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ABSTRACT A computational technique for evaluating the spectral dyadic Green’s function utilized in
the analysis of multilayer structures composed of periodic bi-anisotropic layers is presented. The Green’s
function is achieved with the help of a fully vectorial rigorous matrix formulation based on a generalized
transmission line (TL) formulation of Maxwell’s equations. This matrix formulation simplifies the math-
ematics involved in the modeling of the coupled diffraction orders within a periodic bi-anisotropic layer.
To examine the soundness of this modeling, the extracted Green’s function is used in an integral equation
for the analysis of metallic gratings on homogeneous/inhomogeneous anisotropic and chiral materials. The
resulting integral equation is then solved by the Method of Moments (MoM) formulated in terms of sub-
domain basis and Galerkin’s test functions. As verification, several examples are analyzed and the results
obtained by this method are compared with those available in the literature or obtained by EM-solvers. The
efficiency assessment of this method is carried out by considering its convergence rate and cost-time in terms
of truncation orders. It is revealed not only the metallic grating with inhomogeneous periodic bi-anisotropic
layers can be analyzed by this method but also analysis time, memory, and CPU occupancies are decreased
in comparison with commercial EM-solvers.

INDEX TERMS Spectral dyadic green’s function, periodic bi-anisotropic media, transmission line (TL)
modeling, method of moments (MoM).

I. INTRODUCTION
Computation of the dyadic Green’s function is an essential
step in solving a scattering problem in electromagnetics [1],
[2]. This function is required in solving the scattering prob-
lems of surfaces in layered media involving homogeneous
isotropic [3], planar stratified structures with homogeneous
complex media such as bi-anisotropic [4], gyroelectric [5],
anisotropic-uniaxial [6], and chiral [7] materials. In [8], inter-
action of electromagnetic waves with bi-anisotropic homo-
geneous slabs is examined and the computation of the dyadic
Green’s function is carried out with the formulation explained
in [4]. The technique explained in [4] is based on the seminal
work of [9], and on the mathematical and computational
techniques discussed in [10]. Analysis of multilayer struc-
tures and metasurfaces by using dyadic Green’s function
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is paramount importance and is encountered in numerous
applications [11], [12]. The dyadic Green’s function tech-
nique has also been applied to the analysis of periodic planar
structures such as Frequency Selective Surfaces (FSSs) on
anisotropic [13], [14], [15], [16], chiral [17], [18], and ferrite
[19] substrates. The aforementionedworks and other reported
Green’s functions in [20], [21], [22], [23], [24], [25], [26] can
be used for analyzing the stratified-multilayered structures
with homogeneous layers and are not efficient for inhomo-
geneous periodic anisotropic substrates. Recently, the advan-
tage of using periodic inhomogeneity in the FSS substrate has
been studied [27], [28], [29], [30]. It has been demonstrated
that mounting the metallic grating on a periodic substrate or
so-called artificial anisotropic dielectric [30] can improve the
characteristics of the resultant FSS. Drilling periodic holes
in the host substrate and/or filling them with other materials
changes the effective permittivity and permeability of the
substrate. Thus, this measure allows controlling the dielectric
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and magnetic properties of the FSS. Furthermore, a peri-
odic substrate allows coupling of energy among different
diffraction orders, which is not occurred once a homogeneous
substrate is used.

Herein, by periodic we mean the boundary between two
alternating materials of the inhomogeneous substrate is per-
pendicular to the surface of metallic grating (like a photonic
crystal slab). To exploit the full potential of FSS, accu-
rate and efficient techniques are needed. The conventional
Method of Moments (MoM) has been developed for scatter-
ing analysis of metallic grating on homogeneous anisotropic
substrates [13], [14], [15], [16], [19] and is not applica-
ble for ones on multilayer substrates containing periodic
bi-anisotropic inhomogeneities. Therefore, developing a fast
solution and full-vector scheme is required to analyze the
mentioned complex structures.

To the best of our knowledge, the dyadic Green’s function
of such an inhomogeneous periodic bi-anisotropic substrate
has not been reported in the literature. Unlike homogeneous
anisotropic substrates, the diffraction orders are mutually
coupled within periodic bi-anisotropic layers and thereby
the dyadic Green’s function is no longer diagonal. Thus,
when substrates with periodic inhomogeneities are involved,
evaluation procedure of the dyadic Green’s function is dif-
ferent from [3], [14] and complicated such that the available
commercial EM-solvers do not offer any analysis for them.
Obviously, solving the scattering problem of metallic grat-
ing with inhomogeneous periodic bi-anisotropic substrates,
an efficient technique has to be developed for evaluating the
required dyadic Green’s function in the first step.

The basic idea of combining periodic MoM with coupled
wave analysis of an artificial anisotropic substrate has been
introduced by authors for the analysis of nano-antenna grat-
ingwith periodic, isotropic, and non-magnetic thin films [30].
The present work concerns with the generalizing this idea
for the scattering analysis of FSS which contains metallic
grating printed on an electromagnetic crystal [31] with both
electric and magnetic anisotropy as well as chiral medium.
To this end, a rigorous semi-analytical technique based on
an Equivalent Transmission Line Model (ETLM) in the
Fourier domain [30], [32] is exploited to obtain the spec-
tral dyadic Green’s function. With the help of this tech-
nique, the mutual coupling among diffraction orders inside
each periodic bi-anisotropic layer is taken into account. The
obtained dyadic Green’s function is thereafter utilized in
an integral equation formed for solving scattering problems
of conducting gratings on homogeneous anisotropic, and
inhomogeneous periodic bi-anisotropic substrates. The resul-
tant integral equation is consequently solved by the MoM
with sub-domain basis and Galerkin’s test functions. The
novelty of this study is in the application of the equivalent
TL modeling [32], [33] for an electromagnetic crystal to
evaluate the dyadic Green’s function. Note that our method is
different from the EffectiveMedium (EMT) for analysis [34];
the presented formulation serves as intuitive physical expla-
nation. Finally, the efficiency, and accuracy of the proposed

FIGURE 1. Typical scattering problem involving a multilayer structure with
periodic bi-anisotropic layers. The diffraction fields are calculated as a
function of an incident plane-wave. The unit cell of the periodic substrate
is shown as an inset. R1 and R2 are the regions containing dielectric rods
and host medium, respectively.

FIGURE 2. Subdividing the multilayer structure into parallel layers
required for ETLM.

method is examined and it is shown this technique is a fast
and efficient solution for scattering analyzing of FSS with
homogeneous or periodic bi-anisotropic layers.

II. FORMULATION AND METHOD OF ANALYSIS
A typical geometry of a periodic bi-anisotropic multilayer
structure is shown in Fig. 1. As depicted in this figure,
a periodic substrate is stacked on a homogeneous substrate.
The thickness of the periodic substrate is h, and is composed
of dielectric rods (R1) embedded in a background medium
(R2). Such a periodic substrate is like that a photonic crystal
slab [32].
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In order to extract the spectral dyadic Green’s function of
this structure, we first study the EM field behavior in the
inhomogeneous periodic layer, which can be composed of
alternating two different bi-anisotropic materials. This layer
is characterized by a generalized anisotropic constitutive rela-
tion with a Tellegan representation [35]:

D = εE+ ξ H, (1)

B = ζ E+ µH. (2)

The 3 × 3 permittivity tensor ε, the permeability tensor µ,
and the magneto-electric tensors ξ and ζ are complex val-
ued. Therefore, the following analysis is applicable to artifi-
cial anisotropic or homogeneous complex materials such as
arbitrarily biased ferrite, chiral, orthorhombic, or tetragonal
crystals (bi-anisotropic materials).

A. DERIVATION OF AN EQUIVALENT TL MODEL
Fig. 2 illustrates the subdivided multilayer structure with
homogeneous or periodic substrates into parallel layers.
Although TL model is derived by using an inhomogeneous
periodic bi-anisotropic layer (Layer i in Fig. 2) in this section,
but, the resultant model should be applied to all of layers
(both of homogeneous and inhomogeneous substrates) for
diffraction analysis of the multilayer structure. As shown in
Fig. 2, inhomogeneous i-th layer is made of two periodically
alternating bi-anisotropic materials. Obviously, the periodic-
ity of the structure in the x- and y-directions must be taken
into account. For an incident plane wave represented by

Einc = E0e−jk0(sin θ cosϕx̂+sin θ sinϕŷ+cos θ ẑ)·r (3)

the sum of the incident and scattered field satisfies

E(r+L) = E(r)e−jk·L (4)

H(r+L) = H(r)e−jk·L (5)

where r = xx̂+ yŷ+ zẑ is the position vector and L = Lx x̂+
Lyŷ in which Lx and Ly are the dimensions of a unit cell in
the x- and y-directions, respectively (see Fig. 1). The vector
k = kx x̂ + kyŷ denotes the x- and y-components of the wave
vector of the incident plane wave. In other words, for a plane
wave arriving at (θ, ϕ), this vector is given by:

k = (k0 sin θ cosϕ)x̂ + (k0 sin θ sinϕ)ŷ (6)

where k0 is the free-space wave number. The electricE(r) and
magnetic H(r) fields in (4) and (5) can be represented by the
following pseudo-Fourier series:

E(r) = lim
N ,M→∞

N∑
n=−N

M∑
m=−M

E(n,m)(z) e−j(αnx+βmy) , (7)

H(r) = lim
N ,M→∞

N∑
n=−N

M∑
m=−M

H(n,m)(z) e−j(αnx+βmy) , (8)

where (αn, βm) are defined as

αn =
2πn
Lx
+ kx , (9)

βm =
2πm
Ly
+ ky . (10)

By assuming

E(n,m)(z) = E (n,m)
1 (z)x̂ + E (n,m)

2 (z)ŷ+ E (n,m)
3 (z)ẑ, (11)

H(n,m)(z) = H (n,m)
1 (z)x̂ + H (n,m)

2 (z)ŷ+ H (n,m)
3 (z)ẑ, (12)

we define aK×1matrix [E1(z)] whose elements areE (n,m)
1 (z).

Here, K = (2N+1)× (2M+1), and the coefficient E (n,m)
1 (z)

occupies a specific location in the column matrix [E1(z)]
according to [32]. Similarly, one can define the columnmatri-
ces [E2(z)], [E3(z)], [H1(z)], [H2(z)], and [H3(z)]. To express
the constitutive relations, we observe that the structure can
be subdivided into z-invariant layers as shown in Fig. 2.
In each of these layers, the relative permittivity, permeability,
and chirality can be expressed as a bi-periodic function in
x and y, i.e.,

τuv(r) = lim
N ,M→∞

N∑
n=−N

M∑
m=−M

τ (n,m)uv (z)e
−j( 2nπLx x+

2mπ
Ly

y)
(13)

where u, v ∈ {1, 2, 3} and τ ∈ {ε, µ, ξ, ζ } which are consti-
tutive dyadics (i.e., Cartesian tensors) that can be interpreted
as 3× 3 matrices as follows

τ (r) =

 τ11(r) τ12(r) τ13(r)
τ21(r) τ22(r) τ23(r)
τ31(r) τ32(r) τ33(r)

 (14)

In a homogeneous isotropic or bi-anisotropic layer, the coef-

ficients τ (n,m)uv (z) are reduced to τuvδnm in which δnm denotes
the Kronecker delta. For an inhomogeneous periodic one, the
coefficients τ (n,m)uv (z) are given by

τ (n,m)uv (z) =
1

LxLy

∫ ∫
UC

τuv(r) exp(j(
2nπ
Lx

)x + j(
2mπ
Ly

)y) dxdy

(15)

which can be evaluated either analytically or numerically on
the unit cell (UC). Once the expansion coefficients τ (n,m)uv (z)
are determined, the constitutive relations with Tellegan rep-
resentation ((1) and (2)) in the spatial domain can be refor-
mulated as

Du(r) =
∞∑

n=−∞

∞∑
m=−∞

3∑
v=1

ε(n,m)uv (z) ∗ E (n,m)
v (z)e−j(αnx+βmy)

+

∞∑
n=−∞

∞∑
m=−∞

3∑
v=1

ξ (n,m)uv (z) ∗ H (n,m)
v (z)e−j(αnx+βmy),

(16)

Bu(r) =
∞∑

n=−∞

∞∑
m=−∞

3∑
v=1

ζ (n,m)uv (z) ∗ E (n,m)
v (z)e−j(αnx+βmy)

+

∞∑
n=−∞

∞∑
m=−∞

3∑
v=1

µ(n,m)
uv (z) ∗ H (n,m)

v (z)e−j(αnx+βmy).

(17)
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In these expressions u ∈ {1, 2, 3}, whereas ∗ signifies two-
dimensional convolution, i.e.

τ (n,m)uv (z) ∗ F (n,m)
v (z)=

∞∑
l1=−∞

∞∑
l2=−∞

τ (n−l1,m−l2)uv (z)F (l1,l2)
v (z)

(18)

in which F ∈ {E,H}. The convolution provides the
desired expansion coefficients of D(r) and B(r), and can
be converted into a matrix expression [32]. To this end,
three single-column matrices [Du(z)] and [Bu(z)] with u ∈
{1, 2, 3} are introduced. Using these matrices, one can
obtain

[Du(z)] = {[N εu1][E1(z)]+ [N εu2][E2(z)]+ [N εu3][E3(z)]}

+ {[N ξu1][H1(z)]+ [N ξu2][H2(z)]+ [N ξu3][H3(z)]} ,

(19)

[Bu(z)] = {[N
ζ
u1][E1(z)]+ [N ζu2][E2(z)]+ [N ζu3][E3(z)]}

+ {[Nµu1][H1(z)]+ [Nµu2][H2(z)]+ [Nµu3][H3(z)]},

(20)

where the matrix [N τuv](u, v ∈ {1, 2, 3} and τ ∈ {ε, µ, ξ, ζ })
in the above relations is a K × K Toeplitz matrix with the
following entries

[N τuv] =



t (0)uv t (−1)uv . . . t (−2N )
uv

t (1)uv t (0)uv . . . t (−2N+1)uv

. . . .

. . . .

. . . .

t (2N )
uv t (−2N+1)uv . . . t (0)uv


(21)

in which each sub-matrix t (n)uv (−2N ≤ n ≤ 2N ) is given by

t (n)uv =



τ
(n,0)
uv τ

(n,−1)
uv . . . τ

(n,−2M )
uv

τ
(n,−1)
uv τ

(n,0)
uv . . . τ

(n,−2M+1)
uv

. . . .

. . . .

. . . .

τ
(n,2M )
uv τ

(n,2M−1)
uv . . . τ

(n,0)
uv


.

(22)

Now, we can derive the exact TL formulation using the intro-
duced matrix representation. Here, the mentioned solutions
given by equations (4) and (5), along with the relations (19)
and (20) are substituted in Maxwell’s equations. Therefore,
three following relations equivalent to the equation ∇ ×E =
−jωB are obtained:

−j[β][E3]−
d
dz

[E2]

= −jωB1
= −jω{[N ζ11][E1]+ [N ζ12][E2]+ [N ζ13][E3]}

− jωµ0{[N
µ
11][H1]+ [Nµ12][H2]+ [Nµ13][H3]} , (23)

d
dz

[E1]+ j[α][E3]

= −jωB2
= −jω{[N ζ21][E1]+ [N ζ22][E2]+ [N ζ23][E3]}

− jωµ0{[N
µ
21][H1]+ [Nµ22][H2]+ [Nµ23][H3]} , (24)

−j[α][E2]+ j[β][E1]

= −jωB3
= −jω{[N ζ31][E1]+ [N ζ32][E2]+ [N ζ33][E3]}

− jωµ0{[N
µ
31][H1]+ [Nµ32][H2]+ [Nµ33][H3]} , (25)

A similar procedure for the equation ∇ ×H = jωD will lead
to the following three relations:

−j[β][H3]−
d
dz

[H2]

= jωD1

= jωε0{[N ε11][E1]+ [N ε12][E2]+ [N ε13][E3]}

+ jω{[N ξ11][H1]+ [N ξ12][H2]+ [N ξ13][H3]} , (26)
d
dz

[H1]+ j[α][H3]

= jωD2

= jωε0{[N ε21][E1]+ [N ε22][E2]+ [N ε23][E3]}

+ jω{[N ζ21][H1]+ [N ζ22][H2]+ [N ζ23][H3]} , (27)
d
dz

[H1]+ j[α][H3]

= jωD3

= jωε0{[N ε21][E1]+ [N ε22][E2]+ [N ε23][E3]}

+ jω{[N ζ21][H1]+ [N ζ22][H2]+ [N ζ23][H3]}. (28)

In the above expressions −j[α] and −j[β], which are
diagonal matrices having −jαn and −jβm as their diagonal
elements, replace partial derivatives with respect to x and y,
respectively. By eliminating the matrices [E3] and [H3] from
relations (23) – (28), one obtains

d
dz


[E1]
[E2]
[H2]
−[H1]

 = [ [TE ] −jω[L]
−jω[C] [TH ]

]
[E1]
[E2]
[H2]
−[H1]

 (29)

where [TE], [TH], [L] and [C] are 2K × 2K dimensional
matrices and are given by the following relations:

[TE ] =
[
TE11 TE12
TE21 TE22

]
(30)

in which

TE11 = −jω
{
[N ζ21]+ ([α]+ [N ζ23])[ez]

−1[eex]

+ [Nµ23][hz]
−1[hex]

}
,

TE12 = −jω
{
[N ζ22]+ ([α]+ [N ζ23])[ez]

−1[eey]

+ [Nµ23][hz]
−1[hey]

}
,

TE21 = jω
{
[N ζ11]+ (−[β]+ [N ζ13])[ez]

−1[eex]
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+[Nµ13][hz]
−1[hex]

}
,

TE22 = jω
{
[N ζ12]+ (−[β]+ [N ζ13])[ez]

−1[eey]

+ [Nµ13][hz]
−1[hey]

}
,

[TH ] =
[
TH11 TH12

TH21 TH22

]
(31)

where

TH11 = −jω
{
[N ξ12]+ [N ε13][ez]

−1[ehy]

+ ([β]+ [N ξ13])[hz]
−1[hhy]

}
,

TH12 = jω
{
[N ξ11]+ [N ε13][ez]

−1[ehx]

+ ([β]+ [N ξ13])[hz]
−1[hhx]

}
,

TH21 = −jω
{
[N ξ22]+ [N ε23][ez]

−1[ehy]

+ (−[α]+ [N ξ23])[hz]
−1[hhy]

}
,

TH22 = jω
{
[N ξ21]+ [N ε23][ez]

−1[ehx]

− ([α]− [N ξ23])[hz]
−1[hhx]

}
,

[L] =
[
L11 L12
L21 L22

]
(32)

with

L11 =
{
[Nµ22]+ ([α]+ [N ζ23])[ez]

−1[ehy]

+ [Nµ23][hz]
−1[hhy]

}
,

L12 = −
{
[Nµ21]+ ([α]+ [N ζ23])[ez]

−1[ehx]

+ [Nµ23][hz]
−1[hhx]

}
,

L21 = −
{
[Nµ12]+ (−[β]+ [N ζ13])[ez]

−1[ehy]

+ [Nµ13][hz]
−1[hhy]

}
,

L22 =
{
[Nµ11]+ (−[β]+ [N ζ13])[ez]

−1[ehx]

+ [Nµ13][hz]
−1[hhx]

}
,

and

[C] =
[
C11 C12
C21 C22

]
(33)

with

C11 =

{
[N ε11]+ [N ε13][ez]

−1[eex]

+ ([β]+ [N ξ13])[hz]
−1[hex]

}
,

C12 =

{
[N ε12]+ [N ε13][ez]

−1[eey]

+ ([β]+ [N ξ13])[hz]
−1[hey]

}
,

C21 =

{
[N ε21]+ [N ε23][ez]

−1[eex]

+ (−[α]+ [N ξ23])[hz]
−1[hex]

}
,

C22 =

{
[N ε22]+ [N ε23][ez]

−1[eey]

+ (−[α]+ [N ξ23])[hz]
−1[hey]

}
,

In relations (30)-(33), the remaining matrices are given by:

[ez] = [Nµ33]
−1[N ζ33]− [N ξ33]

−1[N ε33],

[hz] = [N ζ33]
−1[Nµ33]− [N ε33]

−1[N ξ33],

[eex] = {−[N
µ
33]
−1([β]+ [N ζ31])+ [N ξ33]

−1[N ε31]},

[eey] = {[N
µ
33]
−1([α]− [N ζ32])+ [N ξ33]

−1[N ε32]},

[ehx] = {−[N
µ
33]
−1[Nµ31]− [N ξ33]

−1([β]− [N ξ31])},

[ehy] = {−[N
µ
33]
−1[Nµ32]+ [N ξ33]

−1([α]+ [N ξ32])},

[hex] = {−[N
ζ
33]
−1([β]+ [N ζ31])+ [N ε33]

−1[N ε31]},

[hey] = {[N
ζ
33]
−1([α]− [N ζ32])+ [N ε33]

−1[N ε32]},

[hhx] = {−[N
ζ
33]
−1[Nµ31]− [N ε33]

−1([β]− [N ξ31])},

[hhy] = {−[N
ζ
33]
−1[Nµ32]+ [N ε33]

−1([α]+ [N ξ32])},

In the above relations, [α] = [α]/k0 and [β] = [β]/k0 where
k0 = ω

√
µ0ε0.

Our analysis is based on (29). This relation can be put into
the form of an equivalent TL model if one assumes [V (z)] =
([E1(z)],[E2(z)])T and [I (z)] = ([H2(z)], −[H1(z)])T as the
z-dependent voltages and currents of the equivalent transmis-
sion lines. This model results in a system of first-order dif-
ferential equations which governs the electromagnetic fields
inside periodic bi-anisotropic layers and other layers shown
in Fig. 2. It must be mentioned that all the entries of the
matrices [TE], [TH], [L], and [C] are determined uniquely
in each layer when the constitutive dyadics of the layers,
i.e., εi(r), ξi(r), ζi(r), µi(r) are known. Here, i denotes the
layer number as shown in Fig. 2. Moreover, all the necessary
boundary conditions will be satisfied if the continuity of the
line voltages and currents is fulfilled. This is because the
line voltages and currents in (29) are the tangential field
components for every plane parallel to theXY-plane. To apply
the derived TL formulation to themodal analysis of a periodic
bi-anisotropic layer, one has to decouple the voltages and
currents on various lines of the equivalent TL model. After
decoupling of the algebraic system represented by (29), the
voltages [V (z)] and currents [I (z)] are to satisfy the following
relation: (

V (z)
I (z)

)
=

(
[p]
[q]

)
e−jkzz (34)

where the single-column matrices [p], [q], and the propa-
gation constant in the z-direction (kz) are to be determined.
By substituting (34) in (29), one arrives at:[

[TE ] −jω[L]
−jω[C] [TH ]

](
[p]
[q]

)
= −jkz

(
[p]
[q]

)
(35)

The relation (35) is an eigenvalue problem. By solving this
equation, one can find 4K eigenvalues (kzn) and the corre-
sponding eigenvectors ([pi], [qi])T. Various eigenvalues can
be put in two groups: one set of eigenvalues represents waves
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traveling in the+z direction and the other one includes eigen-
values for the traveling waves in the−z direction. Therefore,
the voltage and current in each layer can be expressed in terms
of eigen-solutions as

(
[V (z)]
[I (z)]

)
=

2K∑
n=1


an

(
[pn]
[qn]

)
exp(−jkzn(z− zi−1))

+bn

(
[p′n]
−[q′n]

)
exp(jk ′zn(z− zi))


(36)

where an and bn are constant complex values. The parameters
zi−1 and zi denote the lower and the upper boundaries of the
layer i, respectively. Note that the primed parameters (k ′zn) and
([p′n],−[q

′
n])

T denote the traveling waves in the−z-direction.
(36) can be rewritten in a normalized compact matrix form(

V (z)
I (z)

)
=

(
[Pi]
[Qi]

)
[a(z)]+

(
[P′i]
[Q′i]

)
[b(z)] (37)

where [Pi], [Qi], [P′i], and [Q′i] are 2K×2K matrices com-
posed of [pn], [qn], [p′n], and [q′n] as their columns, respec-
tively. These matrices convert the coupled voltages [V (z)]
and currents [I (z)] of transmission lines into decoupled ones
[a(z)] and [b(z)]. The [a(z)] and [b(z)] are 2K×1 matrices
whose entries are an and bn. These only unknown constant
complex values should be determined to obtain various field
components in each layer. By applying the continuity of the
line voltages and currents, these values can be related by
introducing a reflection coefficient matrix [0(i)] for the layer
i:

[a(i)] = [0(i)][b(i)] (38)

By using (38) at the lower interface (z = z1), [0(2)] can be
obtained as follows:

[0(2)] = ([P′1]
−1[P2]− [Q′1]

−1[Q2])−1

× ([Q′1]
−1[Q∗2]− [P′1]

−1[P∗2]) (39)

where [P′1] and [Q′1] correspond to the medium existing in
the first layer (Layer 1 in Fig. 2). At the uppermost or at
an internal interface, e.g. interface zi−1, one obtains [0(i)] in
layer i as follows:

[0(i)] =
{
[Ui−1]−1[Pi]− [Wi−1]−1[Qi]

}−1
×

{
[Wi−1]−1[Q∗i ]− [Ui−1]−1[P∗i ]

}
(40)

The other matrices in relations (39) and (40) are given by

[Ui−1] = [Pi−1][0(i−1)]+ [P∗i−1],

[Wi−1] = [Qi−1][0(i−1)]+ [Q∗i−1],

[P∗i ] = [P′i][exp(−jk
′ (i)
zn (zi−1 − zi))],

[Q∗i ] = [Q′i][exp(−jk
′ (i)
zn (zi−1 − zi))],

where the exponential matrices in the above relations are
2K × 2K diagonal matrices. It is obvious that by using this
equivalent TLmodel and the proper boundary conditions, one
can compute the electromagnetic field components in each
layer for a given incident wave.

FIGURE 3. Side view of a unit cell showing [Ydown] and [Yup].

B. CALCULATION OF THE SCATTERED WAVE FROM THE
METALLIC GRATING WITH THE MULTILAYER PERIODIC
BI-ANISOTROPIC SUBSTRATE
In this section, we evaluate the spectral dyadic Green’s func-
tion of the multilayer periodic bi-anisotropic structure. To do
so, it is assumed that a metallic grating is mounted on such an
inhomogeneous substrate at the uppermost interface in Fig. 1
(z = zi). In the Fourier domain, through the matrix equation[

Ẽsx
Ẽsy

]
= [G̃].

[
J̃x
J̃y

]
(41)

the scattered field is related to the induced surface current on
the metallic grating. In (41), [J̃x], and [J̃y] are column vectors
representing the Fourier coefficients J̃xmn and J̃ymn . Note that
indices m, n should vary in all the vectors and matrices with
the same order. The dyadic Green’s function [G̃] is a matrix
which consists of four diagonal matrices, including the values
Gijmn and i, j ∈ {x, y}.
Unlike for multilayer metallic grating with homogeneous

layers, the diffraction orders are coupled within inhomoge-
neous periodic ones. In other words, the p-th Fourier order
of the electric current on the metallic grating can affect the
q-th Fourier order of the diffracted electric field. Therefore,
the four sub-matrices in [G̃] are no longer diagonal. In this
case, two admittance matrices looking upward and downward
at the metallization screen, which are shown in Fig. 3, are
needed to evaluate the spectral dyadic Green’s function as
follows [30]:

[G̃] = ([Ỹup]+ [Ỹdown])−1 (42)

in which, [Ỹup] and [Ỹdown] are calculated with the help of the
described ETLM formulation as follows:

[Ỹdown] = [Q(i)](I2K×2K − [0(i)])(I2K×2K
+ [0(i)])−1[P(i)]−1 (43)

and

[Ỹup] = [Q(i+1)](I2K×2K − [0(i+1∗)])(I2K×2K
+ [0(i+1∗)])−1[P(i+1)]−1 (44)

In (44), for calculating [0(i+1∗)] by means of the developed
formulation, it is assumed that the plane wave is incident from
the lowermost layer. Therefore, the dyadic Green’s function
matrix [G̃] is evaluated with the help of (42). According
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FIGURE 4. (a) The unit cell with a five-layer inhomogeneous periodic
electrically and magnetically anisotropic medium. Layers’ parameters:
h1 = 1.64mm, h2 = 2.362mm, h3 = 1mm, h4 = 2.48mm, h5 = 2.1mm,
R2 = R3 = 4mm, and Lx = Ly = 10mm. (b) TE-polarized plane wave
reflection with incident angles (θ, ϕ) = (32◦, 10◦) from the mentioned
periodic structure. (The FEM result is reported for comparison).

TABLE 1. Computation efficiency of ETLM in comparison with FEM.

to (41), the calculation of the scattered field also requires to
compute the induced surface electric current densities. To this
end, the following boundary condition must be satisfied on
the conducting patch surface:

Ee
t + Es

t = −ZsJ (45)

where Ee
t = [Eex ,E

e
y ]
T and Es

t = [Esx ,E
s
y]
T are tangential

components of the excited and the scattered electric fields,
respectively. Zs is the surface impedance of the conduct-
ing patches. Substituting (41) in (45) leads to the following
matrix equation:

−

[
Eex
Eey

]
=

∞∑
m=−∞

∞∑
n=−∞

([G̃]+ Zs[I ])
[
J̃x(αn, βm)
J̃y(αn, βm)

]
· exp(j(αnx + βmy)) (46)

where x and y are the coordinates of a point on the patch.
The exponential term exp(j(αnx + βmy) implies the inverse

FIGURE 5. (a) The definition of angles included in the second example,
and (b) Reflected power versus frequency for periodic array on an
electrically and magnetically anisotropic substrate illuminated by oblique
incidence at ((θ, ϕ) = (45◦,0◦)) with a TE-polarized plane wave [15].

FIGURE 6. Reflected power from the periodic array on a y-biased ferrite
substrate in comparison with data from [19] at the result of a
TE-polarized normal incident plane wave (Larmor frequency is 14GHz for
H0 = 5000Oe).

Fourier transform, and [I ] is the identity matrix. Summation
equation (46) can be solved by means of the MoM with sub-
domain basis and Galerkin’s test functions to calculate the
unknown induced surface electric currents. Once the induced
surface electric currents are computed, the scattered electric
field can be given by (41).
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III. RESULTS
To verify the rigorous full-wave method developed in the
previous section, the reflection characteristics of various peri-
odic structures are evaluated.

The computed numerical results are compared with those
obtained by a full-wave EM-solver or published in the lit-
erature. Note that by using this method, one can calculate
the amplitude and phase of the diffraction orders. However,
if the higher-order diffraction orders do not carry active
power, the transmitted power is just due to the zero diffraction
order (Lx, Ly < λinc/(1+ sin θinc) [14]).

A. VALIDATION OF RESULTS
As a first example, the reflection coefficient is computed
for the case of a plane wave obliquely incident to a five-
layer periodic structure. The unit cell of this structure is
depicted in Fig. 4(a). Its homogeneous/inhomogeneous layers
are composed of the isotropic or electrically andmagnetically
anisotropic materials (First layer: Free space. Second layer:
(ε11, ε22, ε33) = (3.4, 5.12, 5.12) and (µ11, µ22, µ33) =
(2, 1, 1). Third layer: (ε11, ε22, ε33) = (9.4, 9.4, 11.6) and
(µ11, µ22, µ33) = (1, 2, 1) with periodically air holes.
Fourth layer: cylindrical cavities with (ε11, ε22, ε33) =

(3.4, 3.4, 5.12) and (µ11, µ22, µ33) = (1, 1, 2) which are
surrounded by air. Fifth layer: air gap. Sixth layer: εr = 2.58,
µr = 1. Last layer: Free space). The parameters of a unit
cell as demonstrated in Fig. 4(a). The metallic grating is in
the interface of fifth and sixth layers. Note that for cavities
depicted in Fig. 1, one may obtain a closed form of the
coefficients τ (n,m)uv (z) in Eq. (13). For instance, the cavities
in the fourth layer of Fig. 4(a) are of cylindrical shapes and
their locations are in the center of the unit cell. Thus, for
|x| ≤ Lx/2 and |y| ≤ Ly/2:

τuv_3(r) =

τuv_c
(
x
R3

)2

+

(
y
R3

)2

≤ 1

1 otherwise
(47)

in which τuv ∈ {εuv, µuv}, (u, v = 1, 2, 3) are elements of
permittivity and permeability tensors of cavities surrounded
by air in Layer 4 of depicted structure in Fig. 4(a). By substi-
tuting (47) in (13), one can obtain

τ̃
(n,m)
uv_3 (z)

= δnm

+ 2π (τuv_c − 1)
R23

4LxLy
Jinc(2πR3

√(
n
Lx

)2

+

(
m
Ly

)2

)

(48)

wherein Jinc(x) = x−1J1(x) which J1 is the Bessel function
of the first kind and first order. As can be seen in Fig. 4(b), the
calculated reflected power is in good agreement with the one
obtained by a full-wave EM-solver based on Finite-Element
Method (FEM). But, the EM-solver is only used for amedium
with diagonal constitutive tensors. Since this studied example
is a periodic structure, the periodic conditions are used for

FIGURE 7. Reflected power of the unit cell of the ungrounded periodic
structure at the result of normally incident plane-wave (the data reported
from [18] as a reference).

its simulation by FEM-based EM-solver. Therefore, it is not
needed to determine the number of elements unlike finite FSS
[36]. Table 1 compares the computational efficiency of the
proposed method with FEM in terms of computation speed,
CPU usage and memory occupancy. In this table, the speed
of computation is sum of the needed times for evaluating the
dyadic Green’s function andMoM solution in each frequency
sample. In other words, the calculation approach of them is
mixed together. It should be added that our computer code
was running on an Intel (R) 7 core CPU computer with
a processing capacity of 3.06GHz and 24.0GHz RAM to
generate the results reported in this paper. In the second
example, an array of PEC Jerusalem-cross on an electrically
and magnetically anisotropic substrate is investigated. The
definition of angles included in this example is drawn in
Fig. 5(a). As seen in the same figure, θ , and φ determine the
propagation direction, (ξε, ηε, ζ ) are the principal axes for
the permittivity tensor (ε) and (ξµ, ηµ, ζ ) are the principal
axes for the permeability tensor (µ). ϑ and 1ϑ are the mis-
alignment angles. The geometrical parameters of the structure
shown in Fig. 5(b) are Lx = Ly = 24mm, l1 = 15mm,
l2 = 3mm, l3 = 9mm, and h = 3mm. In this example,
the substrate is made out of an electrically and magnetically
homogeneous substrate with (εξξ , εηη, εζ ζ ) = (3.4, 5.12,
5.12) and (µξξ , µηη, µζ ζ ) = (2, 1, 1). The principal axes lie
in the xy-plane. Rotation angles ϑ and1ϑ for principal axes
are assumed 45◦, and 90o, respectively. In this case, such an
air backed substrate is characterized by:

εr =

 4.26 −0.86 0
−0.86 4.26 0

0 0 5.12

 ,
µr =

 1.5 −0.5 0
−0.5 1.5 0
0 0 1

 . (49)
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FIGURE 8. (a) The geometry of the unit cell at the last example,
(b) square metallic patch sandwiched by two periodic bi-anisotropic
layers, and (c) the simple schematic of periodic bi-anisotropic layers.

Fig. 5(b) shows the reflected power of the structure when
illuminated by a TE-polarized plane wave incident along
(θ, ϕ) = (45

◦

, 0
◦

). The same figure compares the result
obtained by the proposed method and the one presented
in [15]. Now, the algorithm is tested for the case of a
TE-polarized plane wave normally incident to an ungrounded
periodic structure consists of a 2D lattice of dipole-shaped
patches printed on the homogenous ferrite substrate with a
permittivity εr = 12.8, and a saturation magnetization of
4πMs = 1780G. The unit cell configuration and its design
parameters are depicted in the inset of Fig. 6. The design
dimensions are Lx = 7.6mm, Ly = 15.2mm, l = 13.5mm,
w = 2.54mm, and the substrate thickness of h = 0.2mm.
With y-directed biased magnetic field, the permeability dyad
has the form [37]:

µ = µ0

 µ 0 −jκ
0 1 0
jκ 0 µ

 ,

µ =

γ 2H0(H0+4πMs)−f 2

f 20 −f
2

κ =
4πMsγ f

f 20 − f
2

(50)

where γ = 2.8MHz/Oe (is the gyromagnetic ratio divided by
2π ), f0 = γH0 (is Larmor frequency), H0 = 5000Oe is the
magnetic bias field and f is the frequency of the incident plane
wave. In Fig. 5, the computed reflected power is compared
with one reported in [19]. In this extraordinary mode, the
obtained Larmor frequency is 14GHz, in which µ, and κ
have infinite values based on (50). In this singular point and
after it, some methods may be unstable and have a highly
oscillatory behavior for reflection coefficient responses [38].
As shown in this figure, our proposed method is stable at
about this singular point and has a stable behavior after it. For
demonstrating stability of the proposed method, this example
is deliberately selected.

In order to validate the developed method for a periodic
structure on a bi-isotropic substrate, the Chiro-FSS investi-
gated in [18], is analyzed as the next example. This structure
consists of a two-dimensional array of the cross-shaped patch
shown in the inset of Fig. 7 with the parameters L = 10mm,
W = 1mm, and Lx = Ly = 10mm backed by a chiral slab
(εr = 1.06, and |ξr | = 0.0026 <

√
µ−1ε [39]) with the

FIGURE 9. (a) The constitutive tensors for periodic bi-anisotropic layers,
(b) Reflected power of (0,0)-th mode at result of a TM-polarized normally
incident plane-wave.

thickness of h = 4mm. As shown in this figure, our computed
reflected power of Co-polarized wave and the one reported
in [18] are compared when the structure is illuminated by a
normally incident plane wave. It should be emphasized the
mentioned methods in the above can be used for analyzing
FSSs on homogeneous anisotropic substrates and are not
efficient for metallic grating analysis with inhomogeneous
periodic ones as depicted in Fig.1 and Fig. 2.

B. ANALYSIS OF A METALLIC GRATING EMBEDDED IN AN
INHOMOGENEOUS PERIODIC ANISOTROPIC UNIAXIAL
CHIRALS
For assessment the evaluated dyadic Green’s function in the
analysis of the multilayer periodic bi-anisotropic structure,
a depicted unit cell in Fig. 8(a) is selected as the last example.
In this case, Lx = Ly, and the metallic array consists of
square-shaped patches (L = 0.5Lx) sandwiched by two peri-
odic layers in which air-cavities drilled within an anisotropic
uniaxial chiral (r = 0.25Lx in Fig. 8(c)). It is assumed the
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optic axis of the uniaxial anisotropy inside the chiral region
forms an angle of α with the z–direction in the XZ-plane as
shown in Fig. 9(a). Hence, the constitutive tensors for the
uniaxial chiral are expressed by:

a =

 axx 0 axz
0 ayy 0
azx 0 azz

 ,

ayy = aO
axx = aO cos2 α + aE sin2 α
azz = aO sin2 α + aE cos2 α
axz=azx= (aO−aE ) sinα. cosα

(51)

where a ∈ {ε, ξ}, aE denotes the values of the host medium
constants in the direction of the optic axis (Extra-ordinary)
and aO implies the values in the direction perpendicular to
this axis (Ordinary). In this case, it is supposed εO = 1.2,
εE = 1.35, ξO = 0.0001 and ξE = 0.0007 and all layers are
nonmagnetic, and lossless. Such a structure is analyzed by
means ofMoM/ETLM for normal incidence of TM-polarized
plane-wave. Fig. 9(b) shows the reflected powers of the
(0, 0)-th spatial harmonics of TE- and TM-polarized waves in
terms of periodicity variation with α = 20◦. As observed in
the same figure, not only the co-polarization (TMwaves), but
also the cross-polarized (TE waves) appear in the reflected
waves due to chirality of the periodic region. The result
of Achiral structure analysis is also reported in this figure.
As shown, no cross-polarization appears for null chirality
case because no coupling between TE and TM (0, 0)-thmodes
occurs.

C. EFFECIENCY OF THE PRESENTED METHOD
The developed spectral dyadic Green’s function used for the
analysis of metallic grating on multilayer, inhomogeneous
periodic bi-anisotropic media contains the expansion of the
electromagnetic quantities based on coupled plane waves
(fields within the medium) and basis functions (induced cur-
rents on the metallic grating). This technique is referred to
as a semi-analytical method which, in general, is computa-
tionally more efficient than conventional methods used for
homogenous structures.

This fact has been confirmed throughout the numerical
investigations performed in this paper. However, in this
section, it focuses on the convergence rate of the expansion
of electromagnetic fields within the homogeneous/periodic
anisotropic substrates and rooftop basis functions. In this
case, the mentioned second and last examples with homoge-
neous and inhomogeneous anisotropic substrates are respec-
tively considered. The computed convergence rate of these
examples are visualized in Fig. 10, which shows the trunca-
tion errors in terms of the truncation order M = N. Such an
error is calculated for the first resonance of Fig. 5(b) and the
first peak of blue-line in Fig. 9(b), as shown in Fig. 10(a),
and Fig. 10(b), respectively. This relative error is defined as
follows:

Truncation Error =
RP00(N)− RP00(N− 1)

RP00(N)
(52)

FIGURE 10. Relative error of the evaluated reflected power in terms of
the truncation order M = N (blue curve). Computation time to compute
the phase response for different truncation order is shown by green
curve. (a) Reflected power versus frequency for periodic array on an
electrically and magnetically anisotropic substrate illuminated by oblique
incidence at ((θ, ϕ) = (45◦,0◦)) with a TE-polarized plane wave [15].
(b) Reflected power of (0,0)-th mode at result of a TM-polarized normally
incident plane-wave.

in which, RP00 (N) is the amplitude of the reflected power of
(0, 0)-th mode. For increasing the accuracy of the expansion,
the radiated field from the smallest element in the patch of
unit cell should be modeled. The narrowest dimensions in
the patch configuration of the second and last examples are
the one-sixteenth and one-twelfth of the lattice constants,
respectively. This leads to the truncation order of M = N =
16 for the second example and M = N = 12 for the last
example to achieve relative errors less than 0.5%. Fig. 10 also
shows the computation times as a function of the truncation
order. By examining various examples, it is yielded that the
following relations will give an acceptable accuracy:

M ≥
Lx
ndPx

, N ≥
Ly
ndPy

(53)

in which, ndPx and ndPy are the narrowest dimensions of the
patch in the x- and y-directions, respectively. As shown in
Fig. 10, the computation cost may be very high once the high
truncation orders should be assumed. Based on (53), when the
FSS contains patches with very fine dimensions, using high
truncation orders is inevitable. In these cases, using MoM
with entire-domain basis functions and Galekin testing func-
tions is expected to bemore efficient. Usingmethods based on
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Finite differences and Finite Elements are not efficient when
the multilayer bi-anisotropic substrates are used due to their
high computation costs.

IV. CONCLUSION
A semi-analytical method for a full-wave analysis of metal-
lic grating loaded by multilayer, inhomogeneous periodic
bi-anisotropic media has been introduced. The technique uti-
lizes the MoM with sub-domain basis and Galerkin’s test
functions along with a generalized equivalent TL modeling
described in [30] for the evaluation of the dyadic Green’s
function in the spectral domain. By using this method, vari-
ous periodic structures on inhomogeneous periodic isotropic,
anisotropic, chiral, and bi-anisotropic substrates have been
analyzed to obtain their reflection characteristics. In order
to verify the results produced by this method, they have
been compared with previously published ones and those
obtained by a full-wave EM-solver. The presented analysis
incorporates arbitrary incident angles and optic axis for the
periodic bi-anisotropic substrate. It was shown that the devel-
oped technique is valid for the analysis of FSSs on various
inhomogeneous anisotropic substrates. It is shown that the
reflection characteristics of a unit cell can be controlled
by the direction of the optic axis among other parameters.
In other words, FSSs design can be accomplished with a
larger degree of freedom if the substrate of them is periodic
bi-anisotropic.
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