 2j2+ 2j3+ 2j4+ 2j5 6= −ps+ 2(δ2+ 1)pk2 − 2, i.e.,
C is not an MDS code in this subcase.
Subcase 2.2: dH(C2) = dH(〈(x − γ2)j2〉F ) when h2(x) is a

unit and ps+t2
2 < j2 ≤ ps − 1. Then

dH(C2) = dH(〈(x − γ2)j2〉F ) = (δ2 + 1)pk2 ,

where t2 + pr2 − δ2r2 ≤ j2 ≤ t2 + pr2 − (δ2 − 1)r2 − 1,
1 ≤ δ2 ≤ p− 1, r2 = ps−k2−1, and 0 ≤ k2 ≤ s− 1. Then C
is an MDS code when j1 + 2j2 + 2j3 + 2j4 + 2j5 = −ps +
2(δ2 + 1)pk2 − 2. From j2 >

ps+t2
2 , we have 2j2 > ps + t2.

We see that j1+2j2+2j3+2j4+2j5+ps−2(δ2+1)pk2+2 >
j1 + ps + t2 + 2j3 + 2j4 + 2j5 + ps − 2(δ2 + 1)pk2 + 2 > 0,
i.e., j1 + 2j2 + 2j3 + 2j4 + 2j5 > −ps + 2(δ2 + 1)pk2 − 2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code.
Case 3: dH(C) = dH(C5) = dH(〈(x − γ5)κ5〉F ) =

(δ5 + 1)pk5 , where ps − ps−k5 + (δ5 − 1)ps−k5−1 + 1 ≤ κ5 ≤
ps−ps−k5 + δ5ps−k5−1, 1 ≤ δ5 ≤ p−1, and 0 ≤ k5 ≤ s−1.
We see that dH(C) = dH(C4) and dH(C) = dH(C3) can be
done similarly. If dH(C) = dH(C5), then C is an MDS code
when j1+ j2+κ2+ j3+κ3+ j4+κ4+ j5+κ5 = −ps+2(δ5+
1)pk5 − 2. From j1 + j2 + κ2 + j3 + κ3 + j4 + κ4 + j5 + κ5 =
−ps+2(δ5+1)pk5−2, we see that 2(δ5+1)pk5 > ps (9). Since
δ5+1 ≤ p, we have ps < 2p ·pk5 . It implies that ps−k5−1 < 2.
Hence, s = k5+ 1. From ps− ps−k5 + (δ5− 1)ps−k5−1+ 1 ≤
j5 ≤ ps − ps−k5 + δ5ps−k5−1, we have j5 = ps − p + δ5.
From s = k5 + 1, (9) becomes 2(δ5 + 1)ps−1 > ps.
It implies that δ5 + 1 ≤ p < 2(δ5 + 1). By assumption,
(δ5 + 1)pk5 ≤ (δ5 + 1)pk5 . Hence, (δ5 + 1)ps−1 ≤ pk2+1.
It follows that k2+1 > s−1. Therefore, k2 > s−2. It shows
that k2 = s − 1 since k2 ≤ s − 1. Similarly, we see that
k1 = s− 1, k3 = s− 1 and k4 = s− 1. Since (δ5 + 1)pk5 ≤
(δ1 + 1)pk1 ≤ (δ2 + 1)pk2 ≤ (δ3 + 1)pk3 ≤ (δ4 + 1)pk4 ,
we have δ1 ≤ δ2 ≤ δ3 ≤ δ4. From this, j1 = ps − p + δ1,
j2 = ps−p+ δ2, j3 = ps−p+ δ3 and j4 = ps−p+ δ4. From
j1+j2+κ2+j3+κ3+j4+κ4+j5+κ5 = −ps+2(δ5+1)pk5−2,
j1 = ps − p+ δ1 and j2 = ps − p+ δ2, j3 = ps − p+ δ3 and
j4 = ps − p+ δ4, we see that (ps − p+ δ1)+ (ps − p+ δ2)+
κ2 + (ps − p + δ3) + κ3 + (ps − p + δ4) + κ4 + j5 + κ5 =
−ps + 2(δ5 + 1)ps−1 − 2. Hence,

j5 + κ5 + κ4 + κ3 + κ2 = −4ps + 2(δ3 + 1)ps−1 − 2

+ 3p− δ1 − δ2 − δ3 − δ4
= [−2ps + 2(δ5 + 1)ps−1]

+ [p− δ1 − ps]+ [p− 2δ2 − ps]

+ [p− 2δ3 − ps]

+ [p− δ4 − ps]+ [−p− ps − 2].

If s ≥ 2, then j3 + κ5 + κ4 < 0, which is a contradiction.
If s = 1, then k1 = k2 = k3 = 0. Hence, j1 = δ1, j2 = δ2,
j3 = δ3. It implies that j1 + 2j2 + j3 + j4 + κ4 + j5 + κ5 =
2δ5 − p < 2δ1. This is a contradiction. Therefore, j1 + 2j2 +
2j3 + j4 + κ4 + j5 + κ5 6= −ps + 2(δ5 + 1)pk5 − 2, i.e., C is
not an MDS code. �
Combining Propositions 4.2-4.12, we have the following

result.
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Theorem 4.13: Let C = C1⊕C2⊕C3⊕C4⊕C5 be a cyclic
code of length 5ps over R, where C1,C2,C3,C4,C5 are
defined as in Theorem 2.5. Then C is an MDS code if and
only if C = 〈1〉.

We finish this section by giving an example.
Example 4.14: Put R = F11 + uF11. We consider cyclic

codes of length 55 overR. ThenC = C1⊕C2⊕C3⊕C4⊕C5,
where C1 is a cyclic code of length 11 over R, C2 is a 9-
constacyclic code of length 11 overR, C3 is a 5-constacyclic
code of length 55 over R, C4 is a 4-constacyclic code of
length 55 over R, and C5 is a 3-constacyclic code of length
55 over R.
(1) LetC1 = 〈(x−1)7〉,C2 = 〈u(x−9)5〉,C3 = 〈u(x−5)6〉,

C4 = 〈u(x − 4)5〉 and C5 = 〈u(x − 3)5〉. By Theorem 2.3,
we have dH(C1) = 8, dH(C2) = 6, dH(C3) = 7,
dH(C4) = 6 and dH(C5) = 6. Using Theorem 4.1, we see
that dH(C) = 6. Then C has parameters [55, 1127, 6].
(2) Let C1 = 〈(x − 1)8〉, C2 = 〈u(x − 9)9〉,

C3 = 〈(x − 5)7 + u(x − 5)6〉, C4 = 〈(x − 4)5 + u(x − 4)6〉
and C5 = 〈(x − 3)4 + u(x − 3)6〉. By Theorem 2.3, we see
that dH(C1) = 9, dH(C2) = 10, dH(C3) = 8, dH(C4) = 6 and
dH(C5) = 5. By applying Theorem 4.1, dH(C) = 6. Then C
has parameters [55, 1129, 5].

V. HAMMING DISTANCE AND MDS
CODES OF LENGTH 5ps OVER R
WHEN p ≡ 4 (mod 5)
As in Theorem 2.7, cyclic codes of length 5ps over R can
be represented as C = C+

⊕
Cα1

⊕
Cα2 , where C+ is a

cyclic code of length ps over R, Cα1 is an α1-constacyclic
code and Cα2 is an α2-constacyclic code of length 2ps

over R. We determine the Hamming distance of C as
follows.
Theorem 5.1: Let C = C+

⊕
Cα1

⊕
Cα2 be a non-zero

cyclic code of length 5ps overR. Then the Hamming distance
dH(C) = min{dH(Ci)|i ∈ {1, 2, 3},Ci 6= 〈0〉}.
Proof: Without loss of generality, assume that dH(C1) =

d1 = min{dH(Ci)} (that means C1 6= 〈0〉). Let d be the
Hamming distance of C = C1 ⊕ C2 ⊕ C3. Let c1 be a non-
zero codeword of minimum weight in C1, i.e., d1 = wtH(c1).
Since (c1, 0, 0) ∈ C and wtH(c1, 0, 0) = d1, we have d ≤ d1.
Let z = (z1, z2, z3) be an arbitrary non-zero codeword in
C1 ⊕ C2 ⊕ C3. If z1 = 0, then there exists t ∈ {2, 3} such
that zt 6= 0. Since dH(C1) = d1 = min{dH(Ci)}, we have
wtH(zt ) ≥ dH(Ct ) ≥ d1. Hence, the Hamming weight of z is
wtH(z) = wtH(z1)+wtH(z2)+wtH(z3) ≥ wtH(zt ) ≥ dH(Ct ) ≥
d1. It implies that d ≥ d1 when z1 = 0. If z1 6= 0, then
the Hamming weight of z is wtH(z) = wtH(z1) + wtH(z2) +
wtH(z3) ≥ d1. It means that d ≥ d1 when z1 6= 0. Since z
is an arbitrary non-zero codeword, we have d ≥ d1. Thus,
d = d1. �
We compute the Hamming distance of γ -constacyclic

codes of Type 2 in the following theorem.
Theorem 5.2: Let C = 〈u(x2 − α0)j〉, 0 ≤ j ≤ ps − 1, be a

γ -constacyclic code of Type 2 of length 2ps over R. Then

dH(C) = dH(〈(x2 − α0)j〉F ), and dH(C) is given by

dH(C)

=


• 1, if j = 0
• (δ + 1)pς , if ps − ps−ς + (δ − 1)ps−ς−1 + 1 ≤ j
and j ≤ ps − ps−ς + δps−ς−1

• 0, if j = ps

where 1 ≤ δ ≤ p− 1, 0 ≤ ς ≤ s− 1.
Proof:We consider the following two cases:
Case 1: If j = 0, then dH(C) = 1.
Case 2: If ps−ps−ς+(δ−1)ps−ς−1+1 ≤ j ≤ ps−ps−ς+

δps−ς−1, then for a Type 2 code C = 〈u(x2 − α0)j〉, 0 ≤ j ≤
ps − 1, the codewords of the code C are exactly same as the
codewords of the γ -constacyclic codes 〈(x2−α0)j〉 in

Fpm [x]
〈x3ps−γ 〉

multiplied by u. Thus, we get dH(C) = dH(〈(x2 − α0)j〉F ).
By Theorem 2.3, dH(C) is given by

dH(C)

=


• 1, if j = 0
• (δ + 1)pς , if ps − ps−ς + (δ − 1)ps−ς−1 + 1 ≤ j
and j ≤ ps − ps−ς + δps−ς−1

• 0, if j = ps

where 1 ≤ δ ≤ p− 1, 0 ≤ ς ≤ s− 1, as required. �
We provide the Hamming distance of γ -constacyclic codes

of Type 3 of length 3ps overR in the following theorem.
Theorem 5.3: Let C = 〈(x2−α0)j+u(x2−α0)rv(x)〉 be a γ -

constacyclic code of Type 3 of length 2ps overR, where 1 ≤
j ≤ ps − 1, 0 ≤ r < j and either v(x) is a unit in

Fpm [x]
〈x3ps−γ 〉

or

0. Then dH(C) = dH(〈(x2 − α0)R〉F ), where R is the smallest
integer satisfying u(x3−γ0)R ∈ 〈(x3−γ0)j+u(x3−γ0)rv(x)〉,
which is given by

R =

{
j, if v(x) = 0
min{j, ps − j+ r}, if v(x) 6= 0

and is determined by

dH(C) = (δ + 1)pς ,

where ps − ps−ς + (δ − 1)ps−ς−1 + 1 ≤ R ≤ ps − ps−ς +
δps−ς−1, 1 ≤ δ ≤ p− 1 and 0 ≤ ς ≤ s− 1.
Proof: Since R is the smallest integer such that u(x2 −

α0)R ∈ 〈(x2 − α0)j + u(x2 − α0)rv(x)〉, therefore we have,

dH(C) ≤ dH(〈u(x2 − α0)R〉) = dH(〈(x2 − α0)R〉F ).

Now, let us take an arbitrary polynomial c(x) ∈ C . So, there
exist two polynomials f0(x) and fu(x) over Fpm satisfying

c(x) = [f0(x)+ ufu(x)][(x2 − α0)j + u(x2 − α0)rv(x)]

= f0(x)(x2 − α0)j

+ u[f0(x)(x2 − α0)rv(x)+ fu(x)(x2 − α0)j].

Now, we consider two cases:
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Case 1:When v(x) = 0, then we have

wtH(c(x))≥max
{
wtH(f0(x)(x2 −α0)j),wtH(fu(x)(x2 − α0)j)

}
≥max

{
wtH(f0(x)(x2 −α0)j),wtH(f0(x)(x2 − α0)j)

}
≥ dH(〈(x2 −α0)j〉F ),
= dH(〈(x2 −α0)R〉F ),

Case 2:When v(x) 6= 0, then we have

wtH(c(x))

≥ max
{
wtH(f0(x)(β(x))j),wtH(h(x))

}
≥ max

{
wtH(f0(x)(β(x))j),wtH(f0(x)(β(x))p

s
−j+r )

}
≥ dH(〈(β(x))min{j, ps−j+r}

〉F ),

= dH(〈(β(x))R〉F ),

where β(x) = x2 − α0 and f (λ0, x) = f0(x)(x2 − α0)p
s
−j+r

and h(x) = f0(x)(x2 − α0)rv(x) + fu(x)(x2 − α0)j. Hence,
by combining both the cases, we get dH(〈(x2 − α0)R〉F ) ≤
dH(C), which implies that, dH(〈(x2 − α0)R〉F ) = dH(C). �
We determine the Hamming distance of γ -constacyclic

codes of Type 4 in the following result.
Theorem 5.4: Let C = 〈(x2 − α0)j + u(x2 − α0)rv(x),

u(x2−α0)ω〉 be a γ -constacyclic code of Type 4 of length 2ps

overR, where v(x) is same as given in Type 3, 1 ≤ j ≤ ps−1,
deg(v) ≤ ω − r − 1, ω < R, and R is the smallest integer
such that u(x2 − α0)R ∈ 〈(x2 − α0)j + u(x2 − α0)rv(x)〉, i.e.,
R = j, if v(x) = 0 and otherwise R = min{j, ps− j+ r}. Then
dH(C) = dH(〈(x2 − α0)ω〉F ), and is given by

dH(C) = (δ + 1)pς ,

where ps − ps−ς + (δ − 1)ps−ς−1 + 1 ≤ ω ≤ ps − ps−ς +
δps−ς−1, 1 ≤ δ ≤ p− 1 and 0 ≤ ς ≤ s− 1.
Proof: Clearly, we have C = 〈(x2 − α0)j + u(x2 −

α0)rv(x), u(x2 − α0)ω〉 ⊇ 〈u(x2 − α0)ω〉 ⊇ 〈u(x2 − α0)j〉,
since ω < R ≤ j. Thus, dH(C) ≤ dH(〈u(x − γ0)ω〉) =
dH(〈(x2−α0)ω〉F ). To prove that dH(〈(x2−α0)ω〉F ) ≤ dH(C),
we take an arbitrary polynomial c(x) ∈ C and proceed to
show that wtH(c(x)) ≥ dH(〈(x2 − α0)ω〉F ). Now, there exist
polynomials f0(x), fu(x), g0(x) and gu(x) over Fpm such that

c(x) = [f0(x)+ ufu(x)][(β(x))j + u(β(x))rv(x)]
+ u(β(x))ω[g0(x)+ ugu(x)]

= f0(x)(β(x))j

+ u[f0(x)(β(x))rv(x)+ fu(x)(β(x))j + g0(x)(β(x))ω]
= f ′0(x)(β(x))

ω
+ u[f0(x)(β(x))rv(x)+ g′0(x)(β(x))

ω],

where β(x) = x2 − α0 and f ′0(x) = f0(x)(x2 − α0)j−ω ∈
Fpm [x], g′0(x) = fu(x)(x2 − α0)j−ω + g0(x) ∈ Fpm [x]. Hence,

wtH(c(x)) ≥ max
{
wtH(f ′0(x)(x

2
− α0)ω),wtH(h′(x))

}
≥ max

{
wtH(f ′0(x)(x

2
− α0)ω),wtH(a(x))

}
≥ dH(〈(x2 − α0)ω〉F ),

where a(x) = f ′0(x)(x
2
− α0)ω) and h′(x) = f0(x)

(x2 − α0)rv(x)+ g′0(x)(x
2
− α0)ω. �

To getMDS codes, we consider the following propositions.
Proposition 5.5: Let C = C1 ⊕ C2 ⊕ C3 be a cyclic code

of length 5ps over R, where C1,C2,C3 are defined as in
Theorem 2.7 such that C1 = 〈0〉. Then C is not an MDS code.
Proof: From Theorem 5.1, dH(C) = min{dH(C2),

dH(C3)} ≤ ps. We have |C| = |C2| × |C3| = p`2 · p`3 ,
where |C2| = p`2 , |C3| = p`3 and 0 ≤ `2, `3 ≤ 2mps.
We see that `2 + `3 ≤ 4mps and 2m(5ps − dH(C) +
1) > 4mps. Thus, `2 + `3 < 2m(5ps − dH(C) + 1). Since
`2 + `3 < 2m(5ps − dH(C) + 1), C is not an MDS code
by Theorem 2.11. �
Proposition 5.6: Let C = C1 ⊕ C2 ⊕ C3 be a cyclic code

of length 5ps over R, where C1,C2,C3 are defined as in
Theorem 2.7 such that there exists Ci = 〈0〉 for i ∈ {2, 3}.
Then C is not an MDS code.
Proof: Without loss of generality, assume that C2 = 〈0〉.

From Theorem 5.1, dH(C) = min{dH(C1), dH(C3)} ≤ ps.
We have |C| = |C1| × |C3| = p`1 · p`3 , where |C1| = p`1 ,
|C3| = p`3 and 0 ≤ `1 ≤ 2mps, 0 ≤ `3 ≤ 4mps. We see that
`1 + `3 ≤ 6mps and 2m(5ps − dH(C) + 1) > 8mps. Thus,
`2 + `3 < 2m(5ps − dH(C) + 1). Using Theorem 2.11, C is
an MDS code when `1 + `3 = 2m(5ps − dH(C) + 1). Since
`1 + `3 < 2m(5ps − dH(C)+ 1), C is not an MDS code. �
Proposition 5.7: Let C = C1 ⊕ C2 ⊕ C3 be a cyclic code

of length 5ps over R, where C1,C2,C3 are defined as in
Theorem 2.7 such that there exists Ci = 〈1〉 for i ∈ {1, 2, 3}.
Then C is an MDS code if and only if C = 〈1〉.
Proof: Without loss of generality, assume that C1 = 〈1〉

and |C2| = p`2 and |C3| = p`3 , where 0 ≤ `2, `3 ≤ 4mps.
Using Theorem 5.1, dH(C) = dH(C1) = 1. By Theorem 2.11,
C is anMDS code when p2mp

s
·p`2 ·p`3 = p2m(5p

s
−1+1), where

0 ≤ `2, `3 ≤ 4mps. It implies that 2mps + `2 + `3 = 10mps.
Thus, `2 + `3 = 8mps. Hence, `2 = `3 = 4mps. Then C is
an MDS code when C1 = 〈1〉, C2 = 〈1〉 and C3 = 〈1〉, i.e.,
C = 〈1〉. �
Proposition 5.8: Let C = C1 ⊕ C2 ⊕ C3 be a cyclic code

of length 5ps over R, where C1,C2,C3 are defined as in
Theorem 2.7 such that there exists Ci = 〈1〉 for i ∈ {2, 3}.
Then C is an MDS code if and only if C = 〈1〉.
Proof. Without loss of generality, assume that |C2| =

p`2 and |C3| = p`3 , where 0 ≤ `2, `3 ≤ 4mps. Using
Theorem 5.1, dH(C) = dH(C1) = 1. By Theorem 2.11, C
is an MDS code when p2mp

s
· p`2 · p`3 = p2m(5p

s
−1+1), where

0 ≤ `2, `3 ≤ 4mps. It implies that 2mps + `2 + `3 = 10mps.
Thus, `2 + `3 = 8mps. Hence, `2 = `3 = 4mps. Then C is
an MDS code when C1 = 〈1〉, C2 = 〈1〉 and C3 = 〈1〉, i.e.,
C = 〈1〉. �
Proposition 5.9: Let C = C1 ⊕ Cj ⊕ Ck be a cyclic

code of length 5ps over R, where Cj,Ck are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If Cj, Ck
are constacyclic codes of Type 2 of length 2ps overR, then C
is not an MDS code.
Proof: Without loss of generality, assume that

C1 = 〈(x − 1)j1〉,C2 = 〈u(x2 − γ2)j2 ,C3 = 〈u(x2 − γ3)j3〉
(j1, j2, j3 are defined as in Theorem 2.2). By Theorem 2.11,C
is anMDS code whenm(ps−j1)+m(2ps−j2)+m(2ps−j3) =
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2m(5ps − dH(C) + 1). Hence, C is an MDS code when
j1 + j2 + j3 = −5ps + 2 dH(C)− 2. Applying Theorem 4.1,
we see that dH(C) = min{dH(Ci)}, where i = {1, 2, 3}. Then
we have dH(C) = dH(C1) or dH(C) = dH(C2) or dH(C) =
dH(C3). Since Theorems 2.3, 5.1 and 5.2, dH(C) ≤ ps. Thus,
−5ps + 2 dH(C) − 2 < 0. It implies that j1 + j2 + j3 6=
−5ps + 2 dH(C)− 2. Hence, C is not an MDS code. �
Proposition 5.10: Let C = C1 ⊕ Cj ⊕ Ck be a cyclic

code of length 5ps over R, where Cj,Ck are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If Cj is
a constacyclic code of Type 2 of length 2ps overR, then C is
not an MDS code.
Proof: Without loss of generality, assume that

C1 = 〈(x − 1)j1〉,C2 = 〈u(x2 − γ2)j2 ,C3 = 〈(x2 − γ3)j3 +
u(x2 − γ3)t3 h3(x), u(x2 − γ3)κ3〉, or C3 = 〈(x2 − γ3)j3 +
u(x2 − γ3)t3 h3(x), u(x2 − γ3)κ3〉. (j1, j2, j3 are defined as in
Theorem 2.2). By Theorem 2.11, C is an MDS code when
m(ps− j1)+m(2ps− j2)+ `3 = 2m(5ps−dH(C)+1), where
p`3 = |C3|. Hence, C is an MDS code when j1 + j2 + `3 =
−7ps + 2 dH(C) − 2. Since Theorems 2.3, 5.1 and 5.2,
dH(C) ≤ ps. Thus,−5ps+2 dH(C)−2 < 0. It implies that j1+
j2+j3 6= −5ps+2 dH(C)−2. Hence,C is not anMDS code.�
Proposition 5.11: Let C = C1 ⊕ Cj ⊕ Ck be a cyclic

code of length 5ps over R, where Cj,Ck are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If Cj,Ck
are constacyclic codes of Type 3 of length 2ps overR, then C
is not an MDS code.
Proof: Without loss of generality, assume that

C1 = 〈(x−1)j1〉,C2 = 〈(x2−γ2)j2+u(x2−γ2)t2 h2(x)〉,C3 =

〈(x2 − γ3)j3 + u(x2 − γ3)t3 h3(x)〉. By Theorem 2.11, C is an
MDS code whenm(ps− j1)+`2+`3 = 2m(5ps−dH(C)+1).
Applying Theorem 4.1, we see that dH(C) = min{dH(Ci)},
where i = {1, 2, 3}. Then we have dH(C) = dH(C1) or
dH(C) = dH(C2) or dH(C) = dH(C3). Since Theorems 2.3,
5.1 and 5.2, dH(C) ≤ ps. Therefore, if `2 < 4m(ps − j2) or
`3 < 4m(ps−j3), thenm(ps−j1)+`2+`3 6= 2m(5ps−dH(C)+
1). Thus, C is not an MDS code when `2 < 4m(ps − j2 or
`3 < 4m(ps − j3). We consider the case `2 = 4m(ps − j2) or
`3 = 4m(ps − j3). We divide into 3 cases as follows.
Case 1: dH(C) = dH(C1). From Theorem 2.3,

dH(C1) = 1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, j1 + `2 + `3 =
−ps, which is a contradiction. Hence, C is not an MDS code
in this subcase.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that

j1 + 4j2 + 4j3 = −ps + 2(δ1 + 1)pk1 − 2 (10). From
(10), we have 2(δ1 + 1)pk1 > ps. Since δ1 + 1 ≤ p,
we have ps < 2p · pk1 . It implies that ps−k1−1 < 2.
Hence, s − k1 − 1 = 0, i.e., s = k1 + 1. By asumption
ps−ps−k1+(δ1−1)ps−k1−1+1 ≤ j1 ≤ ps−ps−k1+δ1ps−k1−1,
we see that ps − p + δ1 − 1 + 1 ≤ j1 ≤ ps − p + δ1.
It follows that j1 = ps − p + δ1. Put T6 = 4j2 + 4j3. Then
T6 = 4j2+4j3 = −ps+2(δ1+1)ps−1−2−(ps−p+δ1). Hence,

T6 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p + 1 ≤ 0, we have
[2ps−1 − 1][δ1 − p + 1] − 1 < 0. Thus, j1 + 4j2 + 4j3 6=
−ps + 2(δ1 + 1)pk1 − 2, i.e., C is not an MDS code when
dH(C) = dH(C1).
Case 2: dH(C) = dH(C2). We see that dH(C) = dH(C3)
can be done similarly. We have dH(C) = (δ2 + 1)pk2 where
ps−ps−k2+(δ2−1)ps−k2−1+1 ≤ R ≤ ps−ps−k2+δ2ps−k2−1,
1 ≤ δ2 ≤ p− 1 and 0 ≤ k2 ≤ s− 1. By Theorem 2.11, C is
an MDS code when m(ps− j1)+4m(ps− j2)+4m(ps− j3) =
2m(5ps−dH(C)+1), where p`2 = |C2|. Hence, C is an MDS
code when j1+4j2+4j3 = −ps+2 dH(C)−2 = −ps+2(δ2+
1)pk2 − 2 (11). From (11), we have 2(δ2 + 1)pk2 > ps. Since
δ2+1 ≤ p, we have ps < 2p ·pk2 . It implies that ps−k2−1 < 2.
Hence, s − k2 − 1 = 0, i.e., s = k2 + 1. By asumption
ps−ps−k2+(δ2−1)ps−k2−1+1 ≤ j2 ≤ ps−ps−k2+δ3ps−k2−1,
we see that ps − p + δ2 − 1 + 1 ≤ j2 ≤ ps − p + δ2.
It follows that j2 = ps − p + δ2. Put T6 = 4j2 + 4j3. Then
T6 = 4j2+4j3 = −ps+2(δ2+1)ps−1−2−(ps−p+δ2). Hence,

T6 = ps−1[2(δ2 + 1)− 2p]− (δ2 − p+ 1)− 1

= [2ps−1 − 1][δ2 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ2 − p + 1 ≤ 0, we have
[2ps−1 − 1][δ2 − p + 1] − 1 < 0. Thus, j1 + 4j2 + 4j3 6=
−ps + 2(δ2 + 1)pk2 − 2, i.e., C is not an MDS code. �
Proposition 5.12: Let C = C1 ⊕ Cj ⊕ Ck be a cyclic

code of length 5ps over R, where Cj,Ck are defined as in
Theorem 2.11 and j, k are different numbers in {2, 3}. If Cj is
a constacyclic code of Type 3 of length 2ps overR and Ck is
a constacyclic code of Type 4 of length 2ps overR, then C is
not an MDS code.
Proof: Without loss of generality, assume that

C1 = 〈(x − 1)j1〉,C2 = 〈(x2 − γ2)j2 + u(x2 − γ2)t2 h2(x)〉,
C3 = 〈(x2 − γ3)j3 + u(x2 − γ3)t3 h3(x), u(x2 − γ3)κ3〉.
Applying Theorem 4.1, we see that dH(C) = min{dH(Ci)},
where i = {1, 2, 3}. Then we have dH(C) = dH(C1) or
dH(C) = dH(C2) or dH(C) = dH(C3). By Theorem 2.11,
C is an MDS code when m(ps − j1) + `2 + `3 = 2m(5ps −
dH(C) + 1). It is easy to see that if `2 = p2m(p

s
−j2), then

m(ps − j1) + `2 + `3 6= 2m(5ps − dH(C) + 1). Thus, C is
not an MDS code when `2 = p2m(p

s
−j2). We consider the

case when `2 = p4m(p
s
−j2). We divide into 3 cases, namely,

dH(C) = dH(C1), dH(C) = dH(C2) and dH(C) = dH(C3).
Case 1: dH(C) = dH(C1). From Theorem 2.3,

dH(C1) = 1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, j1 + `2 +

`3 = −9ps, which is a contradiction. Hence,C is not anMDS
code in this subcase.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that j1 +

4j2 + 2j3 + 2κ2 = −ps + 2(δ1 + 1)pk1 − 2 (12). From (12),
we have 2(δ1 + 1)pk1 > ps. Since δ1 + 1 ≤ p, we have ps <
2p·pk1 . It implies that ps−k1−1 < 2. Hence, s−k1−1 = 0, i.e.,
s = k1+1. By asumption ps−ps−k1 + (δ1−1)ps−k1−1+1 ≤
j1 ≤ ps − ps−k1 + δ1ps−k1−1, we see that ps − p+ δ1 − 1+
1 ≤ j1 ≤ ps − p + δ1. It follows that j1 = ps − p + δ1.
Put T7 = 4j2 + 2j3 + 2κ2. Then T7 = 4j2 + 2j3 + 2κ2 =
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−ps + 2(δ1 + 1)ps−1 − 2− (ps − p+ δ1). Hence,

T7 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p + 1 ≤ 0, we have
[2ps−1−1][δ1−p+1]−1 < 0. Thus, j1+4j2+2j3+2κ2 6=
−ps + 2(δ1 + 1)pk1 − 2, i.e., C is not an MDS code when
dH(C) = dH(C1).
Case 2: dH(C) = dH(C2). We see that dH(C) = (δ2 + 1)pk2
where ps − ps−k2 + (δ2 − 1)ps−k2−1 + 1 ≤ R ≤ ps −
ps−k2 + δ2ps−k2−1, 1 ≤ δ2 ≤ p − 1 and 0 ≤ k2 ≤ s − 1.
By Theorem 2.11, C is an MDS code when m(ps − j1) +
m(4ps − j2) + 2m(2ps − j3 − κ3) = 2m(5ps − dH(C) + 1).
Hence, C is an MDS code when j1+ j2+ 2j3+ 2κ3 = −ps+
2 dH(C)−2 = −ps+2(δ2+1)pk2−2 (13). From (13), we have
2(δ2 + 1)pk2 > ps. Since δ2 + 1 ≤ p, we have ps < 2p · pk2 .
It implies that ps−k2−1 < 2. Hence, s − k2 − 1 = 0, i.e.,
s = k2+1. By asumption ps−ps−k2 + (δ2−1)ps−k2−1+1 ≤
j2 ≤ ps−ps−k2+δ3ps−k2−1, we see that ps−p+δ2−1+1 ≤
j2 ≤ ps − p + δ2. It follows that j2 = ps − p + δ2. Put
T8 = j1 + j2 + 2j3 + 2κ3. Then T8 = j1 + j2 + 2j3 + 2κ3 =
−ps + 2(δ2 + 1)ps−1 − 2− (ps − p+ δ2). Hence,

T8 = ps−1[2(δ2 + 1)− 2p]− (δ2 − p+ 1)− 1

= [2ps−1 − 1][δ2 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ2 − p + 1 ≤ 0, we have
[2ps−1− 1][δ2− p+ 1]− 1 < 0. Thus, j1+ j2+ 2j3+ 2κ3 6=
−ps + 2(δ2 + 1)pk2 − 2, i.e., C is not an MDS code when
C2 = 〈(x2 − α2)j + u(x2 − α2)rv(x)〉.
Case 3: dH(C) = dH(C3). We see that dH(C) = (δ3 +

1)pk3 , where ps − ps−k3 + (δ3 − 1)ps−k3−1 + 1 ≤ R ≤ ps −
ps−k3 + δ3ps−k3−1, 1 ≤ δ3 ≤ p − 1 and 0 ≤ k3 ≤ s − 1.
By Theorem 2.11, C is an MDS code when m(ps − j1) +
4m(ps − j2) + 2m(2ps − j3 − κ3) = 2m(5ps − dH(C) + 1).
Hence, C is an MDS code when j1+4j2+2j3+2κ3 = −ps+
2 dH(C)−2 = −ps+2(δ3+1)pk3−2 (14). From (14), we have
2(δ3 + 1)pk3 > ps. Since δ3 + 1 ≤ p, we have ps < 2p · pk3 .
It implies that ps−k3−1 < 3. Hence, s − k3 − 1 = 0, i.e.,
s = k3+1. By asumption ps−ps−k3 + (δ3−1)ps−k3−1+1 ≤
j3 ≤ ps − ps−k3 + δ3ps−k3−1, we see that ps − p+ δ3 − 1+
1 ≤ j3 ≤ ps − p + δ3. It follows that j3 = ps − p + δ3. Put
T9 = j1+ 4j2+ 2j3+ 2κ3. Then T9 = j1+ 4j2+ 2j3+ 2κ3 =
−ps + 3(δ3 + 1)ps−1 − 3− (ps − p+ δ3). Hence,

T9 = ps−1[3(δ3 + 1)− 2p]− (δ3 − p+ 1)− 1

= [2ps−1 − 1][δ3 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ3 − p + 1 ≤ 0, we have
[2ps−1−1][δ3−p+1]−1 < 0. Thus, j1+4j2+2j3+2κ3 6=
−ps + 3(δ3 + 1)pk3 − 3, i.e., C is not an MDS code.
Proposition 5.13: Let C = C1 ⊕ Cj ⊕ Ck be a cyclic

code of length 5ps over R, where Cj,Ck are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If Cj, Ck
are constacyclic codes of Type 4 of length 2ps overR, then C
is not an MDS code.

Proof:Without loss of generality, assume that C1 = 〈(x −
1)j1〉,C2 = 〈(x2 − γ2)j2 + u(x2 − γ2)t2 h2(x)〉, C3 = 〈(x2 −
γ3)j3 + u(x2 − γ3)t3 h3(x), u(x2 − γ3)κ3〉. Applying Theorem
4.1, we see that dH(C) = min{dH(Ci)}, where i = {1, 2, 3}.
Then we have dH(C) = dH(C1) or dH(C) = dH(C2) or
dH(C) = dH(C3). Using Theorems 2.3, 5.1-5.3, dH(C) ≤ ps.
By Theorem 2.11, C is an MDS code when m(ps − j1) +
2m(2ps− j2−κ2)+2m(2ps− j3−κ3) = 2m(5ps−dH(C)+1).
We divide into 3 cases, namely, dH(C) = dH(C1), dH(C) =
dH(C2) and dH(C) = dH(C3).
Case 1: dH(C) = dH(C1). From Theorem 2.3,

dH(C1) = 1 or dH(C1) = (δ1 + 1)pk1 .
Subcase 1.1: dH(C1) = 1. In this subcase, j1+ 2j2+ 2κ2+

2j3 + 2κ3 = −ps, which is a contradiction. Hence, C is not
an MDS code in this subcase.
Subcase 1.2: dH(C1) = (δ1 + 1)pk1 . Then we see that

j1 + 2j2 + 2κ2 + 2j3 + 2κ2 = −ps + 2(δ1 + 1)pk1 − 2 (15).
From (15), we have 2(δ1 + 1)pk1 > ps. Since δ1 + 1 ≤
p, we have ps < 2p · pk1 . It implies that ps−k1−1 < 2.
Hence, s − k1 − 1 = 0, i.e., s = k1 + 1. By asumption
ps−ps−k1+(δ1−1)ps−k1−1+1 ≤ j1 ≤ ps−ps−k1+δ1ps−k1−1,
we see that ps−p+δ1−1+1 ≤ j1 ≤ ps−p+δ1. It follows that
j1 = ps−p+δ1. Put T10 = 2j2+2κ2+2j3+2κ3. Then T10 =
2j2+2κ2+2j3+2κ3 = −ps+2(δ1+1)ps−1−2−(ps−p+δ1).
Hence,

T10 = ps−1[2(δ1 + 1)− 2p]− (δ1 − p+ 1)− 1

= [2ps−1 − 1][δ1 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ1 − p+ 1 ≤ 0, we have [2ps−1 −
1][δ1 − p+ 1]− 1 < 0. Thus, j1 + 2j2 + 2κ2 + 2j3 + 2κ3 6=
−ps + 2(δ1 + 1)pk1 − 2, i.e., C is not an MDS code when
dH(C) = dH(C1).
Case 2: dH(C) = dH(C2). We see that dH(C) = dH(C3)

can be done similarly. We have dH(C) = (δ2 + 1)pk2 , where
ps−ps−k2+(δ2−1)ps−k2−1+1 ≤ R ≤ ps−ps−k2+δ2ps−k2−1,
1 ≤ δ2 ≤ p− 1 and 0 ≤ k2 ≤ s− 1. By Theorem 2.4, C is an
MDS code whenm(ps−j1)+2m(2ps−j2−κ2)+2m(2ps−j3−
κ3) = 2m(5ps− dH(C)+ 1). Hence, C is an MDS code when
j1+2j2+2κ2+2j3+2κ3 = −ps+2 dH(C)−2 = −ps+2(δ2+
1)pk2 − 2 (16). From (16), we have 2(δ2 + 1)pk2 > ps. Since
δ2 + 1 ≤ p, we have ps < 2p · pk2 . It implies that ps−k2−1 <
2. Hence, s − k2 − 1 = 0, i.e., s = k2 + 1. By asumption
ps−ps−k2+(δ2−1)ps−k2−1+1 ≤ j2 ≤ ps−ps−k2+δ3ps−k2−1,
we see that ps− p+ δ2− 1+ 1 ≤ j2 ≤ ps− p+ δ2. It follows
that j2 = ps − p+ δ2. Put T11 = j1 + 2j2 + 2κ2 + 2j3 + 2κ3.
Then T11 = j1 + 2j2 + 2κ2 + 2j3 + 2κ3 = −ps + 2(δ2 +
1)ps−1 − 2− (ps − p+ δ2). Hence,

T11 = ps−1[2(δ2 + 1)− 2p]− (δ2 − p+ 1)− 1

= [2ps−1 − 1][δ2 − p+ 1]− 1.

Since 2ps−1 − 1 > 0 and δ2 − p+ 1 ≤ 0, we have [2ps−1 −
1][δ2 − p+ 1]− 1 < 0. Thus, j1 + 2j2 + 2κ2 + 2j3 + 2κ3 6=
−ps + 2(δ2 + 1)pk2 − 2, i.e., C is not an MDS code. �
Combining Propositions 5.5-5.13, we have the following

theorem.

119902 VOLUME 10, 2022



H. Q. Dinh et al.: On Hamming Distance Distributions of Repeated-Root Cyclic Codes

Theorem 5.14: Let C = C1 ⊕ C2 ⊕ C3 be a cyclic code of
length 5ps overR. Then C is an MDS code when C = 〈1〉.
We finish this section by the following examples.
Example 5.15: Put R = F19 + uF19. Then cyclic codes of

length 95 over R are ideals of R[x]
〈x95−1〉

. We have x95 − 1 =

(x − 1)19(x2 + 5x + 1)38(x2 + 15x + 1)38. It is easy to
see that γ = 10. By Theorem 2.7, C = C1 ⊕ C2 ⊕ C3,
where C1 is a cyclic code of length 19 over R, C2 is a
11-constacyclic code of length 38 over R, C3 is
a 10-constacyclic code of length 38 over R. Let C1 = 〈(x −
1)5〉,C2 = 〈u(x2 − 11)5〉,C3 = 〈u(x2 − 10)4〉. By applying
Theorem 2.3, dH(C1) = 6. Using Theorem 5.4, we have
dH(C2) = 6 and dH(C3) = 5. From Theorem 5.1, dH(C) = 5.
Then C has the parameters [95, 1970, 5].
Example 5.16: Put R = F29 + uF29. Then cyclic

codes of length 145 over R are ideals of R[x]
〈x145−1〉

. We have

x145 − 1 = (x − 1)29(x2 + 6x + 1)58(x2 + 24x + 1)58. It is
easy to see that γ = 18. By Theorem 2.7, C = C1⊕C2⊕C3,
where C1 is a cyclic code of length 29 over R, C2 is a 27-
constacyclic code of length 58 overR, C3 is a 15-constacyclic
code of length 58 over R. Let C1 = 〈(x − 1)5〉,C2 =

〈u(x2 − 27)5〉,C3 = 〈u(x2 − 15)4〉. By using Theorem 2.3,
dH(C1) = 6. Applying Theorem 5.4, we have dH(C2) = 6 and
dH(C3) = 5. By Theorem 5.1, dH(C) = 5. Then C has the
parameters [145, 29131, 5].

VI. CONCLUSION
In this paper, the Hamming distances of all cyclic codes of
length 5ps over R are studied. When p ≡ 2, 3 (mod 5),
we provided the Hamming distance for cyclic codes of
length 5ps overR in Theorems 3.1-3.4. In Theorems 3.5-3.8,
we gave all MDS cyclic codes of length 5ps over R.
In Section 4, the Hamming distance of all cyclic codes of
length 5ps over R is given in Theorem 4.1 when p ≡ 1
(mod 5). Using Propositions 4.2-4.13, we determined all
MDS cyclic codes of length 5ps over R. In Section 5,
we determined Hamming distance of all cyclic codes of
length 5ps over R when p ≡ 4 (mod 5) (Theorem 5.1).
Theorems 5.2-5.4 provided the Hamming distance of ideals
of Types 2,3,4 of R[x]

〈(x2−α1)p
s
〉
. Applying Propositions 5.5-5.13,

Theorem 5.14 gave all MDS cyclic codes of length 5ps over
Rwhen p ≡ 4 (mod 5). We gave three examples to illustrate
our work in Sections 3, 4, and 5 (Examples 3.11, 4.14,
5.15 and 5.16).

MDS b-symbol codes can be considered as a generalization
of MDS codes and MDS symbol-pair codes. In 2018, [11]
established the Singleton bound for b-symbol codes as
follows: Let q be a prime power and b ≤ db ≤ n, for
any b-symbol code C of length n with size M and minimum
b-distance db over Fq, M ≤ qn−db+b. If the equality holds,
the b-symbol code C is called an optimal code with respect
to the Singleton bound, or an MDS b-symbol code. It will
be very interesting to discuss the b-symbol metrics for all
constacyclic codes of length 5ps over R and then we will

identify all MDS constacyclic codes of length 5ps with
respect to b-symbol distances.
Since classical error-correcting codes can not be used

in quantum computation, quantum error-correcting (briefly,
QEC) codes are proposed to protect quantum information
from errors due to the decoherence and other quantum noise.
For future work, it will be interesting to apply these distances
in constructing quantum error-correcting codes from the class
of λ-constacyclic codes of length 5ps over R.
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