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ABSTRACT Fog computing has been widely integrated in the IoT-based systems, creating IoT-Fog-
Cloud (IFC) systems to improve the system performances and satisfy the quality of services (QoS) and
quality of experience (QoE) requirements for the end users (EUs). This improvement is enabled by
computational offloading schemes, which perform the task computation nearby the task generation sources
(i.e., IoT devices, EUs) on behalf of remote cloud servers. To realize the benefits of offloading techniques,
however, there is a need to incorporate efficient resource allocation frameworks, which can deal effectively
with intrinsic properties of computing environment in the IFC systems such as resource heterogeneity of
computing devices, various requirements of computation tasks, high task request rates, and so on. While
the centralize optimization and non-cooperative game theory based solutions are applicable in a certain
number of application scenarios, they fail to be efficient in many of cases, where the global information and
control might be unavailable or cost-intensive to achieve it in the large-scale systems. The need of distributed
computational offloading algorithms with low computation complexity has motivated a surge of solutions
using matching theory. In the present review, we first describe the fundamental concept of this emerging tool
enabling the distributed implementation in the computing environment. Then the key solution concepts and
algorithmic implementations proposed in the framework of literature are highlighted and discussed. Given
the powerful tool of matching theory, its full capability is still unexplored and unexploited in the literature.
We thereby discover and discuss existing challenges and corresponding solutions that the matching theory
can be applied to resolve them. Furthermore, new problems and open issues for application scenarios of
modern IFC systems are also investigated thoroughly.

INDEX TERMS IoT-Fog-cloud systems, matching theory, distributed algorithm, computational offloading.

I. INTRODUCTION
Practically, the Internet of Things (IoT) has become an
integral element for realizing smart practical systems such
as smart cities [1], smart grids [2], smart factories [3], smart
logistics, and supply chain [4], [5]. The fundamental aspect
of IoT-based systems is to connect all devices through the
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Internet protocol to exchange high volume data and process
them to create smart services and applications [6], [7].
Owing to limited computation resources, network, storage,
and energy, IoT devices are inadequate for executing all
computational tasks, especially tasks with huge volumes and
complex data structures. Cloud computing is an essential
solution to this problem because it provides powerful
resources to fulfill tasks efficiently [8], [9]. However, cloud
computing-based solutions do not always meet the expected
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quality of service (QoS) and quality of experience (QoE)
requirements for some classes of IoT applications, especially
latency-sensitive ones because of the long physical distance
between the IoT devices and the remote cloud servers, scarce
spectrum resources, and intermittent network connectivity.

This has led to the emergence of fog computing, which
extends the cloud computing resources (i.e., computing,
storage, and networking) closer to the data generation sources
(i.e., IoT devices), thereby allowing for the prescribed QoS
requirements of services and application to be met by
enabling the fog computing devices (e.g., switches, gateways,
and hubs) to process and offload most tasks on behalf
of the cloud servers in a distributed manner [10], [11].
Recently, the advance of networking generation (i.e, 5G
and beyond) leads to an increasing demand of ubiquitous
computing and pervasive service accesses by a numerous
number of Internet-connected mobile devices and end users
(EUs). Motivated by the necessity of network architecture
enhancement, a paradigm of fog radio access networks
(F-RANs) has emerged as a promising evolution path
for 5G network architecture [12], [13], which along with
cloud radio access networks (C-RANs) [14] provide the
pervasive computing services. In F-RANs, a fog computing
layer is deployed at the edge of networks, allowing a
part of the service and application requirements to be
responded locally without the need of the centralized cloud
computing. Therefore, by taking full advantage of distributed
caching and centralized processing, F-RANs provide great
flexibility to satisfy QoS requirements of various 5G-based
services and applications. Besides providing the cloud like
services to EUs, the fog computing potentially improves
the performance of fog-based systems such as reduction of
service delay [15], and energy saving [16] through efficient
computational offloading algorithms [17]. Ultimately, IoT-
Fog-Cloud (IFC) systems formed by the integration of IoT,
fog, and cloud are able to provide uninterrupted services
and applications with significant QoS improvement along the
things-to-cloud continuum.

To further realize the above benefits of computing
paradigms, the IFC systems require efficient resource allo-
cation and management strategies to perform computational
offloading operations [18]. However, there are many factors
that challenge the design and development of effective
offloading strategies. First, an IFC system consists of hetero-
geneous computing devices with different storage capacity,
computation, and networking characteristics. Except the
cloud servers, the IoT devices (e.g., smart phones, tablets)
and fog nodes (FNs) (e.g., gateways, switches, and hubs)
are resource constrained, thus limiting the capability of
processing a large type of computation tasks. For example,
some IoT and fog devices can support the process of only
one data type such as image, text, video, or audio [19].
In addition, modern applications such as artificial intelligence
and machine learning algorithms require to the computation
of complex tasks, which typically include multiple types of
input data [20]. Second, the diverse task requests also have

a significant impact on offloading performance in the IFC
systems. For example, some fog devices are unable to process
the entire data of heavy tasks owing to a lack of storage and
limitation of computational capability. Consequently, more
tasks are likely to be queued in more powerful resource fogs
causing the over-utilized workload at these nodes. Third,
the request rate directly impacts on the queuing state of
fogs. Therefore, without an efficient resource allocation
policy, a high rate of task request may lead to a high
workload imbalance among the fog devices, as the fog nodes
with powerful computing resources may receive more task
requests.

There are a large number of centralized optimization
techniques and algorithms proposed in the literature to
provide optimal solutions to the aforementioned resource
allocation problems [21], [22]. For instance, offloading
multiple tasks of fog nodes (FNs) to multiple neighbor
FNs (i.e., helper nodes (HNs)) is modeled as a multi-task
multi-helper (MTMH) problem, which aims to allocate the
fog computing resources for processing tasks to minimize
the average delay of task execution. The multi-objective
optimization problem is also investigated to examine the
trade-off of performance in terms of energy consumption,
delay, and execution cost [23]. The optimization based
solutions, however, require a centralized control to gather
the global system information, thus incurring a significant
overhead and computation complexity of algorithms. This
complexity is further amplified by the rapidly increase of
density and heterogeneity of IFC computing systems [24]
because the centralized optimizations many not able to
properly handle the challenges of dense and heterogeneous
fog computing environment when dealing with combination
integer programming problems [25].

The aforementioned limitations of optimization have
lead to a second groups of solutions that apply the
non-cooperative game theory to avoid the cost-intensive
centralized resource management as well as substantially
reduce the complexity of algorithms [26], [27]. Despite
their potentials, such approaches pose several limitations.
First, classical game theoretical algorithms such as best
response require some information regarding actions of
other players [28]. Correspondingly, many assumptions are
introduced in the game theory-based algorithms to simplify
the system models that, in some case, are impractical.
Second, most game-theoretic solutions, for example, Nash
equilibrium, investigate one-sided stability notions in which
equilibrium deviations are evaluated unilaterally per player.
In addition, in the IFC systems, the stability must be
concerned by both sides of players, i.e., resource providers
and resource requesters.

Ultimately, managing resource allocation effectively in
such a complex environment of IFC systems leads to a
fundamental shift from the traditional centralized mechanism
toward distributed approaches. Recently, matching theory
has emerged as a promising technique for resource allo-
cation problems in many applications, which can alleviate
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the shortcomings of game theory and optimization-based
approaches. Alternatively, while the optimization and game
theory based solutions are efficient in a some limited
scenarios, the matching-based approaches have potential
advantages owing to the distributed and low computational
complexity algorithm. However, to reap the benefits of
matching theory for task offloading and resource allocation
in fog environment there is a need of advanced frameworks
to handle their intrinsic properties such as heterogeneity of
fog computing devices as well as the novel QoS demands
of future generation systems. This directly expose new
challenges and associated open issues.

In these regards, this paper provides four important
contributions as follows.
• An end-to-end model of IFC system and its associated
features such as architecture, computation tasks, com-
putation offloading models, and a generic optimization
form of task offloading problems are described to
highlight the intrinsic properties of fog-based computing
systems.

• The fundamental concept of matching theory and its
key models are summarized towards the applications for
resource allocation problems.

• The paper emphasizes on reviewing and investigating
the proposed matching-based distributed algorithms
in the existing literature to solve the computation
offloading related problems.

• Remaining challenges and open issues are explored and
discussed to provide the future directions of researches
and development regarding the usage ofmatching theory
in the new problems and application scenarios.

The remainder of this paper is organized as follows.
Section II briefly summarizes the key concepts of matching
theory including models, classification, and conventional
algorithmic solution. Section III reviews the related works
that cover existing distributed algorithms without using the
matching theory, and the applications of matching theory
for resource allocation problems in the wireless networks.
Section IV presents the generic models regarding the IFC
systems, computational tasks, computation offloading mod-
els, and generic optimization problem formulation. Section V
discusses and analyzes the matching-based models proposed
in the literature to solve the computation offloading problems.
Section VI explores the remaining challenges and discusses
associated open issues. Section VI concludes the paper.

II. RELATED WORKS
Computation offloading is a pivotal operation in the IoT sys-
tems that leverage the edge and fog computing technologies
to improve the QoS and QoE. To design efficient offloading
algorithms that cope with challenges of fog computing
environment and various requirements of services, there are
some sort of algorithms and techniques developed in the
literature.

In a comprehensive assessment on fog computing archi-
tecture and algorithm introduced in [29], the computation

offloading process involves three specific problems that
are task offloading and load distribution, task scheduling,
and resource sharing. The authors evaluate and discuss the
proposed algorithms according to the five criteria including
heterogeneity, QoS management, scalability, mobility, feder-
ation, and interoperability. The algorithms are derived from
different approaches such as global optimization, distributed
computation, and learning-basedmethods. However, themost
of algorithms do not satisfy all the predefined criteria. For
example, the global optimization-based algorithms are no
longer to support the scalability requirement owing to its
computation complexity in the case of large scale systems.

The work [30] concerns on the optimization models for
optimizing the system performance in terms of latency,
energy consumption, caching, service placement, and load
balancing. Many approaches applied to solve the opti-
mization problems include mix-integer linear programming
(MILP), graph theory, game theory, and greedy methods.

Evaluating the distributed computation offloading, the
study [18] emphasizes on the locations (i.e., cloud, fog,
or local at terminal nodes) where the task offloading is taken
place. Accordingly, the algorithms take into account various
factors such as task requirements, computation capability of
computing nodes, network scale to determine the appropri-
ate locations. The evaluation exposes that the centralized
optimization-based algorithms is able to derive the optimal
performance of systems, although they suffers from the high
computation complexity in the large scale systems. Many
distributed and greedy algorithms are investigated, but some
of them are efficient in limited application scenarios.

The authors in [31] focus on stochastic-based offloading
mechanisms in three major computation environments:
mobile cloud computing (MCC), mobile edge computing
(MEC), and fog computing (FC). The algorithms are
constructed based on the mechanisms following Markov
chain, Markov process, and hidden Markov models.

The authors in [32] conduct a comprehensive review of
existing literature that applies machine learning for deriving
the computation offloading mechanisms in the computing
systems. Furthermore, the associated comparative analysis
is provided for a comprehensive comparison of stochastic
Markov-based offloading mechanisms.

In this work, we conduct a survey of recent offloading
algorithms using matching theory that potentially release
the shortcomings of aforementioned algorithms by its
lightweight and distributed mechanism [33]. To the best of
our knowledge, our paper is the first work accessing the
state-of-the-art in the matching theory-based algorithms for
computational offloading in the IFC systems.

III. MATCHING THEORY FUNDAMENTALS
A. BASIC CONCEPT
Matching theory has been considered as a potential mecha-
nism to solve the resource allocation problems in the context
of wireless networks [34], [35], [36] since it can alleviate
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some shortcomings of game theory and optimization-based
solutions. Basically, matching theory provides mathemat-
ically tractable solutions for the combination problem of
matching players in two distinct sets, depending on the indi-
vidual information and preference of each player. Although
the main matching models in the literature deal with two
sets of agents, it should be noted that there are matching
models that are among the agents in one set only (i.e., stable
roommate problem [37]), and matching models among three
sets of agents [38], [39].

The basic task offloading problems can be interpreted as a
matching problem between the setR of computing resources
(R = I ∪ F ∪ C) and the set T of computation tasks.
Depending on the scenarios, the resources can be of different
abstraction levels, representing base stations, time, power,
storage, CPU. Due to the limitation of resource, each fog
computing device has a quota that defines the maximum
number of players (tasks) with which it can be matched.
The main goal of matching is to optimally match resources
and tasks given their individual, often different, objectives
and exchanged information. Each resource (task) builds a
ranking of the tasks (resources) using a preference relation.
The concept of preference represents the individual view
that each resource or task has of the other set, based on
the local information. In its basic form, a preference can
simply be defined in terms of an objective utility function
that quantifies the QoS achieved by a certain resource-task
matching. However, a preference is more generic than a
utility function in that it can incorporate additional qualitative
measures extracted from the information available to tasks
and resource subject the dynamic change of fog computing
environment. In the most of works in the literature, the utility
function is used to construct the preference lists of agents.

The inherent presence of selfishness and rational of agents
prevents the systems to derive a global optimal solution. The
objective of matching game is to achieve stability instead of
optimality, at which there is no incentive incurred to devise
the current matched pairs of agents. The concept of stability
is defined differently based on the matching models, which
are discussed in the following sections.

B. CLASSIFICATION
There are many variants of matching problems [40]. From
the preference list point of view, it distinguishes three
types of preference lists including complete, ties, and
incomplete PL with ties. Meanwhile, for applying in the
resource allocation problem of wireless networks, [41]
consider canonical, matching with externalities, matching
with dynamics model. Regarding the transfer between two
sets of matching game, there are two classes of matching
problems: matching with transfer and matching without
transfer. In the context of resource allocation for computation
offloading in the IFC, another features such as incomplete,
ties PL, transfer as well as externatilies are considered to
be variants of these matching classes. Regarding the number
of sets of player involving the matching, there are three

typical types of matching models including one set (i.e., the
roommate matching problem), two sets, and three sets (three
dimensional matching). In the followings, we discuss the
matchingmodels according to three classes ofmatching game
between plays in the two sets.

1) ONE-TO-ONE MATCHING
The most prominent model of one-to-one matching is
marriage model. In this model, there is two distinct sets
of agents represented by X = {x1, x2, . . . , xn} and Y =
{y1, y2, . . . ., yk}, respectively. Each agent has a complete
preference list over the agents on the other side. Assume
that an agent x ∈ X has a preference list P(x) =
{y2, y4, x, y1, y3, . . .}. This means that x prefers agent y2 to
y4 and prefers remaining single (x) over matching with y1 or
y3. Denote yi �x yj to express that an agent x prefers agent
yi to yj. In particular, as yi �x yj there exists a tie in the
preference list of agent x.

The one-to-one matching model is defined as follow:
Definition 1: The outcome of one-to-one matching model

is a matching M: X ∪ Y 7→ X ∪ Y such that the three
following constraints are satisfied:

• For any x ∈ X ,M(x) ∈ Y ∪ {x},
• For any y ∈ Y ,M(y) ∈ X ∪ {y},
• For any x ∈ X and y ∈ Y , x = M(y) if and only if
y =M(x).

In the one-to-one matching model, each agent x can only
be matched with one agent y, and x remains unmatched if
M(x) = x. The objective of matching is to reach the stable
status for all pairs.
Definition 2: A matching M is pairwise stable if there is

no block pair (x, y).
Definition 3: (x, y) is a block pair for a matching M if

three following conditions are satisfied:

• M(x) 6= y,
• y �x M(x),
• x �y M(y).

2) MANY-TO-ONE MATCHING
In the many-to-one (or one-to-many) matching modes, each
agent of one side can be matched with multiple agents of
the other side but the reverse is not valid. Similar to one-to-
one matching, P(x) = {y1, y2, x, y4, y5, . . .} illustrates that
agent x prefers y1 to y2 (y1 �x y2), and prefers keeping
the position unfilled over other people like y4 and y5. Unlike
one-to-one matching, each agent y has a positive quota qy to
represent the maximum number of agents in the set Y it can
be matched with. Generally, many-to-one matching can be
defined as follow:
Definition 4: The outcome of many-to-one matching

model is a matchingM: X ∪Y 7→ X ∪Y such that the three
following constraints are satisfied:

• |M(x)| = 1 for every agent x ∈ X and M(x) = x if x
is unmatched,
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• |M(y)| = qy for every agent y ∈ Y; if the number of
agents in M(y) is k and k < qy, then M(y) will have
qy − k copies of y,

• M(y) = x if and only if x is an element ofM(y).
With this definition, M(x) = y means that agent x is

matched with agent y, and M(y) = {x1, x2, y, y} indicates
that the agent y with the quota qy = 4 has been matched
with two agents x1 and x2 and has two unfilled matching
positions. The objective of many-to-one matching is to obtain
the stable matching, which is defied in the same way as one-
to-one matching.

3) MANY-TO-MANY MATCHING
In the models of many-to-many matching, the number of
matchings for the agents on the both sides are not restricted
to one. Denote qx and qy as the respective quotas for agents
x ∈ X and y ∈ Y . Generally, the many-to-many matching is
defined as follows:
Definition 5: The outcome of many-to-many matching

model is a matchingM: X ∪Y 7→ X ∪Y such that the three
following constraints are satisfied:
• |M(x)| = qx for every agent x ∈ X ; if the number of
agents in M(x) is k and k < qx , then M(x) will have
qx − k copies of x,

• |M(y)| = qy for every agent y ∈ Y; if the number of
agents in M(y) is m and m < qy, then M(y) will have
qy − m copies of y,

• M(y) = x if and only if x is an element ofM(y).

C. CONVENTIONAL ALGORITHMIC SOLUTION
The basic algorithm known as the deferred acceptance (DA)
was introduced firstly in [42] to find the one-to-one stable
matching for the marriage problem. This algorithm can reach
the convergence in the polynomial time for the one-to-
one matching problems, and very fast for the many-to-one
matching models. Fundamentally, DA is an iterative method
over the players of sets, in which one side proposes and
the other side decides to reject or accept the proposal based
on PLs. With this approach, DA is completely distributed
since the play is just based on the local information for
deriving the decisions. Algorithm 1 shows the key procedures
to implement the DA algorithm to achieve the outcome for
the one-to-one matching problem. Notably, we consider a
complete, strict, and transitive PLs. In addition, the number of
agents of both sets are equal, thus at the stability of matching
outcome, all agents are matched. The variants such as tie,
incomplete PLs, or unequal cardinality of sets are modified
according to the application scenarios, which are discussed
additionally in the next survey section.

IV. SYSTEM AND OFFLOADING PROBLEM DESCRIPTION
A. SYSTEM MODEL
Ageneral IFC systemwith three-tier architecture is illustrated
as in Fig. 1. The system consists of three layer: IoT, fog, and
cloud, which are connected by LAN, and WAN to provide

Algorithm 1 The Classical DA Algorithm for One-to-
One Matching Problem
Input: P(x), P(y)
// Preference lists of x and y

Output:M
1 begin
2 Initialize:M(x) = x &M(y) = y, ∀x ∈ X , ∀y ∈ Y

// All agents x and y are unmatched

3 while ∃x (M(x) = x) do
4 M(x)← y (y = P(y)[0])

// Proposing the first y ∈ P(y) to be matched

with x

5 ifM(y) = y then
6 M(x) = y // Match y with x

7 else
8 M(y) = x ′ // y is already matched with x′

9 if x �y x ′ then
10 M(x) = y // Match x with y

11 M(x ′) = x ′ // x′ becomes unmatched

12 else
13 M(x) = x// x is still unmatched

14 M(y) = x ′// (x′, y) remains matched

FIGURE 1. The typical architecture of IFC systems.

various services for IoT-connected users such as computing,
caching, storage, and networking services.

The IoT layer is recorded by a set I = {d1, d2, . . . , d|I|}
of IoT devices, which generate computation tasks recorded
in a set T = {T1,T2, . . . ,T|T |}. Similarly, F =

{F1,F2, . . . ,F|F |} and C = {C1,C2, . . . ,C|C|} represent
the sets of fog devices, and cloud servers, respectively.
In practical applications, the fog devices are grouped into
clusters, each provides a set of specific IoT applications
for the end users. And in the large-scale IFC systems,
there are multiple domains of fogs, which are federated
for jointly process and offload the computation tasks. The
fogs in each domain are deployed in a distributed manner.
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TABLE 1. Resource state of fog nodes Fi .

In some scenarios, there is a presence of centralized fog
controllers such as fog service providers to manage the fog
resources in the domains as well as the security related
issues. The fog computing devices are characterized by
heterogeneity in terms of computing, networking, and storage
capacity depending on device types. Practically, the typical
fog devices deployed in the IFC systems include networking
devices such as gateways, switches, routers, and a few to
name. In many scenarios, the cloudlets [43] and micro data
centers (mDCs) [44], [45] are added to the fog domains to
enhance the computing capability as mini-servers. Basically,
the cloudlets and mDCs are resource-rich devices, which are
located in a one-hop proximity of end users or mobile devices
(MDs) for improving the QoS of mobile applications. Table 1
shows an example of resource states of fog computing devices
with respect to memory capacity of queue buffer (M), CPU
frequency (f), and CPU processing density (γ ).
In the cloud tiers, virtual machines (VC) are deployed in

the data centers and servers to flexibly provide the services
requested by lower layers (i.e., IoT and fog layer).

For the sake of clarity, Table 2 provides notions and
abbreviations used mostly in the paper.

B. COMPUTATIONAL TASKS
Each computing task Tk can be described with a tuple
Tk = 〈Ak ,Ok ,Bk ,Dk 〉, where Ak and Ok represent the input
and output data size (bits) of task, and Bk is the computational
resource demands (CPU/GPU cycles) to execute the task.
In many application scenarios, there are latency-sensitive
tasks, which require to be completely executed within the
prescribed deadlines Dk .

Basically, Ak can include following features: total size
(in bits or bytes), splittable or non-splitable, number of
data types. The sizes of input data of tasks can be
ranged from kilo-bytes to tera-bytes depending the specific
applications [46]. Based on this feature, the tasks can be
classified into light, medium, and heavy tasks as studied
in many of existing works [15], [47] for further analyzing
the impact of task sizes on the performance of computation
offloading approaches.

The divisibility of tasks, particularly heavy tasks with large
input data sizes is also investigated in the offloading cases.
Accordingly, the whole input data of a task is definitely
processed by a single computing device (e.g., FN, cloud,
or even powerful IoT node) as it is unable to be splitted into
data subsets. Whereas, in several scenarios, a single task can
be divided into multiple subtasks with smaller data sizes.
Such the task division is employed to get benefit from parallel

TABLE 2. Important notions and abbreviations used in this paper.

computing since the substasks can be processed by different
devices simultaneously.

A task can also be partitioned into subtasks based on
the types of input data. For example, a typical AI and ML
task may include multiple types of data such as text, image,
video, and audio as studied in [19] and [48]. This partition
is suitable for designing the efficient resource allocations
in heterogeneous computing environments, in which there
are limited number of devices able to handle the all data
types. In other words, some devices only process text-type
data, some are capable to process video-type data, and so on.
Regarding the resources needed for computation offloading
operations, there are many attributes included inBk to process
the task. Some of existing works just only consider Bk as
the number of central processing units (CPU cycles) [25].
In another scenarios, GPU and memory requirements are
considered during resource allocation for executing heavy
and complex tasks such as the AI, and ML ones [49].

C. COMPUTATIONAL OFFLOADING MODELS
There are manymodels introduced in the literature to perform
the computational offloading operations in the IFC systems.
Depending on the application scenarios, the models are
established appropriately to support the systems to achieve
a single objective or multiple objectives simultaneously such
as minimization of total energy consumption, minimization
of offloading delay, and maximization of resource utilization,
and fairness and balance of workload. Fundamentally,
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an offloading model takes into account multiple factors
including the system architecture, the task properties to derive
efficient algorithms, that determine offloading locations,
times to offload, and how a task is offloaded (how data of task
is handled). In the following paragraphs, we summarize and
discuss these relevant aspects to highlight the key features of
popular offloading models in the literature.

Regarding the offloading locations, there are two major
classes of offloading models including intra-layer and inter-
layer offloading. The former refers to models that the
offloading operations take place in the same layer, whereas
the later involve multiple layers (e.g., between IoT and fog
layer, between fog and cloud). Concretely, the computational
offloading processes can take place only within a stratum of
IFC systems where the computing devices in the same tier
(e.g., the IoT, fog, and cloud tier) can share their available
resources to handle the tasks cooperatively. Recently, the
advance of technologies can equip with modern IoT devices
more features regarding powerful resource, computing capa-
bility to process tasks locally. In combination with the
emergence of device-to-device (D2D) communication tech-
nologies, the computational offloading between IoT devices
is pervasive in the future IFC systems. In the same sense,
the tasks can be offloaded within the fog layer and cloud
layer, mainly to balance the workload as well as improve the
resource utilization [50]. However, the heterogeneity of FN
types exposes a challenge of communication between them.
It requires unified middlewares and protocols to enable fog-
to-fog communication and collaboration such as FRAMES
developed in [51] to jointly offloading the tasks. Otherwise,
FNs can communicate via a centralized agent such as FSP or
brokers in their fog domains.

In most of application scenarios, the offloading processes
involve multiple layers. For example, as per [15], a task
generated by an IoT device can be processed by itself locally
or offload to a FN or the cloud finally. The associated
analysis reveals that the offloading locations for tasks should
be flexible with respect to the task type to get the benefit
of offloading operations. Concretely, the heavy tasks should
be offloaded to the cloud tier, while the medium tasks
are processed by FNs. In addition, the light tasks can be
computed locally by IoT devices if they have sufficient
resource or offloaded to FNs, otherwise. As the tasks can
be splittable, one part of task can be processed by IoT node
and the other by the fog or cloud. Finally, there exist several
application scenarios, in which the upper layers require
the lower layers to execute the task. Theses uncommon
offloading models include cloud offloading to fog/IoT and
end user devices, fog offloading to the IoT and end user
devices for specific purposes of applications [18].

The determination of times to offload tasks is an important
aspect in the offloading models. Generally, offloading is
needed when TNs are unable to process the tasks locally,
or processing them may not satisfy the QoS requirements.
Although the modern IoT devices and end user equipment
can process some types of tasks locally, the majority of

tasks (e.g., complex and heavy tasks, and sporadic tasks
emergency cases) generated in the IoT layer are offloaded
to the upper layers. However, the task offloading incurs
additional cost such as communication delay and energy
consumption. Therefore, the offloading model requires an
inclusion of mechanism to monitor the system performance,
traffic flow rates, network conditions that can support to
make the offloading decisions appropriately. For example,
the FOGPLAN framework in [22] can provide the dynamic
offloading strategies to adapt to the dynamic change of
QoS requirements. By observing and analyzing the task
processing queue of FNs constantly, tasks currently resided
in the processing queues of these FNs must be offloaded
to HNs if the predicted processing delays are no longer to
meet the deadlines of tasks. The network reliability is also
concerned in the fog networks since it directly impacts on the
communication delay of offloading processes [21].

The offloading models also specify how the input data of
tasks is offloaded and processed. Generally, a full offloading
method is applied for a task when its whole data is indivisible
and processed by a single HN. Conversely, as a divisibility
of task is enabled, a partial offloading scheme can be used to
offload a fractional part of task to HNs while the other part
of task is processed locally by TN. In the most of studies,
a task is assumed to be decomposed into two subtasks, thus
there needs only one HN to offload the subtask. As the
subtasks are totally independent, the task division is an
effective technique employed in the offloading models to
cope with the heterogeneity of computing device resources,
and simultaneously improve the performance of computing
operations. For example, according to the FEMTO model
in the work [52], each task is divided into two subtasks
with different data sizes, which are then processed by the
IoT node and offloaded to the fog entity respectively. This
method contributes to minimizing the energy consumption
of task offloading while achieving the workload fair among
the fog nodes and satisfying the deadline constraints of
tasks. Similarly, the partial offloading is utilized in the task
offloading models for the heterogeneous fog networks to
reduce the task execution delay [26]. Dividing a task into
multiple (more than two) subtasks is also considered in [48]
to exploit the parallel computation of subtasks at different
FNs. As analyzed in [26], compared to the full offloading
model, the partial offloading offers more advantages in terms
of delay reduction, energy saving, resource utilization, and
workload balancing. The independence of subtasks enabling
the parallel processing of subtasks is obviously a key to
achieve these advantage. However, in practice, some or all
subtasks of a tasks can exist a data dependency relation. For
example, the output of a subtask can be an input data for
another subtask. Thus, completing the task requires a subtask
scheduling plan to with respect to the subtak processing
order. This in turn can impact the performance of partial
offloading models. For instance, as evaluated and analyzed
in [48], a number of subtasks for a task can be optimized
depending on the system context. In addition, not all tasks
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FIGURE 2. A dynamic computational offloading model is proposed in [48]
that integrates partial and full offloading to balance the workload in the
fog layer. The full offloading plan is used for task T3, while the subtasks
T11 of T1, subtasks T21 and T22 of T2 are offloaded partially by F1, F2 and
F3 respectively. T4 is processed locally by F0.

should be divided because more subtasks can probably lead
to a coupling resource problem. An offloading framework in
FRATO is then introduced based on many factors such as the
FN resource status (e.g., queue status, computing capability),
task request rates, and task properties (e.g., divisibility) to
offer a dynamic offloading policy. As illustrated in Fig. 2,
FRATO dynamically applies the partial offloading and full
offloading modes for the tasks based on the queue status of
FNs. In this way, FRATO is able to significantly reduce the
offloading delay as well as improving the resource utilization,
especially in cases of high rate of task requests. A similar
investigation is presented in [51] that considers three models
of task processing, in which the subtasks can be executed in
sequential, parallel, and mixed processing order.

D. OPTIMIZATION PROBLEMS OF COMPUTATIONAL
OFFLOADING
Denote C = {Ci,Cj,Ck , . . .} as the set of objective
functions, established by individual computing nodes (i.e.,
IoT nodes, FNs, or clouds) and by the system for the
computational offloading performance at a given time. Some
of typical objective functions concerned in the literature
include total consumption energy, average task execution
delay, total payment cost of resource usage, fairness and
workload balancing index, and outage probability. Moreover,
there also present objective functions of individual resources
to indicate the inherent selfishness and rational of HNs. These
kinds of objective functions are referred to as utility ones,
which correspond to the benefits and revenues of available
resource provision. Summarily, the generic optimization
problem in the IFC systems can be represented in the
following form:

P : min(Ci) &/ max(Cj) &/ max(Ck ) &/ . . .

s. t. Constraints. (1)

Depending on the application scenarios, the problem P can
be in form of single or multi-objective model. Regardless

the ultimate objectives of problems, the constraints involve
the resource competition, resource limitations, and task
scheduling. Concretely, a HN can receive multiple requests
for task offloading. However, a certain number of requests
are accepted to be processed owing to the limitation of
resource such as limited buffer capacity, low residual energy.
Furthermore, scheduling the tasks in HNs is considered to
respect to the QoS requirements. From the global point of
view, the problem becomes a combinatorial problem, which
is proven to be NP-hard due to the natural presence of
coupling resource problems [53]. Therefore, achieving the
globally optimized solution is infeasible, especially in the
large-scale systems. In addition, there is an extensive cost of
overhead to collect the global information. These issues urge
the need to design the distributed algorithms to support the
computational offloading processes efficiently.

V. MATCHING-BASED MODELS FOR COMPUTATION
OFFLOADING PROBLEMS
Many models and associated algorithms have been proposed
to support distributed computation offloading processes in
the fog-based environment. In the following, we review them
according to the different types of matching models (i.e., one-
to-one, one-to-many, and many-to-many) described in the
previous section.

A. ONE-TO-ONE MATCHING
A task assignment problem is formulated in [54] to describe
the computation offloading in vehicular fog networks
(VFNs). In these networks, vehicles with available computing
resources can act as vehicle FNs to offload tasks of user
equipment (UEs); hence contributing to a reduction of
overload on the base station (BS) during the peak time as
well as improve QoS or QoE (e.g., delay). Given that sharing
resources is conditioned naturally in the context of VFNs,
a contract-based incentive mechanism is proposed to promote
FNs to perform task offloading. Due to the heterogeneity of
resource states, FNs are classified into a set of types, each
has different contract item (i.e., reward) formulated by the
BS. Considering the task offloading in a certain time slot,
each UE has a task that must be offloaded by a certain FN;
hence the task assignment problem in this context is treated
as a one-to-one matching game. In addition, UEs rank the
vehicles by using a preference function G that encapsulates
the delay performance and resource pricing. Accordingly, as a
task generated by UE Un is offloaded and processed by a
vehicle Vm, Gn,m is defined by:

Gn,m =
1

Dn,m
− Pm, (2)

where Dn,m is the total delay of offloading, and Pm
is the price for using the resource of Vm. Pm is zero
initially, and will increase according to the price rising
rule proposed in the price-based stable matching algorithm.
The simulation based evaluation and analysis show that the
proposed resource allocation and task assignment scheme
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can achieve sub-optimal performance in terms of social
welfare and offloading delay compared with the optimal
solutions. Importantly, the matching-based solution offers
lower complexity of computation because of the nature
distribution of DA algorithm.

A one-sided one-to-one matching is applied in [55] to
develop a distributed algorithm for task offloading in vehic-
ular fog computing (VFC) environment. In the considered
offloading scenario, tasks sent from user vehicles (UVs) can
be offloaded either by nearby vehicles with residual resources
acted as vehicle fog servers (VFSs) or by the remote edge
server through road side units (RSUs). The inherent presence
of information uncertainty in the vehicular network typically
featured by time-varying state of vehicle-to-vehicle (V2V)
channels for offloading, available resources and volatility of
VFSs leads to a lack of global information in the server
side (i.e., the edge server) to derive the globally optimal
offloading solution. The matching theory is used in this
situation to provide a stable and efficient alternative. Recall
that, in each time slot, a task generated by UV can be
offloaded to only one VFS, and each VFS is able to process
at most one UV’s task; hence the task offloading problem
is transformed into one-to-one matching game. In addition,
an online learning technique is augmented to cope with
the information uncertainty by introducing upper confidence
bound (UCB) concept inspired from reinforcement learning
techniques. The fundamental of UCB is to estimate the future
state based on the historical observations while considering
the uncertainty of these data known as confidence bound
(CB). Furthermore, to capture the volatility of VFSs, the
concepts of occurrence awareness and matching conflict
awareness are embedded in CB. Consequently, the authors
propose a preference function used by a UV i to rank a certain
VFS j at a time slot t , which is defined as

Ui,j,t =
1

Di,j,t−1
+ CB− Hj, (3)

where Di,j,t−1 is the historical offloading delay at time slot
t − 1, and Hj is price for using the resource of VFS j. The
simulation analysis demonstrates that the proposed approach
can efficiently alleviate the severe impacts of volatility and
resource conflict. More importantly, it enables the system to
obtain close-to-optimal delay performance compared to the
case of global information availability.

An integration of Stackelberg game and matching game is
formulated in [56] to study the task allocation in three-tier
fog networks targeting in the patient health monitoring
applications. Periodic tasks (i.e., patient health data analysis)
and sporadic tasks (e.g., emergency case) are sent and
requested from home agents (HA) to the cloud node (CN).
In turn, CN assigns FNs to execute these tasks such that
the task deadlines are met. Transfer is considered in this
game for the interaction of HAs, CN, and FNs. With this
configuration, the objective of system is to maximize the
resource utilization while minimizing the outages. From the
game perspective, the objective is to maximize the utilities

of three players. To achieve these objectives simultaneously,
the author divides the problem into three sub-problems.
Accordingly, a pricing model is proposed to optimize the
price of per resource unit, thus maximizing the utility of
CN. Hence, HAs are based on the prices and the deadline
constraint of task to derive the required resources such that
it maximize the utilities of HAs. Finally, CN allocates FNs
to HAs efficiently to maximize the utility of FN as well
as maximizing the resource utilization and minimizing the
outages. While the first two sub-problems are solved by
Stackelberg game, the last is addressed using the one-to-one
matching-based algorithm. The evaluation analysis shows
that the proposed matching-based algorithms can handle the
sporadic tasks with satisfied deadline compared to the greedy
offloading solutions because the tasks are allocated in the
more appropriated resources for computing. In addition, the
proposed solution also offers an improved resource utilization
at the fog computing nodes.

B. MANY-TO-ONE MATCHING
Most of matching-based algorithms are many-to-one types
to apply for two distinct sets including the task set T
and the computing device set R = I ∪ F ∪ C. With
this model, a certain computing node in R can process
multiple tasks, thus resulting in a many-to-one matching
problem.

Motivated by the emergence of device-to-device commu-
nication (D2D) paradigm, modern IoT devices in the IoT
networks can share and allocate available resources among
themselves to enable interoperability of processes such as
sensing and actuation tasks. A roommate matching model
is developed in [57] for pairing these IoT nodes, which are
deployed in the same fog domain. Based on the state of
resources, each device can determine its quota, indicating
number of IoT devices it can pair to share the resources.
In addition, the utility function accounting for energy
consumption and resource pricing cost is established and
measured to use in the preference list construction of nodes.
The Irvings matching algorithm [58] is applied and refined to
endure a stable pairing between IoT devices. In particularly,
compared to the pairing model between IoT node with access
points (APs), the stable pairings of IoT nodes in the same
domain gains more benefits in terms of energy consumption
reduction, and resource utilization improvement compared to
the random and greedy pairing approaches. Such the benefits
are resulted in from the utilization of IoT nodes with available
resources, which can take charge as computing nodes to
serve tasks appropriately. The matching-based mechanism
ensures to construct a stable matching between pairs of IoT
nodes as well as pairs of IoT node and AP without resource
conflicts.

The work [59] considers the task offloading carried out by
a set F of FNs such as APs, routers, switches. The set of
IoT nodes in the IoT layer generates a corresponding set T
of computation tasks, which belong to different types of IoT
applications. Recall that there is a limited number q of tasks
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offloaded by a certain FN due to the limitation of resource (i.e.
computing, buffer storage). Therefore, the task offloading
problem can be viewed as a many-to-one matching game
between these two sets. According to [59], the agents of sets
construct the preference lists based on utility functions, which
account for the communication cost, waiting time in queues,
and the execution delay of task. Accordingly, the utility of a
task t ∈ T is calculated as follow:

U f
t =

1
Dctf +Wtf

, (4)

where Dctf is the communication delay cost required to
transmit the task t from the IoT device to the fog node f ,
andWtf is the expected waiting time in the queue of f before
the task is being processed. In the other side, the agent f
of computing resource can obtain the utility according the
following equation.

U t
f =

1
Dctf +Wtf + Dextf

, (5)

where Dextf is the execution delay to complete the
task t by f .
The association of waiting time into the utility function

leads to the presence of externalities of matching problem,
in which the preference lists of agents can change after a
pair is matched. Therefore, the DA-based algorithm requires
a cost of overhead resulted in from the exchange of control
packets among FNs to adjust the decision makings (i.e.,
acceptance or rejection of proposals) over iterations. With
this approach, the outcome of matching game is to achieve
a two-sided exchange-stable (2ES) matching, which handles
the externality efficiently. The simulation results show that
the proposed algorithm outperforms greedy and random
offloading solutions in terms of worst total completion time,
mean waiting time per task, mean total time per tasks, and
fairness.

The work [60] studies a dynamic task offloading combin-
ing the partial and full offloading in the fog-cloud networks
to minimize the total energy consumption. In this model,
a computation task can be processed locally by TN or
offloaded by HN or by the cloud server. In addition, the tasks
can be divided into multiple independent subtasks, which can
be processed in parallel by HNs and the cloud. Virtually,
at a certain time of offloading decision making, the system
is modeled by two sets of agents including the set of TNs T
and the setH of helpers includingHNs and cloud. Each helper
Hi ∈ H constructs its PL based on a service efficiency (SE)
indicating the channel quality (i.e., transmitting data rate)
from TNs to it, whereas EE (Energy Efficiency) is used by
TNs to rank the agents of helper set. In mathematical form,
EE(k, i) = Rk,i/Pk,i, where Rk,i is the CPU computation
capability and Pk,i is the computation power when a task Ti
is offloaded by a helper Hi. The work then proposes SMETO
algorithm based on the DA procedure and the constructed
PLs to achieve the one-to-many stable matching between T
and H. Evaluated by the simulation analysis, the outcome

of matching shows its benefit in reducing significantly the
offloading consumption energy compared to the random
approach.

A task offloading framework known asMETO is presented
in [61] aiming to reduce the total energy consumption and
overall full offloading delay in the IoT-fog network. In this
network model, each IoT device generates a single task,
and the resource of each fog node (FN) is represented by
a number q of virtual resource units (VRU). In addition,
there is no local computing enabled the IoT nodes, thus
the tasks are offloaded by the fog nodes. This offloading
model leads to a form of one-to-many matching problem
between the IoT device set I or the corresponding task
set T and the fog node set F , in which qi is the
quota of agent Fi ∈ F . As considering jointly multiple
criteria (i.e., energy consumption minimization and delay
minimization) for the offloading decision-making, METO
employed a hybrid CRITIC and TOPSIS-based technique
to produce the preferences of both sets. CRITIC (criteria
importance through inter criteria correlation) is used to
evaluate the criteria and determine the weights of resource
allocation strategies, whereas TOPSIS (technique for order of
preference by similarity to ideal solution) uses these weights
for ranking the agents of opposite sets.With this approach, the
produced preference lists are strict, complete and transitive,
therefore ensuring to obtain the stable matching. Using the
simulation-based comparative analysis, METO shows its
advantage in reducing the total consumption energy as well
as the overall delay compared to the baseline algorithms
including ME [59], SMETO [60], and a random resource
allocation policy.

Similar toMETO, a one-to-manymatching model between
the task set T and the FN set F is used in [62] to
seek for an efficient task offloading algorithm in the IoT-
fog systems. However, the system considers the presence
of fog service providers (SPs), each of which manages
the resources of fog nodes in its domain. Consequently,
the task offloading problems is transformed into a student
project allocation (SPA) game [63], in which IoT devices
(or tasks), FNs, and SPs correspond to students, projects,
and lectures respectively. To obtain the multi-objectives of
system is challenging due to the selfishness and rational of
individual agents. Alternatively, while the objective of IoT
device is to minimize the offloading delay as well as the
consumption energy, SPs aim to maximize the hosting cost
and minimize the outages (i.e., number of tasks exceeding
the their deadlines). The work further presents a DA-based
distributed task offloading algorithm called SPATO to tackle
the challenge. In particular, the preference lists of agents are
constructed using the analytical hierarchy process (AHP) [64]
that accounts for multiple criteria of system wise objectives
to obtain the rankings. The simulation results indicate that
the proposed algorithms enable the network to achieve a
reduced offloading delay and energy consumption as well as
minimumoutage compared to the randomoffloading plan and
SMETO [60].
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In the same consideration of task offloading problem as
studied in [62], an efficient offloading algorithm called LETO
is proposed in [65], aiming at balancing the workload of
FNs. A one-to-many matching model between a task set T
and a FN set F with minimum and maximum quotas is
formulated to access the impact of resource capability of
FNs on the workload distribution strategy. In addition, with
respect to the deadlines of tasks, the PLs of TNs and FNs
are constructed based on the expected offloading delay and
the deadlines, respectively. Basically, fi �tk fj if Dk,i <
Dk,j, where {fi, fj} ∈ F , tk ∈ T , and Dk,i is the total
offloading delay if tk is processed by fi. In the other side,
ti �fk tj if di < dj, where di is the deadline of ti.
The work then introduces a multi-stage deferred acceptance
algorithm (MSDA) to achieve the fair and pareto-optimal
matching. Based on the simulation analysis, LETO is able to
balance the workload of FNs efficiently while minimizing the
outages.

The work [47] introduces an algorithm abbreviated by
DATS for offloading dispersive tasks in the fog and cloud
networks. Given the presence of TNs and helpers (i.e.,
coalition of FNs and cloud) in the network, the tasks
can be processed by either partial or full offloading mode
dynamically. In particularly, a task can be splitted into
multiple subtasks, which are then processed by different
helpers in parallel to reduce the overall task execution delay.
DATS incorporates two algorithms to achieve the objective
of task offloading minimization, which are progressive
computing resource competition (PCRM) and synchronized
task scheduling (STS). Concretely, PCRM is a one-to-many
matching-based algorithm to yield an efficient resource
allocation strategy between task set T and resource set H
of helpers. A new index called processing efficiency (PE)
is defined to support the production of preference profiles
for the helpers. PE encapsulates communication and com-
putation delay to examine the delay-oriented performance of
resource allocation strategy. Recall that PE is calculated as
follows for fog a FN m and the cloud k when they execute a
task Tn:

PE(n,m) =
1
rn,m
+
ηn

fm
+
µn

rm,n
, (6)

where rn,m is data rate from TN n to FN m, ηn is processing
density of Tn, fm is CPU frequency of FN m, and µn is
output-input ratio of Tn.

PE(n, k) =
1
r tn
+
ηn

fk
+
µn

rrn
, (7)

where r tn, r
r
n are transmitting and receving data rate from

TN n to the cloud. Whereas, TNs rank the agents of helpers
based on the QoS that helpers can provide. Alternatively,
a TN prefers to match with a helper which minimizes the
offloading delay. Second, STS algorithm is proposed to
optimize the subtask assignment and scheduling for each
task given the matching obtained by PCRM. The extensive
simulation analysis is conducted to evaluate the performance

of DATS under the impact of many factors including task size,
quota of helpers, and network bandwidth. Summarily, DATS
can significantly reduce the task offloading delay compared
to random and greedy offloading policies.

Another one-to-many matching game is modeled in [66]
for assigning the fog resources to serve the requests sent from
the end users (EUs) in the IoT networks. Considering the
minimum and maximum quotas of FNs (i.e., the minimum
and maximum number of EUs that a fog can serve), a multi-
stage differed acceptance (MSDA) algorithm is developed to
adjust the resource allocation strategies to reach the stable
matching. EUs are based on QoS metrics (i.e., response
latency) provided by FNs to derive PLs, whereas FNs take
into account the fog load distribution to rank EUs. The
outcome of matching allows an efficient assignment, which
minimize the delay experienced by users while balancing the
load of FNs as compared to the random and greedy resource
allocation approaches.

A problem of allocation of FSPs to IoT devices is studied
in [67]. Taking into account the heterogeneity of system, the
IoT devices are assumed to have different services requested
periodically. Likewise, FSPs vary in terms of services that
they can provide. This configuration is equivalent to a many-
to-one matching model, where some FSPs can serve multiple
IoT devices. In particular, incomplete PLs with ties are
produced by the agents of both sides. That is because some
FSPs are absent in the PL of a certain IoT node if they have no
services being requested by the IoT node. Meanwhile, some
IoT nodes may have the same raking positions in a PL of a
certain FN if they requests the same services. Furthermore,
the service access time duration (i.e., long or short) is
restricted by FSPs. A truthful and Pareto optimal mechanism
is employed to achieve the stability of matching. Through the
achieved matching, the SPs can allow short or long access
to IoT devices efficiently to use the non-money services
respecting to deadlines of tasks. In addition, compared to the
random allocation strategy, the proposed approach enables
to achieve the maximized best allocation, in which the
maximum number of IoT devices are served by the best FSPs
in their PLs.

Considering the provision of content and services in the
fog-based system, the works [68], [69] employ the one-to-
many matching model to formulate the resource allocation
problem. The requests sent from EUs are handled by FNs
or cloud server depending on type of requests (i.e., content
retrieval or computing). The caching technology is employed
in the fog layer to accelerate the data and service access for
EUs. In the form of two-sided matching game, EUs and FNs
construct their PLs based on different preference functions.
Concretely, an EU ranks a FN the best if it can provide the
content and service with the minimum latency. Meanwhile,
a FN prefers to serve the request of EU with minimum energy
consumption incurred. Based on simulation analysis, the
proposed algorithm demonstrates its benefit when improving
the cache hit ratio, reducing the energy consumption, and
service response delay.
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Similar to [66], the work [70] introduced a FoGMatch
framework to perform the task scheduling in the IoT-Fog
network. In the absence of cloud servers, FNs are responsible
to receive and process the tasks requested from the IoT
devices. In addition, the limitation of fog resources in terms
of CPU and RAM allows a certain number of tasks processed
by a single fog at a scheduling interval. With this system
configuration, the one-to-many matching game between the
IoT set and FN set is applied model and study the resource
allocation problem in the fog stratum. Link quality (i.e.,
data rate) and required resource for computing are two
measurements used by the IoT nodes and FNs respectively
to rank the agents in the opposite sets. In other words, an IoT
node i ranks a FN j the best if the data rate from TN i to FN j
is the highest and FN has the maximum available resource.
In other side, a FN prefers to serve a task if executing it
consumes the largest amount of available resource. Compared
to Min-Min and Max-Min optimal scheduling approaches,
FoGMatch shows its advantage in improving the makespan
of IoT service execution, and resource utilization of FNs.

The work [71] focuses on minimizing the total energy
consumption during computation offloading processes for
cache-enabled F-RANs. In the considered system, all task
requests are sent from UEs to the centralized cloud
through FAPs. Then, the cloud is responsible for deciding
simultaneously EU-FAP association and task offloading
strategies (i.e., which tasks are processed by FAPs, cloud)
to achieve the systematic objective. Recall that the objective
is constrained by the resource limitation of FAPs (i.e,
computing, storage) and deadlines of tasks. By modeling
the UE-FAP association problem as a one-to-many matching
game, a greedy algorithm based on the DA procedure is
designed. PLs of agents of both sides are con constructed
based on energy consumption measurement. Hence, a swap
matching condition is introduced as a constraint to evaluate
the stability of matching. The work further proved that the
proposed algorithm can achieve the stable matching when
there is no presence of blocking pair or swap matching
in the outcome of matching game. Through evaluating the
algorithm by simulation approaches, the results show that
consumed energy of network can be reduce significantly
through efficient and stable EU-FAP association, thus
enabling the green F-RANs.

A one-to-many matching game is established to model
the association problem of fog network, in which each
IoT node (user) can be associated with only a cloudlet
while a cloudlet can have multiple IoT nodes matched with
it [72]. However, there a limited number of IoT nodes
connecting to a cloudlet to respect its maximal workload.
In addition, the presence of wireless interference between
IoT nodes located in proximity regions when connecting
wirelessly to the cloudlets indicate external effect in the
matching game. This externality makes PLs of agents change
whenever a pair of IoT node and cloudlet is matched.
The work introduces a concept called swap matching to
handle externalities and then achieve the stable matching

outcome. The extensive simulation are provided to show
the benefits of proposed algorithms, that include the latency
minimization and throughput enhancement compared to the
random association approach.

The work [73] concerns the joint optimization problem of
radio and computational resource allocation in the IoT-Fog
computing systems to optimize the system performance in
terms of service delay, user satisfaction, and system cost.
Such the problem involves three entities including the set of
IoT EUs, FNs, and CSPs (which manage the resources of
FNs). From the matching perspective, the mutual interaction
of these sets can be modeled in a SPA problem since they
corresponds to students, projects, and lectures respectively.
To handle the external effect, a procedure called user-oriented
cooperation (OUC) is developed. Fundamentally, OUC is a
strategy to remove possible blocking pairs in the matching
given the presence of externality by swap operations, which
evaluate the change of utility values of agents. As a swap
is applied for any two current pairs, and the corresponding
utility values are changeable, the two pairs is considered
as blocking ones. With this way, the proposed algorithm
can achieve the stable matching with an addition cost
of computation complexity resulted in from the swap
operations. Regarding the performance, the simulation results
show that the proposed framework enables the system to
achieve low service latency as well as minimized outages.

A two-sided matching model is proposed [74] for data
stream processing. Applying the micro-services to server
the DAG-based stream processing applications, the matching
is configured to allocate the micro-services to fog and
cloud computing resource. Regarding the preference relation
construction, the micro-service ranks the resources based
on their processing time. In addition, the resources rank
the miro-service according to their residual bandwidth. The
stable matching achieved by the DA algorithm offers the
mutual benefits for two sides (i.e., micro-service side and
resource side). The simulation results demonstrate that the
proposed matching mechanism can help the system to reduce
significant processing time of stream while lowing the total
stream traffic traversed through the fog-fog and fog-cloud
paths.

C. MANY-TO-MANY MATCHING
The work [75] integrates the Stackelberg game and matching
game to study the computing resource allocation problem in
three-tier IoT fog networks. The considered network consists
of multiple clusters, each includes a set of FNs and is
managed by a centralized data service operator (DSO). These
FNs are responsible to provide resources to serve the services
requested by data service subscribers (DSSs) such as mobile
phones, and IoT devices such that QoS in terms of service
delay is satisfied. The work first models the interaction of
DSOs and DSSs as a Stackelberg game, in which DSOs
are leaders and DSSs are followers. Based on the resource
price announced by the leaders, the followers can optimize
the resource amount measured by number of CRBs required
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to achieve the desired QoS. When the optimal resources
demanded by DSSs are determined, the framework is to
come to resource allocation problems. Given the determined
CRBs and the available resources of FNs, the many-to-
many matching game is applied to model the interaction
of DSOs and FNs. Finally, for each cluster of FNs owned
by a DSO, the resource allocation is investigate to assign
appropriate CRBs of FNs to serve the requests of DSSs.
This problem is modeled as a many-to-many matching game,
which aims at maximizing the utility values of FNs andDSSs.
The performance of framework is evaluated by simulation
scenarios, which further show that the proposed approach is
able to maximize the utility of all entities (i.e., DSOs, DSSs,
and FNs) while satisfying the QoS demanded by DSSs.

The work [76] studies the problem of placement of
virtual functions (VFs) on FNs such that they can serve
IoT applications with maximal QoS (i.e., minimized worst
application time and outage probability). In this considered
scenario, VFs are referred to as software, middle ware that
can perform the computation, storage, and networking tasks.
In addition, each application is composed by a set of atomic
services (i.e., tasks), which must be processed in sequential
order (i.e., chain) such as following a sense-process-actual
workflow. A many-to-many matching game is applied to
model the placement problem of a set of VF types (V) on a set
of FNs (F). Concretely, a FN can contain multiple types of
VFs depending on the available resource of FN represented
by computing resource blocks (CRBs), and each VF type can
appear in different FNs. The work then introduces two utility
functions for the agents of both sets to support the creation of
PLs. In the side of VF set, the utility function Uz(f ) of a VF
z ∈ V is formulated as follow when placed on a FN f .

Uz(f ) = rf − rz, (8)

where rf is the available CRBs on FN f and rz is the number
of CRBs required to load the VF z on the FN f . Based on
this function, the order for any two FN f and f ′ in the PL of
VF z is as follow: f �z f ′ ⇔ Uz(f ) < Uz(f ′). In the other
side, the utility function Uf (z) of FN f takes into account the
occurrence probability of VF z that appears in the FN set.
Accordingly, Uf (z) is calculated by:

Uf (z) = hz(1−
∑
f ∈F

τf ,z

n
), (9)

where hz is the occurrence frequency of VF z in the IoT
application set A, τf ,z = 1 if vz is placed on FN f ; otherwise
τf ,z = 0, and n is the total number of types of VFs in the
network. Based on this utility function, the preference relation
of two certain VF z and z′ ranked by FN f as follow: z �f z′

⇔Uf (z) < Uf (z′). In other words, FNs prefer to allocate VFs
such that they have higher values of occurrence frequency
in the set A [76]. With this PL construction, the work
applies the DA procedure to sketch out the distributed VF
placement algorithm named blind matching game (BMG).
Additional analysis is provided to show that the proposed
algorithm can lead to a stability convergence, at which

the outcome of matching game is in form of strictly-two-
sided exchange-stability (S2ES). Alternatively, there is no
existence of blocking pair or swap matching which can break
the current matching pair to change positively the utility
values of agents. Consequently, at the stability, BMG can
achieve a sub-optimal performance in terms of minimization
of the work application completion time and the outages.
In addition, it also outperforms other baseline algorithms
including the random and greedy offloading approaches.

A recent study as per [77] investigates the data offloading
problem in the fog network, in which FNs are responsible
for receiving and then processing the data periodically
transmitted by the subscribed IoT devices. Given the
heterogeneity of FN resource, FNs can be classified into
two sets: S of surplus FNs (SFNs) and D of deficit FNs
(DFNs). As these definitions, SFNs have available resources
for data processing, while DFNs are characterized by the lack
of resource for handling the requests of their subscribers.
In addition, each FN is managed and owned by an unique
FSP, thus leading to the nature of selfish and rational,
indicating that it tends to maximize the its own profit without
considering the system wise performance maximization. The
objective focused in the paper is to design an efficient
offloading policy such that it can maximize the monetization
of FNs subject to the required QoS. To achieve the objective,
a matching-based algorithm is proposed that model the
interaction of SFNs and DFNs as a many-to-many matching
game without quotas. In this game, the agents of both sets
produces their PLs based on their own utility functions. For
each pair of FNs (fs ∈ S, fd ∈ D), their utility functions are
formulated as follow if they match.

Ufs (fd ) = Kd .xd , (10)

where Kd is the maximum data packets that can be offloaded
to fs from fd , and xd is normalized payoff received by fs
when processing a data packet offloaded from fd . Therefore,
Ufs (fd ) refers to the total profit received by fs when offloading
the data packets from fd . Meanwhile, fd is interested in the
maximum number of packets that can offload to fs. In other
words, the utility function of fd is Ufd (fs) = Kd . For any
two DFNs fd and fd ′ , their preference relation determined
based on the utility function values is represented as follow:
fd �fs f

′
d ⇔ Ufs (fd ) > Ufs (fd ′ ). Similarly, for two SFNs fs

and fs′ , fs �fd fs′ ⇔ Ufd (fs) > Ufd (fs′). Based on these PLs,
the proposed DA based algorithm is designed to achieve for a
stable matching. The analysis is provided to prove its stability
convergence, thus ensuring the feasibility and efficiency of
algorithm. The primary simulation results show that the
proposed algorithm is able to maximize the monetization
while satisfying the demanded QoS of the subscriber users
(i.e., total latency of data packer processing).

VI. CHALLENGES AND OPEN RESEARCH ISSUES
The review as discussed in the previous section exposes the
potential of matching theory in solving the computational
offloading problems in the distributed manner. Many models
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TABLE 3. Summarization of the matching theory-based solutions for distributed computation offloading in the IFC systems.

and algorithms have been introduced to apply for different
computing scenarios. However, there still exist several
challenges appeared in new context of IFC systems. These
section explores and investigate such issues. The associated
research directions also are included to discuss the full
potential of matching theory to address the issues.

A. MATCHING WITH DYNAMICS
In many application scenarios, the matching model should
consider the dynamic of environment such as the mobility
of fog devices, time-varying tasks. In these contexts, the

preferences of agents might change accordingly at each time
scheduling interval. Consequently, the time dimension must
be accounted for in designing the matching solution.

B. MATCHING WITH GROUPS
In many scenarios, a group of players of a set prefers to match
with a single agent of the other set. For example, a groups of
tasks with the same type should be processed by fog devices
supporting to process this type specially. That will lead to the
task placement problem.

118366 VOLUME 10, 2022



H. Tran-Dang, D.-S. Kim: Survey on Matching Theory for Distributed Computation Offloading

A similar issuemight also appear in the federated fog based
systems, where many domains (clusters) of fog networks are
connected and a groups of IoT nodes in a certain domain
prefers to be processed by the fog networks of other domain.

C. MATCHING WITH EXTERNALALITY
The nature of resource competition in the computing
environment potentially leads to externalities in the matching
problem, which are not investigated widely in the existing
literature. The interference is only a factor making the
continuous change of PLs of agent [78] in the fog and edge
computing environment. For example, in the many-to-one
matching model, the scheduling of tasks at a single fog
can be served as an external that impact on the consistence
of PLs. To the best of our knowledge, there has been
no research works in the literature considering this kind
of externalities in modeling the matching problems and
designing the matching-based algorithms.

The presence of sporadic tasks is added as an external
source since it can make the task scheduling plan change.
In some scenarios, it can be addressed by offloading these
tasks to the cloud. However, as the the clouded-based solution
is inappropriate, FNs are considered to be alternatives to
process the offloaded tasks. This situation may result in a
change of PLs of some agents since the scheduled tasks must
be postponed.

There are additional sources acting as externalities in may
contexts of computing systems. Common ones include the
system fault, network unreliability, which directly impact
on the task offloading operations. Equivalently, PLs are
immediately changed in these contexts because, for example,
someHNs in the PLs are inaccessible. Thereby, there requires
matching models that take into account these situation to
enable the system reconfigure responsively.

D. SECURITY AND PRIVACY OF DATA AND END USERS
The heterogeneity and distributed nature of fog computing
environment poses potential risks regarding security and
privacy of data and EUs. Therefore, the choice of offloading
locations is not only to achieve the improved performance but
also guarantee reliability, security, and privacy criteria. This
aspect has been not considered during constructing PLs in the
reviewed studies, that, in other hand, open future directions.

E. NEW OFFLOADING APPLICATION SCENARIOS
All the reviewed works consider that the computation tasks
can be totally processed in either parallel or serial manner.
In many practical applications, the computation tasks is more
complicated such as DAG tasks (Directed Arched Graph),
which require a complex framework for scheduling since
there exist parallel and serial computation processes [79].
Typical DAG tasks are related to the modern AI and ML
applications such as real-time video processing [80], and
automation in the industrial internet [81]. The presence of
scheduling complexity can be considered as an external effect
impacting directly on the consistence of PLs of agents.

F. APPLICATION OF AI AND ML-BASED TECHNIQUES
AI and ML tools provide efficient techniques to analyze
and predict the statues of system accurately. Reinforcement
learning is a such kind of techniques [82], [83], which
can help to build PLs efficiently through online learning
mechanism (i.e., exploitation and exploration). Thus, using
these in the context of computational offloading enable the
system to make dynamic and efficient offloading decisions.
In addition, deep learning (DL) can be used to approximate
and examine the matching outcomes [84].

VII. CONCLUSION
The matching theory has been widely applied to offer
distributed algorithms in scenarios, where the optimal
solutions are infeasible or feasible with incurring expen-
sive expenditure and high computation complexity by the
centralized global optimization approaches. The intrinsic
feature of architecture of the IFC systems characterized by a
geographic distribution of computing devices over large-scale
exposes the suitability of matching-based distributed algo-
rithms for perform the computation offloading and resource
allocation-related problem. This paper surveys the literature
regarding the matching theory-based solutions for distributed
computing offloading in the IFC systems. Based on a
brief description of matching theory, related concepts and
matching models are identified and differences among them
are presented. These different models are used to critically
review the application scenarios and algorithms proposed in
the existing literature in the area of computational offloading.
The remaining challenges and corresponding open issues are
discussed thoroughly to motivate research directions.
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