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ABSTRACT Lidar sensors are commonly equipped on a mobile mapping system (MMS) to establish
point clouds for HD map creation. However, the point clouds themselves do not contain object attributes.
Therefore, human operators have to manually obtain objects’ position to assign attributes for further HD
map conversion, inevitably resulting in time-consuming processes and significant labor costs. To solve the
above problems, in this paper, we present an MMS equipped with non-survey grade Lidar, commercial
grade camera, and entry level GNSS/INS, which incorporates ground control points (GCPs) with a Normal
Distribution Transform Simultaneously Localization andMapping (NDT SLAM) refinement and fluctuation
adjustment to secure both absolute position accuracy and relative position accuracy of the reconstructed point
cloud. Meanwhile, a deep neural network for image detection is employed to obtain the bounding box of
traffic signs from each image frame. By applying the translation and rotation transformation between Lidar
points and camera pixels, intersection of the detected object in the image and Lidar scan points can be found.
By accumulating extracted Lidar points of the traffic sign in several detection frames, we can then obtain
an accurate 3D geodetic coordinate of the traffic signs. Experimental results show that point clouds can be
reconstructed with an average 3D RMSE of only 8.6cm, and center geodetic coordinates of traffic signs can
be further extracted in sub-meter accuracy to significantly reduce labor work in HD map creation.

INDEX TERMS HD map, point cloud, GIS, autonomous driving.

I. INTRODUCTION
High Definition Map (HD Map) is essential for localization,
route planning, and environment perception in autonomous
driving. The higher a vehicle autonomy level (i.e., L1-L5)
is, the tighter the sensor fusion results are to be coupled
with the HD Map. Considering the interoperability for var-
ious autonomy levels, HD map data should therefore be
exchangeable and convertible. Over the past years, specifi-
cations of HDmap are springing up due to the high growth of
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autonomous driving demand. Although proprietary HD map
specifications are available for specific industries and organi-
zations, the importance of open HD map formats has become
more evident. For example, Lanelet2 [1] and OPENDRIVE
[2] are the two open and commonly used HD map for-
mats in autonomous driving development. The well-known
autonomous driving platform, Autoware [3], has supported
Lanelet2 in its latest release as shown in Figure 1. Simulation
Software CarSim [4] and VTD [5] always rapidly support the
latest version of OPENDRIVE in their products.

The essential components of a HD map for autonomous
driving usage include topological information, geometric
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FIGURE 1. HD map Lanelet2 format used in Autoware [3].

FIGURE 2. HD map conversion from raw map data (left) to OPENDRIVE
format (right).

information, and semantic information [6]. The mobile map-
ping systems (MMS) equipped with Lidar are the mainstream
solution for data collection to contribute to high accuracy
geodetic information from a point cloud. Professional Geo-
graphic Information System (GIS) software like ArcGIS [7]
and MicroStation [8] are used in dealing with point clouds
for semantic content extraction and validation. Through the
GIS software, extracted objects with geodetic information are
typically stored into a cloud database or a standalone file
(i.e., ∗.shp).Map providers then follow theHDmap specifica-
tions to convert the raw map data to meet different demands.

As shown in Figure 2, points are the fundamental elements
in representing 3D objects like poles, traffic lights, traffic
signs, etc. Road centerlines and lane centerlines containing
road/lane width and traffic regulation information are stored
in line type. Stop lines, road markings, roadside parking, and
pedestrian refuges are stored in polygon type. It is mandatory
to assign an ID to each road/lane segment to correlate all
other points, polygons, and lines. Furthermore, junctions are
defined as a virtual area in polygon type to fulfill the demand
of a specific HD map format.

With the use of conventional methods, depicting the
road/lane information from a point cloud is not time exhaust-
ing, but extracting an object from the point cloud is. The
massive time spent for object extraction starts from finding
and picking an exact center point of an object. Next, the width
and height are measured from the point cloud. For example,
a traffic sign appearing in the point cloud obtained by a GIS
software can be easily seen. When a human operator inspects
the traffic sign, its background points also exist in the view.
As soon as the operator clicks the center position of the traffic
sign, a background point can often be wrongly picked in
practice. Therefore, designing a suitable method to pick the
correct center point of objects from an accurate point cloud
for HD map creation is highly expected.

Based on the above-mentioned discussions, problems that
we encountered for HD creation can be summarized as
follows:

1. High-accuracy point cloud reconstruction based on a
cost-effective hardware configuration is desired for practical
real-world applications.

2. The position accuracy of extracted objects by a cost-
effective MMS should be secured for HD map creation.

3. Human labor intervention should be adequately reduced
in the HD map creation process.

In this paper, we present an MMS equipped with non-
survey grade sensors, which incorporates ground control
points (GCPs) with a Normal Distribution Transform Simul-
taneously Localization and Mapping (NDT SLAM) [9]
refinement and fluctuation adjustment, to secure both abso-
lute position accuracy and relative position accuracy of the
reconstructed point cloud in the first place. Secondly, thanks
to the advance of Artificial Intelligence (AI), Deep Learning
(DL) deep neural networks (DNN) have amply demonstrated
their prowess to sense, reason, act, and adapt to imitate
human ability or behavior for various applications over the
past years. An architecture CDLSTM [10] was proposed
for accurate climate change forecasting, and a DNN model
SMOTEDNN [11] were presented for efficient classification
and forecasting of air pollution, to name a few of them. In this
paper, a DNN image detection model DriveNet is conducted
to detect and classify the objects. By applying the rotation
and translation parameters between camera and Lidar, the
intersection of the detected object in the image and Lidar scan
points can be found. Finally, a proposed algorithm is then
implemented to remove the outlier Lidar points according
to an intensity threshold. By accumulating extracted Lidar
points of the traffic sign in several detection frames, we can
then deduce an accurate 3D position of the traffic sign cen-
ter. This method is simple, much straightforward, and time
efficient in HD map creation. According to the experimental
results, the traffic sign extraction has an absolute position
error in sub-meter accuracy, providing road regulation infor-
mation with high position accuracy for autonomous driving,
road asset management [12], and related intelligent trans-
portation system usages. To this end, the contributions of the
proposed work are summarized as follows:

1. The quality of point cloud is enhanced by the pro-
posed MMS equipped with non-survey grade sensors to deal
with wide multi-lane roads, urban areas, and other complex
environments.

2. The accurate geodetic information for raw map data
can be automatically obtained through the proposed geodetic
coordinates extraction approach.

3. The presented comprehensive workflow achieving high-
accuracy geodetic coordinates extraction could relieve human
labor intervention when creating the HD map.

This paper is organized as follows. Section II discusses
related works for HD map creation. Section III describes the
hardware/software configuration of the proposed MMS and
methods to reconstruct the point cloud in a wide road scene.
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Section IV presents the proposed approach for automatic
traffic sign extraction from a point cloud, where key extrac-
tion methods are described in detail. Section V shows the
experimental results that we conducted using the proposed
hardware, software, and methods. Finally, we conclude this
paper in Section VI.

II. RELATED WORKS
For HD map creation, Jiao [13] summarized a complete
workflow from the autonomous driving aspect. This paper
concluded that the HD map creation requires an accurate
3D object extraction process for execution as efficient as
possible. Poggenhans et al. [14] gave a detailed review of
the open HD map format Lanelet2, which consists of Points,
Linestrings, Lanelets, Areas, and Regulatory elements. The
paper enumerated several examples in the real world to illus-
trate how mandatory and optional items in Lanelet2 are to
be filled in. It can be seen that correctly connecting the
relationship of objects is indispensable. The other popular
open HD map format OpenDRIVE is also widely discussed
in the autonomous driving field. Becker et al. [15] intro-
duced the geometric expression in OpenDRIVE format in
detail, pointing out the elements in OpenDrive, including
Reference Lines and Segments, are represented by curvature
(composed of spirals and arcs). The authors contributed a
detailed guideline for geometry conversion in representing an
OpenDRIVE road network topology. To consider the interop-
erability for those open HD map formats, Althoff et al. [16]
presented a converter from OpenDRIVE to Lanelets (prede-
cessor of Lanelet2). It shows that open HD map formats can
be exchangeable and convertible. From the above survey, the
development of HD map formats is quite evident nowadays.
Hence it is worthwhile to investigate the methods to reduce
data collection cost and increase 3D object extraction effi-
ciency in HD map creation.

The erroneous scenarios of localization based on 3D pint
cloud were investigated by Javanmardi et al. [17]. This paper
concluded that feature sufficiency, layout, local similarity,
and representation quality are factors that highly affect the
accuracy in self-localization. To obtain an accurate 3D point
cloud, MMSs are commonly used in data collection. Tra-
ditional filter-based positioning systems are the mainstream
methods in outdoor terrain survey. Yao et al. [18] presented
an MMS by integrating 2D Lidars, panoramic images and
GNSS/INS to obtain an accurate point cloud. Zeng and Zhong
[19] presented an algorithm to assign the color attributes from
panoramic images to a 3D laser point cloud based on a pro-
posed MMS. Ilci et al. [20] utilized multiple well calibrated
3D Lidars to reconstruct the point cloud for autonomous
driving localization. In the traditional filter-based MMS, the
quality of the point cloud highly depends on the grade of the
MMS positioning systems employed. Hence there come out
the graph-based optimization methods to mitigate the costs of
the MMS hardware deployment. For graph-based optimiza-
tion, the key concept is to align each different scan on the
same static feature. By performing several iterations to find

the best features alignment, a refined position and orientation
of the Lidar can be found. Hence, a refined trajectory can be
subsequently reconstructed from the whole Lidar scans as a
result. Hamieh et al. [21] presented a system that integrated
entry level GNSS/INS with Lidar odometry localization and
mapping method LEGO-LOAM to predict the position and
orientation to produce the point cloud. Peng et al. [22] uti-
lized GCPs with NDT SLAM to refine the position trajec-
tory to effectively secure the absolute/relative position of
the reconstructed point cloud. Koide et al. [23] presented an
interactive method that allows users to correct point cloud
mapping failures to improve the quality of a 3D point cloud.
Based on an accurate and quality 3D point cloud, Kim [24]
proposed a framework for updating the changes in point cloud
through crowd sourcing. The experimental result shows that
incremental update of point cloud via a non-survey grad
Lidar can be expected. In map attributes extraction, Joshi and
James [25] proposed a graph-based refinement approach to
extract the lane geometry information. The research result
showed that the lane information can be obtained on a large
scale. Kumar et al. [26] presented an automated algorithm for
extracting road markings based on which the intensity can be
distinguished from road surfaces. Zhou et al. [27] proposed
a method to align and extract pavements, boundaries, lane
markings through point cloud data. Niijima et al. [28] further
applied road centerline estimation with pose graph optimiza-
tion to reconstruct the point cloud on a large scale. By adding
a more trustable road centerline reference, the error of the
point cloud can be minimized. From the above-mentioned
MMS research, it can be seen that graph-based optimization
methods are beneficial for incorporating with the filter-based
localization. For autonomous driving, it is believed the trend
would be more concerned about the point cloud reconstruc-
tion in complex urban environments.

From the perspective of deep learning, a state-of-the-art
architecture PointNet++ [29] was designed to deal with 3D
point cloud segmentation and classification tasks. A hier-
archical point set feature learning was then applied in the
proposed architecture, so that objects in the point cloud can
be meticulously classified. On the other hand, image-based
object detection and recognition are getting more and more
popular on the basis of concrete deep learning architec-
tures. For internet of things (IoT) applications, Bi et al. [30]
proposed a distributed PCANN architecture achieving high
accuracy with minimized trained model size for image recog-
nition, which is suitable for use on most IoT devices with
constrained resource. For traffic sign recognition, Tabernik
and Skocaj [31] addressed the problem of detecting and
recognizing many traffic sign categories for traffic sign
inventory management. Gerhardt and Broll [32] developed
a neural network-based traffic sign recognition system for
semiautomatic road infrastructure management. Yan et al.
[33] demonstrated a network for detecting lane and lane-
changing information. The network can segment the lane line
instances and get each lane line’s color and type attributes.
Heo et al. [34] integrated the image detection and HD map
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FIGURE 3. Main flow of the proposed enhanced point cloud
reconstruction method.

to detect the environment change. Jo et al. [35] presented an
algorithm to process, detect, and update the HD map when
the environment changes. From the above-mentioned studies,
we can see that researchers have been working hard to obtain
geodetic information by deep learning-based image detection
approaches. However, there is room for further investigation
on the accuracy of geodetic coordinates for detected objects
in HD map creation.

From the above discussions, the performance of available
MMSs has been significantly improved in various aspects
over the past years. The image detection using deep learning
neural network is also widely utilized in many fields through
either open mature pre-trained models or private self-trained
models. Taking advantages of precise 3D geodetic point cloud
reconstruction and accurate image-based object detection,
we can create an accurate HD map in an automatic way.
We will provide feasible solutions by using traffic signs as
an example to demonstrate the extraction of their precise 3D
position for HD map creation.

III. ENHANCED POINT CLOUD RECONSTRUCTION OF THE
PROPOSED MMS
In our previous work [22], the MMS mainly integrated
a non-survey grade Lidar sensor and non-tactical grade
GNSS/INS for accurate point cloud reconstruction. The pre-
sented hardware and method can secure a quality point cloud
by overcoming the dispersion issue with the aid of ground
control points (GCPs) under good NDT SLAM refined tra-
jectory condition. However, the NDT localization might have
high uncertainty if the features in the point cloud are not suffi-
cient. Hence, the point cloud reconstruction quality would be
unacceptable because of the poorly refined trajectory. It turns
out that a graph-based fine-tuning process could be further
used for optimization. Figure 3 depicts the main flow of
the proposed cost-effective MMS for enhanced point cloud
reconstruction. Detailed descriptions will be given in the
following subsections.

A. DATA COLLECTION AND STRIPES SPLITTING
Table 1 shows the proposed MMS equipped with non-survey
grade sensors. In the data collection phase, the GNSS/INS
trajectory consisting of a series positions (x, y, z) and ori-
entations (roll, pitch, heading) is configured in 200Hz via a
SPAN-IGM-A1 (NovAtel, Calgary, AB, Canada) GNSS/INS
receiver. The virtual reference station - real time kinemat-
ics (VRS-RTK) correction data is offered through a 4G

TABLE 1. The proposed MMS equipment list.

FIGURE 4. Multi-stripe scan performed in a multi-lane road with two
refuge islands.

mobile phone. A distance measurement instrument (DMI)
[36] is installed and connected with the GNSS/INS directly
to secure the trajectory is stable under a weak GNSS signal
environment.

To have a desired trajectory adjustment, redundant obser-
vations are required. Thus, a multi-stripe scan is conducted
in this paper as exemplified in Figure 4, where the scan is
performed in a multi-lane road with two refuge islands. The
multi-stripe scan deals with extensive area surveys for further
trajectory adjustment, which improves the previous work [22]
one step further to better fit in practical situations. Lidar
localization refers to the use of static object features for use
to deduce the origin position of the Lidar. By applying the
transformation between Lidar andGNSS/INS, theGNSS/INS
trajectory can be refined and further constrained by precise
DMI measurement. It implies that a multi-stripe scan is
mandatory in the last step of the proposed data collection
phase for both higher accuracy and larger scan coverage. The
scanned data of each stripe are subsequently split into several
segments for further data processing.
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FIGURE 5. Calibration data collection: (a) A new land consolidation area
is selected, (b) MMS calibration data collection by 2 scan missions (blue,
purple).

B. SYSTEM CALIBRATION
Given a Lidar scan point pL xyz in the Cartesian Lidar coor-
dinate, the transformation from a Lidar coordinate to a local
coordinate system, 2-degree transverse Mercator (TM2), can
be expressed as:

pLTM2 = pTM2 + (RLTM2 · pL xyz )+ TLTM2, (1)

where
pLTM2 : Lidar point in TM2 coordinate format based on

TWD97 System,
pTM2 : GNSS/INS trajectory in TM2 coordinate format

based on Taiwan Datum 1997 (TWD97) System,
RLTM2 : Rotation matrix from Lidar coordinate to TM2

coordinate,
pLxyz : Lidar scan point in Lidar coordinate,
TLTM2 : Offset between Lidar and GNSS/INS positions.
For the sake of data validation and visual presentation,

in this paper, the coordinates of Lidar points pLTM2 are
converted into TM2 based on TWD97, which is the formal
coordinate system used in Taiwan.

From (1), to accurately obtain the elements in the rotation
matrix (roll, pitch, and heading) and translation matrix (x, y,
and z), we utilize a commercial software TerraMatch [37]
for system calibration. In the calibration process, a good
GNSS/INS trajectory with a large number of scanned static
features is required. According to the calibration guideline,
the MMS scan mission is recommended to keep straight to
obtain scans of opposite directions to overlap the scanned fea-
tures. Therefore, the low traffic flow with plenty static object
features of new land consolidation area would be beneficial
toward a better calibration result as shown in Figure 5.

After MMS calibration data collection, the data collected
during a sharp turn, including a U-turn, should be excluded
for further processing. Hereafter, each direction scan is
divided into individual trajectories. By giving coarse initial
rotation and translation parameters to (1), the point clouds in
yellow, green, blue, and red can then be reconstructed for each
trajectory as illustrated in Figure 6.

The initial coarse rotation and translation parameters
inevitably result in certain absolute/relative position errors
for points in the point cloud. As a result, the tie line search
function and GCP matching in the TerraMatch calibration
tool are applied to adjust the initial coarse parameters to

FIGURE 6. Point clouds reconstructed by individual trajectories are
indicated in yellow, green, blue, and red.

FIGURE 7. Partial view of the multi-stripe point cloud reconstruction by
tie line search function (top) and final calibration results (bottom).

obtain the calibrated parameters. Figure 7 shows the partial
view of a multi-stripe point cloud reconstruction by tie line
search function and final calibration results, where color bars
indicate the same features between trajectories are observed
and matched, and color circles indicate the GCPs assigned
to specific features for absolute position reference. When
an incorrect feature is observed from the calibration tool,
it is necessary to manually remove the mismatched feature.
According to the calibration result, the average 3D mismatch
can be reduced to 2.1 cm. We can then apply those adjusted
rotation and translation values to the initial coarse parameters
for further point cloud reconstruction.

Figure 8 illustrates a point cloud reconstruction by apply-
ing the initial coarse parameters and calibrated parameters,
respectively. Through comparison of the point clouds of a
wall, plate, and pole, it is apparent that the calibrated param-
eters obtained from the mentioned calibration tool result in a
desired point cloud reconstruction.

C. NDT SLAM TRAJECTORY REFINEMENT FOR POINT
CLOUD RECONSTRUCTION
It has been found that the point clouds reconstructed by scans
of opposite directions based on GNSS/INS trajectory do not
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FIGURE 8. Point cloud of a wall, plate, and pole is reconstructed by:
(a) applying the initial coarse parameters, (b) applying the calibrated
parameters.

mergewell as illustrated in Figure 9(a), where the top portions
of a pole indicated by a blue circle are mismatched. This is
because the point clouds reconstructed by each direction have
their individual uncertain initial attitude of the MMS. This
will cause a dispersion problem and incur uncertain object
positions to be manually selected for HD map creation.

To address the dispersion problem, an NDT SLAM trajec-
tory refinement is designed in the process. At the beginning
of the work, a main stripe is selected for point cloud recon-
struction by using GNSS/INS trajectory. The main stripe is
selected to cover the entire scan area as comprehensive as
possible. Next, GCPs are manually assigned to their cor-
responding feature points (for example, anchors of dash
line or zebra lines on the ground) in the point cloud. Each
corresponding feature point is forcibly moved to the GCPs
position. The remaining points in the point cloud between
the GCPs are then linearly adjusted according to the distance
from the GCPs. The shorter the distance between a point and
GCP, the more the effect of position adjustment is applied.
Afterward, a NDT-refined trajectory of the main stripe can
be generated by applying the NDT localization based on the
GCPs-adjusted point cloud. The refined trajectory can be
further obtained as:
−−−−→
PRFTM2(tNDT + toffset )

=
−−→
PTM2(tNDT + toffset )+ D(x,y,z)(tNDT ),

if
∥∥D(x,y,z)(tNDT )

∥∥ > threshold, (2)

where
−−−−→
PRFTM2 : NDT-refined trajectory,
−−→
PTM2 : GNSS/INS trajectory at 200 Hz,
D(x,y,z) : Distance difference between NDT trajectory and

GNSS/INS trajectory at matched timestamp,

FIGURE 9. Main stripe (white) and sub stripes (color) point cloud
reconstruction by (a) applying GNSS/INS trajectories, (b) applying
NDT-refined trajectories.

tNDT : Timestamp of NDT localization points,
toffset : Time offset since last position has been obtained.
In this paper, the threshold in (2) is set as 10cm. When

the absolute value of D(x,y,z) is greater than the threshold,
the current and successive points of the GNSS/INS trajectory
in
−−→
PTM2 are adjusted until the subsequent NDT localization

is performed. After successfully obtaining the refined trajec-
tory of the main stripe, the main-stripe point cloud can then
be reconstructed by replacing

−−→
PTM2 with

−−−−→
PRFTM2 through

(1). Afterward, the refined point cloud of the main stripe
serves as the base reference for all sub-stripe trajectories
refinement for doing sub-stripe point cloud reconstruction.
Figure 9(b) shows that the point cloud reconstruction result
is well aligned between the main stripe and sub-stripe. For
example, the top portions of the pole are well merged as
indicated by a red circle.

D. POINT CLOUD FLUCTUATION ADJUSTMENT
It is clear that NDT trajectory refinement has a significant
advantage in dealing with multi-stripe point cloud recon-
struction. However, the accuracy of NDT localization results
cannot be secured if there are unclear scanned features or
there is a lack of static features. In those cases, a graph-based
fluctuation adjustment function in the TerraMatch can be
employed for final adjustment between stripes. In Figure 10,
3 scan stripes (blue, red, and pink) by MMS of NDT-refined
trajectories and their corresponding point clouds are loaded
into the tool, where the main stripe is indicated in blue
(Line 1) and sub stripes (Line 3, Line 5) are indicated in red
and pink, respectively.

Figure 11(a) shows that Line 1 is adjusted with Line 3 and
Line 5. In the fluctuation adjustment result (Figure 11(b)), the
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FIGURE 10. 3 scan stripes (blue, red, and pink) by MMS of NDT-refined
trajectories and their corresponding point clouds are loaded into the tool.

FIGURE 11. Fluctuation adjustment: (a) Line 1 is adjusted with Line 3 and
Line 5, where x-axis indicates the timestamp and y-axis indicates the 3D
distance adjustment in meter; (b) fluctuation adjustment report.

3Dmismatch is improved from 0.176m to 0.0223m. Through
the vertical view of the point cloud in Figure 12(a), it can be
seen the gaps between Line 1 (Blue) and Line 3 (Red) point
clouds have been improved by the fluctuation adjustment in
addition to the NDT trajectory refinement (Figure 12(b)),
as indicated by a white solid line pointing to the ground.

IV. EXTRACTION OF CENTER GEODETIC COORDINATES
FOR TRAFFIC SIGNS FROM POINT CLOUD
A. TRAFFIC SIGN DETECTION
For image detection, many mature frameworks and pre-
trained models have been developed and further improved

FIGURE 12. Vertical view of Line 1 (blue) point cloud, Line 3 (red) point
cloud and Line 5 (pink) point cloud: (a) before fluctuation adjustment,
(b) after fluctuation adjustment.

till now. The NVIDIA DriveWorks SDK [38] was designed
for developers to implement autonomous vehicle solutions by
providing a library of models, developer tools, and reference
applications. Since the DriveWorks SDK is mainly dealing
with road related information, therefore, the perception mod-
ule of DriveNet in DriveWorks is suitable to serve as the
detection core for traffic sign detection in the proposed work.
The DriveNet is trained by front and side camera images,
where the front camera supports a 30/60/120 degree field
of view. The detected objects are represented by a bounding
box defined by the top-left and bottom-right corners denoted
as (u,v) pixels for 5 different classes, including car, bicycle,
pedestrian, road sign, and traffic light.

Through the SDK reference documents and sample codes,
a utility is developed to output bounding box position, object
class, matched timestamp into a json file. According to the
test in the local fields as shown in Figure 13, the detection
result is acceptable and true negative detection of the road
signs rarely happens, which fulfills the goals of leveraging
feasible and straightforward concepts for local traffic sign
detection.

B. GEODETIC TRANSFORMATION BETWEEN CAMERA
PIXEL AND LIDAR POINT
Each Lidar point pL xyz can be transformed to the local geode-
tic coordinate pLTM2 by (1). The next step is to figure out
the transformation between Lidar points and camera pixels.
According to the pinhole camera model, the approximated
projection model can be expressed as:

s
[
u
v

]
= AC [RLC |TLC ]

XLYL
ZL

 (3)
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FIGURE 13. Object detection by DriveNet neural network using the
proposed MMS camera in Table 1.

where
s: Scale factor between pixels represented in the real world,
u, v : 2 D position in the image,
AC : Camera intrinsic parameter matrix,
RLC : Rotation matrix from Lidar to camera,
TLC : Translation matrix from Lidar to camera,
XL ,YL ,ZL : Point in Lidar coordinate.
Note that AC contains focal length and sensor center

parameters of a camera, which can be obtained by intrinsic
parameter calibration through OPENCV. The rotation matrix
RLC and translation matrix TLC between Lidar and camera
can be derived through Calibration Toolkit [39] by manually
clicking the center of the calibration board in various angles
and distances. The normal vectors of anchors on the cali-
bration board in the Lidar coordinate and camera coordinate
can be used to deduce the relationship of the transformations.
Thus, the scale factor s can be found, given XL ,YL ,ZL , and
u, v during the calibration process.

After the translation and rotation parameters are applied
in (3), the Lidar scan points can be well mapped to their
corresponding pixels in the image. Figure 14 shows the over-
lapped result of Lidar scan points and detected traffic sign,
where the colored dots indicate the Lidar points in the nearest
(Light blue), near (Green), middle (Yellow), far (Orange),
and the farthest (Red). The red bounding boxes indicate
the objects detected by the utility. Since the Lidar points
in the bounding boxes for each traffic sign are well distin-
guished, therefore the feasibility of the calibrated parameters
for geodetic transformation between camera pixel and Liar
point is confirmed.

C. CENTER GEODETIC COORDINATES OF TRAFFIC SIGNS
The Lidar point set of a traffic sign can be extracted and
expressed by:

PTS = PL|u,v;i ∩ Pu,v|i>TH ;u,v∈Bounding box , (4)

where
PL|u,v;i :Lidar points mapped to the image, i is the intensity

of each Lidar point,
∩ : Intersection operator,
Pu,v : Pixels of the detected traffic signwithin the bounding

box,

FIGURE 14. Lidar scan points (colored dots) mapped to their
corresponding pixels of the detected traffic sign by applying rotation and
translation parameters.

An intensity threshold is set to eliminate the background
points scanned by Lidar, where intensity i < TH . Next, the
current centerCcurrent−center in the local geodetic location can
be calculated by:

Ccurrent−center = (avg(PTS−X ), avg(PTS−Y ), avg(PTS−Z )),

(5)

where
Ccurrent−center : Average center of Lidar point projected on

the current image,
PTS−X ,PTS−Y ,PTS−Z : Lidar point set of a detected traffic

sign in geodetic local coordinate.
In order to obtain amore accurateCcurrent−center , a series of

PTS in each image are extracted by a movingMMS then accu-
mulated to calculate the average center geodetic coordinates
for the detected traffic sign.When there exists an object center
Cexist−center within 30cm from Ccurrent−center , the current PTS
will merge into existed PTS to calculate a new Cexist−center .
Otherwise, a new IDwill be registered to each point in current
PTS (Figure 15). Finally, according to each ID, the width and
height dimensions set by local traffic authority regulations
can be applied to every Cexist−center of the detected traffic
signs.

This section describes the transformation between Lidar
point and camera pixel, where the rotation matrix and trans-
lation matrix are obtained by utilizing both OPENCV and
Calibration Tool. According to the Lidar to image overlapped
verification, each Lidar point can be well mapped to the
detected bounding box. In accumulating the scan points dis-
tinguished by object ID, the traffic sign center coordinates
can be finally determined.

V. EXPERIMENTAL RESULTS
Experiments are conducted in the Dan-Shui area,
New Taipei City, Taiwan, which provides an open street
scene for autonomous shuttle service operation test. The
shuttle service operates between Kan-Ding light rail station
to a mall nearby (600m) to carry out the last-mile trans-
portation concept of mobility as a service vision in Taiwan.
Figure 16 shows the HD map incorporating point cloud and
vector data produced via the proposed method in this paper
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FIGURE 15. Series of PTS in each image are extracted by a moving MMS
then accumulated to calculate the average center geodetic coordinates
for the detected traffic sign.

FIGURE 16. HD map produced by the proposed method for use in an
autonomous shuttle service.

for use by the autonomous shuttle service. During the test
period, real-time traffic light information is provided and
appropriately linked with vector information in the HD map
under local government permission.

To make a fair comparison, the total distance of the road
survey in the experiment has been enlarged to 2.5km long.
Because of the large area considered, 33 control points and
20 check points were measured for HD map correction and
verification, respectively. Figure 17 shows the top view of the
point cloud reconstructed by the proposed method in the test
area. We conducted extensive measurements to evaluate the
thickness, absolute position, and extracted traffic sign center
position, respectively.

A. QUALITY ASSESSMENT OF THE RECONSTRUCTED
POINT CLOUD
For point cloud quality assessment, the thickness of each
check point location evenly spread in the test area is mea-
sured. Thinner measurement result is desired because it
implies higher accuracy of relative position for further vector
map depiction. Figure 18 shows the thickness measurement
result. It can be seen that the quality of the reconstructed

FIGURE 17. Top view of point cloud reconstruction in the test area, where
check points and control points are indicated in blue and yellow,
respectively.

FIGURE 18. Point cloud thickness assessment in the test area.

point cloud has been gradually improved from the GNSS/INS
method (Avg. 17.875 cm), NDT method [22] (Avg. 7.85 cm)
to the newly proposed NTD with fluctuation adjustment
method (Avg. 7.35 cm). From the newly proposed method,
in addition to the improved average thickness, the fluctuation
adjustment is added and aimed to find the optimal result of an
area. By doing so, the existing inaccurate GCPs measurement
can be leveraged to guarantee that the previous work [22] can
be performed in realistic open traffic flow scenes.

For absolute position assessment, a total of 20 check points
have been measured and compared to their position in the
point cloud as shown in Figure 19, where the XY plane and
3D root mean square errors (RMSE) are considered in the
evaluation. According to the evaluation results, we can see
that with the aid of sufficiently precise control points, the 2D
average absolute position error can be limited to 4.7 cm, and
3D average absolute position error can be controlled within
8.6 cm by the proposed method.

B. TRAFFIC SIGN CENTER POSITION ASSESSMENT
Figure 20 shows the measurement of the traffic sign center
positions by a human operator and the proposed automatic
extraction method. A total 23 desired traffic signs have been
taken into account in the experiment. Due to the limited
vertical view angle of Lidar, we omitted the false positive
detection results and low-density Lidar points of each traffic
sign in our assessment. By calculating the difference between
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FIGURE 19. Point cloud absolute position assessment in the test area.

FIGURE 20. Center position comparison of traffic sign extraction.

each center position obtained by a human operator and the
proposed automatic extraction method, the average differ-
ences of traffic sign positions in terms of XY RMSE and 3D
RMSE are 29 cm and 42cm, respectively. The result shows
the proposed method is able to address the time exhausting
issue in HD map creation and would further benefit HD map
updating.

In this section, we have presented the performance of the
proposed method in point cloud reconstruction and position
accuracy of automatic traffic sign extraction. Through the
thickness assessment, we’ve shown the proposed method
benefits the reconstruction of point cloud in comparison
to GNSS/INS approach and further reduces the error by
NDT and fluctuation adjustment solution. The produced point
cloud absolute position is secured with high accuracy in few
centimeters; hence the center position of each traffic sign can
be extracted in sub-meter accuracy level to reduce labor work
for HD map creation.

VI. CONCLUSION
In this paper, we have presented an MMS with an enhanced
workflow to further improve the accuracy of point clouds
reconstructed by the previously revealed MMS and deal with
a large scan area for practical applications. To solve the
dispersion problem of the point cloud, a multi-stripe scan
with NDT refinement and fluctuation adjustment have been
proposed in the point cloud reconstruction process with the
aid of GCPs. According to the experimental results, it can
be seen that the point cloud accuracy is secured in open
wide road scenes by the cost-effective MMS configuration
proposed in this paper. Furthermore, the proposed automatic
object extraction based on the reconstructed point cloud with

centimeter accuracy has successfully compensated the lack
of depth information via traditional image object detection.
This work proves the concept of combining image object
detection with accurate point cloud is feasible for efficient
3D object extraction to fulfill the goal of significantly reduc-
ing labor expenses in HD map creation. It is worth noting
that the designed post-processing workflow allows an easy
integration of various detection models. Any state-of-the-
art models (i.e., YOLO or SSD) for object detection can be
easily and straightforwardly incorporated into the proposed
framework to further enhance the detection accuracy. We are
now heading into an integration stage to determine object
detection models which are suitable for use in geodetic coor-
dinates extraction for complex road scenarios. In the future,
we will investigate a challenging topic to automatically link
the relationship among roads, lanes, and 3D objects to achieve
an even more efficient process in HD map creation.
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