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ABSTRACT With the grid-connected application of renewable energy sources such as wind and photovoltaic
power, the nonlinearity and fluctuation of load data makes load forecasting more difficult than ever before.
In order to extract the implicit relationship between multiple features and power load to construct a long-
term sequence dependency, this paper proposes a short-term load forecasting based on improved temporal
convolutional network (TCN) and densely connected convolutional network (DenseNet). Firstly, multiple
features are reconstructed by using a fixed-length sliding window, and then the high-dimensional features
reflecting the complex and non-stationary characteristics of power load are extracted by the DenseNet to
construct a feature matrix. Secondly, we innovatively improve the TCN and introduce a parallel pooling into
the traditional TCN to mine the features of time sequences. Finally, the self-attention mechanism (SAM)
is used to further enhance the weight of key features to eliminate the influences of interference signals.
Experiments were performed on Southern China and ISO-NE (New England) public datasets to verify
the effectiveness and generalization of the proposed model. Compared with the traditional TCN, the mean
average percentage error (MAPE) of the improved TCN on the two datasets decreases by 23.38% and 8.14%,
respectively. Furthermore, when compared to the TCN-SAMhybridmodel, theMAPE of the proposedmodel
is significantly reduced by 42.41% and 26.89%, respectively.

INDEX TERMS Short-term load forecasting, improved temporal convolutional network, densely connected
convolutional network, self-attention mechanism.

I. INTRODUCTION
High accuracy of load forecasting is essential for the gen-
eration, transmission, distribution and consumption of elec-
tric energy. However, the intermittence of renewable energy
sources and the randomness of electric vehicles inevitably
increase the complexity and uncertainty of the power systems.
Therefore, it is still a challenging task to obtain high accuracy
of short-term load forecasting (STLF). Furthermore, STLF
plays a vital role in balancing power system supply and load
demand to avoid the instability of power grid [1]. Accu-
rate load forecasting can not only control the consumption
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behavior of power demand-sides in real time to ensure the
reliability of power supply and improve economic benefits,
but also help to provide scientific guidance for day-to-day
operation of power systems. Meanwhile, recent researches
showed that increasing the load forecasting error by 1% raised
millions of dollars for the power industry [2]. The fluctuation
of short-term power load sequence has obvious randomness
and nonlinearity, and the influencing factors, such as tem-
perature, electricity price, and holidays, are diversified and
complex. All these will bring huge challenges to accurate
forecasting [3].

There has been much in-depth research on the meth-
ods to obtain higher accuracy and generalization of STLF.
These methods are divided into traditional statistical models
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and machine learning models in general [4]. The traditional
statistical methods have been widely used to forecast power
load in the early days. It mainly includes exponential smooth-
ing (ES) [5], [6], autoregressive integrated moving average
(ARIMA) [7], [8], grey model (GM) [9], Kalman filter (KF)
[10], [11], etc. Although these models have been useful in
dealing with linear forecasting relationships, they were not
effective ways to accurately predict the nonlinear time series
with huge datasets. The accuracy of load forecasting based
on statistical methods drops when a longer length of the
prediction time horizon is needed [12]. With the develop-
ment of computer technology, a number of machine learning
models have been successfully proposed to load forecasting
by extracting nonlinear features. Fan et al. [13] proposed
an adaptive method of support vector machine (SVM). The
model classified the input data into several subsets in an
unsupervised way and fitted the input data to different market
states in a supervised way by using the SVM. Liu et al. [14]
proposed a hybrid STLF model based on improved fuzzy
C-means clustering, random forest and deep neural networks
to significantly improve the prediction performance of holi-
days. Cecatiet al. [15] used a novel error correction algorithm
to train radial basis function (RBF) that weakened the inter-
actions between RBF units and then reduced the input pattern
on RBF. The experimental results showed that the proposed
model had superior performance compared to other state-
of-the-art machine learning methods. A constrained quantile
regression average (CQRA) method was proposed in [16],
which could create an improved integration from several
independent probability predictions. In [17], an unspecified
nonlinear relationship between load and weather variables
was established to STLF by using artificial neural network
(ANN). However, because these methods mentioned above
are still difficult to extract the features of time series, we can-
not generalize these methods to different kinds of datasets
mainly due to the small number of parameters [18], [19].

In recent years, deep learning technologies have been pop-
ularly used in the forecasting of time series due to their ability
of extracting in-depth features in huge datasets by multi-
layer nonlinear mapping during training stage. Then, these
methods can better fit the nonlinear relationships between
input and output to enhance the superior performance of load
forecasting [20]. Recurrent neural network (RNN) is one of
the commonly used deep learning models for the forecast-
ing of time series [21]. Furthermore, its variants, e.g., long
short-termmemory network (LSTM) and gated recurrent unit
network (GRU), have better performance than the traditional
RNN and other load forecasting techniques. Kong et al. [22]
applied the LSTM to predict the power load of a single house-
hold. The experimental results showed that the prediction
accuracy was better than those of other models. To improve
the accuracy of prediction, Wu et al. [23] used the GRU to
forecast short-term load considering the impact of electricity
price. Kong et al. [24] utilized deep belief network (DBN)
and genetic algorithms to optimize the parameters of network.
Although these models for the forecasting of time series

have been successfully applied to load forecasting, there are
still some shortcomings in data processing, extracting in-
depth features and dealing with long-time series. In terms of
these, hybrid models are being increasingly used to enhance
the accuracy of load forecasting. In [25], a novel ResNet
improved with probability prediction, Monte Carlo dropout
and SELU activation function was adopted to efficiently
extract deep features. The validity and generalization of
the hybrid model were successfully verified on three public
datasets. Tang et al. [26] proposed a short-term load forecast-
ing model based on temporal convolutional network (TCN)
with channel and temporal attention mechanism (AM),
which fully exploited the nonlinear relationship between
meteorological factors and load. The maximum information
coefficient (MIC) was adopted to select the high-quality
variables of input and eliminate irrelevant variables to reduce
the parameters. In [27],the hidden information in the features
was extracted by the TCN and the relationship of time series
was constructed. Moreover, the load of industrial users was
predicted by using the LightGBM.

Nevertheless, although these models mentioned above
have achieved good performance, it struggles to simulta-
neously extract both the features of time series and deep
features. In the aspect of extracting the features of time
series, the LSTM has shown unprecedented advantages in
sequence modeling tasks. However, the LSTM has some
inherent drawbacks, including the vanishing or exploding of
the gradients and the inability to process in parallel [28]. The
TCN is a new CNN-based model for analyzing sequences
that mainly contains three modules, i.e., causal convolu-
tion, dilated convolution and residual block [29]. Moreover,
the TCN can be capable in capturing long-range depen-
dencies between the load series by relying on a large
receptive field, and its residual blocks help to avoid gra-
dient explosion [30]. However, the TCN cannot extract the
internal correlation information of input [31] and the loss
of local information caused by dilated causal convolution,
which results in preventing to further improve the accuracy
of STLF [32].

To overcome these disadvantages, we propose a novel
method called the TCN-DenseNet based Network. Firstly,
the DenseNet is used to extract the internal correlation
information of input. It can avoid the vanishing of gradi-
ent and strengthen the transfer of features. The number of
parameters are substantially reduced to improve the train-
ing efficient [33]. Secondly, the parallel pooling structure is
introduced into the residual block of the TCN to retain the
feature map needed for prediction through the translation and
rotation invariance, so as to improve the robustness of the
model and reduce the loss of information. In other words,
the proposed model uses the DenseNet to extract the hidden
features of input and the improved TCN (iTCN) is adopted to
extract the time features of long-term load series. Finally, the
SAM is used to enhance these different features. The exper-
imental results performed on two open datasets show that
the hybrid model based on the DenseNet-iTCN has higher
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accuracy and generalization than other prevalent methods in
the area. The main contributions of this paper are described as
follows:

1) We analyze the nonlinear correlation between various
meteorological features and load series. A fixed-length
sliding time window is used to capture the actual vari-
ation and fluctuation trend in the features.

2) We introduce a parallel pooling structure to improve
the residual module of the TCN. The iTCN reduces
the loss of information and performs better in extract-
ing long-term temporal relationships. The DenseNet is
applied to extract internal correlation information of
input and other related factors such as temperature,
holiday, and day types.

3) The SAM is adopted in the proposed model to mine
the relationship between load series and input features,
so that the proposed model can focus on the key infor-
mation to achieve better performance and realize the
high accuracy of load forecasting.

4) A load forecasting model based on the DenseNet-iTCN
is proposed. This paper extends the application of the
proposed model to two datasets from Southern China
and New England, USA. Experimental results demon-
strate that the proposed model achieves better perfor-
mance than other existing models in STLF.

The rest of this paper is organized as follows. Section II
presents the basic theory of each algorithm and the structure
of the DenseNet-iTCN framework. In Section III, we intro-
duce the experimental setting and compare the proposed
model with other existing models on two public datasets.
The conclusion of this paper and the future work are drawn
in Section IV.

II. METHODOLOGY
In this section, we propose an ensemble framework for STLF
that consists of three main modules, i.e., DenseNet, improved
TCN and self-attention mechanism. The following subsec-
tions briefly describe each module used in this study. Finally,
we will give the architecture of the proposed hybrid model,
in which the feature selection, data reprocessing, and the
evaluation criteria will be described.

A. DENSENET
With the deepening of the CNN, there will be some problems
to train the model, such as the vanishing or exploding of
gradients, network degradation, etc. The ResNet [34] can
overcome these problems mentioned above through the resid-
ual connection. However, the ResNet combines features of all
preceding layers through summation before they are passed
into a current layer. Moreover, the number parameters of
ResNet is substantially larger because each layer has its own
weights. The DenseNet retains the idea of the construction
of residual module. Each layer obtains additional inputs from
all preceding layers and delivers its output of features to all
subsequent layers, which improves the information transmis-
sion capacity of each layer [35]. In this case, the convolution

network with L layers has L(L + 1)/2 connections, instead
of only L connections for the traditional models. Therefore,
the DenseNet has significantly improved compared to other
CNN-based models. It has been widely used in medical treat-
ment [36], [37], semantic segmentation [38], image recogni-
tion and classification [39], [40], audio processing [41], and
other fields.

The dense block is the basic unit of the DenseNet, and its
structure is schematically shown in Figure 1. Accordingly, the
feature maps of all preceding layers at the l th layer can be
given as

xl = Hl ([x0, x1, · · · , xl−1]) (1)

where xl represents the feature map generated in the
l th layer and [x0, x1, · · · , xl−1] indicate the concatenation
of all preceding layers. Hl (·) represents batch normaliza-
tion (BN) followed by a rectified linear activation function
(ReLU) and a 3× 3 convolution.
The transition block connects two adjacent dense blocks,

which consists of a 1×1 convolution layer and a 2×2 average
pooling layer. The transition block reduces the size of the
feature map by down sampling and compresses the model
so as to reduce the amount of computation and improve the
computational efficiency.

FIGURE 1. The schematic structure of the dense block.

B. IMPROVEDTCN
The size of convolution kernel limits the ability of traditional
convolution network to extract the features of long-term
series of load data. In order to conquer the problems men-
tioned above, the TCN is introduced due to its innovative
integration of causal convolution, dilated convolution and
residual block. Figure 2 shows the overall flow chart and
architecture of the TCN model, each module of which will
be described in the following.

1) CAUSAL CONVOLUTION
The TCN developed from CNN-based model overcomes the
disadvantages of LSTM in solving time series. The output
sequence of TCN has the same length as the input sequence
and it uses the information from the preceding time steps.
That is to say, the output of the network is only related to
the previous input, avoiding the disclosure of future infor-
mation. Taking the structure of causal convolutions shown
in Figure 3 as an example, the output yt at time step t depends
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FIGURE 2. (a) Deep TCN. (b) Residual block. (c) Brief diagram of the dilated convolution.

FIGURE 3. The structure of the causal convolution.

on the previous input (xt−4, xt−3, xt−2, xt−1, xt) but has noth-
ing to do with future input (xt+1, xt+2, · · · , xT ). The causal
convolution utilizes a one-dimensional full-convolutional
network to keep the input and output data of the same length
by adding zero padding.

2) DILATED CONVOLUTION
Although the receptive field of the network can be expanded
by stacking the causal convolutions, the number of causal
convolution layers should be large enough to train the long
time series of input data. In this case, it will result in the van-
ishing of gradients and low computational efficiency. In order
to overcome these disadvantages, the dilated convolutions
have been introduced into the TCN to increase exponentially
the receptive field of the network. By sampling the upper

input at internal and increasing exponentially the dilated
factor with d = 2i(i is the number of the network layers),
the TCN can achieve as large receptive field as possible
with fewer layers of the network. The dilated convolution is
defined as follows:

F (s) = (x ∗d f ) (s) =
∑k−1

i=0
f (i) · xs−d ·i (2)

where d is the dilated factor, k is the convolution kernel
size, and xs−d ·i means only the convolution of the past state.
An illustration of the dilated convolution with kernel size
k = 2 and dilated factor d = [1, 2, 4, 8] is shown in
Figure 4. The dilated convolution with 5 layers can read
16 inputs whereas an ordinary network with 16 layers will be
used to obtain the same receptive field. Therefore, the dilated
convolution increases the receptive field of the network with-
out increasing the parameters, which reduces the network
complexity and improves the computational efficiency.

3) RESIDUAL BLOCK
With the deepening of the network, the parameters of the
network model increase, which results in the vanishing or
explosion of gradients. Thus, the residual connection has been
added into the TCN to ensure its stability as the increase of
network layers. The structure of residual module is shown
in Figure 2(b). One can find that there are two layers of the
dilated causal convolution and ReLU in each residual block.
Furthermore, the weight normalization layer and dropout
layer after dilated causal convolution are used to improve the
generalization of the network. Finally, a 1× 1 convolution is
adopted to ensure the same dimension of the input and output.
Figure 2(a) shows a deep TCN formed by stacking n residual
blocks, which can extract the features of long-term historical
series. That is to say, each convolution of the output layer
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FIGURE 4. The structure of the dilated convolution.

FIGURE 5. (a) The structure of the original TCN. (b) The structure of the iTCN.

receives more information from the convolution of the input
layer.

4) ITCN
At present, many researchers have also proposed meaning-
ful improvements to TCN. In [42], the original TCN was
modified to a parallel structure with two branches for
mechanical fault diagnosis. Li et al. [43] proposed a novel
MS-TCN++model with amulti-stage architecture to capture
temporal dependencies and reduce over-segmentation errors,
in which the first one was the prediction generation stage and
other ones were the refinement stages. Korkmaz et al. [44]
designed a novel CNN with a parallel pooling structure,
which consisted of max-pooling and average-pooling blocks,
to increase the performance of the forecasting. In this paper,
we add the parallel pooling structure in the residual module
of the TCN under the motivation coming from [43] and [44].
In addition, the ReLU activation function was replaced with

GELU [45]. As a comparison, Figure 5 shows the original
TCN and the improved TCN (iTCN) with the parallel pooling
structure.

C. SELF-ATTENTION MECHANISM
Attention mechanism is generated by simulating human
visual attention. Human inevitably pay attention to several
key parts when observing things. Therefore, the attention
mechanism is designed based on this phenomenon to learn the
important features of key parts and then splices them together.
Furthermore, feature enhancement is carried out by weighted
summation. The SAM [46], i.e., a variant of the attention
mechanism, focuses on the relevance of internal features and
gives different weights according to the importance of input
features. The input sequence X = [x1, x2, · · · , xT ] is linearly
transformed with three different weight matricesWq,Wk , and
Wv to get query (Q), key (K ), and value (V ). The similarity
is calculated between Q and K , and then the results are
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normalized by a softmax function to obtain the self-attention
matrix (W ). Finally, one can multiply the obtained self-
attention matrix by the matrix V to get the output matrix [47].
The SAM is defined as follows:

Q = WqX
K = WkX
V = WvX

(3)

W = softmax
(
QKT
√
dk

)
(4)

Attention (Q,K ,V ) = WV = softmax
(
QKT
√
dk

)
V (5)

where dk is the dimension of K , (dk )
−1/2 is the scaling

factor, and softmax(·) is the function of normalization by
column.

D. LOAD FORECASTING FRAMEWORK BASEDON
DENSENET-ITCN
The deep structure of the DenseNet could extract the complex
relationships of power load with time, temperature, humidity,
and other characteristics. Due to the integration of the extrac-
tion ability of the CNN and the time-domain modeling ability
of the RNN, the TCN can extract the time correlation in
features [48]. At the same time, the self-attention mechanism
can enhance the characteristics extracted by the DenseNet
and iTCN. In order to better map the relationship between
input and output, the overall framework of the DenseNet-
iTCN is shown in Figure 6, which consists of data pre-
processing, feature selection, and evaluation methods. The
process of the proposed model can be concisely explained in
Algorithm 1. Firstly, the raw data is divided into the training
set, validation set and testing set at a rate of 8:1:1. Secondly,
the parameters of DenseNet, iTCN and SAM algorithms are
initiated. Thirdly, if the validation loss of the predictionmodel
decreases after training in each epoch, it should adjust all the
parameters until the epochs are incremented. However, if the
validation loss does not decrease for 30 epochs, the training
process then will stop. Finally, the optimal model will be
evaluated on the testing data.

1) FEATURE SELECTION
There are a multitude of external factors that influence the
prediction accuracy of power load. These external factors are
usually complex and diverse, which lead to the dynamic or
random trend of load series. For example, the government
policies may lead to the fluctuation of power load and temper-
ature also gives rise to the fluctuation in power consumption.
At the same time, the changing trend of power load has a
certain regularity and periodicity due to the regular social
activities and industrial production. The demand change of
the dataset for a month in a region of Southern China is shown
in Figure 7. It is clear that the trend of the power load has a
7-day period, during which the power load from Monday to
Friday fluctuates slightly and is higher than that on weekend.

FIGURE 6. The overall framework of the proposed model.

Algorithm 1 Algorithm for the DenseNet-iTCN
Input: Raw data [D, T, H, W, S].
Output: Trained model G.

1: The raw data is divided into training set, validation set and
testing set.

2: Initiate the parameters of DenseNet, iTCN and self attention.
3: For i =1 to N do

x ← Hl
([
x0, x1, · · · , xl−1

])
f (s)← (x ∗d f ) (s) #dilated convolution
y (x)← f (s)+ x #residual
d = softmax(y(x))
compute loss
P← Adam(P, r) # r=learning rate

End for
4: If vl stop decreasing or N > maximum iterations

#vl =validation loss
End if

5: Return trained model G

Furthermore, the day types, e.g., weekday, holiday and spe-
cial festival, also have significant impact on the consumption
of power load. Figure 8 shows the profiles of the power load
and temperature in ISO-NE for 6 years. One can find that the
trend of power load has 12 peaks and valleys with the period
of six months, because the power consumption reaches peak
as the temperature is very high or low. Therefore, the temper-
ature feature is an important characteristic of load forecast-
ing in the proposed model. Furthermore, figure 9 shows the
correlation matrix among the load data and external factors.
It is obviously that weekday, hour, temperature and demand
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FIGURE 7. Daily load profile of 4 weeks.

FIGURE 8. Power load and temperature profiles of 6 years.

aremoderate correlation, and their correlation coefficients are
0.4 and 0.46, respectively.

2) DATA PREPROCESSING
In view of the autocorrelation, periodicity, and trend of power
demand data, this paper chooses the five characteristics of
power load, temperature, holiday, season, and weekend for
load forecasting. Each type of features is processed as shown
in Table 1 and the one-hot encoder is adopted for season,
holiday, weekend, and weekday. However, the demand of
power load and temperature will be normalized by min-max
to scale the data to range [0 1]. The min-max normalization
can be defined as

x̂ =
x −min (X)

max (X)−min (X)
(6)

where X is the whole time series, x is the data before normal-
ization, and x̂ is the data after normalization.

In this paper, a fixed-length sliding window is used to
extract data as the input of the network. It takes one hour as

FIGURE 9. Correlation matrix among the power load and external factors.

TABLE 1. Features for the load forecast.

the moving step. The structure of sliding window is shown in
Figure10. It is well known that the characteristics of adjacent
time points have a great influence on forecasting the power
load of the next time point. In order to determine the appropri-
ate time range, we used the proposedmodel to predict the load
demand of the next hour through the features of the first 12,
24, and 48 hours, respectively. From the results of the three
models as shown in Table 2, it is clear that the characteristics
of the first 24 hours are appropriate, and the experimental
results are better than the others.

The sliding window has a length of 24 hours and a step size
of 1 hour. In Figure 10, D1 represents a collection of demand
in the first 24 hours, i.e., [d1, d2, · · · d24],D2 is a collection of
demand from the 2nd hour to 25th hour, i.e., [d2, d3, · · · d25],
and Dt means [dt , dt+1, · · · dt+23]. In addition, the param-
eters T, H, S, and W present a 24-hour feature matrix of
temperature, holiday, season, and weekend, respectively.

The data split by the sliding window are successively fed
into the DenseNet and then its output is further enhanced by
the SAM. The enhanced feature matrix is input into the iTCN
to construct the timing relationship for extracting the features
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FIGURE 10. Fixed-length sliding window.

TABLE 2. The statistical metrics of the three models for different time horizon.

of time series, and then the output of iTCN is entered into the
SAM again. Finally, the prediction results can be achieved
from the full connection layer.

3) PERFORMANCE EVALUATION
In order to evaluate the performance of the proposed model,
the mean absolute percentage error (MAPE), mean absolute
error (MAE) and root mean square error (RMSE) are used
as evaluation indices. The statistical metrics are defined as
follows:

MAPE =
1
n

∑n

t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣× 100% (7)

MAE =
1
n

∑n

t=1

∣∣yt − ŷt ∣∣ (8)

RMSE =

√
1
n

∑n

t=1

(
yt − ŷt

)2 (9)

where yt and ŷt represent the real value and the predicted
value, respectively. The MAPE is used to prove the accuracy
of the model. The smaller the value of MAPE is, the higher
the accuracy of the proposed model is. The MAE shows the
robustness of the proposed model to outliers. Therefore, it is
necessary to adopt these statistical metrics to evaluate the
performance of the proposed model.

III. EXPERIMENT AND RESULT ANALYSIS
A. DESCRIPTION OF DATASET
The first data were derived from the state grid of a region
in Southern China with sampling every 15 minutes [49], i.e.,
sampling 96 points a day. There are 55000 sets of data from
January 1, 2012 to July 6, 2013.The datasets are split into
a training set, validation set and testing set according to the
proportion of 8:1:1. A total of 42848 sets are used for training

the model, 7152 sets can be validated the model and 5000 sets
are defined as the testing set.

The second public dataset were collected from ISO-NE
(New England) dataset [50], which included New England’s
electric load from March 2003 to December 2014 with one-
hour resolution. The dataset contain the power load and tem-
perature data. A total of 35232 sets of data are used from
March 1, 2003 to March 7, 2007. 22872 sets of data are used
as training set, 8760 sets are defined as verification set, and
3600 sets are used as test set. The detailed characteristics
of the two datasets are shown in Table 3, including total
sample size, mean value, standard deviation, maximum and
minimum.

B. EXPERIMENTAL SETTINGS
In order to verify the superior performance, the proposed
model will be compared with the following models: rough
autoencoder (RAE), DBN, interval probability distribu-
tion learning (IPDL), deep temporal dictionary learning
(DTDL), TCN, LSTM, Bi-LSTM, iTCN, TCN-Attention
(TCN-A), iTCN-A, CNN-LSTM-A, DenseNet-LSTM-A and
DenseNet-TCN-A. All these models mentioned above will
be run in the Python 3.7 environment using Pytorch 1.7 as
back ends. The hardware is AMD 5800X CPU @3.80GHz
and NVIDIA RTX3060 12GB GPU. The parameters of all
these models were selected based on grid search optimization
algorithm and previous experiences considering that these
models required more parameter tuning skills. The parame-
ters of each model are summarized as follow:
·RAE: The learning rate is 0.005, batch size is 512.
·DBN: The learning rate is 0.005, batch size is 512, the

number of hidden layer is 10, the optimizer is Adam.
·DTDL: The dropout is 0.2, the size of the convolutional

kernel is 3.
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TABLE 3. The detailed characteristics of two public datasets.

TABLE 4. Load forecasting evaluation on the testing set.

·LSTM/Bi-LSTM: The number of hidden size is 24, the
number of layers is 2, and the dropout is 0.2.
·CNN: The number of convolutional layers is 1, the size of

the convolutional kernel is 3, and the stride is 1.
·TCN/iTCN: The dilation factor is set to [1, 2, 4, 8, 16],

the kernel size is 2, the dropout is 0.2, the stride is 1, and the
padding is 1.
·DenseNet: The number of dense block is 3, the size of the

convolutional kernel is 3, and the stride is 1.
·Learning rate: The initial learning rate is set to 0.005, and

the learning rate decay is adopted to automatically decrease
the learning rate as the number of iterations increases. The
learning rate is multiplied by 0.97 every 80 epochs.

C. RESULTS AND DISCUSSION
We performed the training and testing for all these models
more than five times until the values of statistical metrics
became stable. The mean values of experimental results of

all these models on the two test sets are shown in Table 4.
Figures 11 shows the MAPE errors of these aforementioned
models in terms of a box plot on the testing sets of Southern
China and ISO-NE datasets.
·Single model: Compared with the results of TCN, LSTM

and Bi-LSTM, the MAPE of the iTCN decreased by 23.38%,
29.36%, 27.36% in Southern China dataset and 8.15%,
12.06%, 14.48% in ISO-NE dataset. This indicates that the
iTCN has a stronger nonlinear fitting and prediction abil-
ity. It should pointed out that the first four machine learn-
ing models, i.e., RAE, DBN, DTDL and IPDL, also show
inferior performance on these two datasets due to shallow
structures of networks compared with other deep learning
models.
·Self attention: The MAPE, MAE and RMSE of iTCN-

A decreased by 5.19%, 13.01%, 16.25% in Southern China
dataset and 8.8%, 10.8%, 15.6% in ISO-NE dataset. This
fact is also true for the TCN and TCN-A. These comparison
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FIGURE 11. (a) The box diagrams of MAPE on Southern China dataset. (b) The box diagrams of MAPE
on ISO-NE dataset.

FIGURE 12. Load forecasting profiles of the TCN-based models of the dataset of Southern China.

results show that the SAM enhances the key features
and further improves the learning ability of the prediction
model.
·Hybrid model: Comparing CNN-LSTM-A with the pro-

posed model, it can be found that all three evaluation metrics
have been significantly reduced, especially for the values of
MAE andRMSE. They are decreased by 35.92%, 45.23% and
46.41% in Southern China, 20.18%, 23.13% and 24.36% in
ISO-NE. The reason is that the limitations of feature extrac-
tion technique lead to the loss of feature information. It means
that the parallel pooling structure of the iTCN achieves a
wider receptive field to capture the long-range historical data
and get more detailed information of the features. Com-
paring DenseNet-LSTM-A and DenseNet-TCN-A with the
proposed model on ISO-NE dataset, the MAPE are reduced
by 15.53% and 8.42%, the MAE are reduced by 14.23% and
6.68, the RMSE are reduced by 7.70% and 13.75%. Thus,

the proposed model is more significant and competitive than
other hybrid models.
·Computational cost: It is obvious that hybrid models cost

much more time than single models. The running time is pos-
itively proportional to the complexity of the model. It should
stress that the hybrid models achieve higher accuracy com-
pared to the single models. Thus, it is hard to balance the
complexity of the model and prediction accuracy. However,
it is acceptable in practical applications with the develop-
ment of algorithms, graphics card and cloud computing.
Table 5 shows the evaluation criteria of proposed model for
15-min, 30-min, 1-hour, and 2-hour ahead load forecasting,
respectively. It is evident from Table 5 that the evaluation
criteria are generally increased with the extension of the
forecasting time horizon. The MAPE of 15-min obtained
16.50%, 34.35% and 44.87% improvement compared with
30-min, 1-hour, and 2-hour time steps, respectively.
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FIGURE 13. Load forecasting profiles of the TCN-based models of the dataset of ISO-NE.

TABLE 5. The criteria of proposed model for different time horizon.

The forecasting results of several TCN-based models of
the testing set, including the actual power demand curve, are
shown in Figures12 and 13. It shows that all models can
roughly fit the actual load in the stage of rising or falling.
However, the proposed model is better able to fit and catch
the trend of actual load compared to the deviations of other
models at the peak or valley of the actual load. It is worth
emphasizing that the ISO-NE dataset has lower complexity
and non-stability compared to the dataset from a region in
Southern China. Therefore, the errors of load forecasting for
all models in the ISO-NE dataset are lower than those of
corresponding models on Southern China dataset. In order to
clearly present the comparison of all these models, we fur-
ther show the load forecasting of 48 points (12 hours) on
Southern China dataset in Figure 14 and the load forecasting
of 24 points (24 hours) on ISO-NE dataset in Figure 15,
respectively. It shows that all models can approximately fit
the actual load in the stage of rising or falling. The peak or val-
ley is not only the turning point of the curve but also the most
difficult position for the model to predict. It should be pointed
out that the peaks of the power load indicate the increase of
the productivity and activities of residents and manufactories,
which would be subjected to various disturbances. Similarly,
the time horizons of valleys of the power load usually are
very short between the falling and rising stages. In this case,
some factors are unpredictable events, such as sudden load
changes and others. All these factors will inevitably increase

FIGURE 14. Load forecasting profiles of 12 hours on Southern China
dataset.

FIGURE 15. Load forecasting profiles of 24 hours on ISO-NE dataset.

the difficulty of load forecasting. Thus, the learning and
prediction capability of the proposed model can be accurately
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reflected due to the enhanced large receptive field and strong
feature extraction and enhancement. It can be seen from the
fitting curves that the proposed model in this study can better
fit the changing trend of the actual power load. Therefore,
we can conclude that our proposed method has high accuracy
and robustness to meet the requirements of STLF.

IV. CONCLUSION
In this paper, we proposed a novel approach to short-term
power load forecasting based on the DenseNet-iTCN and
SAM. The information of features of the raw dataset was ana-
lyzed by correlation analysis method and the feature matrix
is constructed as the input of the DenseNet to extract the in-
depth features. A parallel pooling algorithm was introduced
to the residual module of the TCN to effectively extract the
temporal relationship of features without any signs of per-
formance degradation or over-fitting. The key features sepa-
rately obtained from the DenseNet and iTCN were enhanced
via the self attentionmechanism. The results of STLFwith the
optimal parameters were obtained through the full connection
layer. Two public datasets from a region in Southern China
and ISO-NE were performed to evaluate the proposed hybrid
model. Experimental results showed that the proposed model
had the best performance compared with other benchmark-
ing models and demonstrated the strong generalization and
robustness ability to STLF.

In future work, we will focus on specific areas of load fore-
casting, such as factories, communities, schools, hospitals,
and other places. We will further optimize and improve the
structure of TCN-based model to better adapt to time series.
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