
Received 6 October 2022, accepted 25 October 2022, date of publication 4 November 2022, date of current version 15 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219422

Graph Computing Systems and Partitioning
Techniques: A Survey
TEWODROS ALEMU AYALL 1,2, HUAWEN LIU1,3, CHANGJUN ZHOU 1,
ABEGAZ MOHAMMED SEID 2,4, (Member, IEEE), FANTAHUN BOGALE GEREME5,
HAYLA NAHOM ABISHU 6, (Graduate Student Member, IEEE), AND YASIN HABTAMU YACOB6
1Department of Computer Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
2Department of Computer Science, Dilla University, Dilla, Ethiopia
3Department of Computer Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
4Information and Computing Technology, Hamad Bin Khalifa University, Doha, Qatar
5Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
6School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding authors: Tewodros Alemu Ayall (ayalltewodros@zjnu.edu.cn) and Huawen Liu (liu@usx.edu.cn)

This work was supported in part by the Postdoctoral Foundation of Zhejiang Normal University under Grant ZC304021941, in part by the
National Science Foundation of China under Grant 61976195 and Grant 62272418, in part by the National Science Foundation of Zhejiang
Province under Grant Z23F020009, and in part by the Basic Public Welfare Research Program of Zhejiang Province under Grant
LGG18E050011.

ABSTRACT Graphs are a tremendously suitable data representations that model the relationships of entities
in many application domains, such as recommendation systems, machine learning, computational biology,
social network analysis, and other application domains. Graphs with many vertices and edges have become
quite prevalent in recent years. Therefore, graph computing systems with integrated various graph parti-
tioning techniques have been envisioned as a promising paradigm to handle large-scale graph analytics in
these application domains. However, scalable processing of large-scale graphs is challenging due to their
high volume and inherent irregular structure of the real-world graphs. Hence, industry and academia have
been recently proposing graph partitioning and computing systems to process and analyze large-scale graphs
efficiently. The graph partitioning and computing systems have been designed to improve scalability issues
and reduce processing time complexity. This paper presents an overview, classification, and investigation
of the most popular graph partitioning and computing systems. The various methods and approaches of
graph partitioning and diverse categories of graph computing systems are presented. Finally, we discuss
main challenges and future research directions in graph partitioning and computing systems.

INDEX TERMS Distributed computing, graph computing systems, graph partitioning, graph processing
systems, graph databases, graph algorithm, large-scale graph analysis.

I. INTRODUCTION
Graphs are a significant and powerful data representations
to model the relationships of entities in many application
domains in the form of vertices and edges. In general, ver-
tices represent the entities in the graph, while edges indicate
the relationships among the entities in the graph. Graphs
are used in search engines to model the relevance of web
pages recommended to users [1], [2], and the segment of

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

road networks is modeled by graph [3]. In computational
biology, graphs are applicable to represent the interaction of
protein-to-protein [4], [5], [6] and the layout of infectious
diseases [7]. The interactions of users and groups in social
networks are also represented by graph [8], [9], [10], [11]. For
example, social networks are made up of social ties, which
include relationships between people or groups based on
friendship, interest, kinship, likes/dislikes, and various other
factors. Those relationships can be visualized as a graph rep-
resentation. Fig.1 illustrates how to represent a social network
using the friendship of 34 karate club members. Each vertex

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 118523

https://orcid.org/0000-0001-9413-6459
https://orcid.org/0000-0002-0129-2231
https://orcid.org/0000-0002-3672-6132
https://orcid.org/0000-0002-3243-7579
https://orcid.org/0000-0003-1118-7109

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

FIGURE 1. An example of social network model of relationships in the
Karate Club [15].

represents an individual, and the links/edges show individuals
who interact outside of the karate club setting (e.g., meeting
up for a coffee or spending social time together).

The study of network analysis has become not only essen-
tial but also interdisciplinary in nature since graphs can
appear in such a wide variety of settings. The study of these
complex systems requires an understanding of their char-
acteristics, as well as their structure and their dynamics.
Therefore, the academia and big technology companies like
Facebook, Google, and Microsoft have proposed different
solutions for organizing and analyzing the rising prevalence
of big graphs [12]. Furthermore, the size of these graphs has
rapidly increased, with hundreds of billions of nodes and
trillions of edges being possible [13], [14]. As the graph size
scales up, graph analysis can be performed in a distributed
environment. However, graph computing has become a chal-
lenging problem due to access irregularity, lack of locality,
and intrinsic load imbalance distribution of graphs in dif-
ferent computing clusters [14]. Thus, researchers highlight
the critical role of design computing systems in our society
today [12].

Graph computing systems are becoming increasingly sig-
nificant to deal with graphs-based analytics such as graph
traversal [16], random walk [1], graph aggregation [17],
motifs discovery [18] etc. The design of graph computing
systems focuses on two major categories, graph processing
systems (GPS) [19], [20], [21], [22], [23], [24] and graph
database systems (GDBS) [25], [26], [27], [28] based on
their graph analytics nature. GPS execute large-scale batch
analytics using a variety of computationally intensive graph
algorithms. Google introduced Pregel [19], the pioneer dis-
tributed GPS, to process interconnected data since 2010.
After that many graph computing systems have recently
been proposed in distributed [20], [21], [29] and single-
machine [30], [31], [32], [33], [34], [35] computing archi-
tecture to improve scalability issues and reduce the systems’
processing time complexity. On the other hand, GDBS are
designed for high-throughput data retrieval and transaction

processing. Before the graph databases systems, relational
database management systems (RDBMS) were widely used
to store, process, and analyze large-scale graphs [36]. How-
ever, there are two issues with analysis of graph in RDBMS.
First, the vertices (nodes) and edges (relationships) are stored
in separate tables. Therefore, it requires complex join opera-
tions to perform a query [37]. Second, RDBMS are ineffective
when the data model changes over time, which means they
rely on a fixed schema and make it difficult to build new
object relationships [38]. Hence, due to these limitations of
RDBMS, GDBS [25], [26], [27], [28] have been proposed to
store, process, and analyze large-scale graphs.

Graph partitioning is a technique to cut graph into distinct
subgraphs based on different heuristic techniques by mini-
mizing cuts and maximizing load balance. Solving the graph
partitioning problem with the minimum cut and maximum
load balance is a well-known NP-hard problem [39], [40].
Graph partitioning is used as a significant preprocessing step
for large-scale graph computing systems. Integrating graph
partitioning techniques with computing systems can solve
many graph problems in data mining, graph machine learn-
ing and pattern discovery. Researchers have proposed many
graph partitioning algorithms in the last decade. The meth-
ods of these graph partitioning can be categorized into three:
vertex partitioning [41], [42], [43], [44], edge partitioning
[23], [45], [46], [47], [48], [49], [50], and hybrid partitioning
[22], [51], [52], [53]. These methods can further be classi-
fied as offline (in-memory), online (stream), offStream, and
dynamic approaches. The offline approach loads the whole
graph in memory and exploits the graph’s global information
to allocate edges or vertices to the partitions. Many offline
algorithms have been proposed in sequentially, shared, and
distributed memory. Before the offline approach starts par-
titioning, the input graph is loaded in memory. Therefore,
it can quickly gather the global graph structure to solve the
optimization problem. This case leads to obtaining a higher
partitioning quality. However, it does not support large-scale
graph partitioning. This issue motivated the design of an
online approach to scalable graph partitioning [43]. The
online approach loads vertices or edges one by one to directly
assign them to the partitions. Online approach is very fast and
consumes little memory; yet, it yields a low-quality partition-
ing. Therefore, offStream approach has been proposed to fill
the gap between offline and stream approaches by slitting
the edges of a graph into two edge sets. One edge set is
partitioned in the offline approach, and another edge set is
partitioned in the stream [54], [55]. Sometimes real-world
graphs are not only static but also dynamic in that their
topologies are dynamically changed because some vertices
and edges may be removed or added from the graphs over
time. Therefore, the dynamic approach has been proposed
for repartitioning when the graphs’ topology is dynamically
changed [56], [57], [58].

Many research works exist on graph partitioning and com-
puting systems in the current literature. These research works
motivated us to provide a structured review of the extensive

118524 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

TABLE 1. Related surveys.

literature, outlining essential concepts and presenting recent
research works that have not been included in prior
overviews. This systematic survey paper aims to guide fel-
low researchers and practitioners to understand the concepts
and evolution of large-scale graph partitioning and computing
systems.

There exist several experimental and comprehensive stud-
ies on graph partitioning and computing systems. The exper-
imental study of stream edge partitioning was performed
in [64], [65], and [66]. The experimental analysis of both
stream edge and vertex partitioning was studied in [67]
and [68]. Pothen [69] discussed the traditional graph par-
titioning by grouping into three, geometric, algebraic, and
multilevel. The evolutionary approach of graph partitioning
was presented in [70]. The bipartile and hypergraph model
for graph partitioning were surveyed in [71]. Arora et al. [72]
discussed the relationship between geometric and flow-based
graph partitioning. The traditional multilevel graph parti-
tioning has three main phases, coarsening, partitioning and
uncoarsening. These various coarsening phase algorithms
were discussed and compared in [73]. Schloege et al. [74]
reviewed static vertex partitioning for scientific simulations
on high performance parallel computers. An empirical study
of RDF (Resource Descriptor Framework) graph partitioning
techniques and benchmarks were discussed in [75] and [76].
The empirical evaluation of GPS was analyzed in [59], [77],
[78], and [79]. Tran et al. [60] reviewed GPU based large-
scale GPS. Authors in [61] discussed the essential features
and challenges ofmulti-core and out-of-core large-scale GPS.
The participants’ awareness for the usage of GPS and their
challenges were conducted in [80]. Gui et al. [81] reviewed
the key core graph processing accelerators, preprocessing,
parallel graph computation, and run-time scheduling. The
experimental evaluation of the graph databases was per-
formed in [82] and [83]. As described in Table 1, there are
a limited number of comprehensive works on modern graph
partitioning and computing systems. This survey investigates,
classifies, and reviews graph partitioning and computing sys-
tems. The main contributions of this work are summarized as
follows:
• Optimization problems of graph partitioning, graph
partitioning methods, approaches, and algorithms are
reviewed and discussed. First, we classify the graph
partitioning methods into three: vertex partitioning,
edge partitioning, and hybrid partitioning. These graph

partitioning methods can be further categorized as
offline, online, offStream, and dynamic approaches.
Then, the representative graph partitioning algorithms in
each approach are listed and discussed.

• We discuss the major computational models of graph
computing systems. These computational models of
graph computing systems can be categorized into two:
the computational models of GPS and GDBS. The GPS
computational models, including programming, com-
munication, and execution models, are discussed. Also,
the data model, partitioning techniques, and query lan-
guage of GDBS are described.

• We provide a detailed review of the graph comput-
ing systems and classify them into GPS and GDBS
based on their graph analytics nature. These systems
are further classified into several subcategories based
on their architecture. For each subcategory, various sys-
tems with detailed computational models are listed and
discussed.

• Challenges and future research directions in graph par-
titioning and computing systems are highlighted.

The rest of this paper is organized as follows. Section II
explains the basic concepts of graph algorithms, partition-
ing, and computing systems. Section III describes types of
graph partitioning, and Section IV discusses the compu-
tational models of graph computing systems. The taxon-
omy of graph computing systems is presented in Section V.
The future challenges and research directions are indicated
in Section VI. Finally, the conclusion is summarized in
Section VII.

II. CONCEPTS OF GRAPH ALGORITHMS, PARTITIONING
AND COMPUTING SYSTEMS
A. GRAPH ALGORITHMS
Graph algorithms are used to solve various real-world prob-
lems. These algorithms can be classified into the random
walk, graph traversal, and graph aggregation. They are the
primary benchmark for testing the performance of graph
computing systems. These algorithms can be implemented
in various ways based on the principles of the programming
model of the graph computing systems [19], [23], [84].

1) RANDOM WALK
A randomwalk is a techniques that starts at one vertex, selects
a neighbor to traverse at random or based on a probability

VOLUME 10, 2022 118525

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

distribution, and then repeats the process from that ver-
tex, saving the resulting path in a list [85]. PageRank [1],
HITS [86], and ObjectRank [87] are examples of random
walks. PageRank is the most common algorithm that can
be used to check the performance of graph computing sys-
tems. PageRank is an iterative vertex ranking algorithm that
weights vertices based on their relevance and connectedness
to other well-ranked vertices. It starts by assigning a uniform
rank to all vertices. After that, in each iteration, a vertex
changes its rank by the new rank, then spreads evenly to out-
going neighbors along outgoing edges. When the difference
between the vertex rank from the current iteration and the pre-
vious iteration is less than a defined threshold, the algorithm
converges by adding the partial ranks of its arriving neighbor
vertices.

2) GRAPH TRAVERSAL
Graph traversal entails visiting all of a graph’s vertices in
a specific order while checking and updating the vertices’
values. Connected Components [88], Single Source Short-
est Path [16], Approximate Diameter [89], Triangle Count-
ing [90], and Bipartite Matching [91] are examples of graph
traversal algorithms. These algorithms frequently use graph
search. Connected Components finds subgraphs in which
each vertex can be reached from every other vertex. Single
Source Shortest Path calculates the shortest path from the
source vertex to all associated vertices. At the start, it assigns
a zero value to the source vertex and infinity to all other
vertices. Then, each vertex changes its path length to the
source until it does not observe a new update value across
two consecutive iterations. Approximate Diameter uses prob-
abilistic counting to estimate an approximation of a graph’s
diameter, which is the longest and shortest path between
each pair of vertices. Triangle Count calculates the num-
ber of triangles in each vertex in graph. A triangle is made
up of three vertices joined by three edges. It is utilized to
detect communities and measure the cohesiveness of those
communities. Bipartite matching takes two distinct sets of
vertices as input, with edges solely connecting them, and
returns a subset of edges with no common endpoints as
output.

3) GRAPH AGGREGATION
Graph aggregation condenses the graph into a structurally
identical but smaller graph by crumpling edges and vertices.
Graph sparsification [92], Graph summarization [93], and
graph coarsening [94] are some of the most common types
of graph aggregation. Graph sparsification approximates a
given graph to a sparse graph with fewer edges but the same
number of vertices. Graph summarization represents the input
graph into a smaller graph by keeping structural patterns.
It facilitates the identification of structural and informative
summaries of the input graph. Graph coarsening reduces the
number of vertices of a graph by contracting disjoint sets of
connected vertices. It is frequently used as an initial step in a
graph partitioning algorithms.

B. GRAPH PARTITIONING PROBLEM
To easily understand graph partitioning problems, let’s define
a graph a bit more formally. A given undirected graph G
is defined as G = (V ,E), where V = {v1, . . . , vn} and
E = {e1, . . . , em} are a group of vertices and edges, respec-
tively. E ⊆ V × V , the size of V and E are denoted as n
andm, respectively. The undirected graph can be classified as
weighted or unweighted. If a graph is a weighted graph, e ∈ E
can have a positive weight associated with them. On the other
hand, if a graph is an unweighted graph, there is no weight
associated with edges. However, it is possible to interpret the
unweighted graph as a weighted graph in which each edge has
a weight of 1. Graph partitioning can be classified as vertex,
edge, and hybrid partitioning.

1) VERTEX PARTITIONING
Vertex partitioning (VP) is also called edge-cut, as depicted
in Fig. 2. It divides the big graph into many subgraphs by
assigning vertices to the different partition sets while min-
imizing edge cuts concerning load balance constraint. Let
V1 and V2 be two vertex sets of the graph G. An edge-cut is
defined as an edge(u, v) ∈ E , if and only if ∀u, v ∈ V , u ∈ V1
and v ∈ V2. Balanced k−way VP problem is defined as G
is partitioned into k partitions set {V1,V2, . . . ,Vk} such that
k⋃
i=1

Vi = V . The vertex set of each partition is not duplicated,

i.e, Vi ∩ Vj = ∅, where (i, j ∈ {1, 2, . . . k}, i 6= j). The objec-
tive of VP is finding a k-partition set that minimizes the cost
of all external edges (weighted or unweighted) connecting
two partition vertex sets Vi and Vi = V − Vi with respect
to a balance constraint. The edges-cut 0(Vi,Vi) between two
partition vertex sets Vi and Vi is calculated as follows:

0(Vi,Vi) =
∑

(vi,vj)∈e,vi∈Vi,vj∈Vi

ω(vi, vj), (1)

where ω(vi, vj) is the weight of the edges (vi, vj). The overall
cost of the edge cut k-partitions 0(Pk) is expressed as:

0(Pk) =
∑
i∈k

0(Vi,Vi). (2)

Therefore, the optimization problem of VP is given by:

min 0(Pk)

s.t. max
i∈k
|Vi| ≤ (1+ ε)

n
|k|
, (3)

where |Vi| and |k| are the size of the vertex set of the partition
and the number of partitions, respectively. And ε ≥ 0 is an
imbalance factor.

The k-way vertex partitioning problem can commonly be
extended to graphs that contain weights associated with the
edges [95]. This scenario aims to divide the vertices into k
disjoint subsets where the sum of the edge weights whose
incident vertices belong to different subsets isminimized. The
basic implementation of distributed graph processing systems
usually needs the solution of graph partitioning, where ver-
tices represent computational tasks and edges consider data

118526 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

exchange. Therefore, graph partitioning significantly impacts
these systems’ workload balance and communication costs.
In VP, computing nodes (machines) that hold the partition set
preserve local replicas of the vertices and edge data for the
cut edges. These cut edges can act as a bridge to communi-
cate with other machines. The machines’ communication and
workload costs are determined by the number of edge cuts and
load balance.

2) EDGE PARTITIONING
Edge partitioning (EP) is also named vertex-cut, as shown
in Fig. 2b. It divides a big graph into many subgraphs by
assigning edges to the different partition sets while consid-
ering a maximum load balance and minimum vertex cut. Let
E1 and E2 be two edge sets of the graph G. A vertex-cut is
defined as a vertex u ∈ V , if and only if u ∈ E1 and u ∈ E2.
A balanced k-way EP problem is defined as G is partitioned

into k partitions {E1,E2, . . . ,Ek} such that
k⋃
i=1

Ei = E . The

edge set of each partition is not duplicated, i.e, Ei ∩ Ej = ∅,
where (i, j ∈ {1, 2, . . . k}, i 6= j). Let P(v) be the set of
partitions that each vertex v ∈ V is replicated. The replication
factor (RF) is calculated as the summation of the number of
replicas (copied versions of vertices) divided by the number
of vertices:

RF =
1
n

∑
i ∈ k,v∈V

|Pi(v)|. (4)

Therefore, the optimization problem of k−way EP is
expressed as:

min RF

s.t. max
i∈k
|Ei| ≤ (1+ ε)

m
|k|
, (5)

where |Ei| is the size of the edge set.
In the case of distributed and parallel computation with

edge partitioning, all machines holding cut vertices should
preserve a mirror (local replica) of the vertex. These mirror
vertices can act as a bridge communicator between the par-
titions. The number of mirror vertices and edges determines
the communication and workload costs, respectively.

3) HYBRID PARTITIONING
The EP evenly allocates edges to machines and only repli-
cates vertices to construct a local graph within each partition.
Therefore, the EP mainly focuses on minimizing the overall
RF . However, Hybrid partitioning (HP) considers that instead
of reducing RF of all vertices, it distinguishes vertices as a
lower and higher degree. Then, VP or EP is applied for better
cuts.

HP is a hybrid of VP and EP methods. It exploits the
interior structure of the graph to perform partitioning [22].
Most of the real-world graphs are power-law graphs, where a
relatively small percentage of vertices have a higher degree,
and most vertices have a lower degree [23]. HP differentiates
the vertices as low-degree and high-degree. Then, it evenly

FIGURE 2. Vertex vs Edge partitioning: (a) Input Graph is partitioned into
three partitions P1, P2, and P3 by cutting four edges; (b) Input Graph is
partitioned into three partitions P1, P2, and P3 by cutting one vertex, and
the shaded circle vertices are replicas.

FIGURE 3. Hybrid partitioning: The red colored circle of vertices are
mirrors and others vertices are masters.

distributes the edges of a high-degree vertex among partitions
(using vertex-cut) to disseminate the computation load and
allocates all the in-edges (or out-edges) of a low-degree vertex
to the same partition (using edge-cut) to reduce communica-
tion among partitions.

For example, consider the input graph in Fig. 3, how to
apply HP using Hashing [22]. Suppose that degree threshold
is 3. Therefore, if a vertex in-degree is ≥ 3, it is considered
to be high-degree vertex. As shown in Fig. 3, the vertex 2 is
high-degree and all the other vertices are low-degree. Assume
that vertices 1, 4, 7, 8 and 10 are hashed to p1 and vertices 2,
3, 5, 6, and 9 are hashed to p2. Then, the in-edges of vertex 2,
namely, (7, 2), (8, 2), and (9, 2) will be assigned with their
source vertices (source hashing). Therefore, the edges (7, 2)
and (8, 2) are assigned to p1 and the edge (9, 2) is assigned
to p2. Then, the in-edges of other vertices, namely, (3, 1),
(4, 1), (1, 5), (1, 6), (2, 6), and (2, 10) will be assigned with
their target vertices (target hashing). Therefore, based on their
target vertices, edges (3, 1), (4, 1) and (2, 10) are assigned
to p1 and (1, 5), (1, 6) and (2, 6) are assigned to p2. The
partitioned result is depicted in Fig. 3 in p1 and p2.

C. GRAPH COMPUTING SYSTEMS
Recently, there has been an increase in the demand for
large-scale graph computing systems. Because graphs can

VOLUME 10, 2022 118527

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

describe a diverse set of objects, the computations performed
on graph-based data structures are at the heart of many appli-
cations, such as machine learning, data mining, and pat-
tern recognition. The requirement to process large graphs
has led to the development of various frameworks that can
handle the processing of large graphs in different comput-
ing architectures. Graph computing systems, also known as
graph analytic systems, process graph-based computation.
Existing graph computing systems can be classified into two;
GPS [20], [21], [29] and GDBS [25], [26], [27], [28]. The
GPS, known as offline graph analytics systems, process an
iterative computation on the whole graph until a convergence
criterion is satisfied. The GDBS, also called online graph
analytics systems, perform analysis on subgraphs or entire
graphs and require a fast response time.

D. PERFORMANCE EVALUATION METRICS
1) METRICS OF GRAPH PARTITIONING
Load balance, locality (the number of cut vertices or edges),
run-time, and scalability [47], [96] are used to measure the
performance of the graph partitioning. Among these metrics,
partitioning quality is measured by the number of cut vertices
or edges and load balance.

a: LOAD BALANCE (ρ)
It indicates that how well the number of vertices or edges is
distributed across partitions. For vertex and edge partitioning
methods, the two metrics are calculated differently. The ρ is
calculated as:

ρ =

max
i=1,...,N

|Pi|

ψ
N

, (6)

where ψ is the input size (the number of vertices for vertex
partitioning or the number of edges for edge partitioning) and
|Pi| is the size of vertices for VP or the size of edges for EP
in each partition. Partitions with a good load balance reduce
processing latency and enhance the resource utilization of
distributed graph computing.

b: LOCALITY
The fraction of edges cut (τ) from balanced constraint vertex
partitioning can be calculated as:

τ =

∑k
i=1 0(Vi,Vi)

m
. (7)

However, other versions of the vertex partitioning problem
do not have a fixed balance constraint but encode balance
directly in the objective function. Conductance [97], ratio
cut [98], and normalized cut [99] are used to measure non
balanced constraint vertex partitioning. The conductance of a
set of vertices 8(Vk) can be expressed as:

8(Vk) =
k∑
i=1

0(Vi,Vi)

min(vol(Vi), vol(Vi))
. (8)

The ratio cut of a set of vertices 1(Vk) can be expressed as:

1(Vk) =
k∑
i=1

0(Vi,Vi)
|Vi|

. (9)

The normalized cut of a set vertices2(Vk) can be defined as:

2(Vk) =
k∑
i=1

0(Vi,Vi)
vol(Vi,V)

, (10)

where vol(Vi,V) =
∑

ui∈Vi,vj∈V w(ui, vj) is total degree of
the vertices Vi in a graph G. The lower value of 8(Vk),
1(Vk), and 2(Vk) indicate that the vertices set are in a
good cluster. The balanced constraint vertex partition is more
applicable to graph computing systems due to the equal dis-
tribution of edges or vertices to computing nodes. However,
the non-balanced constraint vertex partition metrics are more
applicable to graph clustering [100].

For edge partitioning, the number of cut vertices are called
replicas. It is measured by a replication factor (σ). The σ is
calculated as:

σ =
1
n

∑
i ∈ k

|Pi(v)|, (11)

where Pi(v) is the total number of replicas of vertices in each
partition. A good partitioner must minimize the value of σ
and τ . The number of cut vertices indicates the external com-
munication overhead between different computing machines
because communication in such systems coexists with
vertices.

c: RUN-TIME
It indicates the elapsed time to partition the graph. The
run-time includes ingress (loading the input graph to the
memory) and partitioning time of the graph.

2) METRICS OF GRAPH COMPUTING SYSTEMS
The following metrics are used to check the performance of
graph computing systems.

a: TOTAL-TIME
It is a time that requires the overall running time from the
beginning to the end of graph computation. It can be divided
into preprocessing and computation time. The preprocessing
time is the time to load the input graph into memory, partition
it, and write the output. The computation time is how long it
takes to perform barrier local synchronization, vertex compu-
tation, and communication.

b: COMMUNICATION COSt
It is the sum of per-machine network usage across all worker
machines, with total sent (outgoing) and total incoming
(received) network usage. It is influenced by the amount and
distribution of data transmitted across servers.

118528 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

TABLE 2. List of abbreviations.

c: MEMORY USAGE
It is the total of memory allocations for computing tasks. The
memory footprint of each server must be kept to a minimum.
This ensures that fewer servers may be utilized for processing
large-scale graphs, which is useful when resources are con-
strained.

d: SCALABILITY
It measures a system’s capacity to adjust its performance and
cost in response to shifting application and system processing
requirements. Thus, a large graph must be loaded and pro-
cessed by smaller clusters. Communication and computing
must become cheaper as the cluster grows, and the overall
job must run faster. In the same way, graph partitioning algo-
rithms also give strict guarantees about locality and balance
while also scaling to large graphs. Thus, providing such assur-
ances necessitates costly coordination or global views of the
graph. This limits scalability [96].

E. GRAPH DATASETS
The generated synthetic graphs of varying sizes and
real-world datasets are the main benchmarks for testing
the performance of graph partitioning and computing sys-
tems. RMAT (Recursive Matrix) [101] is used to gener-
ate a synthetic skewed degree distribution graph. The main
sources of real-world graph datasets repository are found in
SNAP (Stanford Network Analysis Project) [102], Online
Network Research Web Portal [103], KONECT (Koblenz
Network Collection) [104], LAW (Laboratory for Web Algo-
rithmics) [31], Twitter [105], Friendster [106] and Movie-
Lens 10M datasets [107]. The SNAP1 data set repository was
founded in 2004 as a result of a study into the analysis of

1https://snap.stanford.edu/

significant information and social networks. These datasets
on the website were primarily collected for the objectives of
the research works in July 2009. The KONECT2 is a project
that aims to collect massive network data sets to aid network
mining research. The collection’s website also includes statis-
tics, charts, and code for generating all network data sets
from the internet. The LAW3 was founded in 2002 at the
University of Milan Department of Information Sciences and
has since integrated with the Computer Science Department.
The research at LAW focuses on all algorithmic aspects of
web and social network researches.

III. TYPES OF GRAPH PARTITIONING
Based on how the input graph is processed, the graph parti-
tioning method can be further classified into four approaches,
offline, online (stream), offStream, and dynamic, as depicted
in Fig. 4. How well the graph partitioning can be scaled is
based on how the input graph is accessed.

A. OFFLINE APPROACH
Offline approach is a traditional graph partitioning approach
that exploits the graph’s global information to allocate edges
or vertices to the partitions. The graph is loaded into mem-
ory before it applies the partitioning algorithms. In this
approach, many algorithms have been proposed via single
and distributed machines. Offline single machine partition-
ing uses a single machine to perform its partitioning and
has a high partitioning accuracy; however, it can not support
large-scale graph partitioning due to a lack of memory that
can accommodate the entirety of the graph [41]. The twomain
challenges of graph partitioning are quality and scalability.
First, high-quality partitioning is evaluated by total cuts and
load balance. However, it is difficult to obtain since graph
partitioning is proved to be an NP-hard problem. Second,
graph partitioning is required to scale up and deal with large
graphs since the size of real-world graphs has been increas-
ing quickly. Therefore, distributedmemory graph partitioning
has been proposed to support scalability with compromised
quality partitioning. In the distributed approach, the graph
is already distributed in a distributed memory application.
However, to preserve scalability, not every processor stores
the whole graph. As a result, distributed-memory partitioning
algorithms frequently rely on their partitioning choices on
partial views of local graph data rather than having an overall
view of the entire graph. Each processor communicates with
the other to minimize the cut and maximize load balance. The
distributed approach supports large-scale partitioning; how-
ever, its partitioning quality is less than the single machine
approach. In this approach, offline sequential single machine
vertex partitioning (OSSMVP), offline shared memory single
machine vertex partitioning (OSMSMVP), offline distributed
vertex partitioning (ODVP), Offline single machine edge
partitioning (OSMEP) and Offline distributed edge partition-
ing (ODEP) have been proposed.

2http://konect.cc/
3http://law.di.unimi.it/

VOLUME 10, 2022 118529

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

FIGURE 4. Graph partitioning methods, approaches and algorithms.

1) OFFLINE SEQUENTIAL SINGLE MACHINE VERTEX
PARTITIONING
Initially, the input graph is loaded into a single machine;
then, various iterative techniques are applied to improve the
partitioning quality. Most algorithms were proposed based
on the multilevel partitioning model. The multilevel graph
partitioning model [108], [109] is the most successful heuris-
tic for partitioning a graph. It consists of three phases:
coarsening, initial partitioning, and refinement (uncoarsen-
ing) as depicted in Fig. 5. During the graph coarsening phase,
a sequence of graphsG1,G2, . . .Gm are created by compress-
ing selected vertices of the input graph into a related coarser
graph. This newly built graph is then used as the input graph
for another round of graph coarsening until the graph is small
enough. Coarsening phase is often accomplished by com-
puting matching algorithms [95], [108], [110]. During initial
partitioning phase, a partitionPi of the much smaller graphGi
is created using spectral bisection or graph growing heuris-
tic [108]. Local search approach KL [111] and FM [112]
are frequently used for refinement phase. KL [111] is the
pioneer offline vertex partitioner. To partition the graph, ini-
tially, vertices are randomly assigned to one of the partitions;
then, it tries to improve partitioning efficiency by evaluating
the cut-vertex function’s gain, if necessary, exchanging the
vertices between partitions. This process is continued until
there are no possible exchanges that optimize the final parti-
tion’s cut vertices. FM [112] begins by calculating the gain
values for each vertex, where gain refers to the difference in
edge cut if a vertex was shifted to the other partition. The
algorithm works in rounds, with a subset of vertices being
shifted from one partition to the other in each round. The
vertex with the highest gain value is chosen to be moved.

FIGURE 5. Multilevel graph partitioning. The gray-colored vertices are
formed by applying a coarsening phase, which contains groups of
vertices. After initial partitioning is done, uncoarsening is performed to
get a partitioned graph.

Hence, its neighbors’ gain values are updated appropriately,
and the procedure is repeated with the remaining unmoved
vertices until all vertices have been moved precisely once.
Metis [41], Scotch [113], Chaco [114], and KaHIP [115] are
examples of well-known OSSMVP software packages.

2) OFFLINE SHARED MEMORY SINGLE MACHINE VERTEX
PARTITIONING
Recently, the number of cores per chip has increased
dramatically. As a result, offline shared-memory single
machine vertex partitioning efficiently utilizing available
computer cores are highly demanded. Mt-Metis [116] and

118530 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

Mt-KaHIP [117] have been proposed in this category.
Mt-Metis is a multi-threaded implementation of the Metis
algorithms by avoiding message passing overhead and mod-
ifying existing parallel algorithms implemented in ParMetis.
The Mt-Metis has less memory overhead than either
PT-Scotch or ParMetis. Because Mt-Metis stores informa-
tion for each vertex just once, PT-Scotch and ParMetis need
to communicate and store the information of remote neigh-
bor vertices. Mt-KaHIP is a multilevel SM partitioning that
adopts KaHIP. It uses label propagation for coarsening and
refinement and a cache-aware hash table to limit memory
consumption and enhance locality. Mt-KaHIP has better par-
titioning quality and less memory overhead than Mt-Metis.
However, Mt-Metis is faster than Mt-KaHIP [116].

3) OFFLINE DISTRIBUTED VERTEX PARTITIONING
The input graph is loaded into different machines, then vari-
ous optimization techniques are applied to improve the parti-
tioning quality. Most of the distributed partitioning apply the
label propagation method [118]. This method assigns k labels
to represent partitions. First, each vertex chooses a random
label and sends its label to neighbors. Then, each vertex ranks
the labels based on neighbors’ labels, choosing the label with
the highest rank for itself, and sending it to its neighbors
again. These steps are iterated until the label of vertices ceases
modifying and the algorithm converges. ParMETIS [119],
PT-Scotch [120], KaPPa [121], JOSTLE [122], JA-BE-
JA [123], Blp [124], BS [125], XTRAPULP [126], and Spin-
ner [96] are examples of ODVP.

ParMETIS [119] is MPI-based parallel partitioning
that implements several methods for partitioning unstruc-
tured graphs and computing sparse matrices fill-reducing
orderings. It adopts the popular multilevel partitioning
METIS [41] by including routines explicitly designed for
parallel computations and large-scale numerical simulations.
PT-Scotch [120] extends Scotch to parallelize the nested
dissection method to compute efficient ordering of very
large graphs. Unlike ParMETIS, PT-Scotch does not have a
limit on the number of processors. PT-Scotch outperforms
ParMETIS in terms of graph ordering quality. KaPPa is a
parallel match-based multilevel graph partitioning. It uses
either Scotch or pMetis [133] for initial partitioning and
FM for refinement. JOSTLE [122] uses the MPI and single
program multiple data paradigms to parallelize multilevel
graph partitioning by enhancing multiphase mesh partition-
ing, heterogeneous mapping, and partitioning to improve
subdomain shape. ParHIP [127] adopts the label propaga-
tion clustering algorithm for multilevel graph partitioning
phases of coarsening and refinement. First, it computes the
cluster of a graph via size-constrained label propagation.
The clustering is shrunk by replacing each cluster with a
single node, and the process is continued recursively until
the graph is small enough to compute a graph hierarchy.
Then it uses a coarse-grained distributed memory parallel
evolutionary algorithm to perform partitioning. ParHIP has
achieved a higher partitioning quality and scalable than either

FIGURE 6. Edge partitioning by Expansion. The broken line edges are
unallocated, and the solid line edges are allocated. Initially, vertices
v1 and v2 are in boundary sets. Therefore, v1 is selected to be included in
a core set because v1 has fewer external neighbors than v2. Then, edge
allocation is performed. This step is continued until all edges are
allocated.

ParMetis or PT-Scotch. However, multilevel-based partitions
can only scale to a few hundred processors [134]. JA-BE-JA
[123] considers a partial view of the graph information and
uses Simulated Annealing optimization techniques to avoid
becoming terminated in local optima. Each vertex is a pro-
cessing unit, contains information of its neighboring vertices
and a few subsets of random vertices. Initially, every vertex
chooses a random partition. Through time, vertices swap
their partition to improve a locality value based on the num-
ber of neighbors they have in the same partition. Blp [124]
partitions large-scale graphs based on label propagation by
maximizing edge locality, the total of edges that are allo-
cated to a similar shard of the partition. BS [125] uses a
scatter-gather local search strategy, the simulated annealing
techniques, and the Bulk Synchronous Parallel computation
model. XTRAPULP [126] extends PULP [135] which is
multiple objective and constraint partitioning based on label
propagation to improve partitioning quality with minimal
computational time. Spinner [96] exploits label propagation
algorithm (LPA) and vertex-centric programming model.
It executes on top of Giraph and exploits a recursive node
migration approach using LPA to deal with scalability and
changing partitions. Comparison of offline approach graph
partitioning is described in Table 3.

4) OFFLINE SINGLE MACHINE EDGE PARTITIONING
Initially, the input graph is loaded into single machine mem-
ory. Then, the partitioners get complete information of the
graph and evenly assign edges to the partition via structure-
aware of vertices relationship. Offline single machine edge
partitioning include, SBVCut [136], SGVCut [128], and
NE [49]. SBVCut [136] works to get a structurally balanced
cut. First, it identifies a set of balanced vertices that can
be exploited effectively bisect a direct graph. The graph is
then further divided by an iterative application of structurally
balanced cut to get the graph’s hierarchical partitioning.
SGVCut [128] performs a workload-aware block-based par-
titioning strategy. First, it groups edges into blocks based on
their connectivity scores to different predefined seeds. Next,
if the blocks are too large, it splits the blocks by considering
connectivity values. Finally, it merges all these blocks into
balanced partitions.

NE [49] is the state-of-the-art edge partitioning algo-
rithm which partitions based on neighborhood expansion

VOLUME 10, 2022 118531

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

TABLE 3. Summary of offline approach graph partitioning.

heuristics with two stages, edge expansion and edge alloca-
tion as depicted in Fig. 6. First, one edge set is generated
from the given graph then that edge set is allocated to the
partitions during the edge allocation stage. In NE algorithm,
partitioning is performed in iterative manner. To build par-
tition ki, first, NE establishes the core C and boundary B
sets. The B begins to expand, and then the relevant vertices
are selected as participants in C . A seed vertex is chosen
before the expansion. The seed vertices are placed in C . All
neighboring vertices of each seed vertex in ki are placed in a
boundary set Bi. Edges that link vertices between or within C
andBi are assigned to the current partition ki. In the expansion
step, the vertex form Bi with the external degree dext and the
fewest neighbors who are neither in Bi nor in C is chosen.
Then, the vertex was relocated from Bi to C , and the external
degree for each vertex v inBi was calculated. Finally, NE allo-
cates edges between v and vertices in Bi and C to the current
partition ki and removes the edges from the graph. The vertex
in Bi with the lowest dext is then determined and moved to C
using the following expansion phase. The remaining edges of
a partition will overflow into the next partition if the partition
reaches its capacity limit. When the partition is complete, all
of the edges in the graph will be eliminated, and the algorithm
will begin again at the seed vertex. The method comes to a
halt once the entire graph has been partitioned.

5) OFFLINE DISTRIBUTED EDGE PARTITIONING
All edges of a graph are resigned in different machines
and it employ global placement heuristics to optimize edge
allocation. Sheep [131], JA-BE-JA-VC [129], Dfep [130],
dSPAC+X [137], and DNE [132] are examples of offline
distributed edge partitioning. Sheep [131] converts the graph
near to a smaller elimination tree using a distributed MapRe-
duce operation. It sorts the vertices, reduces the input graph
into an elimination tree, and partitions the elimination tree.
Finally, it translates the partitioned tree into edge parti-
tion. JA-BE-JA-VC [129] randomly assigns the edges to
the partitions and applies edge coloring. Then, vertices per-
form edge-color exchange to reduce the vertex cut. It uses

simulated annealing to improve the partitioning quality iter-
atively. dSPAC+X is a scalable distributed edge partitioning
via split and connect graph construction method. First, the
input graph G is changed to a hypergraph (Hg) via the split
and connect method, and then the Hg is partitioned via vertex
partitioning. dSPAC+X partitions billions of edges by inte-
grating parallel vertex partitionings like ParMETIS [119] and
ParHIP [127]. DNE [132] is a distributed version of NE [49]
and introduces a parallel expansion heuristic. It divides edges
into disjoint sets and minimizes the number of replicated
vertices. Dfep [130] assigns random vertices and an equal
amount of funds to each partition. In each round, each par-
tition makes an offer to obtain an edge based on its neighbors
vertices.

B. ONLINE APPROACH
The offline approach loads the complete graph in memory
before it begins partitioning. This loaded graph in memory
helps it quickly gather the global graph structure to solve
the optimization problem. Thus, it has a higher partition-
ing quality. However, it does not support large-scale graph
partitioning. This issue motivated the design of an online
approach to scalable graph partitioning. The online approach
is also known as stream approach. The vertices with edge
sets arrive in a pipeline fashion to a partitioner as shown
in Fig. 7. The online approach performs partitioning based
on partial view graph data and needs to save a partitioned
state for further decisions. This state is crucial for the online
partitioners to assign the incoming edges to the appropriate
partitions. However, once edges or vertices are allocated,
they will never be reassigned again. Because the edges does
not need to be retained in memory entirely at any time, the
online approach allows graphs to be partitioned with min-
imum memory overhead. Therefore, lower capacity work-
stations can be utilized to partition massive graphs, which
reduces the monetary expense of graph partitioning. How-
ever, in the beginning, the online approach does not have
enough partition state to allocate the incoming edges, but over
time, it accumulates the partition state. Early edges or vertices

118532 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

FIGURE 7. Vertices with edge sets arrive online (one edge at a time), and
then target partition is determined after each edge arrives.

in the stream are allocated to partitions with little partitioning
state available, leading to poor quality of such allocations.
Therefore, its partitioning quality is worse than the offline
approach. However, it supports big graph partitioning. Fur-
thermore, the graph data may reach the partitioner either in
Random, DFS (Depth First Search), or BFS (Breadth First
Search) orders. These arrival orders affect the performance
of the partitioning methods [65].

1) ONLINE VERTEX PARTITIONING
When vertices with edge sets arrive in stream fashion, a parti-
tioner chooses one of the partition to allocate the vertices. The
aim of the partitioner is to discover a balanced partitioning
that close to optimal as possible with as little computation.
An example of online vertex partitioning includes Hashing,
LDG [43], Fennel [138], FG [42], and Akin [139]. Hashing
is used for both vertex or edge partitioning. It allocates edges
or vertices to the partitions by mapping the hashing function
to edges or vertices. LDG [43] assigns the incoming vertices
to most of its neighborhood found and controls load balance
by a penalty multiplier. Fennel [138] extends the idea of LDG
to formulate graph partitioning problem as modularity maxi-
mization in streaming settings, and it relaxes hard cardinality
constraints into an element that accounts for the cost of edges
cut and the sizes of individual clusters. It assigns incoming
vertices to the partition which holds the highest neighborhood
and a minimum of none-neighborhood. FG [42] introduces
a hybrid streaming mode that considers partial restreaming
on the graph’s portion several times, applying one pass for
the rest of the portion. Akin [139] performs stream vertex
partitioning by allowing the migration of vertices between
partitions over time. It uses the Jaccard similarity measure
to determine which vertices are similar and puts them in the
same partition as possible. It constructs a fixed neighbor list
sorted by the degree to access every vertex easily. It takes the
stream of edges and vertices as input. Vertices are assigned
by deterministic hashing during vertex stream, and edges are
assigned by vertices’ similarity during edge placement. Dur-
ing edge placement, it assigns an edge based on maximizing
a similarity score via migration vertices of an edge to the
partition. Nishimura and Ugander [140] proposed a restream-
ing partitioning model to extend existing online vertex par-
titioning. The restreaming partitioning model is driven by

circumstances in which the same dataset is consistently
streamed, allowing streaming partitioning algorithms to be
transformed into an iterative approach. reFennel and reLDG
are extended versions of Fennel and LDG, respectively, via
the restreaming partitioning model. They retain linear mem-
ory bounds as single-pass online vertex partitioning and
present comparable results with METIS. This model can also
support parallelization without inter-stream communication.

2) ONLINE EDGE PARTITIONING
Each edge of the input graph is loaded one at a time, and as
soon as it is loaded, it is assigned to a partition. The decision
about where to put an edge is made by a scoring function that
looks at graph properties, either degree, cluster information,
or the state of the partition (information about where edges
have already been allocated). Online edge partitioning algo-
rithms have been proposed in a single-pass (e.g. DBH [48],
Grid [46], PDS [45], Greedy [23], HDRF [47], CLDA [141]
andDeter [142], Quasi-streaming [143]), window-based (e.g.
ADWISE [144], RBSEP [145], and WSGP [146]), restream-
ing (e.g. 2PS-L [50], 2PS-HDRF [147], and CLUGP [148])

DBH [48] assigns the incoming edge based on vertices’
degree. It compares the degree of the paired value of edge
vertices and gives a hash value of the vertex with a smaller
degree to the edge. Grid [46] organizes all the partition into a
square matrix. This constraint set for any vertex v is the group
of all the partitions in the row and column of the partition
v hashes. The Grid works for only none prime numbers of
partitions. PDS [45] uses a Perfect Difference Sets to generate
a constraint set and applies for only prime numbers of parti-
tions. Greedy [23] assigns the incoming edge by checking the
previously allocated partition state and considering a mini-
mum load balance among each partition. HDRF [47] (Higher
Degree Replicated First) takes theGreedy heuristic advantage
and adds a degree of vertices information to calculate the sore
function. This degree information helps to partition a skewed
power-law degree distribution. When it comes to replication
factor, HDRF is better than competitor stream partitioning,
even though it takes a little more memory. CLDA [141] is
a hybrid of two edge partitioning techniques, Greedy and
HDRF, and considers a lower degree edge assignment. The
lower and higher degree edges are partitioned by Greedy
and HDRF, respectively. It has the same replication factor
with HDRF but achieves a better load balance than HDRF.
Deter [142] extends the idea of HDRF by considering both
degree and cluster information into account when assigns an
edge to the partition. This cluster information helps to allocate
high dense subgraph into the same partition to reduce the
communication cost. Quasi-streaming [143] divides incom-
ing edges into batches of a fixed size (a constant multiple
of partitions) and assigns edges to partitions using a game
theory model. All edges in each batch make up the players
in a gaming process. The reasonable strategy in the game is
the edge’s partition selection. The edge partitioning for this
batch is completed when the game process of each batch
finds a Nash Equilibrium. Quasi-streaming reduces memory

VOLUME 10, 2022 118533

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

overhead and achieves a lower replication factor than online
single pass edge partitioning.

Window-based edge partitioning have been proposed to
overcome the uninformed assignment problem of state-based
single-pass online edge partitioning by storing some edges in
a window to get more knowledge of the graph or postponing
them in a buffer window. The bufferedwindow helps to gather
enough information about two end vertices of incoming edge
to determine edge allocation. ADWISE [144] performs edge
partitioning by storing and selecting the best edge among
multiple edge lists in the buffered window. It controls window
size at run-time and considers adaptive balance score, degree
aware window score, and clustering score to calculate the
score function. It determines the best edge from the buffered
window via the high value of score function, assigns it to
the best partition, and refills the window with edges from the
edge stream. RBSEP [145] introduces a buffer window, post-
poning, and reassigning edges. If the incoming edge incident
vertices neighborhood has not been visited yet, the edge will
be stored in the buffer window and postponed edge allocation.
Otherwise, the edge allocation is made using HDRF proce-
dures. Later, edges stored in the buffer will be considered
for reallocation. WSGP [146] adapts edge allocation from
Greedy and delays the incoming edge, which does not fit to be
assigned in the current iteration to a fixed-bounded buffered
window. After the buffered window has been filled, the edge
is popped and allocated to a partition. The assignment is
decided by looking at the edges that have already been settled
and the edges that are still in the buffer window. ADWISE,
RBSEP, WSGP have a lower replication factor than HDRF,
however, they have memory and run-time overhead.

Mayer et al. [147] proposed a two-phase stream edge
partitioning model via streaming vertex clustering and
restreaming partitioning. A lightweight streaming clustering
technique [149] is used in the initial phase to begin separat-
ing vertices into clusters. In the second phase, the graph is
re-streamed, and the vertex clustering that was done in the
first phase is exploited to achieve a lower replication factor.
The model checks that the edges are pre-partitioned via adja-
cent vertices in the same cluster or in the cluster mapped
to the same partition during restreaming. If the conditions
for pre-partition are satisfied, the edge is skipped because it
has already been allocated. Otherwise, a score is performed
to allocate the edges. Based on this model, 2PS-HDRF and
2PS-L are proposed. They used the same clustering algo-
rithm in the first phase. However, they considered different
scoring functions in the second phase. 2PS-HDRF exploits
the same score function as HDRF. However, 2PS-L considers
three things to calculate the score function: the degree of a
vertex, the cluster of a vertex, and the volume of a vertex.
Unlike the 2PS-HDRF, the 2PS-L calculates score functions
for only two partitions to determine the highest score parti-
tion. They have a lower replication factor and a good run-
time than HDRF. 2PS-HDRF outperforms 2PS-L in terms of
replication factor. However, 2PS-L has a shorter runtime than
2PS-HDRF. CLUGP [148] is a restreaming edge partitioning

that consisting of three phases: stream clustering, cluster par-
titioning, and partition transformation. The streaming clus-
tering phase uses relationship between clustering and edge
partitioning to generate fine-grained clusters to decrease the
number of vertex replicas. In this phase, CLUGP improves
the stream clustering [149] to fit for edge partition via a
split operation (when a cluster’s volume reaches its max,
it splits higher degree vertices to generate a new cluster). The
cluster partition phase converts the clusters to partitions by
considering balancing and edge cutting as a cost function.
This problem is solved using game theory. Finally, to get
edge partitioning, it combines the output of the two phases to
map vertex to partition in the partition transformation phase.
CLUGP outperforms online single-pass edge partitioning in
terms of replication factor and run-time in web graphs [148].

3) ONLINE HYBRID PARTITIONING
It targets reducing the cuts of low-degree vertices. First,
it distinguishes low-degree and high-degree vertices. Then,
it applies various techniques for the lower-degree and high-
degree vertices to get optimal partitioning quality. Hybrid-
Cut [22], Ginger [22], and HybridCutPlus [52] are examples
of online hybrid partitioning. Hybrid-Cut differentiates the
vertices as the lower and higher degree based on the user-
defined threshold. Then, the vertex partitioning and edge par-
titioning are applied for the lower and higher degree vertices,
respectively. The lower degree vertices are evenly assigned
vertices along with in-edges to partition by hashing their
target vertices. And for the higher degree vertices, it dis-
tributes all in-edges by hashing their source vertices. Ginger
differentiates the lower and higher degree vertices similar to
Hybrid-Cut. Then, the lower degree vertices are partitioned
like Hybrid-Cut. However, for the higher-degree vertices,
it employs a Fennel-like heuristic to allocate the vertex and
its in-edges to the partition that minimizes the expected repli-
cation. Unlike Fennel [138], Ginger includes both the size
of edges and vertices into its objective function. By distin-
guishing higher and lower vertices, HybridCutPus employs
the Hybrid-Cut, and Grid [46] partitioners. It uses Hybrid-
Cut, if one vertex of an edge is a higher degree and another
vertex is a lower degree; otherwise, it performs similar to
Grid partitioner. Table 4 describes the comparison of online
partitioning.

C. OffStream APPOACH
OffStream partitioning approach was proposed by hybrid-
ing the offline and stream approaches. It Overcome the gap
between pure in-memory and pure streaming algorithms. The
main idea is that if a graph is too large to partition in mem-
ory, the algorithm instead reads only some input graph scale
to memory, runs a good partitioning method for the offline
and stream parts. OffStreamNG [53], OffStreamNH [54], and
HEP [55] are examples of offstream edge partitioning. Ini-
tially, OffStreamNG and OffStreamNH randomly split edge
set in two subsets; then, it applies online and stream edge
partitioners for each subset. OffstreamNG uses NE [49] and

118534 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

TABLE 4. Summary of online graph partitioning algorithms.

Greedy [46] heuristic for the offline and stream components
with minor modifications of both algorithms, respectively.
OffStreamNH uses NE and HDRF [47] for the offline and
stream parts, respectively. HEP reduces thememory overhead
by splitting the graph’s edge set into two subsets, low-degree,
and high-degree vertices. The average degree of the graph is
used to figure out which vertices are high-degree and which
are low-degree. Edges connecting two high-degree vertices
are partitioned in the stream (using HDRF), and edges with
one of the low-degree vertices are partitioned in-memory
(using NE) partitioning.

D. DYNAMIC APPROACH
Graphs are inherently dynamic. The graphs’ topology is
dynamically changed because some vertices and edges may
be removed or added from the graph over time [150], [151].
As these graphs’ topology evolves, the partitioning quality
of partitioners would be constantly degraded due to unbal-
anced load distribution in each partition and communication
overhead. Therefore, the dynamic approach was proposed to
overcome this challenge.

1) DYNAMIC VERTEX PARTITIONING
Dynamic vertex partitioning regulates the communications
and load of computing nodes based on a selection of vertices
to migrate. The main differences among dynamic vertex par-
titioning are how to choose vertices for migration, selecting
a target partition, and how to exchange vertices. xDGP [56],
X-Pregel [57], Mizan [58], GPS [29], and LogGP [152] graph
processing systems integrate their own dynamic vertex par-
titioning. xDGP uses adaptive iterative partitioning, which
performs an iterative vertex migration, relying only on local
information. At every iteration, after initial partitioning, each
vertex will decide whether to remain in the present parti-
tion or migrate to other partitions, which have the high-
est number of neighbor vertices to minimize edge cut. GPS
uses Large Adjacency-List Partitioning (LALP). To dynamic
repartition the graph, it considers only external communica-
tion of vertices. Migrations of vertices are performed from
vertex v, at worker wi to new worker wj, if v has more
incoming/outgoing message from wj than any other workers.
X-Pregel uses dynamic repartition by considering both inter-
nal and external communications of vertices. It proposed two

options before migrating vertices to each worker, sharing and
without sharing adjacent lists of the vertices to the workers.
Mizan uses a migration planner to find the most substantial
cause of workload imbalance based on three metrics, an out-
going message, incoming message, and response time. Each
machine computes the correlation between each metric and
selects the factor with the highest correlation as the objective
factor for moving vertices. LogGP introduces a log-based
graph partitioning that records, analyzes, and reuses the previ-
ous partition and calculates statistical information to improve
partitioning quality. It uses hypergraph repartitioning and
superstep repartitioning. Hermes [153] was developed as a
fork for Neo4j [25] graph database. Hermes uses a multi-level
partitioning method like Metis [41] to partition the graph
across numerous servers. Metis was designed for offline;
however, Hermes introduced the lightweight repartitioner,
which maintains high-quality partitions while adapting to
graph changes. The lightweight repartitioner algorithm tries
to improve an existing partitioning by reducing edge-cuts
while keeping divisions nearly balanced. KGGGP [154] is a
dynamic vertex partitioning that can be easily implemented
into a multilevel structure with some minor adjustments to
the fixed vertices at the start. To begin, an extra restriction
is imposed during the coarsening step, preventing fixed ver-
tices from belonging to distinct portions from being matched
together, whereas they can be directly matched with free
vertices.

2) DYNAMIC EDGE PARTITIONING
DynamicDFEP [155], GrapH [156], andGraphSteal [157] are
example of dynamic edge partitioning. DynamicDFEP lever-
ages Dfep [130] algorithm to make initial partitioning and
introduces three update strategies, a complete partitioning
method, partial partitioning method, and unit-based insertion.
It updates the partition of a large graph when new vertices
and edges are included or removed. GrapH uses H-adapt
strategies to migrate a set of bag-of edges after GAS iteration.
It selects two arbitrary partitions after each superstep and
migrates nominee edges between them. To avoid inconsis-
tency, it exploits locking techniques on the vertices adjacent
nominee edges. GraphSteal is a dynamic edge partitioner that
dynamically re-partition graph based on the job’s runtime
characteristics. It migrates edges from slow nodes to fast
nodes to avoid computational imbalance in the cluster.

VOLUME 10, 2022 118535

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

IV. COMPUTATIONAL MODELS OF GRAPH COMPUTING
SYSTEMS
We classify the computational models of existing graph com-
puting systems into two general categories; computational
models for graph processing and graph database systems.
Both platforms have used different computational models to
process graph analytic on large-scale graphs. The computa-
tional models of GPS and graph databases are discussed in
this section.

A. COMPUTATIONAL MODELS OF GRAPH PROCESSING
SYSTEMS
The graph processing systems’ design explores a new model
to compute large-scale graphs efficiently due to the explo-
sive graph size and the inherent complex structure of graphs.
GPS’s principal computational models include programming,
communication, execution, and graph partitioning methods.

1) PROGRAMMING MODELS
Programming models are a higher-level programming inter-
face that users quickly write graph applications. They provide
a set of methods that allow users to read and modify their
graph data. Therefore, users can focus on their algorithms’
logic and not bother about communication patterns, data rep-
resentation, and the underlying architecture of the comput-
ing system. Algorithms for graph processing usually require
a sequence of iterative operations. Hence, several program-
ming models have been proposed to improve iterative com-
putation. The programming models of GPS include MapRe-
duce [158], Vertex-centric [19], Gather-Apply-Scatter [23],
and Subgraph-centric [84].

a: MapReduce PROGRAMMING MODEL
Jeffrey and Sanjay [158] proposed the MapReduce (MR)
programming model. It is a distributed programming frame-
work for large-scale data computing on commodity clusters.
MR has two components: Map and Reduce functions. Both
the Map and Reduce functions are written by the users. The
Map function accepts a batch of data and changes it into other
intermediate data called key-value pairs. TheReduce function
gets the Map function output as input and combines them to
form possibly smaller key-value pairs. Apache Hadoop [159]
implements the MR for the distributed analysis of large-scale
data across clusters. Many real-world tasks are represented
in this model, as well as graph algorithms. However, the MR
paradigm can’t process graph data efficiently because graphs
don’t have good locality of memory access and do little work
per vertex. Hence, the vertex-centric programmingmodel was
proposed by [19].

b: VERTEX-CENTRIC PROGRAMMING MODEL
The vertex-centric (VC) programming model is called Think-
Like-A-Vertex (TLAV). VC is the most mature model for
large-scale GPS which users express computational tasks
from the point of a single vertex. Each vertex consists of a

unique id, local state, outgoing edges, and optional vertex and
edge value. The computation of the VC model is represented
as an order of supersteps. In each superstep, vertices can
be active or inactive, and messages are exchanged among
vertices synchronously. The VC model exploits the vertex
partitioning method to compute large-scale graphs [19].

c: GATHER-APPLY-SCATTER PROGRAMMING MODEL
PowerGraph [23] introduced the Gather-Apply-Scatter
(GAS) programming model and applied edge partitioning
to avoid the imbalanced workload distribution when using
the VC programming model on power-law graphs. To elimi-
nate the influence of higher-degree vertices in VC, the GAS
programming model decomposes the vertex program into
three stages: Gather, Apply, and Scatter. In the Gather stage,
data about adjacent edges and vertices are collected using
a derived sum over the vertex neighborhood. In the Apply
stage, the accumulated sum is updated on the central vertex.
Finally, in the Scatter stage, the adjacent edges’ values are
updated by the central vertex’s new value.

d: SUBGRAPH-CENTRIC PROGRAMMING MODEL
Both the VC and GAS models work on the focus of the scope
of a single vertex computation. This characteristic brings sim-
plicity and scalability. But because these models use super-
steps which are single hops in iterations, it may take a while
to talk to the node you want to reach. Moreover, commu-
nication comes with the cost of network messaging, and it
may become problematic if there are many large messages to
exchange. Therefore, the Subgraph-centric (SC) [84] model
was proposed to address communication latency issues by
offering a scope of subgraph computation. Instead of storing
different vertices on each partition, it suggests keeping their
subgraphs.

2) COMMUNICATION MODELS
During graph computation, the vertices send messages
through edges to their neighbors. Therefore, plenty of mes-
sages are exchanged among partitions of subgraphs for coor-
dination and data synchronization. Communication models
play a critical role in coordinating the data transfer among the
cluster of computing machines. The communication models
can be classified as message-passing, shared memory, and
dataflow based on how data is transferred.

a: MESSAGE PASSING MODEL
In message passing (MP) model, information is dispatched
from one vertex program to another using a message-based
communication. The message has local vertex data and Id
of the target vertex. In MP model, the graph entities have
their own local and non-local states. These states are parti-
tioned and distributed across different workers. These work-
ers have read-only access to the local state and can not access
and modify other workers’ states. The update is performed
by sending and receiving messages explicitly or implicitly

118536 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

within the graph entities. Message passing interface is com-
monly used in GPS [19], [20], [21], [22], [23].

b: SHARED MEMORY MODEL
Vertex data is exposed as shared variables in shared memory
(SM), which can be read or updated directly by other vertex
programs. SM eliminates the additional memory overhead
caused by messages. Communication through the SM model
allows tasks in different worker machines to communicate
by mutating a shared state. The framework that employs this
model uses lock or semaphore to handle race conditions and
data consistency [160].

c: DATAFLOW MODEL
A distributed application is represented by a Distributed
Acyclic Graph (DAG) of operations in dataflow (DF) model,
which is a generalization of the MR model. The DF
model [161] is a DAG that consists of operators, sources, and
target. The data sources, targets, and intermediate data sets
that pass through operators. Vertices represent data-parallel
tasks, whereas edges represent data flowing from one task to
another in the DAG. In DFmodel [52], the data flows through
the systems towards the next computation phase. The frame-
work deploys this model that provides explicitly or automatic
caching mechanisms and integrate general-purpose operators
(e.g., map, reduce, join, filter) to load and transform graphs.

3) EXECUTION MODELS
In GPS, distributed coordination of graph entity is an essen-
tial task to perform iterative computation. Execution models
deal with how a specific implementation of a program model
leads to convergence. There are three types of execution
models in the existing GPS: synchronous, asynchronous, and
hybrid.

a: SYNCHRONOUS EXECUTION MODEL
Synchronous (Sync) [19] execution refers to concurrent
workers that process their task one iteration followed by
other iteration based on global barriers as shown in Fig.8.
Initially, a graph computation has an input. Then, the graph is
initialized and followed by a series of supersteps separated
by global barriers until the overall graph computation ter-
minates with the desired output. At the end of each super-
step i, changes to the vertex and edge data are committed
and visible in the next superstep i + 1. In each superstep,
active vertices are executed. Regardless of the number of
machines, the Sync execution model assures deterministic
execution. The frequent barriers that reduce the efficiency
distributed execution and algorithm convergence [23]. Most
single machine or distributed GPS use the Sync execution
model.

b: ASYNCHRONOUS EXECUTION MODEL
In the asynchronous (Async) execution model, computa-
tion is performed immediately after its current iteration.
As shown in Fig. 9, it does not use any global barriers.

FIGURE 8. Execution flow of Sync model. Within each iteration, all
vertices in the input graph are performed in a fixed order.

FIGURE 9. Execution flow of Async model. As quickly as possible, the
update of each vertex is accessible to neighboring vertices.

Synchronization can be applied either through shared mem-
ory or through local barriers and distributed coordination.
In the Async execution model, computing engines execute
active vertices as processors and allocate network resources
immediately. During computation, changes to the edge and
vertex data are automatically committed to the graph and
accessible to subsequent computation on neighboring ver-
tices. The Async execution model can make better use of
resources while increasing the algorithm convergence rate.

c: HYBRID EXECUTION MODEL
The hybrid execution model (Hsync) is a hybrid of the Sync
and Async models that changes from the Sync and Async
mode based on the current situation vice versa as shown
in Fig. 10. Recently, several GPS have used this model
to overcome the shortcoming of existing systems. Power-
Switch [162] adapts a Hsync that allows dynamic switch-
ing from the Async to Sync model to gain performance.
PowerSwitch captures execution statistics such as active ver-
tices, throughput and convergence speed on a continuous
basis and uses online sampling, offline profiling, and a set of
algorithms to reliably forecast ideal mode transition points.
GoFFish [163] and Giraph++ [84] also uses hybrid execu-
tion model. These frameworks apply the Async execution
model for local vertices and the Sync execution model for
remote vertices.

B. COMPUTATIONAL MODELS OF GRAPH DATABASE
SYSTEMS
Graph databases design mainly focus on general architecture,
data model and organization, data distribution, and transac-
tion queries. This sub-section describes the computational
model of graph databases, including the data models, parti-
tioning techniques, and query languages.

VOLUME 10, 2022 118537

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

FIGURE 10. Execution flow of Hsync model. Based on a statistical analysis
of algorithms, the Hsync switches from Sync to Asysn model vice versal.

1) DATA MODELS
Datamodels are essential to represent information and knowl-
edge, depend on application areas and user requirements. The
data models of graph database can be classified as graph and
nongraph data.

a: GRAPH DATA MODELS
Graph data models set a new standard for visualization
of data in the form of vertices (nodes) and edges (rela-
tions). There are four types of graph data models: sim-
ple graph, hypergraph, property graph model (PGM), and
RDF.

Simple graph model is used to represent the group of ver-
tices and edges that form the graph and is frequently applied
in graph processing platform [19]. However, it doesn’t seem
applicable in graph databases. Hypergraph model is extends
version of the simple graph model that an edge (called a
hyperedge) can connect multiple nodes. It can be applied
when data sets contain a plenty number of many-to-many
relationships [25]. PGM is a broadened version of the simple
graph model that contains the property of nodes and relation-
ships. The PGM has three components, nodes, relationships,
and properties (data stored on the relationships or nodes) [25],
[37]. Nodes represent real-world entities. They can store any
number of attributes. Relationships represent the relation type
of the start and end nodes, with distinct properties just like
nodes. A property is a key-value pair that key identifies a
property name, and value is actual data. The PGM is the most
popular data model for graph database [25]. Fig. 11 illustrates
property graph model. RDF [164] is a framework for model-
ing information on theWeb. The RDF is also named as triples
store. It can be intuitively considered as a semantic network.
The RDF contains three elements to represent data, subject
(resource), predicate (attribute), and object (attribute value).
Each element expresses a logical relationship between the
subjects and objects. The RDF triples can be represented the
subjects and objects as nodes, and the predicates are denoted
as edges. Fig. 12 illustrates an example of the RDF model.
For more comprehensive reviews on RDF, readers can refer
to [76].

FIGURE 11. An example of PGM representation of author and journal
relationships.

FIGURE 12. An example of RDF data model representation of author and
journal relationships. Author, publishes and journal as the subjects and
age, name, since, from, to and rank as the predicates and ‘‘27’’, ‘‘Tedy’’,
‘‘2019’’, ‘‘2’’, and ‘‘bigdata’’ as the objects.

b: NONGRAPH DATA MODELS
There exist data models that are not specific to graphs;
however, they are used in various systems to design and
store graphs. Those data models [165] include key-value,
wide-column, and document stores. Key-value-store contains
key-value pairs with unique keys. It helps easy partitioning
and efficient querying data with high scalability. In the key-
value-store, vertices and edges are stored as values and are
indexed by unique keys. Wide-column-store is also called
column-family stores [166] that presents data in tabular form
of rows and columns. This storage combines the nature of
relational tables and key-value pairs. Each row can have an
arbitrary number of columns, and every column consists of
key-value pairs. Each vertex is stored in a row and is indexed
by a unique key. The vertex value, labels, properties, and
adjacent edges are stored in row columns (cells). Document-
store [167] extends the key-value-store that encodes the val-
ues via semi-structured formats such as XML or JSON docu-
ments. The values have a flexible schema, which consists of
an attribute with one or more values. Document-store queries
entire document by key and also fetches only some part of the
documents. The vertices and edges are encoded in documents
and linked via document Ids.

2) PARTITIONING TECHNIQUES
Graph partitioning and sharding are the essential data parti-
tioning techniques for large-scale data. The former and the
latter are used to partition graphs and tabular data, respec-
tively. As we have seen in section II, graph partitioning is
utilized for GPS and GDBS to divide large-scale graphs
into subgraphs. Some parts of these subgraphs are replicated
before it starts processing.

118538 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

Sharding involves splitting large-scale data into many
partitions that are distributed across several database
instances [168]. Its primary purpose is to speed up query
processing and extend the system as needed. The sharding
process comprises a database server that handles the burden
of the requests that are delivered to it. The database server
must have a user id, and each database is served by one server.
Unlike graph partitioning, sharding does not use a require-
ment for load balance and splits rows or columns of a large
database table into multiple smaller tables without replica-
tion [169]. The server can use lookup, hash, and rang sharding
strategies. The sharding is commonly practiced for relational
database systems [170] and NoSQL [171] databases; how-
ever, it is rarely applied to graph databases [172].

3) GRAPH QUERY LANGUAGES
Graph query languages are designed for the manipulation
of GDBS. The most widely used graph query languages
for graph databases include, SPARQL [173], Cypher [174],
Gremlin [175] and GraphQL [176]. Each query language has
its functionality to navigate the data. SPARQL and Cypher
are designed to operate for RDF graphs and property graphs,
respectively. Gremlin and GraphQL are designed towards
graph traversal and APIs for fulfilling those queries with
existing data. Some graph databases can support two or more
than two query languages.

SPARQL [173] is a standard declarative query language
recommended by theW3C4 for querying RDF. SPARQL sup-
ports all of the complicated graph patterns. Triple patterns of
RFD (the subject, object, or predicate) are the core building
blocks of SPARQL queries. Both SPARQL and Cypher con-
tain graph pattern matching styles that can be composed via
SQL-ish keywords.

Cypher [174] is a high-level, well-established declarative
query language for the PGM, initially invented and imple-
mented as part of the Neo4j graph database project. It gets a
property graph as input and displays a table as output. Cypher
is designed similar to SQL to make the transition between
the two languages as smooth as possible. For many functions,
it uses the same clause syntax structure and implements the
existing semantics. It includes new features to the language
to support multiple graphs and query composition. Many
commercial products like Memgraph, HANA Graph, Redis
Graph, and Agens Graph have recently implemented Cypher
as a core query language. Cypher is now being defined as
a fully specified standard under the auspices of the open-
Cypher,5 which can be independently implemented utilizing
various architectures, storage and query optimization tech-
niques.

Gremlin [175] is a low-level language that offers impera-
tive and declarative query language within the same frame-
work. TinkerPop6 project designed, and distributed this

4https://www.w3.org/TR/rdf-sparql-query/
5https://opencypher.org/Group
6http://tinkerpop.apache.org/

Gremlin query language. It is more imperative in nature and
focuses on graph traversal instead of pattern matching. Grem-
lin supports pattern matching features in a declarative pattern
style. These two features help to execute the query on graph
database and graph processing system.

GraphQL7 [176] is an open-source graph query language
for application programming interfaces and is initially created
by Facebook. GraphQL is more popular as an alternative to
REST-based interfaces, which have influenced the Web-API
scenario by giving the decision to clients instead of servers.
Like Germlin, GraphQL supports imperative and declarative
query processing. For more comprehensive reviews on graph
query languages, readers can refer to [177].

V. TAXONOMY OF GRAPH COMPUTING SYSTEMS
Graph computing systems are developed for processing, and
analyzing large-scale graphs. Based on their graph analytics
nature, the graph computing systems can be classified into
two categories, GPS and GDBS. The various classification
of these platforms are discussed in this Section. Fig.13 illus-
trates the detailed taxonomy of graph computing systems.

A. GRAPH PROCESSING SYSTEMS
Based on the architecture they are designed, GPS also can be
classified into two, distributed graph (DS) and single machine
graph processing systems [31].

1) DISTRIBUTED GRAPH PROCESSING SYSTEMS
Distributed GPS are a group of multiple processing nodes
and each node participates during graph computations. They
use various computing model to improve their performance.
We classify these systems into two, MapReduce and Non-
MapReduce family based on their computing model.

a: MapReduce FAMILY SYSTEMS
MapReduce family systems are used MRmodel with a minor
modification of the stage of the MR model. Hadoop [159]
uses MR model to enable users to easily build scalable par-
allel algorithms and processes large-scale data on clusters
machines. However, Hadoop does not give direct support for
iterative data analysis tasks. To solve this, several MapRe-
duce family graph analysing systems have been proposed
with modification of of MR model to improve the effi-
ciency. These systems include Pegasus [178], HaLoop [179],
Twister [180], iMapReduce [181], and Surfer [182]. Pega-
sus [178] implements GIM-V(Generalized Iterated Matrix-
Vector multiplication) as a two-stage MapReduce algorithm.
It represents the input graph as two files, vertices as vector
and edges as matrix. To operate, it provides three function
combine2(), combineAll(), and assign(). In the first stage,
the map phase converts the input edges to set destination
vertex as the key, and the reduce phase performs combine2()
to multiplicate the matrix element with the vector element.
The second stage accepts the output of the first stage. In this

7https://graphql.org/

VOLUME 10, 2022 118539

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

FIGURE 13. Taxonomy of graph computing systems.

second stage, combineAll() and assign() perform summation
of partial multiplication and write the new result, respec-
tively. HaLoop [179] is a modified variant of the MapReduce
framework that supports an iterative computation. It uses
task scheduler loop-aware and caching mechanisms to avoid
reloading iteration-invariant data and to reduce communica-
tion costs. Twister [180] extends MapReduce API to support
an iterative computation. It provides broadcast and scatters
data transfers. Its communication and data transfer are per-
formed through publish/subscribe messaging. Surfer [182]
is designed to handle large-scale graph analytic based on
two principal primitives for users: MapReduce and Propaga-
tion. In this system,MapReduce performs different key-value
pair in parallel while propagation is an iterative computa-
tion that transfer information along the edges from a vertex
to its neighbors in the graph. iMapReduce [181] allows for
programmers to specify the iterative processing with a map
and reduce functions. It explicitly provides model, iterative
algorithm, and the concept of persistence task to accom-
plish recursive computation by avoiding frequently destroy-
ing, creating,and scheduling tasks. It also provides to load
input data to the persistence task once and never needs to be
shuffled between the map and reduce the job.

b: NonMapReduce FAMILY
MapReduce family GPS are inefficient for the graph process-
ing because the efficiency of graph computations depends
heavily on inter-processor bandwidth as graph elements are

transferred over the network after each iteration [19]. To solve
this inherent performance degradation, many NonMapRe-
duce based graph processing system have been proposed.
In 2010, Google has proposed a novel scalable platform
using vertex centric programming model called Pregel [19].
Recently, many graph processing have been proposed by
extending this framework. The NonMapReduce family sys-
tems can be classified into, Vertex-centric, Gather-Apply-
Scatter, and Subgraph-centric based on the programming
model they are operated.

c: VERTEX-CENTRIC SYSTEMS (VCS)
VCS execute a user-defined program over the vertices of
a graph iteratively. The vertex program is written from
the point of view of a vertex, and it accepts data from
neighboring vertices and incident edges as input. The VCS
include Pregel [19], Giraph [20], HAMA [21], Pregelix [183],
GPS [29], Mizan [58], and Cyclops [184]. Pregel [19] is a
pioneer GPS. It uses the vertex-centric programming model,
bulk synchronization parallel model, and vertex partition-
ing method. Giraph8 [20] is an open-source implementa-
tion of Pregel and adds several characteristics beyond the
principal Pregel model such as edge-oriented input, shared
aggregator, out-of-core computation and master computa-
tion. HAMA9 [21] is a distributed system on top of Hadoop

8https://giraph.apache.org/
9https://hama.apache.org/

118540 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

for graph computations and massive matrix computations.
It supports three computation engines, BSP, MapReduce,
and Microsoft Dryad [185]. MapReduce is used for matrix
multiplication, BSP and Drayd are used for graph com-
putation. Pregel+10 [186] supports vertex mirroring and
request-respond paradigm for the reduction of message
exchange through a network. Mirroring is needed to create
a copy of vertex for the higher degree vertex on a differ-
ent machine. In the request-respond paradigm, each vertex
requests another vertex to send a message. All machine
request from the same target vertex merged together into
one single request. Pregelix11 [183] supports in-memory
and out-of-core workloads. It is an open-source implemen-
tation on top of the Hyracks (parallel dataflow engine based).
It represents messages and vertices data as a tuple, then
applies join operation for message exchange between ver-
tices. GPS12 [29] introduces many built-in system optimiza-
tions such as message objects, single canonical vertex, and
using per-worker rather than per-vertex message buffering
(which improves network usage), Large Adjacency List Par-
titioning (LALP), and dynamic migration.Mizan13 [58] iden-
tifies the runtime characteristics of the system and pro-
vides a dynamic migration scheme. Cyclops [184] combine
the best feature from other GPS. It takes the BSP from
Pregel [19], direct memory access from Graphlab [187],
and distributed activation from PowerGraph [23]. It uses a
distributed immutable view that permits a vertex alongside
read-only access to every its neighboring vertices and pro-
vides read-only replication of vertices for the edges spanning
during a graph cut.

d: GATHER-APPLY-SCATTER SYSTEMS (GASS)
GASS improve power-law graph processing by combining
the GAS model with vertex-cut partitioning. GASS systems
include PowerGraph [23], PowerLyra [22], GraphA [188],
Cube [189], SympleGraph [190] and Topox [191]. Pow-
erGraph14 is designed to compute large scale power-
law graphs. It supports GAS Programming model, edge
partitioning, synchronous and asynchronous serializable
timing. PowerLyra15 extends the PowerGraph system and
introduces a hybrid graph partition method to reduce repli-
cation by separate lower and higher degree vertices. It uses
the GAS programmingmodel, synchronous execution model.
The higher-degree vertex computes as same as PowerGraph.
However, the lower-degree vertex limit from bidirectional
flow to unidirectional computations. GraphA [188] intro-
duced an adaptive and uniform graph partitioning algo-
rithm that partitions graphs using an incremental number
of mapping functions. To achieve fine-grained and low-cost
graph storage, GraphA leverages the Adaptive Radix Tree

10http://www.cse.cuhk.edu.hk/pregelplus/
11http://pregelix.ics.uci.edu/
12http://infolab.stanford.edu/gps/
13https://github.com/khayyatzy/Mizan
14https://github.com/jegonzal/PowerGraph
15https://github.com/realstolz/powerlyra

adjacency list [192]. It uses the GAS model and synchronous
timing. SympleGraph [190] observes user-defined functions
and identifies the loop-carried dependency. This system
enforces the precise semantics by performing dependency
propagation dynamically. Circulant scheduling and double
buffering is proposed to improve performance. Topox [191]
utilizes GAS Model, hybrid-BL partitioner and topology
refactorization (TR). TR transforms the power-low graph
into a further communication efficiency topology through the
fusion and fission method. The fusion organizes a group of
neighboring lower-degree vertices into a super-vertex while
the fission makes splitting a higher-degree vertex into a
group of siblings-vertices. The hybrid-BL partitions the new
topology.

e: SUBGRAPH-CENTRIC SYSTEMS (SCS):
SCS extend the view of the vertex as specified subgraph. SCS
include Giraph++ [84], GoFFish [163], and Blogel [193].
Giraph++ uses SC programming model to open partitions
structure to users and allows information to flow freely inside
the partitions. It contains two groups of vertices, internal
and boundary. Internal vertices contain vertex value, edge
values, and incoming message; however, boundary vertices
have only vertex value. It is implemented based on Apache
Giraph. GoFFish uses SC programming model with a dis-
tributed steady graph storage for large-scale graphs analytics
on commodity clusters, providing natural flexibility of SM
sub-graphs computation. Blogel is a block centric framework
via SC programming model. A block represents to connected
subgraph, and message exchanges occur within the blocks.
It uses graph Voronoi diagram partitioner to create a block.

2) SINGLE-MACHINE GRAPH PROCESSING SYSTEMS
Plenty of distributed GPS have recently been proposed
to support the large-scale graph, such as Pregel, Power-
Graph, etc. However, these systems have suffered from load
balance [194], synchronization overhead [195] and fault
tolerance overhead [196]. Moreover, the programmers face
challenges to easily use and optimize the graph algorithm in
distributed than single-machine systems. Therefore, single-
machine GPS have been introduced to tackle large-scale
graphs by extending multi-core, Solid State Drive (SSD) or
Hard Disk Drive (HDD). The design issue of single-machine
graph processing must consider four rules: (i) ensure the
locality of graph data; (ii) exploit the parallelism of multi-
thread CPU; (iii) minimize the size of disk data transfer
and (iv) streamline the disk Input/Output. We classify the
single-machine graph processing into single-machine shared
memory (SMSM) and single-machine out-of-core (SMOC)
systems based on memory usage.

a: SINGLE-MACHINE SHARED MEMORY SYSTEMS
They consist of one processing unit, physical memory, and
one or more CPU cores that share the graph entities across
all the cores. The SMSM with multicore can handle sur-
passing terabytes of memory, which can fit graphs alongside

VOLUME 10, 2022 118541

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

FIGURE 14. Out-of-core graph representation in GraphChi. a) A given vertices of graph are divide into intervals and
each interval has a shard, b) Input graph is split into 3 intervals and 3 shards.

tens or even hundreds of billions of edges [33]. The SMSM
include Grace [32], Ligra [33], Polymer [199], NXgraph [35],
and CGraph [200]. Grace [32] introduces block-oriented
computation by separating application logic and execution.
It operates similar to the VC programming model; however,
it executes a block of highly connected vertices at a time.
It applies block-level and vertex level scheduling policies.
Ligra16 [33] is a lightweight framework that is applicable for
graph traversal. It provides two routines for mapping vertices
and edges. Polymer [199] adapts non-uniformmemory access
(NUMA) architecture by co-locating graphs and computation
inside NUMA-nodes as far as possible. To minimize random
and remote memory access, it uses hierarchical scheduling,
edge partitioning and adaptive data structure. NXgraph [35]
offers a destination-sorted sub-shard structure to store graphs.
It splits vertices and edges into intervals and sub-shards,
respectively. Edges in each shard are sorted according to
their destination vertices to ensure graph data access local-
ity and enable fine-grained scheduling. CGraph [200] uses
a correlation-aware execution model, together with a core-
subgraph-based scheduling algorithm, and achieves improve-
ment on concurrent recursive graph processing (CGP) jobs.
SMSM systems are mainly characterized by simple program-
ming and computing models, low hardware overhead, and
limited computing power.

b: SINGLE-MACHINE OUT-OF-CORE SYSTEMS
With the advent of big graph data, the intuition of another
approach is required to store a graph out-of-core in the
external memory, such as SSD and HDD to tackle the
challenge of scalability. The primary consideration for

16https://github.com/jshun/ligra

Out-of-core GPS is that the size of the graphs is larger than
the main memory. However, it can fit the storage size of
the HDD or SSD. However, computing capacity and data
exchange bandwidth of external memory are hard to process
large-scale graphs under acceptable conditions because of
random disk access memory. The SMOC systems include,
GraphChi [30], MMap [202], GridGiraph [31], Mosaic [203],
and GraphQ [201].

GraphChi 17 is a pioneer in single machine out-of-core
GPS. It performs preliminary processing on the graph data
before beginning the actual computation. It introduces the
parallel sliding windows (PSW) method, which represents
graph properties to efficient processing from disk. It uses
the VC programming model, PSW (to load data for com-
puting), and selective scheduling to accelerate convergence.
GraphChi divides the graph into several vertex intervals and
keeps each vertex interval’s incoming edges as a shard. Each
shard contains all the input edges of the corresponding ver-
tex set and sorts them according to the Id of their source
vertices. Fig. 14a depicts graph representation as intervals
and shards in GraphChi. For example, Fig. 14b shows the
shard structure for input graph. Assume the vertices of the
input graph are partitioned as V1, V2 and V3 − V6 in inter-
val (1), interval (2), and interval (3), respectively. The shard
(1) saves every incoming edge of the vertex interval V1,
shard (2) stores every incoming edge of the vertex interval
V2, and shard (3) stores every incoming edge of the vertex
interval V3 − V6, respectively. As shown in Fig. 14b, when
the vertex set in interval 2 is active (the green colored ver-
tex), the shard (2) (the green edge list) is loaded to memory.
After the computation is completed, the result is written to

17http://graphlab.org/projects/graphchi.html

118542 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

TABLE 5. Summary of graph processing systems.

the disk. This step continues until it reaches convergence.
MMap exploits the memory mapping, which maps the edge
list into the virtual memory so that the edge file on the disk
is accessed as the same as file is loaded in memory. The
memory-mapped edge file minimizes data copy to and from
the user-space buffer; thus, improves performance. Mosaic18

uses Hilbert-order tiles graph representation, hybrid compu-
tation and execution model. The hybrid computation model
enables the vertex-centric model computation for the fast
processor and edge-centric model for massively parallel co-
processors. The hybrid execution applies synchronous vertex
states update. However, if there are no changes in the current
programming abstraction, it will use the asynchronous update
to help attain scale-up and scale-out and enabling graph
analytic on one trillion edges. GridGraph19 utilize a 2-level
hierarchical method to partition a graph at the preprocessing
and run time phase. During the preprocessing phase, vertices
and edges are divided into 1D-partitioned vertex chunk and
2D-partitioned edge blocks, respectively. At the run time
phase, it uses a dual sliding window method to partition the
graph by stream edges and perform vertices update. Table 5
describes the detail comparison of GPS.

B. GRAPH DATABASE SYSTEMS
GDBS are designed to efficiently store, process, and analyze
large-scale graphs based on the principle of database man-

18https://github.com/sslab-gatech/mosaic
19https://github.com/thu-pacman/GridGraph

agement systems such as persistent data storage, data con-
sistency, and integrity, logical or physical data independence.
They use various data models to store and retrieve graph ele-
ments, vertices, edges, and properties. The fundamental ele-
ment of GDBS are edges (connections) that are treated as the
core component of the model, along with vertices. In contrast
with conventional relational databases, connections between
data are stored in separate tables; therefore, searching for
connections require join operations, which takes much com-
putational time. The GDBS face main challenges due to the
nature of irregular graph computations to achieve low latency
and high throughput of the graph queries to accessing or
modifying a small or a large part of the graph.

Based on the graph storage and processing, graph
databases can be classified as native and nonnative graph
databases. Graph storage refers to the underlying storage
layer of the database that is designed specifically for storing
graph data. It is known as native graph storage. Graph pro-
cessing refers to how the graph databases execute database
operations, including both storage and queries.

1) NATIVE GRAPH DATABASES
Native GDBS implement their own underlying data struc-
tures and indexing for storing and querying graphs. Native
graph databases include Neo4j [37], TigerGraph [26], Alle-
groGraph [27], Dgraph [28]. Neo4j is a famous stan-
dalone graph database based on a property graph model
that naively stores nodes (vertices), relationships (edges),

VOLUME 10, 2022 118543

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

TABLE 6. Summary of GDBS.

and attributes. It uses pointers to navigate and traverse the
graph, supports transactions operation, and fulfills the ACID
(Atomicity, Consistency, Isolation, Durability) properties.
It is implemented in Java and utilizes Cypher query language
to query graphs. TigerGraph is a commercial, native parallel,
and distributed graph database based on a property graph
model that supports bulk data loading, providing built-in par-
allel computation and real-time graph updates. It is written in
C++ programming language and uses GSQL (TigerGraph
Query Language). AllegroGraph is an enterprise, supports a
multi-mode(property graph, Document, and RDF), horizon-
tally distributed graph database. It uses a federation function
to speed up complex queries across highly and knowledge
bases and distributed data sets. It is written in python, Java,
and Lips and uses SPARQL query language. Dgraph is
an open-source and distributed native graph database based
on a property graph model. It provides horizontal scalable,
high availability, low-latency arbitrary depth joins, and crash
resilience. It is written byGo programming language and uses
GraphQL query language.

2) NONNATIVE GRAPH DATABASES
Nonnative GDBS exploit other database systems such as
relational or NoSQL [165] to store graph data and design
query interfaces to execute graph queries over the back-
end system. Nonnative GDBS include, ArangoDB [207],
OrientDB [205], Janusgraph [209], FaunaDB [208], Star-
dog [206], and Blazegraph [204]. ArangoDB is a multi-
model (property graph, Document, and key-value) graph
database system, and it can scale up vertically and hori-
zontally, fulfills the ACID consistency properties, and sup-
ports fault tolerance. It is implemented in C++ and uses
its own query language AQL (ArangoDB Query Language),
and supports the other two query language, Gremlin, and
GraphQL. OrientDB is a multi-model (property graph, Doc-
ument, and key-value), distributed architecture, and trans-
actions graph database. It is implemented in Java and uses
Gremlin for query processing. Janusgraph is an open-source
and a distributed graph database. It can scale graph data pro-
cessing for analytics and traversal across a multi-machine
cluster through Hadoop. It is designed based on a property
graph data model and is implemented in Java. It supports
concurrent transaction and batch graph processing. It uses
Gremlin query language as manipulation of the graph data.

FaunaDB is a multi-model (property graph, Document, and
key-value) and serverless graph database in which the cloud
provider dynamically allocates and manages the resource
distribution. It is implemented in Scala and uses GraphQL
query language. Stardog is a multi-model (property graph and
RDF), secure, scalable, and an enterprise graph database and
knowledge graph platform. It combines graph storage and
visualization capability for cost effective and flexible integra-
tion. It is written in Java and uses GraphQL query language.
Blazegraph is a multi-model (Property graph and RDF) and
high-performance graph database. It is implemented in Java
and uses SPARQL query language. Table 6 describes the
comparison of GDBS.

VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
Although researchers have made significant contributions to
graph partitioning and computing systems in the last decade,
there are still many challenges, from the algorithms to the
system perspectives. This section discusses several research
directions in graph partitioning and computing systems.

A. SCALABILITY
Graph partitioning is an NP-hard problem to reduce the
cuts and maximize the load balance. This problem and the
increased size of graph datasets make the graph partition-
ing problem more difficult. This problem is an open chal-
lenge. Research on the scalability of high-quality parallel
graph partitioning is still ongoing. Even on shared-memory
machines, scaling to a large number of threads remains chal-
lenging. In particular, attaining good scalability and quality
on larger distributed memory machines is still a challenging
problem. The stream partitioning is more scalable and per-
forms well with minimal resource constraints. Unlike offline
partitioning techniques, streaming partitioning produces sub-
stantially lower quality because such partitioners do not view
a global graph structure. Thus, improving the performance
of stream partitioning is an open problem. OffStream parti-
tioning has recently been proposed to trade off the stream
and in-memory edge partitioning by distributing one edge
set in-memory and another edge set in stream. However, off-
Stream approach was applied for only edge partitioning; thus,
applying OffStream partitioning to vertex partitioning is not
investigated.

118544 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

B. DYNAMICITY
Graphs are naturally dynamic because vertices or edges may
appear or disappear over time. Dynamic graph partition-
ing has been proposed to repartition dynamic graphs. Most
existing dynamic partitioners are repartitioning the graphs
based on the vertex partitioning method. However, many
GAS-centric distributed frameworks use edge partitioning
models. Therefore, there is a gap in the dynamic edge par-
titioning approach, which can be exploited in future research.

C. DOMAIN SPECIFIC
Real-world graphs and graph algorithms have unique char-
acteristics. General-purpose graph partitioners have recently
been proposed and integrated into computing systems to ana-
lyze all graph structures and algorithms. However, these par-
titioners frequently aim to divide a graph into pieces of equal
sizes and minimize the edges and vertices cut to balance
workload and lower synchronization overhead. For instance,
they do not achieve a deserved performance improvement
when computing PageRank and Triangle Count algorithms
in the graph computing system with the same partitioning
strategy. Due to the variability in algorithms’ computation
and communication patterns, such criteria do not always cap-
ture the bottleneck variables that affect the performance of
parallel graph algorithms. Therefore, graph algorithms with
computation-aware partitioning should be investigated in the
future. In the same manner, real-world graphs have different
topological structures. For instance, web and social network
graphs do not have the same topology structure. Therefore,
instead of designing a general graph partitioning, we sug-
gest a graph structure-aware partitioning as future research
direction.

D. ADOPTING MACHINE LEARNING
Recently, many research works on extending deep learning
approaches for graph data have emerged [210]. The integra-
tion of graph neural networks and federated learning has been
applied for graph classification, node classification, and edge
classification [211]. However, the adoption of these tech-
niques for graph partitioning has not been investigated. Thus,
formulating a graph partitioning problem into a graph neural
network and applying federated learning for distributed learn-
ing should be investigated in the future. Moreover, formulat-
ing a graph partitioning problem into a game theory approach
is also envisioned in the future. Hua et al. [143] introduced a
game theory for stream edge partitioning. Thus, applying a
game theory for future static and dynamic vertex partitioning
is a potential research direction.

E. SYSTEM PERSPECTIVES
Most existing graph processing systems have been devel-
oped to handle static graphs. However, real-world graphs are
dynamic, with new vertices and edges quickly added and
removed. Preserving a large amount of updating in dynamic
graphs and performing practical real-time computation are

challenging tasks. Thus, more study is needed to bring a
dynamic large-scale graph processing system. Developing a
routing-aware or topology-aware data distribution scheme for
graph databases is still not investigated, especially in the con-
text of recently proposed data center and high-performance
computing network topologies and routing architectures.
Moreover, designing a general-purpose graph computing sys-
tem that supports both distributed graph processing and graph
database could solve problems in this area. Applying a deep
learning techniques on transactional aware data partitioning,
user-friendly query formulation, high-performance transac-
tion processing, and ensuring security in the form of authen-
tication is significant in graph databases.

VII. CONCLUSION
The graphs have become significant and influential data rep-
resentations in many application domains in the recent Big
data era. To handle the rapid increase in large-scale graph
sizes, efficient graph partitioning and computing systems
are essential. Thus, graph partitioning methods and graph
computing systems have been suggested to address these
large-scale graph computing challenges in various architec-
tures and computing models.

In this survey, we have made a comprehensive review
of graph partitioning methods and graph computing sys-
tems. We have classified and discussed the graph partition-
ing methods and graph computing systems into several sub-
categories to understand the subject area. Their approaches,
computing, and data models of those algorithms and systems
are presented briefly. Finally, we have highlighted promis-
ing research directions in graph partitioning and computing
systems.

ACKNOWLEDGMENT
The authors would like to thank the anonymous referees
for their valuable comments and suggestions, which have
improved the article greatly.

REFERENCES
[1] S. Brin and L. Page, ‘‘The anatomy of a large-scale hypertextual

web search engine,’’ Comput. Netw. ISDN Syst., vol. 30, nos. 1–7,
pp. 107–117, Apr. 1998.

[2] S. Kulkarni and S. F. Rodd, ‘‘Context aware recommendation systems:
A review of the state of the art techniques,’’ Comput. Sci. Rev., vol. 37,
Aug. 2020, Art. no. 100255.

[3] L. Cao and J. Krumm, ‘‘From GPS traces to a routable road map,’’ in
Proc. 17th ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst., 2009,
pp. 3–12.

[4] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung,
A. Emili, M. Snyder, J. F. Greenblatt, and M. Gerstein, ‘‘A Bayesian net-
works approach for predicting protein-protein interactions from genomic
data,’’ Science, vol. 302, no. 5644, pp. 449–453, 2003.

[5] N. B. Turk-Browne, ‘‘Functional interactions as big data in the human
brain,’’ Science, vol. 342, no. 6158, pp. 580–584, Nov. 2013.

[6] H. Bolouri, ‘‘Modeling genomic regulatory networks with big data,’’
Trends Genet., vol. 30, no. 5, pp. 182–191, May 2014.

[7] I. Shrier and R. W. Platt, ‘‘Reducing bias through directed acyclic
graphs,’’ BMC Med. Res. Methodology, vol. 8, no. 1, p. 70, Dec. 2008.

[8] L. Harris and A. Rae, ‘‘Social networks: The future of marketing for small
business,’’ J. Bus. Strateg., vol. 30, no. 5, pp. 24–31, 2009.

VOLUME 10, 2022 118545

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

[9] D. F. Nettleton, ‘‘Data mining of social networks represented as graphs,’’
Comput. Sci. Rev., vol. 7, pp. 1–34, Feb. 2013.

[10] C. Orellana-Rodriguez and M. T. Keane, ‘‘Attention to news and its dis-
semination on Twitter: A survey,’’ Comput. Sci. Rev., vol. 29, pp. 74–94,
Aug. 2018.

[11] A. De Salve, P. Mori, and L. Ricci, ‘‘A survey on privacy in decentral-
ized online social networks,’’ Comput. Sci. Rev., vol. 27, pp. 154–176,
Feb. 2018.

[12] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref,
M. Arenas, M. Besta, P. A. Boncz, and K. Daudjee, ‘‘The future is big
graphs: A community view on graph processing systems,’’ Commun.
ACM, vol. 64, no. 9, pp. 62–71, 2021.

[13] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
‘‘One trillion edges: Graph processing at Facebook-scale,’’ Proc. VLDB
Endowment, vol. 8, no. 12, pp. 1804–1815, 2015.

[14] H. Cao, Y.Wang, H.Wang, H. Lin, Z. Ma,W. Yin, andW. Chen, ‘‘Scaling
graph traversal to 281 trillion edges with 40 million cores,’’ in Proc.
27th ACM SIGPLAN Symp. Princ. Pract. Parallel Program., Apr. 2022,
pp. 234–245.

[15] W. W. Zachary, ‘‘An information flow model for conflict and fission in
small groups,’’ J. Anthropol. Res., vol. 33, no. 4, pp. 452–473, 1977.

[16] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[17] U. Endriss and U. Grandi, ‘‘Graph aggregation,’’ Artif. Intell., vol. 245,
pp. 86–114, Apr. 2017.

[18] S. Yu, Y. Feng, D. Zhang, H. D. Bedru, B. Xu, and F. Xia, ‘‘Motif
discovery in networks: A survey,’’ Comput. Sci. Rev., vol. 37, Aug. 2020,
Art. no. 100267.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, ‘‘Pregel: A system for large-scale graph processing,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 135–146.

[20] (2012). Giraph. [Online]. Available: http://giraph.apache.org/
[21] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, ‘‘HAMA:

An efficient matrix computation with the mapreduce framework,’’ in
Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci., Nov. 2010,
pp. 721–726.

[22] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen, ‘‘Powerlyra:
Differentiated graph computation and partitioning on skewed graphs,’’
ACM Trans. Parallel Comput., vol. 5, no. 3, p. 13, 2019.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘‘Pow-
ergraph: Distributed graph-parallel computation on natural graphs,’’ in
Proc. 10th USENIX Symp. Operating Syst. Design Implement. (OSDI),
2012, pp. 17–30.

[24] Y. Xing, Z. Chen, N. Xiao, F. Liu, and Y. Lu, ‘‘Graph analytics on many-
core memory systems,’’ IEEE Access, vol. 6, pp. 51429–51439, 2018.

[25] (2007). Neo4j. [Online]. Available: https://neo4j.com/
[26] (2017). Tigergraph. [Online]. Available: https://www.tigergraph.com/
[27] (2004). Allegrograph. [Online]. Available: https://franz.com/agraph/

allegrograph/
[28] (2016). Dgraph. [Online]. Available: https://docs.dgraph.io/design-

concepts
[29] S. Salihoglu and J. Widom, ‘‘GPS: A graph processing system,’’ in Proc.

25th Int. Conf. Sci. Stat. Database Manag., 2013, pp. 1–12.
[30] A. Kyrola, G. Blelloch, and C. Guestrin, ‘‘GraphChi: Large-scale graph

computation on just a PC,’’ in Proc. 10th USENIX Symp. Operating Syst.
Design Implement. (OSDI), 2012, pp. 31–46.

[31] X. Zhu,W. Han, andW. Chen, ‘‘GridGraph: Large-scale graph processing
on a single machine using 2-level hierarchical partitioning,’’ in Proc.
USENIX Annu. Tech. Conf. (USENIX ATC), 2015, pp. 375–386.

[32] W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke, ‘‘Fast iterative
graph computation with block updates,’’ Proc. VLDB Endowment, vol. 6,
no. 14, pp. 2014–2025, Sep. 2013.

[33] J. Shun andG. E. Blelloch, ‘‘Ligra: A lightweight graph processing frame-
work for shared memory,’’ in Proc. 18th ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., 2013, pp. 135–146.

[34] N. Sundaram, N. R. Satish, M. M. A. Patwary, S. R Dulloor,
S. G. Vadlamudi, D. Das, and P. Dubey, ‘‘GraphMat: High performance
graph analytics made productive,’’ 2015, arXiv:1503.07241.

[35] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, ‘‘NXgraph: An
efficient graph processing system on a single machine,’’ in Proc. IEEE
32nd Int. Conf. Data Eng. (ICDE), May 2016, pp. 409–420.

[36] S. Sumathi and S. Esakkirajan, Fundamentals of Relational Database
Management Systems, vol. 47. Berlin, Germany: Springer, 2007.

[37] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New Opportu-
nities for Connected Data. O’Reilly Media, 2015.

[38] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
‘‘A comparison of a graph database and a relational database: A data
provenance perspective,’’ in Proc. 48th Annu. Southeast Regional Conf.
(ACM SE), 2010, pp. 1–6.

[39] K. Andreev and H. Racke, ‘‘Balanced graph partitioning,’’ Theory Com-
put. Syst., vol. 39, no. 6, pp. 929–939, 2006.

[40] I. Holyer, ‘‘The NP-completeness of some edge-partition problems,’’
SIAM J. Comput., vol. 10, no. 4, pp. 713–717, Nov. 1981.

[41] G. Karypis, ‘‘METIS: Unstructured graph partitioning and sparse matrix
ordering system,’’ Tech. Rep., 1997.

[42] G. Echbarthi and H. Kheddouci, ‘‘Fractional greedy and partial restream-
ing partitioning: New methods for massive graph partitioning,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Oct. 2014, pp. 25–32.

[43] I. Stanton and G. Kliot, ‘‘Streaming graph partitioning for large dis-
tributed graphs,’’ in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining (KDD), 2012, pp. 1222–1230.

[44] M. Li, H. Cui, C. Zhou, and S. Xu, ‘‘GAP: Genetic algorithm based
large-scale graph partition in heterogeneous cluster,’’ IEEE Access, vol. 8,
pp. 144197–144204, 2020.

[45] H. Halberstam and R. Laxton, ‘‘Perfect difference sets,’’ Glasgow Math.
J., vol. 6, no. 4, pp. 177–184, 1964.

[46] N. Jain, G. Liao, and T. L. Willke, ‘‘Graphbuilder: Scalable graph ETL
framework,’’ in Proc. 1st Int. Workshop Graph Data Manage. Experi-
ences Syst., 2013, p. 4.

[47] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni, ‘‘HDRF:
Stream-based partitioning for power-law graphs,’’ in Proc. 24th ACM Int.
Conf. Inf. Knowl. Manage., Oct. 2015, pp. 243–252.

[48] C. Xie, L. Yan, W.-J. Li, and Z. Zhang, ‘‘Distributed power-law graph
computing: Theoretical and empirical analysis,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 1673–1681.

[49] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li, ‘‘Graph edge partitioning
via neighborhood heuristic,’’ in Proc. 23rd ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2017, pp. 605–614.

[50] R.Mayer, K. Orujzade, and H.-A. Jacobsen, ‘‘Out-of-Core edge partition-
ing at linear run-time,’’ 2022, arXiv:2203.12721.

[51] D. Dai, W. Zhang, and Y. Chen, ‘‘IOGP: An incremental online graph
partitioning algorithm for distributed graph databases,’’ in Proc. 26th
Int. Symp. High-Performance Parallel Distrib. Comput., Jun. 2017,
pp. 219–230.

[52] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, ‘‘Graphx: Graph processing in a distributed dataflow frame-
work,’’ in Proc. 11th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2014, pp. 599–613.

[53] T. Ayall, H. Duan, C. Liu, F. Gereme, and M. Deleli, ‘‘Offstreamng:
Partial stream hybrid graph edge partitioning based on neighborhood
expansion and greedy heuristic,’’ in Proc. Eur. Conf. Adv. Databases Inf.
Syst. Lyon, France: Springer, Aug. 2020, pp. 118–128.

[54] T. Ayall, H. Duan, C. Liu, F. Gereme, M. Abegaz, and M. Deleli, ‘‘Taking
heuristic based graph edge partitioning one step ahead via OffStream
partitioning approach,’’ in Proc. IEEE 37th Int. Conf. Data Eng. (ICDE),
Apr. 2021, pp. 2081–2086.

[55] R. Mayer and H.-A. Jacobsen, ‘‘Hybrid edge partitioner: Partitioning
large power-law graphs under memory constraints,’’ in Proc. Int. Conf.
Manage. Data, Jun. 2021, pp. 1289–1302.

[56] L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, ‘‘XDGP: A
dynamic graph processing system with adaptive partitioning,’’ 2013,
arXiv:1309.1049.

[57] N. T. Bao and T. Suzumura, ‘‘Towards highly scalable pregel-based graph
processing platform with x10,’’ in Proc. 22nd Int. Conf. World Wide Web,
May 2013, pp. 501–508.

[58] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, ‘‘Mizan: A system for dynamic load balancing in large-scale
graph processing,’’ in Proc. 8th ACM Eur. Conf. Comput. Syst. (EuroSys),
2013, pp. 169–182.

[59] O. Batarfi, R. E. Shawi, A. G. Fayoumi, R. Nouri, S. M. R. Beheshti,
A. Barnawi, and S. Sakr, ‘‘Large scale graph processing systems: Sur-
vey and an experimental evaluation,’’ Cluster Comput., vol. 18, no. 3,
pp. 1189–1213, 2015.

[60] H.-N. Tran and E. Cambria, ‘‘A survey of graph processing on graph-
ics processing units,’’ J. Supercomput., vol. 74, no. 5, pp. 2086–2115,
May 2018.

118546 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

[61] J. Huang, W. Qin, X. Wang, and W. Chen, ‘‘Survey of external memory
large-scale graph processing on a multi-core system,’’ J. Supercomput.,
vol. 76, no. 1, pp. 549–579, Jan. 2020.

[62] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm, ‘‘Management
and analysis of big graph data: Current systems and open challenges,’’ in
Handbook of Big Data Technologies. Cham, Switzerland: Springer, 2017,
pp. 457–505.

[63] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, ‘‘Recent
advances in graph partitioning,’’ in Algorithm Engineering. Cham,
Switzerland: Springer, 2016, pp. 117–158.

[64] S. Verma, L. M. Leslie, Y. Shin, and I. Gupta, ‘‘An experimental com-
parison of partitioning strategies in distributed graph processing,’’ Proc.
VLDB Endowment, vol. 10, no. 5, pp. 493–504, 2017.

[65] T. Ayall, H. Duan, and C. Liu, ‘‘Edge property based stream order
reduce the performance of stream edge graph partition,’’ J. Phys., Conf.,
vol. 1395, no. 1, Nov. 2019, Art. no. 012010.

[66] H. Mykhailenko, F. Huet, and G. Neglia, ‘‘Comparison of edge partition-
ers for graph processing,’’ in Proc. Int. Conf. Comput. Sci. Comput. Intell.
(CSCI), Dec. 2016, pp. 441–446.

[67] A. Pacaci and M. T. Özsu, ‘‘Experimental analysis of streaming algo-
rithms for graph partitioning,’’ in Proc. Int. Conf. Manage. Data,
Jun. 2019, pp. 1375–1392.

[68] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, ‘‘Streaming graph
partitioning: An experimental study,’’ Proc. VLDB Endowment, vol. 11,
no. 11, pp. 1590–1603, 2018.

[69] A. Pothen, ‘‘Graph partitioning algorithms with applications to scientific
computing,’’ in Parallel Numerical Algorithms. Dordrecht, The Nether-
lands: Springer, 1997, pp. 323–368.

[70] H.-J. Kim and Y.-H. Kim, ‘‘Recent progress on graph partitioning prob-
lems using evolutionary computation,’’ 2018, arXiv:1805.01623.

[71] B. Hendrickson and T. G. Kolda, ‘‘Graph partitioning models for par-
allel computing,’’ Parallel Comput., vol. 26, no. 12, pp. 1519–1534,
Nov. 2000.

[72] S. Arora, S. Rao, and U. Vazirani, ‘‘Geometry, flows, and graph-
partitioning algorithms,’’ Commun. ACM, vol. 51, no. 10, pp. 96–105,
Oct. 2008.

[73] I. Safro, P. Sanders, and C. Schulz, ‘‘Advanced coarsening schemes for
graph partitioning,’’ ACM J. Experim. Algorithmics, vol. 19, pp. 1–24,
Feb. 2015.

[74] K. Schloegel, G. Karypis, and V. Kumar, ‘‘Graph partitioning for high-
performance scientific simulations,’’ in Sourcebook of Parallel Comput-
ing. San Mateo, CA, USA: Morgan Kaufmann, 2003, pp. 491–541.

[75] A. Akhter, A.-C. N. Ngonga, and M. Saleem, ‘‘An empirical evaluation
of RDF graph partitioning techniques,’’ in Proc. Eur. Knowl. Acquisition
Workshop. Cham, Switzerland: Springer, 2018, pp. 3–18.

[76] T. Chawla, G. Singh, E. S. Pilli, and M. C. Govil, ‘‘Storage, partitioning,
indexing and retrieval in big RDF frameworks: A survey,’’ Comput. Sci.
Rev., vol. 38, Nov. 2020, Art. no. 100309.

[77] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin,
‘‘An experimental comparison of pregel-like graph processing systems,’’
Proc. VLDB Endowment, vol. 7, no. 12, pp. 1047–1058, Aug. 2014.

[78] Y. Lu, J. Cheng, D. Yan, and H. Wu, ‘‘Large-scale distributed graph com-
puting systems: An experimental evaluation,’’ Proc. VLDB Endowment,
vol. 8, no. 3, pp. 281–292, Nov. 2014.

[79] K. Ammar and T. Ozsu, ‘‘Experimental analysis of distributed graph
systems,’’ 2018, arXiv:1806.08082.

[80] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, ‘‘The ubiquity
of large graphs and surprising challenges of graph processing: Extended
survey,’’ VLDB J., vol. 29, nos. 2–3, pp. 595–618, May 2020.

[81] C.-Y. Gui, L. Zheng, B. He, C. Liu, X.-Y. Chen, X.-F. Liao, and H. Jin,
‘‘A survey on graph processing accelerators: Challenges and opportuni-
ties,’’ J. Comput. Sci. Technol., vol. 34, no. 2, pp. 339–371, Mar. 2019.

[82] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vanó,
S. Gómez-Villamor, N. Martínez-Bazan, and J.-L. Larriba-Pey, ‘‘Survey
of graph database performance on the HPC scalable graph analysis
benchmark,’’ in Proc. Int. Conf. Web-Age Inf. Manage. Berlin, Germany:
Springer, 2010, pp. 37–48.

[83] S. Jouili and V. Vansteenberghe, ‘‘An empirical comparison of graph
databases,’’ in Proc. Int. Conf. Social Comput., Sep. 2013, pp. 708–715.

[84] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J.McPherson, ‘‘From
‘think like a vertex ‘to’ think like a graph,’’’ Proc. VLDB Endowment,
vol. 7, no. 3, pp. 193–204, 2013.

[85] F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, ‘‘Random walks:
A review of algorithms and applications,’’ IEEE Trans. Emerg. Topics
Comput. Intell., vol. 4, no. 2, pp. 95–107, Apr. 2019.

[86] J. M. Kleinberg, ‘‘Authoritative sources in a hyperlinked environment,’’
in Proc. SODA, vol. 98, 1998, pp. 668–677.

[87] A. Balmin, V. Hristidis, and Y. Papakonstantinou, ‘‘Objectrank:
Authority-based keyword search in databases,’’ VLDB, vol. 4,
pp. 564–575, Aug. 2004.

[88] J. Hopcroft and R. Tarjan, ‘‘Algorithm 447: Efficient algorithms for graph
manipulation,’’ Commun. ACM, vol. 16, no. 6, pp. 372–378, 1973.

[89] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec,
‘‘HADI: Mining radii of large graphs,’’ ACM Trans. Knowl. Discovery
Data, vol. 5, no. 2, pp. 1–24, Feb. 2011.

[90] S. Suri and S. Vassilvitskii, ‘‘Counting triangles and the curse of the
last reducer,’’ in Proc. 20th Int. Conf. World Wide Web (WWW), 2011,
pp. 607–614.

[91] M. Bayati, D. Shah, and M. Sharma, ‘‘Maximum weight matching via
max-product belief propagation,’’ in Proc. Int. Symp. Inf. Theory (ISIT),
Sep. 2005, pp. 1763–1767.

[92] V. Satuluri, S. Parthasarathy, and Y. Ruan, ‘‘Local graph sparsification for
scalable clustering,’’ in Proc. Int. Conf. Manage. Data (SIGMOD), 2011,
pp. 721–732.

[93] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, ‘‘Graph summarization meth-
ods and applications: A survey,’’ ACM Comput. Surv., vol. 51, no. 3,
pp. 1–34, May 2018.

[94] J. Chen, Y. Saad, and Z. Zhang, ‘‘Graph coarsening: From scientific
computing to machine learning,’’ SeMA J., vol. 79, no. 1, pp. 187–223,
Mar. 2022.

[95] G. Karypis and V. Kumar, ‘‘A fast and high quality multilevel scheme
for partitioning irregular graphs,’’ SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Aug. 1999.

[96] C. Martella, D. Logothetis, A. Loukas, and G. Siganos, ‘‘Spinner: Scal-
able graph partitioning in the cloud,’’ in Proc. IEEE 33rd Int. Conf. Data
Eng. (ICDE), Apr. 2017, pp. 1083–1094.

[97] R. Andersen, F. Chung, and K. Lang, ‘‘Local graph partitioning using
pagerank vectors,’’ in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci.
(FOCS), Oct. 2006, pp. 475–486.

[98] L. Hagen and A. B. Kahng, ‘‘New spectral methods for ratio cut partition-
ing and clustering,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 11, no. 9, pp. 1074–1085, Sep. 1992.

[99] J. Shi and J. Malik, ‘‘Normalized cuts and image segmentation,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[100] G. Palubeckis, ‘‘Metaheuristic approaches for ratio cut and normalized
cut graph partitioning,’’Memetic Comput., vol. 14, pp. 1–33, Apr. 2022.

[101] D. Chakrabarti, Y. Zhan, and C. Faloutsos, ‘‘R-MAT: A recursive model
for graph mining,’’ in Proc. SIAM Int. Conf. Data Mining, Apr. 2004,
pp. 442–446.

[102] J. Leskovec and A. Krevl. (Jun. 2014). SNAP Datasets: Stan-
ford Large Network Dataset Collection. [Online]. Available: http://
snap.stanford.edu/data

[103] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, ‘‘Measurement and analysis of online social networks,’’
in Proc. 7th ACM SIGCOMM Conf. Internet Meas. (IMC), 2007,
pp. 29–42.

[104] J. Kunegis, ‘‘Konect: The Koblenz network collection,’’ in Proc. 22nd Int.
Conf. World Wide Web, 2013, pp. 1343–1350.

[105] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is Twitter, a social
network or a news media?’’ in Proc. 19th Int. Conf. World Wide Web
(WWW), 2010, pp. 591–600.

[106] J. Yang and J. Leskovec, ‘‘Defining and evaluating network communities
based on ground-truth,’’ Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
Jan. 2015.

[107] Grouplens. Accessed: Feb. 20, 2022. [Online]. Available: https://group
lens.org/datasets/movielens/

[108] B. Hendrickson and R. Leland, ‘‘A multi-level algorithm for partitioning
graphs,’’ in Proc. SC Conf. (SC), vol. 95, Dec. 1995, pp. 1–14.

[109] A. Valejo, V. Ferreira, R. Fabbri, M. C. F. D. Oliveira, and A. D. A. Lopes,
‘‘A critical survey of the multilevel method in complex networks,’’ ACM
Comput. Surv., vol. 53, no. 2, pp. 1–35, Mar. 2020.

[110] B. Monien, R. Preis, and R. Diekmann, ‘‘Quality matching and
local improvement for multilevel graph-partitioning,’’ Parallel Comput.,
vol. 26, no. 12, pp. 1609–1634, Nov. 2000.

[111] B. W. Kernighan and S. Lin, ‘‘An efficient heuristic procedure for parti-
tioning graphs,’’ Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307, 1970.

[112] C. M. Fiduccia and R. M. Mattheyses, ‘‘A linear-time heuristic for
improving network partitions,’’ in Proc. 19th Design Autom. Conf., 1982,
pp. 175–181.

VOLUME 10, 2022 118547

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

[113] F. Pellegrini and J. Roman, ‘‘Scotch: A software package for static map-
ping by dual recursive bipartitioning of process and architecture graphs,’’
in Proc. Int. Conf. High-Performance Comput. Netw. Berlin, Germany:
Springer, 1996, pp. 493–498.

[114] B. Hendrickson and R. Leland, ‘‘The Chaco users guide. version 1.0,’’
Sandia Nat. Labs., Albuquerque, NM, USA, Tech. Rep. SAND-93-2339,
1993.

[115] P. Sanders and C. Schulz, ‘‘KaHIP v3.00—Karlsruhe high quality
partitioning–user guide,’’ 2013, arXiv:1311.1714.

[116] D. Lasalle and G. Karypis, ‘‘Multi-threaded graph partitioning,’’ in
Proc. IEEE 27th Int. Symp. Parallel Distrib. Process., May 2013,
pp. 225–236.

[117] Y. Akhremtsev, P. Sanders, and C. Schulz, ‘‘High-quality shared-memory
graph partitioning,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 11,
pp. 2710–2722, Nov. 2020.

[118] S. Gregory, ‘‘Finding overlapping communities in networks by label prop-
agation,’’ New J. Phys., vol. 12, no. 10, Oct. 2010, Art. no. 103018.

[119] G. Karypis, K. Schloegel, and V. Kumar, ‘‘ParMETIS: Parallel graph par-
titioning and sparse matrix ordering library,’’ Dept. Comput. Sci., Univ.
Minnesota, Minneapolis, MN, USA, Tech. Rep., 1997.

[120] C. Chevalier and F. Pellegrini, ‘‘PT-scotch: A tool for efficient paral-
lel graph ordering,’’ Parallel Comput., vol. 34, nos. 6–8, pp. 318–331,
Jul. 2008.

[121] M. Holtgrewe, P. Sanders, and C. Schulz, ‘‘Engineering a scalable high
quality graph partitioner,’’ in Proc. IEEE Int. Symp. Parallel Distrib.
Process. (IPDPS), Apr. 2010, pp. 1–12.

[122] C. Walshaw and M. Cross, ‘‘JOSTLE: Parallel multilevel graph-
partitioning software—An overview,’’ Mesh Partitioning Techn. Domain
Decomposition Techn., vol. 10, pp. 27–58, Jan. 2007.

[123] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi,
‘‘JA-BE-JA: A distributed algorithm for balanced graph partitioning,’’ in
Proc. IEEE 7th Int. Conf. Self-Adaptive Self-Organizing Syst., Sep. 2013,
pp. 51–60.

[124] J. Ugander and L. Backstrom, ‘‘Balanced label propagation for parti-
tioning massive graphs,’’ in Proc. 6th ACM Int. Conf. Web Search Data
Mining, 2013, pp. 507–516.

[125] T. Chen and B. Li, ‘‘A distributed graph partitioning algorithm for pro-
cessing large graphs,’’ in Proc. IEEE Symp. Service-Oriented Syst. Eng.
(SOSE), Mar. 2016, pp. 53–59.

[126] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri, ‘‘Partition-
ing trillion-edge graphs in minutes,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2017, pp. 646–655.

[127] H. Meyerhenke, P. Sanders, and C. Schulz, ‘‘Parallel graph partitioning
for complex networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9,
pp. 2625–2638, Sep. 2017.

[128] Y. Li, C. Constantin, and C. du Mouza, ‘‘SGVCut: A vertex-cut parti-
tioning tool for random walks-based computations over social network
graphs,’’ in Proc. 29th Int. Conf. Sci. Stat. Database Manage., Jun. 2017,
pp. 1–4.

[129] F. Rahimian, A. H. Payberah, S. Girdzijauskas, and S. Haridi, ‘‘Dis-
tributed vertex-cut partitioning,’’ in Proc. IFIP Int. Conf. Distrib. Appl.
Interoperable Syst. Berlin, Germany: Springer, 2014, pp. 186–200.

[130] A. Guerrieri and A. Montresor, ‘‘DFEP: Distributed funding-based edge
partitioning,’’ in Proc. Eur. Conf. Parallel Process. Berlin, Germany:
Springer, 2015, pp. 346–358.

[131] D.Margo andM. Seltzer, ‘‘A scalable distributed graph partitioner,’’Proc.
VLDB Endowment, vol. 8, no. 12, pp. 1478–1489, 2015.

[132] M. Hanai, T. Suzumura, W. J. Tan, E. Liu, G. Theodoropoulos, and
W. Cai, ‘‘Distributed edge partitioning for trillion-edge graphs,’’ Proc.
VLDB Endowment, vol. 12, no. 13, pp. 2379–2392, Sep. 2019.

[133] G. Karypis and V. Kumar, ‘‘A parallel algorithm for multilevel graph
partitioning and sparse matrix ordering,’’ J. Parallel Distrib. Comput.,
vol. 48, no. 1, pp. 71–95, Jan. 1998.

[134] S. Kirmani and P. Raghavan, ‘‘Scalable parallel graph partitioning,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2013,
pp. 1–10.

[135] G. M. Slota, K. Madduri, and S. Rajamanickam, ‘‘PuLP: Scalable multi-
objective multi-constraint partitioning for small-world networks,’’ in
Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2014, pp. 481–490.

[136] M. Kim and K. S. Candan, ‘‘SBV-cut: Vertex-cut based graph parti-
tioning using structural balance vertices,’’ Data Knowl. Eng., vol. 72,
pp. 285–303, Feb. 2012.

[137] S. Schlag, C. Schulz, D. Seemaier, and D. Strash, ‘‘Scalable edge parti-
tioning,’’ in Proc. 21st Workshop Algorithm Eng. Exp. (ALENEX), 2019,
pp. 211–225.

[138] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic,
‘‘FENNEL: Streaming graph partitioning for massive scale graphs,’’
in Proc. 7th ACM Int. Conf. Web Search Data Mining, Feb. 2014,
pp. 333–342.

[139] W. Zhang, Y. Chen, and D. Dai, ‘‘AKIN: A streaming graph par-
titioning algorithm for distributed graph storage systems,’’ in Proc.
18th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID),
May 2018, pp. 183–192.

[140] J. Nishimura and J. Ugander, ‘‘Restreaming graph partitioning: Sim-
ple versatile algorithms for advanced balancing,’’ in Proc. 19th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013,
pp. 1106–1114.

[141] H. C. Rad and R. Azmi, ‘‘CLDA: Vertex-cut partitioning for streaming
power-law graphs,’’ in Proc. 9th Int. Conf. Inf. Knowl. Technol. (IKT),
Oct. 2017, pp. 104–110.

[142] C. Hu, J. Zhong, Q. Li, and Q. Li, ‘‘DETER: Streaming graph partition-
ing via combined degree and cluster information,’’ in Proc. Int. Conf.
Algorithms Architectures Parallel Process. Cham, Switzerland: Springer,
2019, pp. 242–255.

[143] Q.-S. Hua, Y. Li, D. Yu, and H. Jin, ‘‘Quasi-streaming graph partitioning:
A game theoretical approach,’’ IEEETrans. Parallel Distrib. Syst., vol. 30,
no. 7, pp. 1643–1656, Jul. 2019.

[144] C. Mayer, R. Mayer, M. A. Tariq, H. Geppert, L. Laich, L. Rieger, and
K. Rothermel, ‘‘ADWISE: Adaptive window-based streaming edge par-
titioning for high-speed graph processing,’’ in Proc. IEEE 38th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 685–695.

[145] M. Taimouri and H. Saadatfar, ‘‘RBSEP: A reassignment and buffer
based streaming edge partitioning approach,’’ J. Big Data, vol. 6, no. 1,
pp. 1–17, Dec. 2019.

[146] Y. Li, C. Li, A.-C. Orgerie, and P. R. Parvedy, ‘‘WSGP: A window-
based streaming graph partitioning approach,’’ in Proc. IEEE/ACM
21st Int. Symp. Cluster, Cloud Internet Comput. (CCGrid), May 2021,
pp. 586–595.

[147] R. Mayer, K. Orujzade, and H.-A. Jacobsen, ‘‘2PS: High-quality edge
partitioning with two-phase streaming,’’ 2020, arXiv:2001.07086.

[148] D. Kong, X. Xie, and Z. Zhang, ‘‘Clustering-based partitioning for large
web graphs,’’ 2022, arXiv:2201.00472.

[149] A. Hollocou, J. Maudet, T. Bonald, and M. Lelarge, ‘‘A streaming algo-
rithm for graph clustering,’’ 2017, arXiv:1712.04337.

[150] D. Choi, J. Han, J. Lim, J. Han, K. Bok, and J. Yoo, ‘‘Dynamic graph
partitioning scheme for supporting load balancing in distributed graph
environments,’’ IEEE Access, vol. 9, pp. 65254–65265, 2021.

[151] A. Zaki, M. Attia, D. Hegazy, and S. Amin, ‘‘Comprehensive survey on
dynamic graph models,’’ Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 2,
pp. 1–10, 2016.

[152] N. Xu, L. Chen, and B. Cui, ‘‘LogGP: A log-based dynamic graph parti-
tioning method,’’ Proc. VLDB Endowment, vol. 7, no. 14, pp. 1917–1928,
Oct. 2014.

[153] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, ‘‘Hermes: Dynamic
partitioning for distributed social network graph databases,’’ in Proc.
EDBT, 2015, pp. 25–36.

[154] M. Predari and A. Esnard, ‘‘A K-Way greedy graph partitioning with
initial fixed vertices for parallel applications,’’ in Proc. 24th Euromicro
Int. Conf. Parallel, Distrib., Netw.-Based Process. (PDP), Feb. 2016,
pp. 280–287.

[155] C. Sakouhi, S. Aridhi, A. Guerrieri, S. Sassi, and A. Montresor, ‘‘Dynam-
icDFEP: A distributed edge partitioning approach for large dynamic
graphs,’’ in Proc. 20th Int. Database Eng. Appl. Symp. (IDEAS), 2016,
pp. 142–147.

[156] C. Mayer, M. A. Tariq, R. Mayer, and K. Rothermel, ‘‘GrapH: Traffic-
aware graph processing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29,
no. 6, pp. 1289–1302, Jun. 2018.

[157] D. Kumar, A. Raj, and J. Dharanipragada, ‘‘Graphsteal: Dynamic re-
partitioning for efficient graph processing in heterogeneous clusters,’’
in Proc. IEEE 10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017,
pp. 439–446.

[158] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[159] (2006). Hadoop. [Online]. Available: http://hadoop.apache.org/
[160] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and

J. M. Hellerstein, ‘‘Distributed GraphLab: A framework for machine
learning in the cloud,’’ 2012, arXiv:1204.6078.

[161] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, ‘‘Spinning fast iter-
ative data flows,’’ 2012, arXiv:1208.0088.

118548 VOLUME 10, 2022

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

[162] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, ‘‘Sync or async: Time to
fuse for distributed graph-parallel computation,’’ACMSIGPLANNotices,
vol. 50, no. 3, pp. 194–204, 2015.

[163] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi,
C. Raghavendra, and V. Prasanna, ‘‘GoFFish: A sub-graph centric frame-
work for large-scale graph analytics,’’ in Proc. Eur. Conf. Parallel Pro-
cess. Cham, Switzerland: Springer, 2014, pp. 451–462.

[164] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and
B. McBride, ‘‘RDF 1.1 concepts and abstract syntax,’’ W3C Recommen-
dation, vol. 25, no. 2, pp. 1–22, 2014.

[165] A. Davoudian, L. Chen, and M. Liu, ‘‘A survey on NoSQL stores,’’ ACM
Comput. Surv., vol. 51, no. 2, pp. 1–43, Mar. 2019.

[166] F. Chang, J. Dean, S. Ghemawat,W. C.Hsieh, D.A.Wallach,M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, ‘‘Bigtable: A distributed storage
system for structured data,’’ ACM Trans. Comput. Syst. (TOCS), vol. 26,
no. 2, pp. 1–26, 2008.

[167] A. B M Moniruzzaman and S. A. Hossain, ‘‘NoSQL database: New
era of databases for big data analytics–classification, characteristics and
comparison,’’ 2013, arXiv:1307.0191.

[168] B. M. Abdelhafiz and M. Elhadef, ‘‘Sharding database for fault tolerance
and scalability of data,’’ in Proc. 2nd Int. Conf. Comput., Autom. Knowl.
Manage. (ICCAKM), Jan. 2021, pp. 17–24.

[169] C. H. Costa, J. V. B. Filho, P. H. M. Maia, and F. Carlos, ‘‘Sharding by
hash partitioning,’’ in Proc. 17th Int. Conf. Enterprise Inf. Syst., 2015,
pp. 313–320.

[170] D. Kuhn and T. Kyte, ‘‘Architecture overview,’’ in Expert Oracle
Database Architecture. Berkeley, CA, USA: Apress, 2022, pp. 83–107.

[171] G. Harrison and M. Harrison, ‘‘Sharding,’’ in MongoDB Performance
Tuning. Berkeley, CA, USA: Apress, 2021, pp. 315–342.

[172] M. Indrawan-Santiago, ‘‘Database research: Are we at a crossroad?
Reflection on NoSQL,’’ in Proc. 15th Int. Conf. Netw.-Based Inf. Syst.,
Sep. 2012, pp. 45–51.

[173] J. Pérez, M. Arenas, and C. Gutierrez, ‘‘Semantics and complexity
of SPARQL,’’ ACM Trans. Database Syst., vol. 34, no. 3, pp. 1–45,
Aug. 2009.

[174] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault,
S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor, ‘‘Cypher: An evolv-
ing query language for property graphs,’’ in Proc. Int. Conf. Manage.
Data, May 2018, pp. 1433–1445.

[175] M. A. Rodriguez, ‘‘The gremlin graph traversal machine and language
(invited talk),’’ in Proc. 15th Symp. Database Program. Lang., Oct. 2015,
pp. 1–10.

[176] O. Hartig and J. Pérez, ‘‘Semantics and complexity of GraphQL,’’ inProc.
World Wide Web Conf., 2018, pp. 1155–1164.

[177] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč,
‘‘Foundations of modern query languages for graph databases,’’ ACM
Comput. Surv., vol. 50, no. 5, pp. 1–40, Sep. 2017.

[178] U. Kang, C. E. Tsourakakis, and C. Faloutsos, ‘‘PEGASUS: A
peta-scale graph mining system implementation and observa-
tions,’’ in Proc. 9th IEEE Int. Conf. Data Mining, Dec. 2009,
pp. 229–238.

[179] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, ‘‘HaLoop: Efficient
iterative data processing on large clusters,’’ Proc. VLDB Endowment,
vol. 3, nos. 1–2, pp. 285–296, 2010.

[180] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, ‘‘Twister: A runtime for iterative mapreduce,’’ in Proc.
19th ACM Int. Symp. High Perform. Distrib. Comput., 2010,
pp. 810–818.

[181] Y. Zhang, Q. Gao, L. Gao, and C. Wang, ‘‘IMapReduce: A distributed
computing framework for iterative computation,’’ J. Grid. Comput.,
vol. 10, no. 3, pp. 47–68, 2012.

[182] R. Chen, X. Weng, B. He, and M. Yang, ‘‘Large graph processing in
the cloud,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2010,
pp. 1123–1126.

[183] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie, ‘‘Pregelix: Big(ger)
graph analytics on a dataflow engine,’’ 2014, arXiv:1407.0455.

[184] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan, ‘‘Com-
putation and communication efficient graph processing with distributed
immutable view,’’ in Proc. 23rd Int. Symp. High-Performance Parallel
Distrib. Comput. (HPDC), 2014, pp. 215–226.

[185] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ‘‘Dryad: Dis-
tributed data-parallel programs from sequential building blocks,’’ in
Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007,
pp. 59–72.

[186] D. Yan, J. Cheng, Y. Lu, and W. Ng, ‘‘Effective techniques for message
reduction and load balancing in distributed graph computation,’’ in Proc.
24th Int. Conf. World Wide Web, 2015, pp. 1307–1317.

[187] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, and C. Guestrin, ‘‘GraphLab:
A distributed framework for machine learning in the cloud,’’ 2011,
arXiv:1107.0922.

[188] Y. Zhang, D. Li, C. Zhang, J. Wang, and L. Liu, ‘‘GraphA: Efficient
partitioning and storage for distributed graph computation,’’ IEEE Trans.
Services Comput., vol. 14, no. 1, pp. 155–166, Jan. 2017.

[189] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and W. Zheng, ‘‘Exploring
the hidden dimension in graph processing,’’ in Proc. 12th USENIX Symp.
Operating Syst. Design Implement. (OSDI), 2016, pp. 285–300.

[190] Y. Zhuo, J. Chen, Q. Luo, Y. Wang, H. Yang, D. Qian, and X. Qian,
‘‘SympleGraph: Distributed graph processing with precise loop-carried
dependency guarantee,’’ Bioinformatics, vol. 1, no. 14, p. 29, 2020.

[191] Y. Zhang, H. Wang, M. Jia, J. Wang, D. Li, G. Xue, and K.-L. Tan,
‘‘TopoX: Topology refactorization for minimizing network communica-
tion in graph computations,’’ IEEE/ACM Trans. Netw., vol. 28, no. 6,
pp. 2768–2782, Dec. 2020.

[192] V. Leis, A. Kemper, and T. Neumann, ‘‘The adaptive radix tree: ARTful
indexing for main-memory databases,’’ in Proc. IEEE 29th Int. Conf.
Data Eng. (ICDE), Apr. 2013, pp. 38–49.

[193] D. Yan, J. Cheng, Y. Lu, and W. Ng, ‘‘Blogel: A block-centric framework
for distributed computation on real-world graphs,’’ Proc. VLDB Endow-
ment, vol. 7, no. 14, pp. 1981–1992, 2014.

[194] M. Randles, D. Lamb, and A. Taleb-Bendiab, ‘‘A comparative study
into distributed load balancing algorithms for cloud computing,’’ in
Proc. IEEE 24th Int. Conf. Adv. Inf. Netw. Appl. Workshops, 2010,
pp. 551–556.

[195] Y. Zhao, K. Yoshigoe, M. Xie, S. Zhou, R. Seker, and J. Bian, ‘‘Light-
Graph: Lighten communication in distributed graph-parallel processing,’’
in Proc. IEEE Int. Congr. Big Data, Apr. 2014, pp. 717–724.

[196] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan, ‘‘Replication-based
fault-tolerance for large-scale graph processing,’’ in Proc. 44th Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw., Jun. 2014, pp. 562–573.

[197] Y. Zhao, K. Yoshigoe, M. Xie, J. Bian, and K. Xiong, ‘‘L-PowerGraph:
A lightweight distributed graph-parallel communication mechanism,’’
J. Supercomput., vol. 76, no. 3, pp. 1850–1879, Mar. 2020.

[198] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten,
and H. Chafi, ‘‘PGX. D: A fast distributed graph processing engine,’’
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2015,
pp. 1–12.

[199] K. Zhang, R. Chen, and H. Chen, ‘‘NUMA-aware graph-structured ana-
lytics,’’ in Proc. 20th ACM SIGPLAN Symp. Princ. Pract. Parallel Pro-
gram., Jan. 2015, pp. 183–193.

[200] Y. Zhang, X. Liao, H. Jin, L. Gu, L. He, B. He, and H. Liu, ‘‘CGraph:
A correlations-aware approach for efficient concurrent iterative graph
processing,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2018,
pp. 441–452.

[201] K. Wang, G. Xu, Z. Su, and Y. D. Liu, ‘‘GraphQ: Graph query processing
with abstraction refinement—Scalable and programmable analytics over
very large graphs on a single PC,’’ in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), 2015, pp. 387–401.

[202] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee, and U. Kang,
‘‘MMap: Fast billion-scale graph computation on a PC via memory
mapping,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Oct. 2014,
pp. 159–164.

[203] S.Maass, C.Min, S. Kashyap,W. Kang,M. Kumar, and T. Kim, ‘‘Mosaic:
Processing a trillion-edge graph on a single machine,’’ in Proc. 12th Eur.
Conf. Comput. Syst., Apr. 2017, pp. 527–543.

[204] (2006). Blazegraph. [Online]. Available: https://www.blazegraph.com/
[205] (2010). Orientdb. [Online]. Available: https://orientdb.com
[206] (2010). Stardog. [Online]. Available: https://www.stardog.com
[207] (2012). Arangodb. [Online]. Available: https://docs.arangodb.com/
[208] (2014). Faunadb. [Online]. Available: https://fauna.com/
[209] (2017). L. Foundation. Janusgraph. [Online]. Available: http://ja

nusgraph.org/
[210] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, ‘‘A com-

prehensive survey on graph neural networks,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Mar. 2020.

[211] C. He, K. Balasubramanian, E. Ceyani, C. Yang, H. Xie, L. Sun, L. He,
L. Yang, P. S. Yu, Y. Rong, P. Zhao, J. Huang, M. Annavaram, and
S. Avestimehr, ‘‘FedGraphNN: A federated learning system and bench-
mark for graph neural networks,’’ 2021, arXiv:2104.07145.

VOLUME 10, 2022 118549

T. A. Ayall et al.: Graph Computing Systems and Partitioning Techniques: A Survey

TEWODROS ALEMU AYALL received the B.Sc.
degree in computer science from University
Gondar, Ethiopia, in 2010, the M.Sc. degree in
computer science from Andhra University, India,
in 2015, and the Ph.D. degree in computer Science
and technology from the School of Computer
Science and Engineering, University of Elec-
tronic Science and Technology of China (UESTC),
in 2021. He is currently a Postdoctoral Researcher
with Zhejiang Normal University. His research

interests include distributed graph computing, big data processing, big graph
partitioning, and graph machine learning.

HUAWEN LIU received the M.S. and Ph.D.
degrees in computer science from Jilin University,
Changchun, China, in 2007 and 2010, respectively.
He is currently a Visiting Scholar with The Uni-
versity of Texas at San Antonio, San Antonio, TX,
USA. He is also a Professor with the Department
of Computer Science, Zhejiang Normal Univer-
sity, Jinhua, China. His research interests include
feature selection, sparse learning, and machine
learning.

CHANGJUN ZHOU was born in Shangrao, China,
in 1977. He received the Ph.D. degree in mechani-
cal design and theory from the School of Mechani-
cal Engineering, Dalian University of Technology,
Dalian, in 2008. He is currently a Professor with
Zhejiang Normal University. He has published
60 articles in his research areas. His research inter-
ests include pattern recognition and intelligence
computing, and DNA computing.

ABEGAZ MOHAMMED SEID (Member, IEEE)
received the B.Sc. degree in computer science
from Ambo University, Ethiopia, in 2010, and
the M.Sc. degree from Addis Ababa University,
Ethiopia, in 2015, and the Ph.D. degree in com-
puter science and technology from the School of
Computer Science and Engineering, University
of Electronic Science and Technology of China
(UESTC), in 2021. He is currently a Postdoctoral
Fellow with the College of Science and Engineer-

ing, Hamad Bin Khalifa University, Doha, Qatar. His research interests
include wireless networks, mobile edge computing, fog computing, UAV
networks, the IoT, 5G wireless networks, and graph partitioning.

FANTAHUN BOGALE GEREME received the
B.Sc. degree in computer science and IT from
Haramaya University, Ethiopia, in 2006, the M.Sc.
degree in computer science from Osmania Univer-
sity, India, in 2013, and the Ph.D. degree in com-
puter science and technology from the Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China
(UESTC), in 2021. His research interest includes
intelligence computing.

HAYLA NAHOM ABISHU (Graduate Student
Member, IEEE) received the B.Sc. degree in com-
puter science and information technology from
Haramaya University, in 2007, and the M.Sc.
degree in computer science and networking from
Dilla University, Ethiopia, in 2017. He is currently
pursuing the Ph.D. degree in computer science and
technology with the University of Electronic Sci-
ence and Technology of China. His research inter-
ests include mobile computing, wireless networks,

blockchain, UAV networks, the IoT, network security, and machine learning.

YASIN HABTAMU YACOB received the B.Sc.
degree in computer science and information tech-
nology from Haramaya University, in 2007, and
the M.Sc. degree in computer science and net-
working from Dilla University, Ethiopia, in 2017.
He is currently pursuing the Ph.D. degree in com-
puter science and technology with the University
of Electronic Science and Technology of China.
His research interests include mobile computing,
wireless networks, blockchain, UAV networks, the
IoT, network security, and machine learning.

118550 VOLUME 10, 2022

