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ABSTRACT Letp # 5 be any odd prime. Using the algebraic structures of all cyclic codes of length 5p® over
the finite commutative chain ring R = Fpm + ulFm, in this paper, the exact values of Hamming distances of
all cyclic codes of length 5p° over R are established. As an application, we identify all maximum distance
separable cyclic codes of length 5p°.

INDEX TERMS Constacyclic codes, cyclic codes, dual codes, chain rings, hamming distance, singleton

bound, MDS codes.

I. INTRODUCTION

The class of constacyclic codes is an important class of
linear codes in coding theory. Many optimal linear codes are
directly derived from constacyclic codes. Constacyclic codes
have practical applications as they are effective for encoding
and decoding with shift registers.

For a unit A of Fym, A-constacyclic codes of length n over
F,m areideals of the ring R), = i”:;_[i]) . The constacyclic codes
of length n over Fpm are said to be simple-root constacyclic
codes if gcd(n, p) = 1. Otherwise, the constacyclic codes
are said to be repeated-root constacyclic codes. In 1967, [4]
initiated the study of repeated-root constacyclic codes. After
that, many researchers studied repeated-root constacyclic
codes over finite fields [9], [35], [40], [43].

In 1994, [38] showed that Kerdock and Preparata codes can
be constructed from linear codes over Z4 via the Gray map.
After that, codes over finite chain rings received attention
because of their new role in algebraic coding theory and their
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successful applications. Since 2003, special classes of codes
over certain classes of finite chain rings have been studied by
numerous other authors (see, for example, [1], [5], [26], [45],
and [47]).

Linear and cyclic codes over the finite commutative chain
ring F» + ulF>, where u? = 0 are studied in [3]. In general,
the class of finite rings of the form R = TFpym + ulfym
has been widely used as alphabets of certain constacyclic
codes. The classification of codes plays an important role in
studying their structures, but in general, it is very difficult.
In 2010, [12] classified all constacyclic codes of length p*
over R. In addition, in 2015, the authors of [30] studied nega-
cyclic codes of length 2p® over R. Moreover, the algebraic
structures of all A-constacyclic codes of length 2p® over R
are determined in [10] and provided the number of codewords
and the dual of every A-constacyclic code. In 2018, all nega-
cyclic and constacyclic codes of length 4p* over R are estab-
lished successfully in [21], [22], [23], and [24]. In 2020, [20]
studied all A-constacyclic codes of length 3p* over R. After
that, some authors extended these problems to many more
general lengths and alphabets (see, e.g., [6] and [7]).
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However, till now very little amount of works on com-
putation of the Hamming distances have been done due
to computational complexity. In [14], Dinh obtained the
Hamming distances of all the cyclic codes of prime power
lengths over IF,m. Later, in [25] and [34], Dinh et al. computed
the Hamming distances of all constacyclic codes of lengths
3p®, 5p* over . In addition, Dinh [12] provided Hamming
distances of all (« + uB)-constacyclic codes of prime power
lengths over R. Moreover, Dinh et al. [27] determined the
Hamming distances of all y-constacyclic codes of prime
power lengths over R. In 2020, the Hamming distance of A-
constacyclic codes of length 3p* over R is given in R [20],
where A = o + uf is not a cube.

Motivated from all these works, we compute Hamming
distance distribution for all cyclic codes of length 5p® over R.
As an application, we identify all the MDS codes among such
codes.

The rest of this paper is organized as follows.
Section 2 contains some basic definitions and preliminary
results about constacyclic codes of length 5p° over R.
In Section 3, we obtain the Hamming distances of cyclic
codes of length 5p* over R and identify all MDS cyclic codes
of length 5p* over R when p = 2,3 (mod 5). In Section 4,
we determine the Hamming distances and provide all MDS
codes for all cyclic codes of length 5p° over R, where p = 1
(mod 5). In Section 5, we study the Hamming distances
for all cyclic codes of length 5p° over R when p = 4
(mod 5). We also give all MDS cyclic codes among such
codes. In Section 6, we conclude the paper.

Il. PRELIMINARIES

Let R = Fpm + ulfpm (u?> = 0) be a finite chain ring. A code
C of length n over R is a non-empty subset of R". The code
C is said to be linear over R if it is an R-submodule of R".
Let . € R be a unit element and v, be a map from R" to R"
defined by

.y V,,_z).

V. (v, V1, V2, oo oy Vue1) = (AVp—1, V0, V1, - -

A linear code C is said to be a A-constacyclic code over R if
v (C) = C.If A = 1, then C is cyclic, and if A = —1, then C
is negacyclic code over R.

Consider a code C of length n over R and let v =
vo, v1,v2,...,v4—1) € C be a codeword, then it can be
represented as the polynomial v(x) = vy + vix + vax? +
.- '+vn,1x”_1 oftheringR) = ZS[—X,{ . Denote the Hamming
weight of v is denoted by wt g (v). Then wt y (v) is given by the
total number of nonzero components of v, i.e.,

wig(v) = |{j : v # O}].

The smallest weight among all its nonzero codewords is the
minimum weight of the code C and is denoted by wty(C).
The Hamming distance of the code C is denoted by dy(C)
and is defined as dy(C) = min{wty(v)| v # 0,v € C}.
The following result is one of the most important fact about
A-constacyclic codes.
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Proposition 2.1: [8] Let C be a linear code C of length n
over R. Then C is a A-constacyclic code of length n over R
if and only if C is an ideal of the ring R) = ()ZSEC)]Q'

The ring R can be expressed as R = F’ZZ;[;A - {a +
ub|a, b € Fpn}. Over the last few years, in a series of papers,
Dinh et al. ( [20], [21], [22], [23], [24]) have done the job
of classifying classes of constacyclic codes of certain lengths
over R.In 2010, [12] gave the construction of all constacyclic
codes of p* length over R.

Theorem 2.2 (cf. [12]): Let A be a unit of the ring R, i.e.,
A is of the form a + uf or y, where 0 # a, B,y € Fpm.

D IfA = a + upP, there exists 0 # ag € Fpyn

such that agx = «. Then the ring M%
a finite chain ring with maximal ideal {oox — 1),
and {((apx — l)pS) = (u). The (o +upB)-constacyclic
codes of p* length over R are the ideals ((ogx — 1)),
0 <j < 2p°, of the finite chain ring m.
DIfr =y €Fpm\ {0}, there exists 0 # yg € Fym
such that yg = y. Then the ring xﬁ[f]
ring with the maximal ideal (u, x — yp), but it is not

a chain ring. The y -constacyclic codes of p* length

is

is a local

over R, i.e., ideals of the ring (xz,%[ﬂ/}, are given by
four types.
e Type 1 are the trivial ideals, i.e.,
cC = (0), C = (l). Number of
codewords in theses codes are 1 and p*""’
respectively.

e Type 2 are the principal ideals generated
by nonmonic polynomials, i.e., C; =
(u(x — yoY), where 0 < j < p* — 1. In this
case, |Cjl =pm("s_-i).

e Type 3 are the principal ideals generated
by monic polynomials, i.e., C; = ((x —
yo¥ + u(x — y0)'h(x) ), where 1 < j <
p'— 1,0 <t < j, and either h(x) is 0 or

h(x) is a unit in (xﬁl;;[f]y). In this case,

"D if 1l <j<p! + 5]
.pm(p'rft)’
P+ 5l <ji<p -1
e Type 4 are the nonprincipal ideals, i.e.,
((x = yo) + ulx — y0)' h(x), ux — y0)),
with h(x) as in Type 3, deg h(x) < k—t—1,
andk < T, where T is the smallest integer
such that u(x — y)' € (x — pwy +
u(x — yo)'h(x) ); or equivalently, T = j,
if h(x) =0, otherwise T = min{j, p*—j +
t}. The cardinality of C is given by
IC| = pM(Zp‘—j—K).
Theorem 2.3: (cf. [10, Section 3])
(i) If Aisasquarein R and A = 82, then it follows
from the Chinese Reminder Theorem that
NP, A) = 7%[)6] ~ IS[X] IE[X]
(X2 =) &P +8) T (kP =)
= RQP*, =) ® RP’, 5).

IGjl =
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It means that any A-constacyclic code of length 2p*
over R, i.e., an ideal C of N (2p*, 1), is represented
as a direct sum of C; and C_: C = Cy &
C_, where C; and C_ are ideals of N(p®, —§)
and N(p’, ), respectively. Thus, the classification,
detailed structure, and number of codewords of
constacyclic codes C of length 2p® over R can
be obtained from that of the direct summands
C; and C_.

(if) If A is not a square inR,and A = « + upf,
a, e F* ,,1, let 0‘0 = «a, then the ring R(2p°, o +

[x]
uf) = (a+ ) is a chain ring whose ideals are

2 (= a1 D)

=

mgw—mgm
= (0).

In other words, (¢ + uf)-constacyclic codes of
length 2p* over R are precisely the ideals ((x*> —
a0)’) S RQp',a + upP), where 0 < i < 2p°.
Each (¢ + upB)-constacyclic code C = (()c2 —
@0)’) has pz’"(zl’s_i) codewords, its dual C is the
[ ua_zﬁ)-constacyclic code

ct = <(x2 — a(;l)2f’x—"> C R, o —ua2p),
which contains p?™ codewords. Moreover, the ideal
(W) R2ps,a+up) 18 the unique self-dual (o + up)-
constacyclic code of length 2p°® over R.

(@ii)If Aisnotasquarein Rand A = y € F;m, then
y-constacyclic codes are classified by categonzing

the ideals of the local ring ‘)t(Zp y) = ["]V) into

4 distinct types, where )/0 =y.
e Type 1 (trivial ideals): (0), (1).
e Type 2 (principal ideals with nonmonic
polynomial ~generators): (u(x? — yp)'),
where 0 <i <p’—1.
e Type 3 (principal ideals with monic
polynomial generators):

((x2 — ) + u(x* — p)’ h(X)>,

where 1 <i <p*—1,0 <t < i,and either
h(x)is 0 or h(x)is aunitin R(2p°, y) which
can be represented as h(x) = Zj(l’l()j.x +
hij)(x* — o), with hgj, hyj € Fym, and
hoox + h1g # O.

e Type 4 (nonprincipal ideals):

(@) + u(w(x)' h(x), u(v(x))®),  with
v(x) = x2 = 0, and h(x) as in Type 3,
degh(x) < w—t—1,and w < T, where
T is the smallest integer such that u(x> —
Y0 € (% = y0) +u(x® — yo)' h(x)); i.e
such T can be determined as

i, if h(x) = 0
min{i,p* —i+1}, ifh(x) £ 0.

VOLUME 10, 2022

Furthermore, the number of distinct y-constacyclic

codes of length 2p® over R, i.e., distinct ideals of
2(p2m+1)pm(p‘?—l)_2p4m_2
(p2m_1)2

+pmP D 42,

the ring N(2p*, y), is

(2p2m+3)pm(ps— 1) —2p5 —1
+ p2m_1

When y € ]F;m, it is easy to see that for any y-constacyclic
code C of length 2p° over R, its residue code Res(C) and
torsion code Tor(C) are y-constacyclic codes of length 2p°
over Fpm, respectively. By [16], each y-constacyclic code of
length 2p® over Fm is an ideal of the form ((x® — yo)') of the

,, nlx]

-y
(X% = ) contams pz’"(px_l) codewords. Therefore, we can
determine the size of all y-constacyclic codes of length 2p°
over R in Theorem 2.3 by multiplying the sizes of Res(C)
and Tor(C) in each case.

Theorem 2.4 (cf. [10, Section 3]): Let y € F;m
and C be a y-constacyclic code of length 2p*® over R in
Theorem 2.3, then the number of codewords of C, denoted
by nc, is determined as follows.

finite chain rmg where 0 < i < p®, and each code

o If C = (0), then n¢ = 1.

o If C = (1), then n¢ = p*"".

oIf C = (u(x'2 —10)"), where 0 < i < p® — 1, then
ne =p2m(p“71)' '

o If C = ((Xz‘— 1)"), where 1 < i < p* — 1, then
ne =p4m(p“—1). .

o If C = ((x? — )" + u(x* — yo)'h(x)), where

1<i<p®—1,0<rt <i, and h(x) is a unit, then
B p4m(p5—i)’
1CT prmr -,
o If C = ((x* — y0) +u(x? — y0)' h(x), u(x* —y0)*),

where 1 <i<p®*—1,0 <t < i,either h(x) is O or
h(x) is a unit, and

ifl<i<p~'+%
itp'+L<i<p -1

if h(x) = 0

k<T= l’. )
{mm{i,ps—i—i—t}, if h(x) # 0,

then nc = p2"@P’—i—x),

It is well-known from Proposition 2.2 that cyclic codes
of length 5p° over R are ideals of the ring R = Rlx]

(P —1)"
We see that x° — 1 = (x—1) (x4+x3 +x24x+ 1).
Let & be a primitive (p™ — 1)th root of unity, so that
Fon = {0,£,&%, ..., gt 1}. Assume that

g2 gl =
p" = 1 (mod 5), where m is a positive integer. This

means that p" = 1 (mod 10) and p E 1 (mod 2).

Hence, E = —1. We see that( S )5 = 1, ie.,
Vll 1)

—E is a root of the equation x> — 1 = 0. Similar to
14 —1 . 3" -1 7" =1) 9(p’"—|)

—£ 10 ,itiseasytoseethat—§~ 10 ,—-&" 10 | —&

are also roots of the equation x> — 1 = 0. Then the

equation x> — 1 = 0 has five distinct roots in R. They
([m 1 3(pm71) 7(pm 1) (pm
are 1, —§& ,—E" 10 & 10 | —£ . Put yp =
(pm—l) 3(17)7171) 7(pm 1)
_E lyg 7 V3 = _E 0, Y4 = _E ’ and s =
—E . Then (x* + x> + x> +x + 1)” can express as
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follows:

(b a1 = (o =) (=)

x (xps — J/fs) (xps - J/énx) .

This implies that

By Chinese Reimainder Theorem, we have

R [x]
(P — 1)
. R R [x]
- P (" =3 D
R [x] R [x]
(@ =) 87 (P =)

= R+@Rn @Rm @Rﬂ @RVS’

R =
R [x]
(7 =)

_ Rix] _ Rix]
where Ry = D) and R,, = R
(i = 2,3,4,5). Hence, ideals of R; are of the form

CIPCPC;PCsPCs, where C; is a cyclic code of
length p* over R and C; is a y;-constacyclic code of length
p*over R (i = 2,3,4,5). Then the algebraic structures of all
constacyclic codes of length p* over R studied in [12] allow
us to determine the algebraic structure of all cyclic codes
of length 5p° over R when p = 1 (mod 5). In [12], Dinh
determined the number of codewords in each constacyclic
code of length p* over R. Therefore, the number of codewords
in each cyclic code of length 5p° over R can be obtained.
Then we have the following theorem.

Theorem 2.5: Let C be a cyclic code of length 5p° over R.

Then
c=chaPpapceos

where C1 is a cyclic code, C> is a yy-constacyclic
code, Cz is a y3-constacyclic code, C4 is a ya-
constacyclic code, Cs is a ys-constacyclic code of length
p* over R. Moreover, |C| = |C1]||C2||C3]|C4l||Cs| and
CL=Cl @GOG B DL

We see that x> — 1 can be expressed as x> — 1 = (x —
Dx*+x3 +x2+x+1). Assume that (x* +x3 +x2+x+ 1)
is reducible over IF,». Then there exists o € Fpm such that
ot + a3 + a® + a + 1 = 0. This implies that &> — 1 = 0,
ie,o’ = 1. Fromp # 5, we have @ # 1. Since p = 2
(mod 5) or p = 3 (mod 5) (p # 1 (mod 5)), the order of
the multiplicative group of IF,» is not divisible by 5. It follows
that o & IF,m, which is a contradiction. Therefore, (x4 +x3+
x2 4+ x + 1) is irreducible over Fym. Assume that x4+ x3 +
x2 4+ x + 1) is reducible over R. Then there exists € R
satisfying n* + 7> + 7>+ 1+ 1 =0, where n = A + up8 and
A B e IF‘pm.Sincen4+n3+n2+n+1 =0,wehaven’ = 1.
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Hence, we have 8 = 0. This implies that n = A € Fpm.
Hence, A* + 23 + A2 + A + 1 = 0, which is a contradiction
because (x4 +x3 x4 x+ 1) isirreducible over F,,». It means
that the polynomial (x* 4+ x> + x2 +x + 1) is irreducible over
R. We have the following result.

Theorem 2.6: Let C be a cyclic code of length 5p* over R.
Then cyclic codes of length Sp® over R can be represented as
C = C| @ Cy, where Cy is an ideal of the ring (;i[fl) which
is determined in [12] and C; is an ideal of the ring mﬁ%,
where t(x) = x* + x3 +x2 + x + 1. Ideals of Rlx]

ooy 4
e Type 1: (trivial ideals)
(0), (1).

e Type 2: (principal ideals with nonmonic polyno-
mial generators)

(uceoyy)

where 0 <i<p’—1.
e Type 3: (principal ideals with monic polynomial
generators)

() + w0y he),

where 1 < i <p®—1,0 <t < i, and either h(x)
is 0 or h(x) is a unit which can be represented as
h(x) = 3 (h3jx® + hopx® + hijx + hop)(t (X)), with
h3j, hyj, hij, hoj € Fpm, and h30x3 -I-/’lz()x2 + hiox +
hoo # 0.

e Type 4: (nonprincipal ideals)

w—1
<(r<x>)" +uy ()WY, u(t(x))‘“> :

Jj=0

where v(x) = ajx3 + bsz +cx +d,1 <i <
P’ —1,a;,bj,cj,dj € Fpm, and o < T, where T is
the smallest integer such that
i—1
u(t())" € (@Y +u)_EENE®)Y);
j=0

or equivalently,

(00 + e ), ur)?),
with h(x) as in Type 3, and degh(x) < w —t — 1.

In addition, the enumeration of elements in each ideal of the

g ((7&[));])_;> is given as follows. Let I be an ideal of the ring
Wﬁ%. Then the numbers of elements of I, denoted by nj is
determined as follows.

o If1 = (0), thenn; = 1.
o If1 = (1), then n; = pbmP’.
o If I = (u(t(x))"), where 0 < i < p*® — 1, then

ny = p4m(p‘v7i).
o If I = ((t(x))'), where 1 < i < p* — 1, then
ny = pSm(pS—i)_
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o If I = ((t(x)) + u(t(x))'h(x)), where 1 < i <
p’— 1,0 <t < i, and h(x) is a unit, then

. p8m(p5—i)’ lfl < i EPS_I +%

1= p4m(2ps—i—T)’ ifps=! —I—% <i<p -1

o IfI = ((t(x))' +u(t(x)) h(x), u(t(x))<), where 1 <
i<p*—1,0 <t < i either h(x)is 0 or h(x) is a

unit, and
i ifh(x) =0
k<T= .
min{i,p* —i+1t}, ifh(x) # 0,
then n; = p4m(2ps_i_").

When p = 4 (mod 5), we consider the map ©;

Rix] Rix] i
(@212 T DY) (1 G4y)a—y defined by f(x) —

f(x — (1 — y)272). For polynomials f(x), g(x) € R[x],
then £(x) = g(x) (mod (x2+ (1 — y)2~1x + 1)) if and
only if there exists g(x) € R[x] such that f(x) — g(x) =
4(x) <(x2 + -2+ 1)”'v). Puta = 1 — y. Then we
have

fax— (@277 —gx — (@)277)

—gq (x — (@) 2—2) [(x — (@) 2—2)2

+ (@2 (x — (@) 2—2) + 1]px
g(x-@27?) [ - @2 1]

q <x —(1—y) 2—2) [xZ —(6-2y)27 + 1]ps
—q(x—a-n2?) (R4 Gn2)

This implies that f(x — (1 — y)2_2) = gx — (1 —
y)27 (mod (x* + G+ ¥)273)). Hence, ©1(f(x)) =
. > . . > .
81(g(x)7)2[11; A EES e if and only if f(x) = g(x) in
X . "
G2 i) Therefore, ® 1. is well-defined .and oge-
to-one. It is easy to see that ®; is onto and ®; is a ring
homomorphism. It means that ®; is a ring isomorphism.
Similar to the map ©®;, we consider the map ®

Rix] Rix] ~ '
G2 7] (w5 defined by f(x) =

fx — 1+ y)2’2). Then we can prove that ®; is a ring
isomorphism. The algebraic structures of all constacyclic
codes of lengths p*, 2p® over R studied in [10] and [12] allow
us to determine the algebraic structure of all cyclic codes of
length 5p® over R. Moreover, [12] and [10] determined the
number of codewords in each constacyclic code of lengths
p*, 2p°® over R. Therefore, the number of codewords in each
cyclic code of length 5p® over R can be obtained in the
following theorem.

Theorem 2.7: If C is a cyclic code of length 5p° over
R, then C can be represented as C = C4 @ Cq, P Ca,,
where C4 is a cyclic code of length p* over R, Cq, is an
ajy-constacyclic code and Cgy, is an az-constacyclic code of
length 2p* over R. Moreover, |C| = |C4||Cq||Cq,| and
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ct =ct @le &b Caé. In particular, C = (u) is a self-
dual cyclic code of length 5p* over R.

The Hamming distance of all A-constacyclic codes of
length p* over R is given in the following theorem.

Theorem 2.8 ([12], [19], [28]): Let C be a A-constacyclic
code of length p* over R. Then Hamming distance of all -
constacyclic codes C is determined as follows.

) [12] If » = o + uy, then C =
((aox — 1)) € W_ﬁ%,fori €{0,1,...,2p%),
and the Hamming distance dy(C) is completely
determined by
du(C)
ol, if0<j<p
o (5 + 1)p~,
if 20" —p T+ @ - Dp Tt 1 <
= tandj < 2ps _psfk + Spsfkfl
where 1 <§ <p—1,
and0 <k <s-—1
00, if j=2p°.
2) ( [19, Theorem 3.2] and [28, Appendix]) If
A € Fpm \ {0}, the A-constacyclic codes of length
p* over R, i.e., ideals of the ring <x7;[j]k) have
their Hamming distances completely determined as

follows.
e Type 1 (trivial ideals): (0), (1); du({0)) = 0,
da((1)) = 1.

e Type 2 (principal ideals with nonmonic
polynomial generators):

C = (u(x — ro)), where 0 < j < p* — 1. Then
du(C) = du(((x — hoY)F) and

ol, if j=0

(8 + 1)pF,
ifp—pF+@-Dp 1<
and] EPS _ps—k + 8ps_k_l

where 1 <§ <p—1,

and 0 <k <s—1

e Type 3 (principal ideals with monic polynomial
generators): C3 = ((x —2oY + ulx — Ao)th(x)) R
where 1 < j < p*—1,0 <t < j, and either
h(x) is 0 or h(x) is a unit in %, where 1 <
T <i<p'—1,0 <t < T, either h(x) is 0 or
h(x) is a unit and T is the smallest integer satisfying
u(x — 1) € Cy, e,

du(C) =

o i if h(x) =0
| ming.pt —j+o) i ) #£0
Then d(C3) = du({(x — 20)")F).
Moreover, .
(a) If h(x) is O or h(x) is aunitand 1 < j < p2+t,
then

du(C3) = du(((x — 2oY)F)
=6+ Ik,
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wherep®* —pr+ (@ — Dr+1<j<p®—pr+ér,
1<s<p—1Lr=p %1 and0o<k <s—1.
(b) If h(x) isauniz‘ande—H <j<p’—1, then

du(C3) = du(((x — 20)” 7)p)
= (5 + Lk,

wheret +pr —6r <j<t+pr—(@6—Dr—1,
1<é<p—1,and0 <k <s—1.

e Type 4 (nonprincipal ideals):

C = (o —hoV +ulx — Ao)'A(x). ulx — Ao)¥).
with h(x) as in Type 3, deg(h) < x —t — 1, and
k < T, where T is the smallest integer such that
u(x — )" € ((xr — ro)Y + ulx — 20)'h(x)); ie
such T can be determined as

Js if h(x) =0
min{i, p* —j+1t}, ifh(x) # O.
Then

du(C) = du({(x — 20)*)F)

whereps _ps—k +— l)ps—k—l +1l<k< ps _
pPhspl1<s<p—1,and 0 <k <s—1.

The Hamming distance of all non-trivial cyclic codes of
length 5p° over Fpm which are of the form (x — 1)’ (x*+x3 +
x% + x + 1Y is given in the following theorem.

Theorem 2.9: [34, Theorem 5.16] Assume that 0 <
Po.B1 <p—2, and 0 <11 <719 <s—1.Let0 <i<j<p’
Then the codes C = <(x — DI+ 3+ 2+ x+ 1)’) have
the following Hamming distances:

= (8 + Lypt,

ol, if i=j=0,

&2, if i=0and0 <j§p5_1,

o3, if i=0andp*~! <j<2p1,
o4, if i=0and Zps_1 <j< 3ps_1,
o5, if i=0and3p*~! <j<p",
emin{(fo + 2)p™, 5(B1 +2)p™'},
ifp—p 0+ 1<
and i <p*—p~ + (By+ Dp*T L,
pPP=p 4By 1<

and j <p* —p*~ " + (B + Dp* T,
o5(B1 +2)p™,

ifj=r'

pPP=pT 4By T <

andj <p*—p~ "+ B+ Dp L,
o0, if i=j=p"

du(C) =

In [42], the Hamming distance of cyclic codes of length
2p° over Fpm is studied. Using Theorem 2 (Table 1) in [42],
the Hamming distance of cyclic codes of length 2p* over IFym
when 0 < i =j < p* is determined as follows.

Theorem 2.10: [42, Theorem 2] Let p be an odd prime, and
m, s, T be intergers. The cyclic codes C;; of length 2p* over
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Fym are of the form C;; = ((x* — 1)) fori = 0,1,---,p*
Then the Hamming distance dy(C; ;) is determined by:

ol, if i=0

o(y + p*',

if ps _psfel + ypsfelfl +1<i

and i < ps _ps—el +(y+ l)ps—e—l

where 0 <y <p—2,and 0 <e; <s—1
o0, if i=p°

du(Ci i) =

In 1998, the Singleton bound for finite chain ring R with
respect to the Hamming distance dy(C) is given in [41].
We review it as follows.

Theorem 2.11(Singleton Bound With Respect to Hamming
Distance): [41] Let C be a linear code of length n over R
with Hamming distance dy(C). Then |C| < p*"—du(C)+1)
In addition, C is said to be a maximum distance separable
(MDS) code with respect to the Hamming distance if
IC| = |R|"—dH(C)+1_

In this paper, the Hamming distances of cyclic codes of
length 5p® over R are given in the following table.

Case Section
p=2,3 (mod 5) | 3
p=1 (mod 5) 4
p=4 (mod 5) 5

lll. HAMMING DISTANCES AND MDS CODES OF CYCLIC
CODES OF LENGTH 5p° OVER R WHEN p = 2,3 (mod 5)
It is well-known that ]Fpm is a subring of R. From now on,
we denote dg(Cr) as the Hamming distance of the code C
over Fpm. For each codeword ¢ = (co,c1,¢2, -+, Cp—1)
over R, the polynomial representation of c(x) is given by
c(x) = a(x) + ub(x), where a(x), b(x) are two arbitrary
polynomials over F,», with corresponding codewords a =
(ap,ay,ap, -+, an_ 1)andb (bo,bl,bz,-' b,, 1) over
Fym, respectively. As ¢; = a; + ubi, ¢; = 0 if and
only if @ = b = 0. It implies that wig(c(x)) >
max{wtp(a(x)), wta(b(x))}.

Throughout this section, we denote X+ B+
x% +x + 1 = a(x). By Theorem 2.6, the structure of cyclic
codes of length 5p° over R when p = 2 or 3 (mod 5) is
provided. In order to compute the Hamming distance of cyclic
codes of length 5p° over R when p = 2 or 3 (mod 5),
we need to determine the Hamming distance for each type
of ideals of —X1_ one by one. Obviously, the Hamming
distances of the trivial ideals (0), (1) are given by 0 and 1,
respectively.

The Hamming distance of ideals of Type 2 of
be determined in the following result.

Theorem 3.1: Let C = (u(a(x))j) 0<j<p'—1bean

ideal of Type 2 of (7(2[;‘)1) Then dy(C) = dy({(@(x)Y)F),

))p ) can
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and dy(C) is given by
ol, ifi=j=0,
o2, if i=0and0 <j<p!,
du(C) = { o3, <j=2p",
o, if i=0and2p~! <j < 3pl,

s—1 s—1

if i=0andp

o5, if i=0and3p! <j<p’.

Proof: We consider the following two cases:

Case 1: If j = 0, then dy(C) = 1.

Case2: If p* —p* S+ —1p S 1 +1 <j<p —
P~ + 8p°~S7!, the codewords of the code C = (u(a(x)y)
are exactly same as the codewords of the constacyclic codes

[x
(@) in 2
p’ — 1. Hence, we have dy(C) =
Theorem 2.9,

multiplied by u, where 0 < j <
du({(@(x)Y)F). Using

ol, ifi=j=0,

o2, if i=0and0 <j<p!,
dn(C) = { o3, sl <j<2pl,

o4, if i=0and2p~! <j<3pl,

if i=0andp

o5, if i=0and3p~! <j<p’,

completing our proof. g
Next, we dlscuss the Hamming distance of ideals
of Type 3 of (a(x))m

Theorem 3.2: Let C =

_Rix]
of Type 3 of @y

and either v(x) is a unit in

(o (x)Y + u(e(x)) v(x)) be an ideal
where 1l <j<p' —1,0<1t <]
Rx]
((ax)?")
dg(C) = dg({(e(x)®)F), where R is the smallest integer

satisfying u(e(x)X € ((a(x)y + u(e(x))'v(x)) and

_ {j, ifv(x) =0

or 0. Then, we have

min{j, p* —j+ ¢}, ifvx)#0.
Moreover,
(D Ifv(x)isOorv(x)isaunitand 1 <j < 2 2+ then
ol, ifi=j=0,
&2, if i=0and0<j<p!,
du(C) = 1e3, if i=0andp’~!' <j<2p*!,

o4, if i=0and2p*! <j<3pl,
o5, if i=0and3p*! <j<p'

(2) If v(x) is a unit and ’% <j<p’—1,then

ol if i=j=0,

o2,if i=0andp® —p*~ ' +1t <j<p'+1,
e3,if i=0andp® —2p° ' +1 <

andj < p* —p' +1,

o4, if i = 0 and p* — 3p*~!
andj <p’ — Zps_l +t,
o5,if i=0andr <j<p’—3p~ +1.

dy(C) =
+1t<j
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Proof. Since R is the smallest integer satisfying u(e(x)f e
((a(x)Y + u(oe(x))'v(x)), therefore we have,

du(C) < du((u(e(x)))
= du({(@()®)p).
This implies that dg(C3) < da({(@(x))®)r). Now, let us

take an arbitrary polynomial c(x) € C. So, there exist two
polynomials fy(x) and f,,(x) over F,,m satisfying

clx) = [I(X)][(a(X))j + u((x)) v(x)] '
= fo)(a ()Y + ulfo(x)(e(x)) vx) + fux)(a(x)Y],

where ¢(x) = fo(x) + uf,(x). Now, we consider two cases:
Case 1: When v(x) = 0, then we have

> max {wtn(fo 1, (%)), Wtn(fi5, (X)) }
> max {wty(fo 1, (x)), Wt (fo,5, (X))}
> du({(e®)Y)F),
= du({(@(@)®)p),

wtg(c(x))

= fo()(@()Y and fi 3, (¥) = fulx)(@ X))

where fj 3, (x)

Case 2: When v(x) # 0, then we have
wig(c(x)) > max {wty(fo,, (x)), W (h(x))}
= max { Wik (fo.x, (0), wia(o() @y’ 7}
du({(()™nt- P £,
= du(((@)®)p),

v

= fo()(@(x)Y, and h(x) = fo(x)(a(x)) v(x) +

where fp ), (x)

fu()(a(x)y. Hence, by combining both the cases, we get

du({(@(x)®) ) =< which
du({(@(x)®)p) = du(C).

Ifv(x)isOorv(x)isaunitand 1 <j <

du(0), implies that,

P+t
2 9

ol, ifi=j=0,
o2, ifi:Oand0<j§ps_l,
dy(C) = {e3, if i=0andp*!
o4, if i=0and2p! <j<3pl,

<j < zpsfl’

o5, if i=0and3p*! <j<p'.

If v(x) is a unit and 25 < j < p* — 1, then

ol, if i=j=0,
o2, if i=0andp’ —p* ' 41 <j<p'+1,
o3, if i=0,p° —2p° ' 41 <

andj < p* —p ! +1,

o4 if i=0,p —3p41<j
andj < p* —2p*~ 1 41,

o5, if i=0andr <j<p*—3p ! +1.

du(C) =

O
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ng:2 compute the Hamming distance of ideals of Type 4
[x]

()P .

Theorem 3.3: Let C = {(a(x)Y + u(a(x)) v(x), u(a(x))®)

be an ideal of Type 4 of @ (x[;c)lW , where v(x) is same as given
in Type 3, deg(v) < w —f — 1, ® < R, and R is the smallest
integer such that u(a(x))f € ((@(x)) + u(a(x)) v(x)), i.e.,
R =j, if v(x) = 0 and otherwise R = min{j, p* —j+1¢}. Then,
we have dg(C) = dg({(x(x))®)F), and

ol, ifi=j=0,

o2, ifi=0and0<w<p' !,

du(C) =13, if i=0andp ! <w<2p!,
o4, if i=0and2p*! < < 3p*1,
o5, if i=0and3p~! < <p'.

Proof: Tt is easy to see that C = ((a(x)) +
u(@(0))'v(x), u(@(x))?) 2 (w@x)®) 2 (u@x)y), since

® < R < j. Therefore, dy(C) < dy((u(@(x))®)) =
du({(er(x))*}F). To prove that du({((x))*}r) = du(C),
we take an arbitrary polynomial c(x) € C and proceed to

show that wtg(c(x)) > du({(¢(x))*)r). Now, there exist

polynomials fo(x), f.,(x), go(x) and g,(x) over F,» such that
c(x) = [folx) + ufu(x)]
x [(ee(x)Y +uloe(x)) v(x) +ule(x))*1[go(x) + ugu(x)]
= fo) (@ @)Y + ulfo() (@) vl + ufu(x)(e(x)y
+ ugo(x)(a(x))”
= fo ()@ () + ulfo(x)(@(x)) v(x) + go(x)(e(x))*],
where fj(x) = fo)(@®)y @ €
SuC)(@(x)Y™® + go(x) € Fpm[x]. Hence,
wig(c(x)) > max {wtg(a(x)), wtg(h'(x))}
> max {wtg(a(x)), wtg(a(x))}
> du({(@(x)*)F),

where a(x) = fi(x)(a(x))®) and A'(x) = fo(x)(a(x))'v(x) +
8o()(ar(x))®. It implies that dy(C) = du({(«e(x))”) ). Hence

Fpnlx], go(x) =

ol, ifi=j=0,
o2, if i=0and0 <w <p' !,
du(C) =13, if i=0andp ! <w<2p
o4, if i=0and2p*! <w < 3p*l,
o5, if i=0and3p* ! <w <p'.

s—1
9

O

Applying Theorems 3.1-3.3, we give the Hamming dis-
tance of A-constacyclic codes of length 5p° over R when
p=2,3 (mod 5).

Theorem 3.4: Let C = C1 & C3 be a non-zero cyclic code
of length 5p* over R as in Theorem 2.4. Then the Hamming
distances dy(C) = min{dy(C1), du(Cs)}, where C1 # (0)
and Cy # (0).

Proof: Without loss of generality, assume that dg(Cp) =
di = min{dyg(C), dg(C>)} (that means C; # (0)). Let d be
the Hamming distance of C = C; & C;. Let ¢; be a non-
zero codeword of minimum weight in Cy, i.e., d = wty(cy).
Since (c¢1, 0) € C and wty(cy, 0) = di, we have d < d;. Let
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z = (z1, 22) be an arbitrary non-zero codeword in C; & Cj.
If z1 # 0, then wty(z) = wty(zy) + wta(z2) > wtp(zg) >
dy. Thus, d > d; when z1 # 0.If z; = 0, then 2o # 0.
Since dg(C1) = di = min{dy(C}), dg(C>)}, the Hamming
weight of z is wtg(z) = wtg(z1) + wta(z2) = wtg(ze) >
dy(Cs) > dj. It implies that d > d; when z; = 0. Since z
is an arbitrary non-zero codeword, we have d > dj. Thus,
d = dj, completing our proof. |

Let C = C & C; be a A-constacyclic code over R, where
C is a cyclic code of length p* over R, C is an ideal of
< (Z(zx[;)}"‘ . Then the MDS codes of cyclic codes over R are
determined by the following propositions.

Proposition 3.5: Let C = C1®C3 be a cyclic code of length
5p® over R, where C; = (0) is a cyclic code of length p® over

R, and C3 is any ideal of «(Z(zx[;‘)ls). Then C is not an MDS

code.

Proof: Using Theorem 3.4, we have dy(C) = dy(C) < 5.
We see that |C| = pl < pg"’ps. By Theorem 2.11, C is an
MDS code when £ = 2m(5p* — dg(Cy) + 1). If dg(Cr) = 1,
then £ = 10mp*, which is a contradiction. If dg(Cy) = 2,
then £ = 2m(5p°® — 1). This is impossible since 2m(5p* —1) >
8mp® > L. Thus, C is not an MDS code when dy(Cy) = 2.
If dy(Cy) = 3, then £ = 2m(5p® — 2). Since dy(Cy) =
3, we have C» # (1), ie, |C| = p¢ < p¥". Since
2m(5p* — 2) > £, by Theorem 2.11, C is not an MDS code
when dg(Cr) = 3. If dg(C) = 4, then £ = 2m(5p* —4). Since
du(Cy) = 4, we have Cy # (1), i.e., |C| = p* < p¥"P. Since
2m(5p® — 4) > £, by Theorem 2.11, C is not an MDS code
when dy(Cy) = 4. If dy(Cy) = 5, then £ = 2m(5p* — 5).
Since di(C>) = 5, we have Cy # (1), i.e., |C| = pt < p¥"P.
Since 2m(5p* — 5) > £, by Theorem 2.11, C is not an MDS
code when dy(Cy) = 5. |

Proposition 3.6: Let C = C1®C3 be a cyclic code of length
5p° over R, where C1 = (1) is a cyclic code of length p® over
R, Cy is any ideal of ( (Ozg;)},s). Then C is an MDS code if
C = (1).

Proof: By applying Theorem 3.4, we see that dy(C) = 1.
We have |C| = p?"P’ . p's, where |Co| = pb5 < p®".
By Theorem 2.11, C is an MDS code when 2mp® + €5 =
2m(5p®). It implies that £5 = 8mp®. Therefore, C is an MDS
code if and only if C; = (1) and C; = (1),1.e.,C = (1). O

Proposition 3.7: Let C = C1®C3 be a cyclic code of length
5p® over R, where C1 = ((x— yo)jl ) is a Ag-constacyclic code
of length p* over R, C3 is any ideal of ((Oz(i[;)ls) (j1 is defined
as in Theorem 2.2). Then C is not an MDS code.

Proof: We have two cases: C» = (0) and C> # (0).

Case 1: C, = (0). From Theorem 3.4, we see that dg(C) =
du(Cp). We have |C| = pm(ps_jl). Using Theorem 2.3,
du(C) = du({(x — 1Y")F) and

el,if j=0

o (81 + 1)pht,

if pf—p @ —DphT 1<y
andji < p* —p*h +8p 0

where 1 <8 <p—1,and 0 <k <s—1.

du(C) =
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Ifdg(C) = 1, then C is an MDS code when m(p*) = 2m(5p*),
which is a contradiction. Hence, C is not an MDS code when
du(C) = 1. If du(C) = (81 + 1)p*1, then C is an MDS code
when m(p® — j1) = 2m(5p® — 81 + Dpk + 1), ie., j; =
—9p% +2(81 + 1)pkt — 2. Since —9p° +2(81 + 1)pf1 —2 < 0,
we see that j; # —9p® + 2(8; + 1)p*1 — 2. Thus, C is not an
MDS code in this case.

Case 2: C; # (0). Using Theorem 3.4, dy(C) =
min{dg(C}), dg(Cz)}. By Theorems 3.1-3.3, we see that
dy(C) = 1 or dg(C) = 2 or dyg(C) = 3 or dg(C) = 4 or
du(C) = 5. We have [C| = p"™P"—4) . pt2 where |Cy| =
pt2 < p¥P’ If dy(C) = 1, then C is an MDS code when
m(p* — j1) + € = 2m(5p°), i.e., £o = m(9p® — ji), which is
a contradiction since 1 < j; < p®—1 and £, < 8mp®. Hence,
C is not an MDS code when dg(C) = 1. If dg(C) = 2, then
C is an MDS code when m(p* — j1) + €, = 2m(5p° — 1),
ie., & = m(9p® — 2 +ji) > 8mp*, which is a contradiction.
Thus, C is not an MDS code when dg(C) = 2. If dy(C) = 3,
then £, < 8mp®. By Theorem 2.11, C is an MDS code when
mp® — ju) + €2 = 2m(5p° — 2), i.e., £ = m(9p® — 4 +j1).
It is easy to check that if j; > 3, then £, = m(9p® —
44751 = m(9® — 1) > 8mp®, which is a contradiction.
Thus, we must consider two cases: j1 = 1 and j; = 2.
If j1 = 1, by Theorem 2.3, then dy(C;) = 2 < du(C).
This is a contradiction. Hence, C is not an MDS code when
j1 =2and dyg(C) = 3.1f j; = 2, then £, = m(9p°® —2). Since
m(9p® — 2) > 8mp?®, C is not an MDS code when j; = 2 and
dy(C) = 3. Thus, C is not an MDS code when dg(C) = 3.
If dg(C) = 4, then £, < 8mp®. Hence, C is not an MDS
code when dy(C) = 4. If dg(C) = 5, then £, < 8mp®.
Therefore, C is not an MDS code. Combining Cases 1 and 2,
we conclude that C is not an MDS code. O

Combining Propositions 3.5-3.7, we have the following
theorem.

Theorem 3.8: Let C be a cyclic code of length 5p* over R,
where C| is a cyclic code of length p* over R, C> is an ideal

f ((;(i[;)},s). Then C is an MDS code when Ci = (1) and
Cr = (1).

We give an example to illustrate our work in this section.

Example 3.9: Put R = Fy; 4+ ulF11. We consider cyclic
codes of length 55 over R. Let C be a cyclic code of length
55 over R. Then C = Cy @ C,, where Cj is a cyclic code of

. A Rlx]
length 11 over R and C; is an ideal of LR

DLet C; = ((x — 1)) and C; = (u(a(x))®). By using
Theorem 2.3, we have dy(Cy) = 4. Applying Theorem 3.2,
we have dg(C,) = 5. From Theorem 3.4, we have dg(C) =
4. Then C has parameters [55, 1118 4]

2) Let €1 = ((x — 1)°) and C2 = {(@(x))®, u(a(x))°).
By using Theorem 2.3, we have dg(C;) = 6. Applying
Theorem 3.3, we have dy(C;) = 5. From Theorem 3.4,
we have dy(C) = 5. Then C has parameters [55, 1122, 5].

IV. HAMMING DISTANCE AND MDS CODES

WHEN p = 1 (mod 5)

As in Theorem 2.5, cyclic codes of length 5p* over R is of
the form C = C; @ C, @ C3  Cs4 & Cs. We compute the
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Hamming distance of cyclic codes of length 5p* over R when
p =1 (mod 5) as follows.

Theorem 4.1: Let C = C1 ®@ C, ® C3 D C4 b Cs5 be a
non-zero cyclic code of length Sp® over R as in Theorem 2.5.
Then the Hamming distance dy(C) = min{dy(C;)|i €
{1,2,3,4,5}, C; # (0)}.

Proof: Without loss of generality, assume that dy(Cy) =
di = min{dy(C;)} (that means C; # (0)). Let d be the
Hamming distance of C = C1®C> @ C3. Let ¢1 be anon-zero
codeword of minimum weightin Cy,i.e.,d; = wtg(cy). Since
(c1,0,0,0,0) € C and wty(c1,0,0,0,0) = d;, we have
d < d. Let z = (21, 22, 23, %4, z5) be an arbitrary non-zero
codeword in C1 & C, & C3 & C4 & Cs. If z; = O, then
there exists t € {2, 3, 4, 5} such that z; # 0. Since dg(Cy) =
d; = min{dyg(C;)}, we have wty(z;) > du(C;) > d;. Hence,
the Hamming weight of z is wty(z) = wty(z1) + wtg(z2) +
wty(z3) + wtp(z4) + Wtn(zs) > wtu(z) > du(Cy) > d.
It implies that d > dy when z; = 0. If z; # 0, then the
Hamming weight of z is wty(z) = wtn(z1) + wta(zz) +
wty(z3) +Wth(z4) +wtg(z5) > di. It means thatd > d; when
z1 # 0. Since z is an arbitrary non-zero codeword, we have
d >d;. Thus,d = d;. O

Since y2, y3, V4, 5 € Fpm, there exist oz, a3, ag, a5 € Fpym
such that ozf = yi. By Theorem 2.2, we classify all
Ci(i=2,3,4,5) as follows.

e Type 1: (trivial ideals)

(0), (1).

e Type 2: (principal ideals with nonmonic polyno-
mial generators)

-

where 0 <j; <p’ — 1.
e Type 3: (principal ideals with monic polynomial
generators)

(06 = e + utx = @ i)

where 1 <j; < p* — 1,0 < 1; < j;, and either A;(x)
is O or A;(x) is a unit.
e Type 4: (nonprincipal ideals) ((x — ;)i +
u(x — o)) hi(x), u(x — o)), with hi(x) as in
Type 3, deg(h)) < i — t; — 1, and k; < Tj,
where 7; is the smallest integer such that u(x —
ap’i e ((x — oV + ulx — a;)ihi(x)); or equiv-
alently, 7; = j;, if hij(x) = 0, otherwise
T; = min{j;, p* — ji + ti}.
To get MDS codes, we consider the following propositions.
Proposition4.2: Let C = C1®Co®C3BCabCs be a cyclic
code of length 3p°® over R, where C1, Cy, C3, Cq, Cs5 are
defined as in Theorem 2.5 such that there exists C; = (0)
forie{l,2,3,4,5}. Then C is not an MDS code.
Proof: Without loss of generality, assume that C; = (0).
From Theorem 4.1, dy(C) = min{duy(C;)} < p°, where j =
2,3,4,5. Wehave |C| = |Ca| x|C3] x |C4| x |C5] = p*2-pt3.
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pt4-p's, where |Ca| = p2,|C3| = p3, |C4| = p*, |Cs| = p's
and 0 < £, €3, €4, €5 < 2mp°. We see that Lo+ €3+ L4+05 <
8mp® and 2m(5p* —dy(C)+ 1) > 8mp®. Thus, €r + €3+ L4+
¢5 < 2m(5p° — dy(C) + 1). Using Theorem 2.11, C is an
MDS code when €5 + €3 + €4 + €5 = 2m(5p* — dg(C) + 1).
Since € + €3 + €4 + €5 < 2m(5p° — dy(C)+ 1), C is not an
MDS code. ]

Proposition4.3: Let C = C1®Cr®C3BCsDCs be a cyclic
code of length 5p° over R, where Cy, Cy, C3, Cy, Cs are
defined as in Theorem 2.5 such that there exists C; = (1)
fori e {1,2,3,4,5}). Then C is an MDS code if and only if
C = (1).

Proof: Without loss of generality, assume that C; = (1)
and |Co] = p2, |C3| = p, |C4| = p™, and |Cs| = p",
where 0 < {€5,03,04,¢5 < 2mp®. Using Theorem 4.1,
dg(C) = dg(C;) = 1. By Theorem 2.11, C is an MDS
code when p?™" . pt2 . pt3 . pta . pts = p2mGP’ =141 yhere
0<4¥y,43,04,05 < Zmps. It implies that Zmpx + by + 03 +
L4 + €5 = 10mp*. Thus, €5 + €3 + €4 + €5 = 8mp®. Hence,
Uy = €3 = €4 = £5 = 2mp°®. Then C is an MDS code when
Cr=(1),Co=(1),C3 = (1), C4 = (1) and C5 = (1), i.e.,
C = (1). O

By Propositions 4.2 and 4.3, if C; = (0) or C; = (1) for
i € {1,2,3,4,5}, then C is an MDS code when C = (1).
Thus, we consider the case when all C; # (0) and C; # (1)
fori € {1, 2, 3, 4, 5} in the following propositions.

Proposition4.4: Let C = C1®Co®C3BC4bCs be a cyclic
code of length 5p°® over R, where C1, C, C3, Cyq, Cs5 are
defined as in Theorem 2.5 such that all C; are constacyclic
codes of Type 2 of length p* over R fori € {2,3,4,5}. Then
C is not an MDS code.

Proof: We have C; = ((x — 1)Y1), Gy = (u(x — y»)2),
C3 = (u(x — y3)?), C4 = (u(x — yuY*), Cs = (u(x — ys)3)
(j2,j3,ja,j5 are defined as in Theorem 2.2). We see that
IC| = pm(ps—jl) . pm(ps—jz) . pmws—ja) . prn(ps—h) . pmcns—js).
From Theorem 4.1, dg(C) < p°. Using Theorem 2.11, C
is an MDS code when m(p* — j1) + m(p® — j2) + m(p* —
J3) +m@* — ja) + m(p* — js) = 2m(5p® — du(C) + 1). Since
mp® —j1) +mp* —j2) + mp* = j3) + mp* — ja) + mp’ —
Jj5) < 8mp® and 2m(5p* — dg(C) + 1) > 8mp®, we have
m(p* —j1)+mp’ —j2)+m(p* —j3)+mp* —ja) +m@p* —js) <
2m(5p* — dy(C) + 1). Hence, C is not an MDS code. O

Proposition 4.5: Let C = C1 @ C; @ C; ® Cr @ G
be a cyclic code of length 5p° over R, where C;, C;, Cy, C;
are defined as in Theorem 2.5 and i,j,k,t are different
numbers in {2,3,4,5}. If C;, Cj, and Cy are constacyclic
codes of Type 2 of length p* over R, then C is not an
MDS code.

Proof: If C, is a constacyclic code of Type 2 of length
p* over R, then C is not an MDS code by Proposition 4.4.
Thus, C; is a constacyclic code of Type 3 or Type 4 of
length p* over R. Without loss of generality, assume that
Ca = (ux = y2)), C3 = (u(x = y3)"), Cy = (ulx — y3)P)
and Cs = ((x —y5)5 +u(x —ys5)Shs(x)) or Cs = ((x —ys5)5 +
u(x —y5)'s hs(x), u(x — y5)s) (j1. j2. j3. ja» 15, k5 are defined
as in Theorem 2.2).
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Case I: Ci = ((x — yV'), C2 = {ulx — y2)?),C3 =
(ux — y3)3), C4 = (ulx — ya)*) and Cs = ((x — y5)> +
u(x—y_5)’5h5(x)). We have |C| = pm(P-s—jl).pm(Pé‘—jz).pm(Ps—-jS).
PP’ =ia) L 2 =is) op |C| = p" W =D L pnP*=i2) L P’ =j3)
p' =i . pm*=1s) By applying Theorem 4.1, dy(C) < p°.
Using Theorem 2.11, C is an MDS code when m(p® — ji) +
m(p* —j2)+m(p* —j3)+mp* —ja)+2mp* —js5) = 2m(5p* —
du(C) + 1) or m(p* — j1) +m(p* — j2) +m(p* — j3) +m(p* —
Jja) +m(p* —t5) = 2m(5p* — du(C) + 1). Since m(p® — j1) +
mp* — j2) +mp* — j3) + mp* — ja) + 2mp* — js) < 8mp*,
m(p* —j1) +m@* — j2) + mp* —j3) + mp* — ja) + m@p* —
ts) < 8mp* and 2m(5p® — dy(C) + 1) > 4mp®, we see that
m(p* —j1)+m(p* —jo)+m(p* —j3)+mp’ —ja)+2m(p* —js) #
2m(5p* — du(C) + 1) and m(p® — j1) + m(p* — j2) + m(p* —
J3) +m@® —ja) +m(p® —t5) < 2m(Sp® —du(C)+1). Hence,
C is not an MDS code in this case.

Case2: C1 = ((x—y1)'), G2 = (u(x—y2)?), C3 = (u(x—
¥3Y3), Cs = (u(x — y4Y*) and Cs = ((x — y5)5 +u(x — y5)"
hs(x), u(x — y5)*s). We see that |C| = p™®’ 1) . pm@’=j2) .
pi =) L pmp=is) . pm2p*=is=ks) - Applying Theorem 4.1,
dg(C) < p’. By Theorem 2.11, C is an MDS code when
m(p* —j1) +m@p* —j2) + m@p* —j3) + m@p* —ja) + m2p* —
j5 — k5) = 2m(5p® — dg(C) + 1). Since m(p* — j1) + m(p* —
J2) +m@p* — j3) + m(p* — ja) + m2p* — js — ks) < 8mp*
and 2m(5p°® — dg(C) + 1) > 8mp®, we have m(p® — ji) +
m(p* —j2) +mp* —j3) + mp* — j4) + m2p* — js — «5) <
2m(5p® — dg(C) + 1). Hence, C is not an MDS code. O

Proposition 4.6: Let C = C1 @ C; @ C; @ Cr © C; be
a cyclic code of length 5p° over R, where C;, Cj, Cy, C; are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in {2,3,4,5}). If C;, C; are constacyclic codes of Type 2 of
length p* over R, then C is not an MDS code.

Proof: If Cy, C; are constacyclic codes of Type 2 of length
p* over R, then C is not an MDS code by Proposition 4.5.
Thus, Ci, C; are constacyclic codes of Type 3 or Type 4 of
length p* over R. Without loss of generality, assume that
Ci = ((x = "), C = (u(x — y2)), C3 = (u(x — y3)*) and
Cy = ((x — ya)* + u(x — ya)*ha(x)) or C4 = ((x — ya)* +
u(x — ya)™* ha(x), u(x — ya)*) and Cs = ((x — y5) + u(x —
¥5)5hs(x)) or Cs = ((x—ys5)5 +u(x—ys)’s hs(x), u(x—ys)<)
(1, J2,J3, J4, t5, ks are defined as in Theorem 2.2).

Case I: C1 = ((x —y)"), C2 = (ulx — »2)?),C3 =
(u(x —y3)3), Ca4 = ((x — yay* +u(x — y4)*h4(x)) and Cs =
((x = y5)® +u(x — y5)'shs(x)). Then we have |C| = p"@ ).
P i) i) 2 2 i) or | C| = i)
pm(PS—j-Z) Pt =iz) . p2m(p? —.1‘4) ~pm(ps_’5)‘0r pm@S_].l) .pm(P"—J?) .
prp*=is) . pm(P‘Y—M).. P2’ =is) op pm@’ =i . ' =) e’ =jz).
p' =) . p2m*=js) By applying Theorem 4.1, dy(C) < p°.
Using Theorem 2.11, C is an MDS code when m(p® — ji) +
mP® — j2) + m(p® — j3) + 2mp° — ja) + 2m@p° — js) =
2m(5p° — du(C) + 1) or m(p® — j1) + m(p® — j2) + m(p® —
J3) + 2m(p* — ja) + m(p* — t5) = 2m(5p° — du(C) + 1) or
m(p* —j)+mp* —j2)+m@p* —j3)+mp’ —14)+2m(p* —js) =
2m(5p* —du(C)+1) or m(p® —j1) +mp* —j2) +m(p* —j3)+
m(p* — t4) + m(p* — ts) = 2m(5p* — dy(C) + 1). We see that
m(p® —j1)+m(p* —j2)+m(p* —j3)+2m(p* —ja)+2m(p* —js) <
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8mp*, m(p* — j1) +m(p® — j2) + m(p® — j3) + 2m(p° — ja) +
m(p* — 15) < 8mp®, m(p* — j1) + m(p* — jo) + m(p® — j3) +
m(p* — ta) + 2m(p* — js) < 8mp®, m(p* — j1) + m(p* — jo) +
m@p* — j3) + m(p® — t4) + m@p® — t5) < 8mp®. It is easy
to see that 2m(5p® — dy(C) + 1) > 8mp®. Then we see that
|C| < p?"P*=du(©)+D Hence, C is not an MDS code in this
case.

Case 2: C; = ((x — yV1).Cr = (ux — y)?),
C3 = (u(x — y3)?), Ca = {(x — ya)* +ulx — ya)*ha(x)) and
Cs = ((x — y5)5 +u(x — y5)" hs(x), u(x — y5)*s). We see that
IC| = pm(Ple) .pm(P‘sz) .pm(P‘LJé) .p2m(P‘Lj4) .pm(2PLj5*K5)
or |C| = p"W’=in).pnw* =i2) . pym(p* —j3) . pym(p* —ta) ym(2p* =js —ks)
Applying Theorem 4.1, dy(C) < p*. By Theorem 2.11, C is
an MDS code when m(p°® — j1) + m(p® — jo) + m(p® — j3) +
2m(p* — ja) + m(2p* — js — «s5) = 2m(5p* — du(C) + 1) or
m(p* —j1)+mp’ —j2) +mp* —j3)+m(p’ —ta) +m(2p° —js —
ks5) = 2m(5p°—dy(C)+1). Itis easy to check that m(p* —j; )+
m(p® —j2)+m(p* —j3)+2m(p* —ja) +m(2p* —js —ks) < 8mp*
and m(p°® —j1) +mp® —j2) +m(p® —j3) +m(p® —t4) +m(2p° —
Jjs — k5) < 8mp®. We see that 2m(5p® — dy(C) + 1) > 8mp®.
Hence, |C| < pzm(5px’dH(C)+1). Hence, C is not an MDS code
in this case.

Case 3: C; = ((x — y)"), G2 = (ulx — y)?),
C3 = (ux—y3)?), Ca = ((x—yaV* +ulx —ya)"* ha(x), u(x—
y4)4y and Cs = ((x — y5Y5 +u(x — y5)"5 hs(x)). Then we have
IC| = pm(lfr—j 0. pm(P‘q—jz) . pm(Ps—ja) . pm(ZP‘Y —ja—Ka) p2m(Ps —Jjs)
or |C| = p"W’ i) . pnp* =i2) . pyn(p* —j3) . ym(2p* —ja—Ka) . pin(p*=ts)
By applying Theorem 4.1, dg(C) < p*. Using Theorem 2.11,
C is an MDS code when m(p* — j1) + m@p* — j2) + m(p* —
J3)+m2p* —ja—ka)+2m(p* —js5) = 2m(5p* —du(C)+1) or
m(p* —j1)+m(p* —j2)+mp* —j3)+m2p* —js —k4)+m(p* —
t5) = 2m(5p® — du(C) + 1). We have m(p°® — j1) + m(p® —
J2) +m@* —j3) + m2p* — ja — ka) + 2m(p* — js5) < 8mp?’,
m(p® —j1)+m(p* —j2)+mp* —j3)+m2p* —js—ka)+m(p* —
t5) < 8mp*®. Itis easy to see that 2m(5p°* —dg(C)+1) > 8mp®.
Then we see that |C| < pz’"(pr_dH(CH'l). Hence, C is not an
MDS code in this case.

Case 4: C; = ((x — y)"), G2 = (ulx — y)?),
G = (ulx — y3)?), Co = ((x — ya)* + ulx — ya)™
ha(x), u(x — 1)) and Cs = ((x — ys)5 + u(x — ys)
hs(x), u(x — y5)<s). We see that |C| = p™®’ 1) . pmp* =) .
P i) pm2p*—ja—ka) . pm(2p°=js=ks) Applying Theorem 4.1,
dy(C) < p°. By Theorem 2.11, C is an MDS code when
m@p® — j1) + m@p* — j2) + m(p’ — j3) + m2p* — js —
k4) + m2p* — js5 — ks5) = 2m(5p® — dy(C) + 1). We have
m(p* —j1)+m(p* —j2)+m(p* —j3)+m(2p* —ja—ka)+m(2p* —
Jjs — k5) < 8mp®. We see that 2m(5p°® — dy(C) + 1) > 8mp®.
Hence, |C| < pzm(5px’dH(C)+1). Hence, C is not an MDS code
in this case. O

Proposition 4.7: Let C = C; @ C; @ C; @ Cr @ C; be
a cyclic code of length 5p° over R, where C;, Cj, Cy, C; are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in{2,3,4,5}. If C; is a constacyclic code of Type 2 of length
p* over R, then C is not an MDS code.

Proof: It Cj, Cy, C; are constacyclic codes of Type 2
of length p* over R, then C is not an MDS code by
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Proposition 4.5. Thus, Cj, Ci, C; are constacyclic codes of
Type 3 or Type 4 of length p* over R. Without loss of
generality, assume that C; = ((x — 1y, Cy = (u(x — yg)/2),
C3 = ((x — y3)* +ulx — y3)3h3(x)) or C3 = ((x — y3) +
u(x — y3)" h3(x), u(x — y3)?) and Cy = ((x — ya)* + u(x —
ya)*ha(x)) or Ca = ((x—yaV* +ulx —ya)™* ha(x), u(x—ys)*)
and Cs = ((x —y5)5 +u(x —ys5)5hs(x)) or Cs = ((x —ys5)5 +
u(x — ys)'s hs(x), u(x — ys)s) (ji, j2.j3. ja» t5, ks are defined
as in Theorem 2.2).

Case 1: C1 = ((x —y)"), C2 = (ulx — »2)?),C3 =
((x = y3)? +ulx — y3)3h3(x)), Ca = {(x — ya)* + u(x —
Ya)*ha(x)) and Cs = ((x — ys)5 4+ u(x — ys)hs(x)). Then
we have |C| = pm(PJ—./l) . pm(Ps—jz) . p2m(17°'—j3) . p2m(ﬂ°'—j4) .
p2MP’=is) or |C| = p"W’ i) . pmp* =) . p2mp*=jz) . p2m(p*=ja) .
PP’ =1s) op pm*=in) . @’ =j2)  p2m@p* =j3) . pm(p*—ta) py2m(p*—js)
or p"W*=in) . pmw’=p2) . p2mpP=jz) Ly’ —ta) . ymp*—is) op
IC| = pm(l’s—jl) ,pm(p“—jz) .pm(lf—h) .p2m(px—j4) .p2m(17S—j5)
or |C| = p"W’=in) . pmw’=j2) . pm(p*=t3) . p2m(p=ja) . pym(p*—ts)
or p"P*=in) . pmp’=j2) . pmp*=t3) . pm(pt=ta) . p2mp*=js) op
Pt =0 =) pympt=13)  ympt—ta) . (' =1s) By applying
Theorem 4.1, dg(C) < p®. Using Theorem 2.11, C is an MDS
code when |C| = p¥"CP'—du(©+D) We see that |C| < 8mp®
and 2m(5p* — dg(C) + 1) > 8mp®. Then we see that |C| <
p2mp’=du(O+D Hence, C is not an MDS code in this case.

Case 2: C1 = (x — y)V"), G2 = (ulx — y)?),
C3 = ((x — 33 + ulx — y3)°h3(x)), Ca = ((x — yaV* +
u(r — yaY*ha(0) and Cs = {(x — ysV5 + ulx — ys)’
hs(x), u(x — ys)s). We see that |C| = p"¥' =) . pm®'=/2) .
p2rw =) L 2@ =js) L pmQr=js=ks) op |C| = p"@ =) .
PPt =) p2m(p =j3) pyn(p* —ta) 2Pt =js—ks) op | C| = p™P*=in).
PP’ =)y’ =13) p2mp* —=ja) pm 2P’ —js—ks) or | C| = p™MP’ ).
P =) @’ —13) pym(p*—ta) pm2p*=js—=ks)  Applying Theorem
4.1,dy(C) < p®. By Theorem 2.11, C is an MDS code when
m(p® —j1)+m(p* —j2)+2m(p* —j3)+2m(p* —ja)+m2p* —js —
ks5) = 2m(5p* —du(C)+1) or m(p* —j1)+m(p* —j2)+2m(p* —
J3)+m@* —t4) +m2p* — js —ks) = 2m(Sp* —du(C)+ 1) or
m(p® —j1)+mp* —j2)+mp’ —13)+2m(p* —ja) +m(2p* —js —
ks5) = 2m(5p* —du(C)+1) or m(p® —j1)+m(p® —jo) +m(p* —
13) + m(p* — t4) + m2p* — js — ks) = 2m(5p* — du(C) + 1).
Itis easy to check that m(p® — j1) +m(p® —j2) +2m(p* — j3) +
2m(p* —ja)+m(2p* —js—«ks) < 8mp*, m(p* —j1)+m(p* —j2)+
2m(p* —j3)+m(p* —t4)+m(2p* —js —«s) < 8mp*, m(p* —j1)+
m(p* —jo)+m(p® —13)+2m(p* —ja) +m2p* —js—ks) < 8mp’,
and m(p* —j1)+m(p* —j2) +m(p* —t3)+m(p® — t4) + m(2p° —
Jj5 — k5) < 8mp®. We see that 2m(5p° — dy(C) + 1) > 8mp*.
Hence, |C| < pz’”(sl’s_d“(c)“). Thus, C is not an MDS code
in this case.

Case 3: C1 = (x — y)V"),C2 = (ulx — y»)?),
C3 = ((x = y3)* +ulx —y3)*h3(x)), Ca = ((x — ya)* +u(x —
Y ha(x), u(x — ya)*) and Cs = ((x — ys))5 + u(x — ys)’s
hs(x), u(x — y5)*s). Then we have |C| = p™®’ /D) . pm@’—2) .

2n(p*—js) . pn2p*—ja=ka) . P’ —js=ks) or |C| = pMP’ i) .
pri =) @t =3)  pmCpt=ja—ka) . ym2p*=js—s) By applying
Theorem 4.1, dg(C) < p°. Using Theorem 2.11, C is an
MDS code when m(p* — ji) + m(p® — j2) + 2m(p* — j3) +
m2p* — ja — 4) + m(2p* — js — 15) = 2m(5p* — du(C) + 1)
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or m(p* — j1) + mp* — jo) + m(p® — t3) + m(2p* — j4 —
k1) + m(2p* — js — k5) = 2m(5p® — dy(C) + 1). We have
mp* — j1) + mp* = j2) + 2mp* — j3) + m2p* — ju —
Kk4) + m2p* — js — ks) < 8mp*, m(p® — j1) + m(p* — j2) +
m(p* — 13) + m(2p® — ja — ka) + m(2p* — js — ks) < 8mp*
and 2m(5p° — dy(C) + 1) > 8mp®. Then we see that
|IC| < p¥mOr'—du(©)+D Hence, C is not an MDS code in
this case.

Case 4: C1 = ((x — y1)1),C2 = (ulx — y2)?),
C: = ((x — y3)* + ulx — Vs)’* ha(x), u(x — y3)'3),
Cs = ((x — yaV* + ulx — y4)*ha(x)) and Cs = ((x — ys)5 +
u(x — y5)5hs(x)). Similar to Case 2, we can conclude that C
is not an MDS code.

Case 5: C1 = (x — y)V"),C2 = (ulx — Vz)’z),
C3 = ((x — y3)® + u(x — y3) h3(x) ulx — y3)3), Cy =
((x—yaYt4u(x—y4)*ha(x)) and Cs = ((x—ys)5+u(x— )/5)f5
hs(x), u(x — ys)*s). Similar to Case 3, C is not an MDS code.

Case 6: C; = ((x — y)'"), G2 = (ulx — y)?),
G = ((x — y3)* + ulx — y3)" I3(), ulx — y3)9),
Cs = ((x — yal* + ulx — ya)* ha(x), u(x — y2)*) and

= {(x — ¥5)5 + u(x — y5)"5 hs(x), u(x — ys)s). Then we
have |C| = p"W’ =) . pp* =) . pim2p*=j3=K3) . (2P’ —ja—ka) .
p"C@P’=is=ks) By applying Theorem 4.1, d(C) < p*. Using
Theorem 2.11, C is an MDS code when m(p* — j;) + m(p® —
J2) +m2p* —j3 —k3) +m(2p° —ja —k4) +m(2p° —j5s —ks) =
2m(5p° — dg(C) + 1). We see that m(p* — j1) + m(p* — j2) +
m(2p® —jz —k3)+m2p® —js —k4) +m(2p° —js —ks) < 8mp*
and 2m(5p* — dy(C) + 1) > 8mp?®. Thus, C is not an MDS
code. O

Proposition4.8: Let C = C1®CrdC3DCaPDCs be a cyclic
code of length 5p° over R, where Cy, Cy, C3, Cy4, Cs are
defined as in Theorem 4.1 such that all C; are constacyclic
codes of Type 3 of length p* over R fori € {2,3,4,5}. Then
C is not an MDS code.

Proof- We have C| = ((x — 1)), C2 = ((x — y2)2 + u(x —
Y2)2ha(x)), C3 = ((x — y3)3 +u(x — y3)3h3(x)), C4 = {(x —
yay* +ux — ya)*ha(x)), Cs = ((x — ys)5 +u(x — ys5)" hs(x))
(j2,J3,ja,j5 are defined as in Theorem 2.2). If |Cy| =

P, then |C| = p" )L prPTTR) |Gy - |Cyl - |Cs.
From Theorem 4.1, dg(C) < p’. Usmg Theorem 2.11, C is
an MDS code when p™®’ /1) . pm(*=1) . |C3] - |Cy| - |C5| =
p2mer'=du(©+D Tt is easy to check that p™®’ /1) . p@’ 1) .
|C3]-|C4]-|Cs] < p™" . Since 2m(5p* —du(C)+1) > 8mp*,
we have |C| < p?"Gr'—du(©)+D Hence, C is not an MDS
code if |C3| = p’"(ps—’”. It is easy to see that if there exists
¢ € {2,3,4,5) such that |[C;| = p™P’~") then C is
not an MDS code. Thus, we need to consider the case
|C| = p"®’ =D . p2m@*=j2) . p2mp*=j3) . p2m(p*=ja) . p2mp*=js)
By Theorem 2.11, C is an MDS code when m(p® — j;) +
2m(p* — j2) + 2m(p® — j3) + 2m(p* — j4) + 2m(p° — j5) =
2m(5p® — dg(C) + 1). Hence, C is an MDS code when
J1+ 22 + 2j3 + 2j4 + 2j5 = —p® + 2du(C) — 2. Applying
Theorem 4.1, we see that dg(C) = min{dy(C;)}, where
i = {1,2,3,4,5}. Then we have dg(C) = dyx(Cy) or
dy(C) = dy(C) or dy(C) = dy(C3) or du(C) = dy(Cy)
or du(C) = du(Cs).
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Case 1: dy(C) = dg(Cy). From Theorem 2.3,
du(C1) = 1ordu(C1) = (81 + Dph.

Subcase 1.1: dy(C1) = 1. In this subcase, 2j» +2j3 + 2j4 +
2js = —p®, which is a contradiction. Hence, C is not an MDS
code in this subcase.

Subcase 1.2: dg(C1) = (8; + 1)pX1. Then we see that
2% + 23 + 2a + 25 = —p* + 2061 + Dpft — 2 (D).
From (1), we have 2(6; + l)pk1 > p*. Since §; + 1 <
p, we have p° < 2p - pf1. It implies that p*~f1—1 < 2.
Hence, s — k; — 1 = 0, ie., s = k; + 1. By asumption
p=p @ =Dp T < i< prp s
we see thatp* —p+6; —14+1 <j; < p®—p+38;. It follows
thatji = p*—p+381. Put Ty = 2j2+2j3+2j4+2j5. Then Ty =
22 +2j3+2ja+2js = —p* +281+ Dp* 1 —2—(p* —p+81).
Hence,

Ty = p* 2081 + 1) — 2p] —
= [2p"" = 1[5

Since 2p*~! — 1 > 0and §; — p+ 1 < 0, we have [2p*~! —
1[81 —p+ 11 =1 < 0. Thus, j1 + 22 + 2j3 + 2ja + 2j5 #
—p* + 2081 + 1)p*1 — 2, ie., C is not an MDS code when
du(C) = du(Cy).

Case 2: dg(C) = dg(Cz). When dg(C) = dy(Cy),
dg(C) = dyg(Cy) and dg(C) = dg(Cs) can be done similarly.
Using Theorem 2.3, we have 2 subcases.

Subcase 2.1: dg(Cp) = dH(((x — )/2)’2)F) when hy(x) is 0 or
hy(x) is a unitand 1 < j, < p

du(C2) = du(((x — yzyzm = (52 + p*,

where p* —prp + (862 — Do+ 1 < jo < p* — pry + 612,
1<8&<p—1,m=p"%1 and0 < ky < s—1.Then C is
an MDS code when ji 4+ 2j2 +2j3 + 2ja + 2j5 = —p* +2(82 +
l)pk2 — 2. Similar to Subcase 1.2 of Case 1, we can conclude
that ji 4 2jo 4 2j3 + 2ja + 2j5 # —p* +262 + Dp2 — 2, ie.,
C is not an MDS code in this subcase.

Subcase 2.2: du(C2) = du({(x — y2)2)F) when hy(x) is a
unit and pS;-zz <ja» <p*—1.Then

G1—-p+1DH -1
—p+1]—1.

dn(C2) = du(((x — y2)Y2)F) = (82 + 1)p’2,

where 1) + pro — 8212 < jo <ty +pra — (82 — D2 — 1,
1<§&<p-1, ;’g—ps_kz_1 and 0 <k, <s—1.Then C
is an MDS code whenjl + 2]2 + 2]3 + 2js4 + 2]5 = —p +
2(82 + Dp 2
We see that j +2]2+213 +2j4+2js +p —2(82+ 1)p’<2+2 >
NP +0+25+24+2s+p =20+ D +2>0,
e, j1 + 2 + 23 + 2js + 2j5 > —p° + 25, + )pF2 — 2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code. U
Proposition 4.9: Let C = C1 @ C; @ C; @ Cr ® C; be
a cyclic code of length 5p° over R, where C;, Cj, Cy, C; are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in {2,3,4,5}. If C;, Cj, and Cy are constacyclic codes of
Type 3 of length p* over R, then C is not an MDS code.
Proof: If C; is a constacyclic code of Type 3 of length
p* over R, then C is not an MDS code by Proposition 4.8.
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Thus, C; is a constacyclic code of Type 4 of length p* over R.
Without loss of generality, assume that C; = ((x — )/z)j2 +
u(x —y2)2ha(x)), C3 = ((x — y3)3 +u(x — y3)3h3(x)), Cy =
((x — ya)* 4+ ux — ya)*hg(x)) and Cs = ((x — ys5)5 +
u(x — y5)5 hs(x), u(x — y5)) (1. j2.j3. J4» ts, ks are defined
as in Theorem 2.2). If there exists £ € {2, 3,4} such that
|Ce| = p™P’~1, Without loss of generality, assume that
|C2| = p™P’~%2)_ Using Theorem 2.11, C is an MDS code
Whenprrt(ps—jl).pm(ps—tz).|C3| -|C4l-1C5| = p2m(5p“—dH(C)+l)_
It is easy to check that p™® =/ . p(*=12) .| C3] - |Cy] - |Cs| <
pd"P’ because |C3|, |C4l, |C5| < 2mp*. Since 2m(5p° —
du(C)+1) > 8mp®, we have |C| < p2"CP’—du(O+D Hence,
C is not an MDS code when |C;| = p™®' =) Thus, C
is not an MDS code if there exists £ € {2, 3, 4} such that
|Ce| = p’"(px_"f). We consider the remaining case: |C| =
Pt =in L p2m@p*=j2) . p2m(pt=jz) . p2mpt—ja) . pm(2p°—js—Ks)
By Theorem 2.11, C is an MDS code when m(p® — j;) +
2m(p* — o) +2m(p* — j3) +2m(p* — ja) + m(2p* — jis — c5) =
2m(5p® — dy(C) + 1). Hence, C is not an MDS code when
S+ 22 4+ 23 + 2ja +js + x5 = —p° + 2(du(C) — 2.
Applying Theorem 4.1, we see that dg(C) = min{dy(C;)},
where i = {1, 2, 3, 4, 5}. Then we have dg(C) = dy(Cy) or
du(C) = du(Cy) or du(C) = du(C3) or du(C) = du(Cy) or
du(C) = du(Cs).

Case 1: dg(C) = dy(Cy). From Theorem 2.3, dg(C;) =
1 or dg(Cy) = (81 + 1)ph.

Subcase 1.1: dg(Cy) = 1. In this subcase, 2j, + 23 +2js +
J5 + k5 = —p®, which is a contradiction. Hence, C is not an
MDS code in this subcase.

Subcase 1.2: dg(C1) = (81 + 1)p¥1. Then we see that
= —p*+2(81+1)p*1 —2 (2). From (2), we have 2(8; +1)p~1 >
p*. Since 81 + 1 < p, we have p* < 2p - p¥. It implies that
p~h=1 < 2 Hence,s —k; — 1 = 0,ie.,s = kj + 1.
By asumption p* — p* %1 4 (8; — Dp*Rl 41 < j; <
P —p k4 s p Rl weseethatp' —p+8 —1+1 <
j1 < p* —p+8;. Itfollows that j; = p* —p + ;. Put Tp =
2o +2j3+2ja+j5+ks5. Then Tp = 2jo+2j3+2j4+js+ks =
—p* + 281 + p*~! —2 — (p* — p+ 81). Hence,

T=p 261+ 1) =2p] =@ —p+ D —1
=2 ' =1 —p+ 11— 1.

Since ZpS_1 —1 > 0and §; —p+ 1 < 0, we have
2p°~' — 11[61 —p+ 11— 1 < 0. Thus, ji + 2j» + 2j3 +
2j4+js+ ks # —p°+2(8; + 1)pX1 —2,i.e., C is not an MDS
code when dy(C) = dg(Cy).

Case 2: dg(C) = dy(C3). We see that dg(C) = dg(Cs) and
dy(C) = dy(Cy) can be done similarly. Using Theorem 2.3,
we have 2 subcases.

Subcase 2.1: dg(Cp) = dH(((x — yz)/Z)F) when hy(x) is
0orhy(x)is aunitand 1 <j, < £32 HZ . Then

du(C2) = du(((x — y2)2)F) = (82 + P2,

where p* —pry+ (62— Dra+1 < jo <p° —pra+dar, 1
& <p—1,rn=p7%1 and0 < k < 5 — 1. Then
is an MDS code when ji + 2j» + 2j3 4+ 2ja + j5 + &5
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—p* 4+ 2(8> + 1)p*2 — 2. Similar to Subcase 1.2 of Case 1,
we can conclude that ji + 2jo + 2j3 + 2ja + j5s + k5 #
—p* +2(8, + 1)p*2 — 2, i.e., C is not an MDS code in this
subcase.

Subcase 2.2: dy(Ca) = du({(x — y2)2)F) when hy(x) is a
unit and plv;rtz <ja» <p*—1.Then

du(C2) = du(((x — »2)2)F) = (82 + Dp2,

where ty +pro =8y <jp <t +pra— (G —Drn—1,1=<
& <p—1,rm=p7% 1 and0 < ky < s — 1. Then C
is an MDS code when j; + 2j» + 2]3 + 2ja +]5 + K5 =
—p*+2(8,+1)p*2—2. From j,
Weseethat]1+2]2+2]3+2]4+]5+K5+p 2(52+1)pk2+2>
J1+P 12+ 2i3 + 2j4 +js + ks +pt —2(8 + 1)pk2 +2 > 0,
ieji + 22423+ 2ja +js + 15 > —p* + 2062+ 1)p2 —2.
Hence, C is not an MDS code in this subcase. Thus, C is not

an MDS code.
Case 3: dg(C) = du(Cs) = du({(x — y5))Fp) =
(85 + 1)p*s, where p* — p>™% + (85 — Dp* ™51 1 < w5 <
1

P’ —ps’k5 +85p57k5’1, l<és<p—1l,and 0 <ks <s—1.
Then C is an MDS code when j| + 2j5 + 2j3 + 2ja +j5 + k5

—p* +2(85 + 1)p*s — 2. From ji + 2 +2j3 + 2ja +js + k5 =
—p*+2(85+1)pks —2, we see that 2(85+ 1)p*s > p* (5). Since
85+1 < p, wehave p* < 2p-pks. Itimplies that p* =55~ < 2.
Hence, s = ks + 1. From p® —p*=% 4+ (85 — 1)p* %51 41 <
js < p* —p*% 4 8sp* 1 we see that js = p* — p + 8s.
From s = ks + 1, (5) becomes 2(85 + )p*~' > p'.
It implies that §5 + 1 < p < 2(8s + 1). By assumption,
(85 + Dpfs < (85 + D)p*s. Hence, (85 + Dp*~! < pltl,
It follows that kp +1 > s — 1. Therefore, k» > s — 2. It shows
that kp = s — 1 since ko < s — 1. Similarly, we see that
ki =s—1,k3 =s—1and ky = s — 1. Since (85 + l)pk5 <
1+ Dpft < (82 + Dpf2 < (83 + PP < (84 + Dphs,
we have §; < & < 83 < 84. From this, j; = p* — p + 61,

Jj2=p'—p+8,j3=p°—p+383andjs = p’ —p+ 4. From
J1 422 + 23 +ja + ks +js + k3 = —p* +2(85 + Dphs —2,
jsi=p'—p+diandjp=p' —p+d,j3=p°—p+dsand

Ja = p*—p+364, we see that (p* —p+381)+2(p* —p+382)+2(p* —
P+83)+2(° —p+da)+js+rs = —p*+205+ Dp* ! 2.
Hence,

= —8p° +2(85+ '~ =2
+7p — 81 — 28 — 283 — 264
= [-2p* +2(85 + )p* ']

Js + ks

+p =81 =p1+p—28 —p']
+[p —283 = p°1+[p — 284 — p’°]
+[3p — 2p* —2].

If s > 2, then j3 4+ k3 < 0. This is a contradiction. If s = 1,
then ki = kp = k3 = ks = 0. Hence, j1 = §1,j2 = 82,
Jj3 = 83 and jy4 = &4. It implies that j; + 2jo + j3 + 2ja +
Js+ k5 = 285 —p < 281, which is a contradiction. Therefore,
J1 4252 4+ 2j3 4 2j4 +js + k5 # —p* +2(85 + Dpfs — 2, ie.,
C is not an MDS code. O

Proposition 4.10: Let C = Ci & C; ® C; & C @ ¢
be a cyclic code of length 5p° over R, where C;, C;, Cy, C;
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are defined as in Theorem 2.5 and i,j,k,t are different
numbers in {2,3,4,5). If C;, C; are constacyclic codes
of Type 3 of length p* over R, then C is not an
MDS code.

Proof: If Cy, C; are constacyclic codes of Type 3 of length
p® over R, then C is not an MDS code by Proposition 4.8.
Thus, Ci, C; are constacyclic codes of Type 4 of length p*
over R. Without loss of generality, we have Cy = ((x—y» )2+
u(x —y2)?ha(x)), C3 = ((x — y3)3 +ulx — y3)3h3(x)), C4 =
((c = yaV* + ulx — ya)™ ha(x), u(x — y4)*) and Cs = ((x —
YsYS 4+ u(x — ys5)5 hs(x), u(x — y5)S) (j1.j2. /3. ja. 15, K5 are
defined as in Theorem 2.2). Assume that there exists £ €
(2,3} such that |Cy| = p™P’ =10 _If |C,| = p™ P ), using
Theorem 2.11, then C is an MDS code when pm(”j_j D .
P =R) 3] - |Gy - |Cs| = pPmOP—du(O+D) Tt s easy to
check that p@" /D). p@’ —12) | C3]-|C4|-|Cs| < p¥"P because
|C3l, |C4l, |C5] < 2mp*. Since 2m(5p* — dy(C) + 1) >
8mp®, we have |C| < pzm(sl’s_d“(c)“). Hence, C is not an
MDS code when |Cy| = p”® ~2)_ Thus, C is not an MDS
code if there exists £ € {2, 3} satisfying |C¢| = pm(px_”f).
We consider the remaining case |C| = p"® /1) . p2m’=j2) .
p2w=p3) . pm@pri=ja—ka) . ym2p*=js=ks) By Theorem 2.11,
C is an MDS code when m(p* — j1) + 2m(p* — j2) +
2m(p* — j3) + m2p® — ja — k4) + m2p* — j5 — k5) =
2m(5p* — dy(C) + 1). Hence, C is not an MDS code when
J1+ 22+ 23 +ja+ ks +js5s + k5 = —p* +2du(C) — 2.
Applying Theorem 4.1, we see that dg(C) = min{dy(C;)},
where i = {1, 2, 3,4, 5}. Then we have dg(C) = dy(Cy) or
du(C) = du(Cy) or du(C) = du(C3) or du(C) = du(Cy) or
du(C) = du(Cs).

Case 1: dyg(C) = dy(Cy). From Theorem 2.3,
du(C1) = 1 or du(C) = (81 + Dp*'.

Subcase 1.1: dy(Cy) = 1. In this subcase, 2j> + 2j3 +j4 +
k44 js + k5 = —p°®, which is a contradiction. Hence, C is not
an MDS code.

Subcase 1.2: dg(Cy) = (81 + 1)p*. Then we see that j; +
22+ 23 +ja + ks +js + 15 = —p* + 2081 + Dpt =2
(4). From (4), we have 2(8; + 1)p¥1 > p®. Since 8; + 1 < p,
we have p* < 2p - pf1. It implies that p* %11 < 2. Hence,
s—k —1=0,ie., s =k + 1. By asumption p* — p*~k1 +
G = H L <ji < p' = pTh H8pThT! we see
thatp* —p+61 — 1+ 1 <ji1 <p® —p—+ 6. It follows that
Jj1 =p*—p+81.Put Ty = 2jo +2j3+js+ k4 +J5 +ks. Then
Ty = 2o +2j3 +ja+ ks +js+ks = —p* +2(8; + Dp*~! —
2 — (p* — p + 41). Hence,

Ty =p 261+ D) —2p] =1 —p+ D —1
=2 =18 —p+1]1—1.

Since 2p*! — 1 > 0and §; — p + 1 <0, we have [2p*~! —
1[61 —p+11—1 < 0. Thus, j1 +2/2 +2j3+js+Ka+j5+Kk5 #
—p* 4+ 2(81 + 1)p"‘1 — 2, 1.e., C is not an MDS code when
du(C) = du(Cy).

Case 2: dg(C) = du(Cz). We see that dg(C) = dy(C3) can
be done similarly. Using Theorem 2.3, we have 2 subcases.

119896

Subcase 2.1: dg(Cp) = dH(((xX— yz)iz)F) when hy(x) is
Oorhy(x)isaunitand1 <j, < £ ;tz. Then

du(C2) = du(((x — y2)Y2)F) = (82 + 1)p*2,

where p* —pry + (82 — Dra+1 < ja < p* —pra+ 82, 1 <
S <p—1,m=p~ 1 and0 < ky <s—1.Then Cisan
MDS code when j1 +2jo42j3+ja+k4+j5+K5 = —p*+2(52+
l)pk2 — 2. Similar to Subcase 1.2 of Case 1, we can conclude
that j +2j2 +2j3 +ja +ka+js +is # —p*+2(8+ 1)pk2 -2,
1.e., C is not an MDS code in this subcase.

Subcase 2.2: dy(C2) = dy({(x — )/z)j2>F) when hy(x) is a

unit and 2 ;tz < jo» <p®—1. Then

di(C2) = du(((x — y2)2)r) = (82 + p*,

where t)+pro—éyr2 < jo < to+pr—(G2—Dra—1,1 <6 <
p—1,m=p =1 and0 < ky < s— 1. Then C is an MDS
code when j| +2j2 +2j3 +ja +ka +js + x5 = —p° +2(62 +
Dp*2 — 2. From j, > p‘uz”z, we have 2j, > p* + 1. We see
that ji +2j2 +2j3 +js + ks +js + ks +p* =282+ DpF2 +2 >
J1HP 423 +js+ra+js+rs+p° =28+ 1D)pF2+2 > 0,
i.e.,j1+2j2+2j3+ja+ka+js+rs > —p*+2(8+ 1)pk2 —2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code.

Case 3: du(C) = du(Cs) = du({(x — y5)S)F) = (85 +
Dp's, where p* —p*™% + (85 — D™ 4 1 < ks < p* -
PR 4 8spthTl 1 <85 <p—1,and 0 <ks <s—1. We
see that dg(C) = dg(Cy) can be done similarly. If dg(C) =
du(Cs), then C is an MDS code when j; +2j2 +2j3 +j4+ K4+
Js+ics = —p*+2(85+ 1)p*s —2. From j1 +2j2+2j3 +ja+ K4+
Js+ks = —p*+2(55+ l)pk5 —2, we see that 2(85+ 1)pk5 > p*
(5). Since 85 + 1 < p, we have p* < 2p - ps. It implies that
p~%s=1 < 2 Hence, s = ks + 1. From p* — p*=% 4 (85 —
P51 41 < js < p* — p**5 4+ 8sp* %51, we see that
j5 = p*—p+38s. From s = ks+1, (3) becomes 2(85+1)p* ! >
p*. It implies that §5 + 1 < p < 2(§5 + 1). By assumption,
(85 + ps < (85 + Dp’s. Hence, (85 + 1)p*™! < plotl.
It follows that kp +1 > s — 1. Therefore, k» > s — 2. It shows
that ko = s — 1 since k» < s — 1. Similarly, we see that
ki =s—1,ks =s—1and ks = s — 1. Since (85 + 1)p* <
61+ P < G2+ DpP < 85+ PP < (8a + Dph,
we have §1 < 8, < 83 < 84. From this, j; = p* — p + 41,
J2=p'—p+d,j3=p'—p+ésandjs = p* —p+ 4. From
JU+ 22+ 23 +ja + ka4 js + ks = —p* 4285 + 1)phs =2,
ji=p'—p+diandjp=p* —p+8,j3=p'—p+33and
Jja = p'—p+34, we see that (p° —p+81)+2(p° —p+82)+2(p* —
pH83)+(p* —p+84)+ra+tjs+ks = —p +2(8s+1)p 2.
Hence,

Js+us+ ke =—Tp +205+ 1)p'~' =2
+6p — 381 — 28 — 263 — 64
= [-2p" + 205+ Dp* 1+ [p - 81 = p']
+lp—28 -p'1+[p—25 —p']
+Ip—81—p1+12p—p* —2I
If s > 2, then j3 + k5 + x4 < 0, which is a contradiction.
If s = 1, then ky = k» = k3 = 0. Hence, j1 = 61,j2 = 82,
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j3 = 83. It implies that j1 + 2jo + j3 + ja + k4 +js5s + k5 =
285 — p < 2681. This is a contradiction. Therefore, j; + 2j> +
2j3 +ja + ka4 + js + ks # —p° 4285 + Dpfs — 2,1, Cis
not an MDS code. O

Proposition 4.11: Let C = C1 @ C; ® C; @ Cr @ C; be
a cyclic code of length 5p® over R, where C;, Cj, Ci, C; are
defined as in Theorem 2.5 and i, j, k, t are different numbers
in {2, 3,4, 5}. If C; is a constacyclic code of Type 3 of length
p* over R, then C is not an MDS code.

Proof: If Cj, Ci, C; are constacyclic codes of Type 3
of length p* over R, then C is not an MDS code by
Proposition 4.10. Thus, Cj, Ci, C; are constacyclic codes of
Type 4 of length p* over R. Without loss of generality, assume
that 3 = ((x — 2 + ulx — 1)), Cy = ((x —
y3V? +ulx — y3)° h3(x), u(x — y3)), Ca = ((x — yaV* +
u(x — ya)™* ha(x), u(x — ya)*) and Cs = {(x — y5)5 + u(x —
¥5)'S hs(x), u(x — y5)5) (j1. 2.3, j4» 15, k5 are defined as in
Theorem 2.2). If |Cy| = p™¥" =), by using Theorem 2.11,
C is an MDS code when p"@" =/ . pn(*=1) . |C3] - |Cy] -
|Cs5| = p?mOr'=du(©+D Tt is easy to check that p™®" /1) .
prw =) . pympt=z—k3) . pmAp —ja—ka) . pmOp—js—ks)
pgmps. Since 2m(5p* — dy(C) + 1) > 8mp*, we have
|IC| < p?"GP’=dn(©+D Hence, C is not an MDS code when
|Cr| = pm(”j_m. We consider the remaining case |C| =
PP’ =) p2mp’ —j2) ym(2p* =j3—=K3) 2Pt —ja=ka) . pin(2p’ —js—Ks)
By Theorem 2.11, C is an MDS code when m(p® — j;) +
2m(p* — j2) +m(p® — j3 — k3) +m2p* — ji — k4) +m(2p* —
Jjs — k5) = 2m(5p® — dg(C) + 1), which is equivalent to
J1+22+j3+ k3 +ja+ka+js + ks = —p*+2du(C) —
Applying Theorem 4.1, we see that dg(C) = min{dy(C;)},
where i = {1, 2, 3, 4, 5}. Then we have dg(C) = du(C)) or
du(C) = du(C2) or du(C) = du(C3) or du(C) = du(Cy) or
dy(C) = du(Cs).

Case 1: dy(C) = dg(Cy). From Theorem 2.3,
du(Cp) = 1 or du(Cy) = (81 + Dph.

Subcase 1.1: dg(Cy) = 1. In this subcase, 2jo + j3 + x3 +
Jja + k4 +J5 + k5 = —p°, which is a contradiction. Hence, C
is not an MDS code in this subcase.

Subcase 1.2: dy(C1) = (81 + 1)p*1. Then we see that j; +
Ja ka4 j3 s ja ks +js +rs = —p* +2(8; + Dpkt —2
(6). From (6), we have 2(8; + 1)p¥! > p®. Since §; + 1 < p,
we have p* < 2p - pF. It implies that p* %=1 < 2. Hence,
s—k —1=0,ie., s =k + 1. By asumption p* — p*~k1 +
G1—Dp -1 <jy <p*—p R 4 81p7F171 we see
thatp* —p+61 — 1+ 1 <j; <p®—p+ ;. It follows that
J1=p —p+81.Put Ty = 2jp +j3 + k3 +ja + k4 +js + «s.

Then T4 = 2jo +j3 + k3 +ja + k4 +j5 + k5 = —p° +2(61 +
Dp*~! —2 — (p* — p + 81). Hence,
Ts=p 261+ D) =2p] =G —p+ 1 —1

=2 =18 —p+ 11— 1.

Since 2p°~ L N Oand 6; —p + 1 < 0, we have
2p~' — 181 —p + 1] — 1 < 0. Thus, ji + 22 +j3 +
K3 +ja 4+ kg +js + x5 £ —p° + 281 + DpF — 2,ie., Cis
not an MDS code when dg(C) = dg(Cy).
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Case 2: dg(C) =
2 subcases.

Subcase 2.1: dg(Cp) = dH(((x — )/2)’2)1:) when hy(x) is
0 or hy(x) is aunitand 1 <jp <2 'Hz . Then

du(C2) = du(((x — yzyzm = (82 + ',

where p* —prp + (860 — Do+ 1 < jo < p* — pry + 612,
1<éh=<p-1,n :ps_kz_l, and0 <ky <s—1.Then C
is an MDS code when j| +j2 +j3 + &3 +j4s + k4 +js + k5 =
—p* 4+ 2(8> + 1)p*2 — 2. Similar to Subcase 1.2 of Case 1,
we can conclude that j; +j> +j3 + k3 +ja + ka +j5 + k5 #
—p* 4+ 2(62 + l)pk2 — 2,1i.e., C is not an MDS code in this
subcase.

Subcase 2.2: du(C2) = du({(x — y2)2)F) when hy(x) is a
unit and p‘Y-sz <ja» <p*—1.Then

du(C2) = du(((x — »2)2)F) = (82 + Dph2,

where rr+pra—82r < jo < th+pr—(82—1)r—1,1 <8 <

—1,m=p*%~1 and 0 < k» < s — 1. Then C is an MDS
COdke when ji + 2]2 + 2]3 +J4 Fhatjs +us = —P +2(82 +
Dp*2
that]1+2]2+2]3+]4+K4+]5+K5+p 2(82+1)pk2+2>
J1+p o +2j3+ja+katjs +ks+pf —2(8+ Dpk2 42 > 0,
ie.,j1+2/2 423 +ja+ka+js+krs > —p°+2(8+ Dpk2 —2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code.

Case 3: dy(C) = du(Cs) = du({((x — y5)<)r) = (&5 +
l)pk5, where p° —ps_k5 + (85 — l)ps_k5_1 +1<ks<p’—
p57k5 +55ps’k5*], 1<é5<p—1,and 0 <ks <s—1. We
see that dg(C) = dy(C3) and dg(C) = dy(Cys) can be done
similarly. If dg(C) = du(Cs), then C is an MDS code when
J1 4202+ 23 +ja+ka +js + s = —p* + 285 + Dp*s —
From j; +2jp 423 +ja+ka+js+ks = —p*+2(85+ 1)pks -2,
we see that 2(85 4+ 1)p*s > p* (7). Since 85 + 1 < p, we have
pP<2p ~pk5. It implies that p“kS_1 < 2.Hence, s = k5 + 1.
Fromps _ps—k5 + (55 _ 1)ps—k5—l +1 5]5 < px _ps—k5 +
8sp* %=1 we have js = p* — p + 85. From s = ks + 1, (7)
becomes 2(85 + 1)p*~! > p*. It implies that 85 + 1 < p <
2(85 + 1). By assumption, (&5 + 1)p*s < (85 + 1)ps. Hence,
(85+1)p*~! < p2t1 Tt follows that k41 > s— 1. Therefore,
ky > s—2.Itshows thatk, = s—1 since ko < s—1. Similarly,
we seethatk) =s—1,k3 = s—1and k4 = s— 1. Since (65 +
Dpfs < Gr+DpM < (G2 +1p* < (83+1)p* < (Sa+1)p™,
we have §; < §, < 63 < 84. From this, j; = p* — p + 41,
j2=p'—p+38,j3=p'—p+é3andjs = p*—p+34. From
J1+ 202423+ 2a+js + k3 = —p* + 205 + Dpfs — 2,
ji1=p'—p+éiandjp=p'—p+é,j3=p'—p+dand

dy(C»). Using Theorem 2.3, we have

ja = p*—p+384, we see that (p° —p+381)+2(p° —p+82)+2(p* —
P+383)+ P’ —p+8a)tratjsties = —p’+2(0s+1)p* T 2.
Hence,

Js+ks+ks=—Tp +2@3+ p*' -2
+6p — 81 — 28 — 263 — 64
= [-2p" + 2085 + Dp* '+ [p — 8 — p']
+Ilp =28 —p'l+[p—28 —p']
+Ip—81—p1+12p—p' —2I.
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If s > 2, then j3 + k5 + x4 < 0, which is a contradiction.
If s = 1, then k; = ko = k3 = 0. Hence, j1 = 81,2 = 82,
J3 = 83. It implies that ji + 2jo + j3 +ja + k4 +j5s + k5 =
285 — p < 2681. This is a contradiction. Therefore, j; + 2j» +
23 +ju + kg +js + ks # —p* +2(85 + 1)pfs —2,ie., Cis
not an MDS code. U

Proposition 4.12: Let C = C; & C & C3 &
Cs @ Cs be a cyclic code of length 5p® over R, where
C1, C3, C3, Cy, Cs are defined as in Theorem 2.5 such that
all C; are constacyclic codes of Type 4 of length p* over R
forie{2,3,4,5}. Then C is not an MDS code.

Proof- We have C; = ((x — 1Y1),Co = ((x — »2)2 +
u(x — y2)”2 ha(x), u(x — y2)?), C3 = ((x — y3)* - u(x — y3)"
h3(x), u(x —y3)3), Ca = ((x —yaV* +ulx — ya)™* ha(x), u(x —
yaY4), Cs = ((x — ys)5 + u(x — y5)" hs(x), u(x — ys)<s)
(j2, j3, ja, j5 are defined as in Theorem 2.2). By Theorem 2.11,
C is an MDS code when m(p® — j1) + m(2p* — jo — k2) +
m2p* — jz — k3) + m(2p® — jy — k4) + m(p* — js — ks5) =
2m(5p® — dg(C) + 1). Hence, C is an MDS code when j; +
2+ +i3+ K3+ ja+ka+j5+ k5 = —p° +2dy(C) — 2.
Applying Theorem 4.1, we see that dg(C) = min{dy(C;)},
where i = {1, 2, 3, 4, 5}. Then we have dg(C) = dy(Cy) or
dg(C) = dg(C2) or dy(C) = du(C3) or dy(C) = du(Cy) or
du(C) = du(Cs).

Case 1: dy(C) = dg(C;). From Theorem 2.3,
du(C1) = 1L ordu(Cr) = (81 + Dp*t.

Subcase 1.1: dy(C1) = 1. In this subcase, j» + k2 + j3 +
k3+j4+kKka+js+ks5 = —p*, which is a contradiction. Hence,
C is not an MDS code in this subcase.

Subcase 1.2: dg(Cy) = (81 + 1)p*. Then we see that j; +
Ja+k+j3 &3 +jatratjs +rs = —p*+2(8 + Dpkt —2
(8). From (8), we have 2(8; + 1)p¥! > p°. Since 8; + 1 < p,
we have p* < 2p - pf1. It implies that p* %=1 < 2. Hence,
s—k; —1=0,i.e.,s =k + 1. By asumption p* —p“_kl +
(8 — l)ps—kl—l +1 5]1 SPS _ps—kl +81ps—k|—l’ we see
thatp* —p+61 — 1+ 1 <j; <p®—p—+ 6. It follows that
J1 =P"—p+61.PutTe = jo+ko+j3+k3+ja+ka+js5+ks.
Then Ts = jo + k2 +j3 + k3 +ja + ks +js + k5 = —p* +
281 + Dp*~! —2 — (p* — p + 81). Hence,

To=p '261+1)—2p]1 =1 —p+1)—1
=2 =18 —p+1]1—1.

Since 2p*~! — 1 > 0and §; —p+ 1 < 0, we have [2p*~! —
1][61 —p+ 1] — 1 < 0. Thus, j1 +j2 + k2 +j3 + k3 +ja +
K4 +js+ K5 # —p* +2(81 + 1)pkt — 2, i.e., C is not an MDS
code when dg(C) = dy(Cy).

Case 2: dg(C) = du(C).

Subcase 2.1: dg(C>2) = du({((x — »)2)F) when ho(x) is
0 or hy(x) is a unit and 1 < j; < p* — 1. We have

du(C2) = du(((x — y2)2)F) = (82 + Dp2,

where p* — pra + (82 — Dra + 1 < jo < p* — pra + &2,
1<&<p—1,m=p%1 and0 < ky < s—1.Then C is
an MDS code when ji 4+2j2 +2j3 + 2ja +2j5 = —p* +2(62 +
1)p*2 — 2. Similar to Subcase 1.2 of Case 1, we can conclude
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that j1 4 2j» + 23 + 2ja + 2js # —p* + 28> + 1)pk2 =2, ie.,
C is not an MDS code in this subcase. '
Subcase 2.2: dg(C2) = du({(x — y2)Y2)F) when hy(x) is a

S
unit and 2 ;—tz < jo» <p®—1. Then

dn(Ca2) = du(((x — y2)2)F) = (82 + 1)p*2,

where 1) + pro — 8212 < jo <ty +pra — (8 — D2 — 1,
1<éb=<p-1,n :ps_kz_l, and0 <ky <s—1.Then C
is an MDS code when j; + 2j5 + 2j3 + 2ja + 2js = —p° +
2(8, + 1)p*2 — 2. From j, > puzrtz, we have 2j, > p* + 1.
We see that ji +2jp +2j3 +2js+2js +p* =282 + DpF2 +2 >
NP +0+25+2+2s+p =20+ Dpl +2>0,
e, j1 + 2 + 23 + 2js + 2j5 > —p° + 28, + DpF2 — 2.
Hence, C is not an MDS code in this subcase. Thus, C is not
an MDS code.

Case 3: du(C) = du(Cs) = du({((x — ¥5))p) =
(85 4+ s, where p* — p*=%s + (85 — Dp* %5~ 1 41 <5 <
ps—ps_k5 +65p5_k5_1, 1<és<p—1,and 0 <ks <s—1.
We see that dg(C) = dy(Cs) and dyg(C) = dug(C3) can be
done similarly. If dg(C) = dy(Cs), then C is an MDS code
when ji +j2 +x2+j3+ k3 +js+Ka+js+is = —p*+2(85+
D)pks — 2. From ji + jo 4 k2 + j3 + k3 + ja + ks +j5 + k5 =
—p*+2(85+1)pks —2, we see that 2(85+ 1)p*s > p® (9). Since
85+1 < p, wehave p* < 2p-pks. Itimplies that p* 55— < 2.
Hence, s = ks + 1. From p* —p*~% 4+ (85 — D)p* %51 41 <
Js < p* =P8 + 8sp*51 we have js = p* —p + 8.
From s = ks + 1, (9) becomes 2(85 + )p*~' > p'.
It implies that §5 + 1 < p < 2(8s + 1). By assumption,
(85 + Dpfs < (85 + D)p*s. Hence, (85 + Dp*~! < pltl,
It follows that kp +1 > s — 1. Therefore, k» > s — 2. It shows
that kp = s — 1 since ko < s — 1. Similarly, we see that
ki =s—1,k3 =s—1and ky = s — 1. Since (85 + l)pk5 <
1+ Dpft < (82 + Dpf2 < (83 + PP =< (84 + Dphs,
we have §; < & < 83 < 84. From this, j; = p* — p + 61,
J2=p'—p+8,j3=p°'—p+é3andjs = p* —p+ 4. From
Jiti Ko +Hiz+r3Hiatkatistks = —p+2(8s+1)phs -2,
Ji=p'—p+diandjp=p*' —p+8,j3=p'—p+33and
ja=p*—p+d8s,weseethat(p* —p+85)+ P —p+6)+
K2+ @ —p+8)t3s+ @ —p+da)tkatjs+us=
—p* +2(85 + 1)p*~! — 2. Hence,

Js+ ks +katks+ro=—4p°+283+ Dp*~l =2

+3p—381—82—83— 84

= [-2p" + 285 + p* ]

+p =81 —p'1+1[p—25 —p']

+1p =265 —p’]

+lp =8 —pl+[-p-p' -2l
If s > 2, then j3 + k5 + x4 < 0, which is a contradiction.
If s = 1, then ky = ko = k3 = 0. Hence, j1 = 61,j2 = 82,
J3 = 83. It implies that ji + 2jo + j3 +ja + k4 +j5 + k5 =
285 — p < 2681. This is a contradiction. Therefore, j; + 2j» +
23 +ju + kg +js 4+ ks # —p* +2(85 + 1)pfs —2,ie., Cis
not an MDS code. |

Combining Propositions 4.2-4.12, we have the following
result.
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Theorem4.13: Let C = C1®Co ®C3D C4 Cs be a cyclic
code of length 5p® over R, where C1, C, C3, Cyq, Cs5 are
defined as in Theorem 2.5. Then C is an MDS code if and
only if C = (1).

‘We finish this section by giving an example.

Example 4.14: Put R = F11 4+ ulF11. We consider cyclic
codes of length 55 over R. Then C = C1 6 CobC3bC4DCs,
where C; is a cyclic code of length 11 over R, C; is a 9-
constacyclic code of length 11 over R, C3 is a 5-constacyclic
code of length 55 over R, Cy4 is a 4-constacyclic code of
length 55 over R, and Cs is a 3-constacyclic code of length
55 over R.

(D LetCr = (x—1)7), C2 = (u(x—9)), C3 = (u(x—5)°),
Cy = (u(x —4)) and Cs = (u(x — 3)5). By Theorem 2.3,
we have dH(Cl) = 8, dH(Cz) = 6, dH(C3) = 7,
dg(Cs4) = 6 and dg(Cs) = 6. Using Theorem 4.1, we see
that dy(C) = 6. Then C has parameters [55, 1177 6].

2 Let ¢ = (x — D¥), G2 = (ux — 9)),
C3 = ((x = 5) 4+ u(x —5)°), Cs = ((x — 4)° + u(x — 4)%)
and Cs = ((x — 3)* + u(x — 3)°). By Theorem 2.3, we see
that dg(Cp) = 9, dg(C2) = 10, dg(C3) = 8, dg(C4) = 6 and
dy(Cs) = 5. By applying Theorem 4.1, dg(C) = 6. Then C
has parameters [55, 1129, 5].

V. HAMMING DISTANCE AND MDS

CODES OF LENGTH 5p° OVER R

WHEN p = 4 (mod 5)

As in Theorem 2.7, cyclic codes of length 5p° over R can
be represented as C = Cy @ Cy, @ Cqy,, where Cy is a
cyclic code of length p* over R, Cq, is an aj-constacyclic
code and C,, is an ap-constacyclic code of length 2p*
over R. We determine the Hamming distance of C as
follows.

Theorem 5.1: Let C = C1 @ Cq, @ Cqy, be a non-zero
cyclic code of length S5p® over R. Then the Hamming distance
du(C) = min{du(Cyli € {1,2, 3}, C; # (0)}.

Proof: Without loss of generality, assume that dy(Cy) =
di = min{dy(C;)} (that means C; # (0)). Let d be the
Hamming distance of C = C; & C; @ Cs. Let ¢ be a non-
zero codeword of minimum weight in Cy, i.e., d| = wtg(cy).
Since (c1, 0, 0) € C and wty(cy, 0, 0) = d;, wehaved < d.
Let z = (z1,22,23) be an arbitrary non-zero codeword in
C1 & Cy & Cs. If z; = 0, then there exists r € {2, 3} such
that z; # 0. Since dy(Cy) = di = min{dy(C;)}, we have
wty(zs) > dy(Cy) > di. Hence, the Hamming weight of z is
wtg(z) = wtg(z))+wta(z2)+wta(z3) > wtg(zy) > du(Cy) >
dy. It implies that d > d; when z; = 0. If z1 # 0, then
the Hamming weight of z is wty(z) = wtu(zy) + wtyg(zz) +
wty(z3) > dp. It means that d > d; when z; # 0. Since z
is an arbitrary non-zero codeword, we have d > d;. Thus,
d=d. d

We compute the Hamming distance of y-constacyclic
codes of Type 2 in the following theorem.

Theorem 5.2: Let C = (u(x2 —ag)), 0 <j<p*—1,bea
y-constacyclic code of Type 2 of length 2p* over R. Then
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du(C) = du(((x* — oY) F), and du(C) is given by

du(C)
ol ifj=0
e+ pS.if pPP=p T H+G-p+1<)
andj < p* —p*=S +§ps—<1
00.ifj=p°
wherel <§<p—-1,0<¢<s—1.

Proof: We consider the following two cases:

Case 1:If j = 0, then dyg(C) = 1.

Case2:Ufp —p*S+0B—-Dp S 141 <j<p'—p S+
8p*~~1, then for a Type 2 code C = (u(x> — apy), 0 <j <
p* — 1, the codewords of the code C are exactly same as the
codewords of the y-constacyclic codes (x2—ap)) in f;,i‘f—fi)
multiplied by u. Thus, we get dy(C) = dg({((x? — ap))F).
By Theorem 2.3, dy(C) is given by

du(C)
el,ifj=0
oS+ ps,if pP—p S+ —1)p s+ 1<
andj < p* —p*=S 4 p*<!
00,ifj=p°

where ] <8 <p—1,0<c¢ <s— 1, as required. J
We provide the Hamming distance of y-constacyclic codes

of Type 3 of length 3p® over R in the following theorem.
Theorem 5.3: Let C = ((x*—ag) +u(x®>—ap) v(x)) be a y-

constacyclic code of Type 3 of length 2p* over R, MI/Fhere 1<
pm [x ]

(' —y)

0. Then dg(C) = da(((x? — ap)®)F), where R is the smallest
integer satisfying u(x> — o)X € (x> —yoy +u(x> —yp) v(x)),
which is given by

j<p’*—1,0<r < jand either v(x) is a unit in

ifvix) =0

_
B {min{f,pf —j+rh v #0

and is determined by
du(C) = (6 + 1S,

wherep* —p* S+ —Dp S '+ 1 <R<p' —p <+
sp sl 1<8<p—1land0<c¢c<s—1.

Proof: Since R is the smallest integer such that u(x*> —
o)k e ((x2 —ag) + u(x? — o) v(x)), therefore we have,

du(C) < du((u(x* — ap)®)) = du(((x* — a0)®)p).

Now, let us take an arbitrary polynomial c(x) € C. So, there
exist two polynomials fo(x) and f,(x) over Fpm satisfying

c() = [fo() + uhu (G — c0) + ux® — ag) v(x)]
= fo()(x? — ap) |
+ ulfo(x)(x* — ) v(x) + fu)(x? — ap)].

Now, we consider two cases:
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Case 1: When v(x) = 0, then we have
Wik (e()) = max Wt (o0 —ao)), Win (£, (02 — ao))|

= max [t (o0 —a0)), Wi (fo()(x? — @)}

> dp({(x? —ao))F),
=dp(((x* —ap)) ),

Case 2: When v(x) # 0, then we have

wig(c(x))
> max {WtH(fo(x)(ﬂ(x)Y), WtH(h(x))]

max {th(fO(X)(ﬁ(x))i), WtH(fO(X)(,B(x))I’S—Hr)}

du(((Bo)mind: P =itrhy oy
= du({((B)))p),

where B(x) = x> — ag and f (Lo, x) = fo(x)(x> — o) It
and h(x) = fo(r)(x> — o) V(x) + fu(x)(x® — ao). Hence,
by combining both the cases, we get da(((x? — ag)®)p) <
dy(C), which implies that, dg({(x> — ag)®)r) = dg(C). O

We determine the Hamming distance of y-constacyclic
codes of Type 4 in the following result.

Theorem 5.4: Let C = ((x% — ap) + u(x® — ) v(x),
u(x% — a)®) be a y-constacyclic code of Type 4 of length 2p°
over R, where v(x) is same as givenin Type 3,1 <j < p*—1,
deg(v) < w —r — 1, o < R, and R is the smallest integer
such that u(x? — ap)® € ((x2 —aoY +u(x? — o) v(x)), ie.,
R =j, if v(x) = 0 and otherwise R = min{j, p* —j+r}. Then
du(C) = du((x? — 20)®)F), and is given by

du(C) = (8 + p*,
wherep® —p* S+ —1p S M+l <w<p'—p<+
Sps’gfl, 1<8<p—-1land0<c¢c<s—1

Proof: Clearly, we have C = ((x> — ag) + u(x* —
) v(x), u(x? — o)) 2 (u(x* — a)®) 2 (u(x> — ag)),
since w < R < j. Thus, dg(C) < dg({u(x — yp)*)) =
du(((x? —00)®) ). To prove that du({(x* — )} ) < du(C),
we take an arbitrary polynomial c(x) € C and proceed to
show that wtg(c(x)) > dg({(x2 — a9)®)F). Now, there exist
polynomials fo(x), f,.(x), go(x) and g,(x) over F,m such that

c(x) = [fo(x) + ufuCOIBE)Y + u(Bx)) v(x)]
+ u(B(x))*[g0(x) + ugu(x)]
= fo()(Bx)Y '
+ ulfo()(B)) v(x) + fu()BX)Y + go(x)(B(x))“]
= fo()(B)” + ulfo(x)(Bx)) v(x) + go(x)(B(x))“],
where B(x) = x? — g and fj(x) = fox)x? — ) €
Fpn[x], gp(x) = fulx)(x? — a0~ + go(x) € Fpm[x]. Hence,

Wi (e()) = max w002 — a0)”), Wil ()|

max {WtH()‘O’(x)(x2 —ap)®), WtH(a(x))}

v

v

v

> du(((x* — 20)”)p),
where a(x) = fj)? — ap)?®) and H(x) = folx)
(% — 00) V(x) + g (X)(x* — ap)®. O
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To get MDS codes, we consider the following propositions.

Proposition 5.5: Let C = C1 & Cy & C3 be a cyclic code
of length 5p° over R, where C1, C>, C3 are defined as in
Theorem 2.7 such that C; = (0). Then C is not an MDS code.

Proof: From Theorem 5.1, dg(C) = min{dg(C>),
du(C3)} < p'. We have [C| = |G| x |C3] = p'2 - p3,
where |C2] = p®2, |C3] = p® and 0 < £, 03 < 2mp°.
We see that ¢, + ¢3 < 4mp® and 2m(5p* — dg(C) +
1) > 4mp®. Thus, {», + €3 < 2m(5p® — dy(C) + 1). Since
ly + £3 < 2m(5p* — dg(C) + 1), C is not an MDS code
by Theorem 2.11. O

Proposition 5.6: Let C = C; & Cy & C3 be a cyclic code
of length 5p* over R, where C1, C>, C3 are defined as in
Theorem 2.7 such that there exists C; = (0) for i € {2, 3}.
Then C is not an MDS code.

Proof: Without loss of generality, assume that C; = (0).
From Theorem 5.1, dg(C) = min{dg(Cy), dg(C3)} < p°.
We have |C| = |C1| x |C3| = p'' - p'3, where |C;| = pY1,
|C3] = p® and 0 < €1 < 2mp*, 0 < £3 < 4mp°. We see that
L1 + €3 < 6mp® and 2m(5p° — dy(C) + 1) > 8mp®. Thus,
£y + €3 < 2m(5p® — du(C) + 1). Using Theorem 2.11, C is
an MDS code when ¢; + ¢3 = 2m(5p* — dg(C) + 1). Since
L1 + €3 < 2m(5p* — dyg(C) + 1), C is not an MDS code. [

Proposition 5.7: Let C = C1 @ Cy @ C3 be a cyclic code
of length 5p° over R, where C1, C2, C3 are defined as in
Theorem 2.7 such that there exists C; = (1) fori € {1, 2, 3}.
Then C is an MDS code if and only if C = (1).

Proof: Without loss of generality, assume that C; = (1)
and |C;| = p® and |C3] = p®, where 0 < €5, £3 < 4mp°.
Using Theorem 5.1, dy(C) = dy(Cy) = 1. By Theorem 2.11,
C is an MDS code when p2"P’ .pt2.pts = p2mpr*=1+1) where
0 < £y, €3 < 4mp®. Tt implies that 2mp® + £, + £3 = 10mp®.
Thus, €, + ¢3 = 8mp®. Hence, €, = €3 = 4mp®. Then C is
an MDS code when C; = (1), C, = (1) and C3 = (1), i.e.,
C = (1). a

Proposition 5.8: Let C = C1 & Cr @ C3 be a cyclic code
of length 5p° over R, where C1, C2, C3 are defined as in
Theorem 2.7 such that there exists C; = (1) fori € {2,3}.
Then C is an MDS code if and only if C = (1).

Proof. Without loss of generality, assume that |C2| =
p‘z2 and |C3| = p£3, where 0 < {5,035 < 4mp®. Using
Theorem 5.1, dg(C) = dg(C;) = 1. By Theorem 2.11, C
is an MDS code when p?"" . pt2 . pts = p?mGr' =1+ where
0 < £, £3 < 4mp®. It implies that 2mp® + £, 4+ £3 = 10mp°.
Thus, €» + ¢3 = 8mp®. Hence, ¢, = €3 = 4mp®. Then C is
an MDS code when C; = (1), C, = (1) and C3 = (1), i.e.,
C =(1). O

Proposition 5.9: Let C = C; ® C; @ Cy be a cyclic
code of length 5p° over R, where C;, Cy are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If Cj, C
are constacyclic codes of Type 2 of length 2p* over R, then C
is not an MDS code.

Proof: Without loss of generality, assume that
Ci = ((x = "), G2 = (u(x* = y2)?, C3 = {u(x* — y3)?)
(j1, j2, j3 are defined as in Theorem 2.2). By Theorem 2.11, C
is an MDS code when m(p® —j1)+m(2p* —j2)+m(2p* —j3) =
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2m(5p® — dg(C) + 1). Hence, C is an MDS code when
J1 +j2+j3 = —=5p"+2du(C) — 2. Applying Theorem 4.1,
we see that dg(C) = min{dy(C;)}, where i = {1, 2, 3}. Then
we have dg(C) = dy(Cy) or dg(C) = dyg(Cr) or dy(C) =
dy(C3). Since Theorems 2.3, 5.1 and 5.2, dg(C) < p°. Thus,
—5p* + 2dyg(C) — 2 < 0. It implies that j; + jo + j3 #
—5p® 4+ 2dyg(C) — 2. Hence, C is not an MDS code. O

Proposition 5.10: Let C = Cy & C; ® Cy be a cyclic
code of length 5p° over R, where Cj, Cy are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If C; is
a constacyclic code of Type 2 of length 2p° over R, then C is
not an MDS code.

Proof: Without loss of generality, assume that
Cr = (x = ), G2 = (u(x® = y2)?, C3 = (> = y3) +
u(x> = y3)% h3(x), ux* = y3)), or C3 = ((¥* — y3) +
u(x® — y3)B h3(x), u(x® — y3)3). (j1, j2, j3 are defined as in
Theorem 2.2). By Theorem 2.11, C is an MDS code when
m(p —j1)+m2p* —j2)+ €3 = 2m(5p* — du(C) + 1), where
pP = |C3]. Hence, C is an MDS code when j; + j» + €3 =
—7p* + 2dy(C) — 2. Since Theorems 2.3, 5.1 and 5.2,
dy(C) < p’. Thus, —5p°+2 dy(C)—2 < 0. Itimplies that j; +
J2+j3 # —5p*+2 dy(C)—2. Hence, C is not an MDS code.[]

Proposition 5.11: Let C = Cy & C; @ Cy be a cyclic
code of length 5p° over R, where C;, Cy are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If Cj, Cy
are constacyclic codes of Type 3 of length 2p* over R, then C
is not an MDS code.

Proof: Without loss of generality, assume that
C1 = ((x—1)1), Gy = (2= y2)24u(x?—2)"? hy(x)), C3 =
((x? = 13 4 u(x? — y3)" h3(x)). By Theorem 2.11, C is an
MDS code when m(p® —j1)+ €2+ £3 = 2m(5p* —du(C)+1).
Applying Theorem 4.1, we see that dg(C) = min{dy(C;)},
where i = {1, 2,3}. Then we have dy(C) = dy(Cj) or
dy(C) = dy(C2) or dy(C) = dy(C3). Since Theorems 2.3,
5.1 and 5.2, dg(C) < p®. Therefore, if ¢, < 4m(p® — jp) or
€3 < 4m(p*—j3), then m(p* —j1)+L2+4£3 # 2m(Sp*—du(C)+
1). Thus, C is not an MDS code when £, < 4m(p® — j, or
€3 < 4m(p* — j3). We consider the case £, = 4m(p* — j,) or
{3 = 4m(p® — j3). We divide into 3 cases as follows.

Case 1: dy(C) = dg(Cy). From Theorem 2.3,
du(C1) = 1 or du(Cr) = (81 + Dp*'.

Subcase 1.1: dg(Cy) = 1. In this subcase, j; + €> + £3 =
—p®, which is a contradiction. Hence, C is not an MDS code
in this subcase.

Subcase 1.2: dy(C1) = (61 + l)pk'. Then we see that
J1 4 4jp + 43 = —p° + 28 + DHpfr — 2 (10). From
(10), we have 2(8; + )p¥t > p°. Since 8, + 1 < p,
we have p* < 2p - pM. It implies that p*f1—1 < 2
Hence, s — k; — 1 = 0, i.e., s = ki + 1. By asumption
ps—ps_kl+(51—1)ps_k1_1+1 f]l Sps_ps—k|+81ps—k]—1,
weseethat p' —p+6; —1+1 < j < p*—p+ 6.
It follows that j1 = p® — p + §1. Put Tg = 4j + 4j3. Then
Te = 4jo+4j3 = —p*+2(81+1)p* "' —=2—(p*—p+81). Hence,

To =p ' [201+1)—2p] — (61 —p+ 1) — 1
=2 =18 —p+ 11— 1.
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Since 20! =1 > 0and 8 —p + 1 < 0, we have
2! = 1][6; —p + 1] — 1 < 0. Thus, j; + 4j» + 4j3 #
—p’ 4+ 2081 + l)pk1 — 2, 1.e., C is not an MDS code when
du(C) = du(Cy).

Case 2: dg(C) = dy(Cy). We see that dg(C) = dg(C3)
can be done similarly. We have dg(C) = (8> + 1)p*? where
ps_ps—kz_i_((sz_1)ps—k2—l+1 < R fps—ps_kz‘i‘(Sﬂ?S_kz_l,
1<é <p—1and0 < ky <s— 1. By Theorem 2.11, C is
an MDS code when m(p® — j1) +4m(p® —jo) +dm(p* —j3) =
2m(5p° —du(C)+ 1), where p©2 = |C,|. Hence, C is an MDS
code when j{ +4j,+4j3 = —p*+2dy(C)—2 = —p*+2(5,+
1)p*2 — 2 (11). From (11), we have 2(8> + 1)p*2 > p*. Since
8241 < p, wehave p* < 2p-pk2 Ttimplies that p> k2 =1 < 2.
Hence, s —kp — 1 = 0, 1ie., s = k» + 1. By asumption
P=pRH@E-Dp T L < o < p—p RS
weseethatp* —p+86h —1+1 < jo < p'—p+ .
It follows that j, = p® — p + 8. Put Tg = 4j + 4j3. Then
T = 4jo+4j3 = —p*+2(82+1)p* "' —=2—(p°—p+82). Hence,

To=p '[26+1)—2p] -2 —p+ 1) —1
=2p ' =16 —p+1]1-1.

Since 2! =1 > 0Oand 8 —p + 1 < 0, we have
2p°~' — 1][6 — p + 1] — 1 < 0. Thus, j; + 4j» + 43 #
—p* 4+ 2062 + l)pk2 — 2,1.e., C is not an MDS code. O

Proposition 5.12: Let C = C; @ C;j ® Cy be a cyclic
code of length 5p* over R, where Cj, Cy are defined as in
Theorem 2.11 and j, k are different numbers in {2, 3}. If C; is
a constacyclic code of Type 3 of length 2p* over R and Cy, is
a constacyclic code of Type 4 of length 2p° over R, then C is
not an MDS code.

Proof: Without loss of generality, assume that
Ci = {(x = "), G2 = (6 = 12)” + u(x® = 12) ha(x)),
G o= (0% = ) + ul? = y3) ha(x), u(x® — y3)).
Applying Theorem 4.1, we see that dg(C) = min{dy(C;)},
where i = {1, 2,3}. Then we have dy(C) = dy(Cj) or
dg(C) = dy(Cy) or dg(C) = du(Cz). By Theorem 2.11,
C is an MDS code when m(p® — ji) + £2 + €3 = 2m(5p° —
dg(C) + 1). It is easy to see that if £, = pzm(l’x_h), then
m(p® — j1) + £o + €3 # 2m(5p® — dg(C) + 1). Thus, C is
not an MDS code when ¢, = p?"("=72). We consider the
case when ¢, = p4m(ps_1'2). We divide into 3 cases, namely,
du(C) = du(Cy), du(C) = du(C2) and dy(C) = du(C3).

Case 1: dy(C) = dg(Cy). From Theorem 2.3,
du(C1) = 1 ordu(Cy) = (81 + Dp*.

Subcase 1.1: dg(Cy1) = 1. In this subcase, j1 + > +
¢35 = —9p®, which is a contradiction. Hence, C is not an MDS
code in this subcase.

Subcase 1.2: dg(C1) = (81 + 1)p*1. Then we see that j; +
4> + 2j3 + 22 = —p® +2(81 + Dpht — 2 (12). From (12),
we have 2(8; 4+ 1)p*1 > p*. Since 8; 4+ 1 < p, we have p* <
2p-pk1 .Itimplies thatps_kl_1 < 2.Hence,s—k;—1 =0, 1i.e.,
s = k1 + 1. By asumption p* —p* %1 4 (8; — Dp* 0= 1 1 <
ji<pt—pR 48 ph-1 weseethat p —p+68; — 1+
1 <j1 < p*—p+ 8. It follows that j; = p* — p + 4.
Put T7 = 4jp + 2j3 + 2k. Then T7 = 4jp + 2j3 + 2kp =
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—p* +2(81 + Dp*! =2 — (p* — p + 81). Hence,

T =p 261+ 1) =2p] = @G —p+ 1) —1
=2p =18 —p+ 11— 1.

Since ZpS_1 —1 > 0and §; —p+ 1 < 0, we have
2p°~ ' = 11[81 —p+11—1 < 0. Thus, ji +4j> +2j3 +2k2 #
—p* +2(8;1 + 1)pX1 — 2, i.e., C is not an MDS code when
dy(C) = du(Cy).

Case 2: dy(C) = dy(Cy). We see that dg(C) = (8, + 1)pk
where p* — p*R 4+ 8 — 1)p ™ 1 4+1 < R < p* —
PRy sp Tl 1 <8 <p—1and0 <k <s— 1.
By Theorem 2.11, C is an MDS code when m(p® — j;) +
m(4p* — j2) + 2m(2p° — j3 — k3) = 2m(5p* — du(C) + D).
Hence, C is an MDS code when j| +j2 + 2j3 + 2k3 = —p* +
2dy(C)—2 = —p*+2(82+ 1)p*2—2 (13). From (13), we have
2(8, + 1)p*2 > p*. Since 8, + 1 < p, we have p* < 2p - pk2.
It implies that ps”‘f1 < 2.Hence,s —kp, — 1 = 0, ie.,
s = ky 4+ 1. By asumption p* —p =R - (8, — I)p* =1 1 <
o <p'—p R4 sphl weseethatp' —p+8—1+1 <
Jjo < p* — p+ 8. It follows that j = p° — p + §,. Put
Ts = j1 +j2 + 2j3 + 2k3. Then Tg = j1 +j2 + 2j3 + 2«3 =
—p*+2062 4+ Dp*~! =2 — (p* — p + 82). Hence,

Ts=p 26 +1D-2pl =G —p+1—1
=2 =1 —p+1]1—1.

Since 2133_l —1 > 0and o — p + 1 < 0, we have
2p°~ ' —11[82 —p+ 11— 1 < 0. Thus, ji +jo + 2j3 + 2k3 #
—p* 4+ 2(6, + 1)pk2 — 2, 1.e., C is not an MDS code when
Cr = (&% — ao) +u(x® — @) v(x)).

Case 3: dg(C) = duy(Cz). We see that dg(C) = (83 +
Dp*s, where p* — p*™0 + (83 — Dp* Bl 41 <R < p* -
PRy sphel 1 <83 <p—1and0 < k3 < s— 1.
By Theorem 2.11, C is an MDS code when m(p® — j;) +
AmP’ — jp) + 2m2p° — jz — k3) = 2m(5p* — dy(C) + 1).
Hence, C is an MDS code when j| +4j, +2j3 42«3 = —p*+
2dg(C)—2 = —p*+2(83+1)p*3 =2 (14). From (14), we have
2(83 + 1)p*s > p*. Since 83 + 1 < p, we have p* < 2p - p3.
It implies that ps_k3_1 < 3.Hence,s —k3 — 1 = 0, ie.,
s = k3 + 1. By asumption p* —p* ™ 4 (85 — Dp* 0~ 1 1 <
j3 < pt —p' R 4 83p k1 we see that p* —p + 83 — 1 +
1 <jz < p® —p+ 8. It follows that j3 = p* — p + §3. Put
To = j1 +4j2+ 2j3 + 2«3. Then Ty = ji +4jo + 2j3 + 2x3 =
—p* 4383 + Dp*~! — 3 — (p* — p + 83). Hence,

To=p "B+ —2p— @G —p+1)—1
=2 ' =18 —p+1]—1.

Since 2! =1 > 0and 83 —p + 1 < 0, we have
[2p°~ ' = 11[83 —p+1]1—1 < 0. Thus, j +4j> +2j3 + 2k3 #
—p* 4383 + 1)p** — 3, i.e., C is not an MDS code.

Proposition 5.13: Let C = C; @ C; @ Cy be a cyclic
code of length 5p* over R, where Cj, Cy are defined as in
Theorem 2.7 and j, k are different numbers in {2, 3}. If Cj, C
are constacyclic codes of Type 4 of length 2p* over R, then C
is not an MDS code.

119902

Proof: Without loss of generality, assume that C; = ((x —
1), Co = ((x? — )2 + u(x® — )2 r(x)), C3 = ((x? —
y3)? + u(x? — y3) h3(x), u(x* — y3)*). Applying Theorem
4.1, we see that dy(C) = min{dy(C;)}, where i = {1, 2, 3}.
Then we have dg(C) = dy(Cp) or dg(C) = dy(Cy) or
dg(C) = dyg(C3). Using Theorems 2.3, 5.1-5.3, dg(C) < p°.
By Theorem 2.11, C is an MDS code when m(p® — ji) +
2m(2p* — o — k) +2m(2p* —j3 —k3) = 2m(5p* —du(C)+ 1),
We divide into 3 cases, namely, dg(C) = dy(Cy), du(C) =
du(C2) and du(C) = du(Cy).

Case 1: dy(C) = dg(C;). From Theorem 2.3,
du(C1) = Tordu(Cy) = (81 + Dph.

Subcase 1.1: dy(C1) = 1. In this subcase, j1 + 2j» + 2«2 +
2j3 + 23 = —p®, which is a contradiction. Hence, C is not
an MDS code in this subcase.

Subcase 1.2: dg(C1) = (8; + 1)p*1. Then we see that
J1 422 4 2602 4 2j3 4 260 = —p* + 2081 + DpFt — 2 (15).
From (15), we have 2(6; + l)pk1 > p’. Since §; + 1 <
p, we have p° < 2p - pf1. It implies that p*~fi—1 < 2.
Hence, s — k1 — 1 = 0, ie., s = k; + 1. By asumption
P=p+@E =D L < gy < p—pTh s
we see that p* —p+81—1+1 < j; < p*—p+36;. Itfollows that
J1=p°'—p+81.PutTig = 2jo+2k2+2j3+2k3. Then Tg =
2j2+2k2+2j342k3 = —p*+2(81 + Dp* 1 —2—(p* —p+8)).
Hence,

Tio=p '"R2@G + 1D —=2pl =G —p+1—1
=2 =18 —p+ 11— 1.

Since 2p*! — 1 > 0and §; — p + 1 <0, we have [2p*~! —
1][61 —p+ 1] — 1 < 0. Thus, j1 + 2j2 + 2k2 + 2j3 + 2k3 #
—p* + 2(81 + l)pk1 — 2, i.e., C is not an MDS code when
du(C) = du(Cy).

Case 2: dg(C) = dg(C3). We see that dg(C) = dg(Cs)
can be done similarly. We have dy(C) = (62 + l)pkz, where
ps_ps—k2+(52_l)ps—k2—l+l <R< ps_ps—k2+62ps—k2—l’
1 <8 <p—1and0 < k; <s—1.ByTheorem 2.4, C is an
MDS code when m(p* —j1)+2m(2p°* —jo —k2)+2m(2p° —jz —
k3) = 2m(5p® — dy(C) + 1). Hence, C is an MDS code when
J1 2420+ 2j3+2k3 = —p*+2du(C)—2 = —p°+2(6+
1)p*¥2 — 2 (16). From (16), we have 2(8> + 1)p*2 > p*. Since
82 + 1 < p, we have p° < 2p - p*2. It implies that p* %2~ <
2. Hence, s —k, — 1 = 0, i.e., s = k» + 1. By asumption
ps_pssz_i_((b_l)psszf]_i_l sz Sps_pssz_‘_&%psszfl’
weseethatp® —p+8 —1+1 <jr < p*—p+ 6. It follows
that jo = p* — p + 8. Put Ty = j1 4 2jo + 2k + 2j3 + 2«3.
Then T11 = j1 + 2j2 + 2k2 + 2j3 + 2k3 = —p° + 2(62 +
Dp*~! —2 — (p* — p + 85). Hence,

Tn=p"'260+1)—2p] -G —p+1)—1
=2 -l -p+11—1.
Since 2p°~! —1 > 0and 8, — p+ 1 < 0, we have [2p*~! —
1[62 —p+ 1] =1 < 0. Thus, j1 + 2j2 + 22 + 2j3 + 2k3 #
—p* +2(8, + 1)pk2 — 2, i.e., C is not an MDS code. O

Combining Propositions 5.5-5.13, we have the following
theorem.
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Theorem 5.14: Let C = C1 & C, @ C3 be a cyclic code of
length 5p* over R. Then C is an MDS code when C = (1).

We finish this section by the following examples.

Example 5.15: Put R = F19 + ulF19. Then cyclic codes of
length 95 over R are ideals of (xﬁ[f]l). We have x» — 1 =
(x — D@2 + 5x + D382 + 15x + 1)38. It is easy 1o
see that y = 10. By Theorem 2.7, C = C; & C2 @ C3,
where C1 is a cyclic code of length 19 over R, C> is a
11-constacyclic code of length 38 over R, Csz is
a 10-constacyclic code of length 38 over R. Let C; = ((x —
1)°), C2 = (u(x* = 11)°), C3 = (u(x> — 10)*). By applying
Theorem 2.3, dy(C1) = 6. Using Theorem 5.4, we have
du(Cr) = 6 and dy(C3) = 5. From Theorem 5.1, dy(C) = 5.
Then C has the parameters [95, 1970, 5].

Example 5.16: Put R = Fa9 + uFy9. Then cyclic
codes of length 145 over R are ideals of (xﬁs—[x_]l) We have
B 1= = DP?+6x+ D2 +24x + 1) It is
easy to see that y = 18. By Theorem 2.7, C = C1 ® C, ® C3,
where C1 is a cyclic code of length 29 over R, C; is a 27-
constacyclic code of length 58 over R, C3 is a 15-constacyclic
code of length 58 over R. Let C; = ((x — 1)°),C, =
(u(x® — 27)%), C3 = (u(x®> — 15)*). By using Theorem 2.3,
dy(C1) = 6. Applying Theorem 5.4, we have dy(C>) = 6 and
dy(C3) = 5. By Theorem 5.1, dy(C) = 5. Then C has the
parameters [145, 29131 5,

VI. CONCLUSION

In this paper, the Hamming distances of all cyclic codes of
length 5p°® over R are studied. When p = 2,3 (mod 5),
we provided the Hamming distance for cyclic codes of
length 5p® over R in Theorems 3.1-3.4. In Theorems 3.5-3.8,
we gave all MDS cyclic codes of length 5p° over R.
In Section 4, the Hamming distance of all cyclic codes of
length 5p® over R is given in Theorem 4.1 when p = 1
(mod 5). Using Propositions 4.2-4.13, we determined all
MDS cyclic codes of length 5p° over R. In Section 5,
we determined Hamming distance of all cyclic codes of
length 5p® over R when p = 4 (mod 5) (Theorem 5.1).
Theorems 5.2-5.4 provided the Hamming distance of ideals
of Types 2,3,4 of % Applying Propositions 5.5-5.13,
Theorem 5.14 gave all MDS cyclic codes of length 5p°® over
R when p = 4 (mod 5). We gave three examples to illustrate
our work in Sections 3, 4, and 5 (Examples 3.11, 4.14,
5.15 and 5.16).

MDS b-symbol codes can be considered as a generalization
of MDS codes and MDS symbol-pair codes. In 2018, [11]
established the Singleton bound for b-symbol codes as
follows: Let g be a prime power and b < d, < n, for
any b-symbol code C of length n with size M and minimum
b-distance dy, over IF;, M < q”_db b 1f the equality holds,
the b-symbol code C is called an optimal code with respect
to the Singleton bound, or an MDS b-symbol code. It will
be very interesting to discuss the b-symbol metrics for all
constacyclic codes of length 5p® over R and then we will
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identify all MDS constacyclic codes of length 5p® with
respect to b-symbol distances.

Since classical error-correcting codes can not be used
in quantum computation, quantum error-correcting (briefly,
QEC) codes are proposed to protect quantum information
from errors due to the decoherence and other quantum noise.
For future work, it will be interesting to apply these distances
in constructing quantum error-correcting codes from the class
of A-constacyclic codes of length 5p* over R.
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