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ABSTRACT Current state of the art application profilers for function/loop (process) based execution paths
perform static profiling during design space exploration. Dynamic optimization is a must for heterogenous
platforms to achieve low silicon area and better performance in real-time. Hence, it becomes necessary to
have a mechanism in the target platform hardware to identify run-time characteristics of various processes of
the application code in execution. This should be at both, an individual process level and in the relationship
with other co-processes. This paper proposes DynPath - a hardware-based execution path profiler capable
of detecting and identifying the processes along with the execution paths, both in a static and dynamic
context. It has a rich set of features in comparison to other process-based profilers reported in the literature.
Being non-intrusive it does not cause any run-time overheads. To handle the dynamic nature of input data
size versus fixed memory row width, the paper proposes a unique approach based on Content Addressable
Memory (CAM) for path identification and optimal hardware utilization. Considering that a process can be
part of multiple executions paths, the profiler tracks both, the path invocation count, as well as, path-specific
process invocation count (PSPIC) for each process. PSPIC logic being computationally intensive, it also
proposes an alternative implementation of the PSPIC logic based on resource sharing which helps reduce
the total area overhead of the execution path profiler by 8§7%.

INDEX TERMS Design, dynamic profiler, hardware-software partitioning, non-intrusive, VLSI.

I. INTRODUCTION statistics, i.e., the flow of information in a dynamic on the fly

Technology is ubiquitous. The applications that we have
today are evolving very fast and their design goals are becom-
ing more complex than ever before. Research in emerging
technological areas such as machine learning, bioinformatics,
robotics, computer vision and artificial intelligence are taking
impactful leaps. From an engineering point of view, there are
a specific set of challenges to be met for the same. These
include design complexity, handling big data in real-time and
meeting specific design goals in a dynamic context based
on the execution of an application. Profiling the execution
statistics offline helps achieve an optimal target platform for
deployment [1], [2], [3]. To optimize execution in a dynamic
context, the system must be aware of the run-time execution
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context compared to a static offline context.

Static profiling in the context of this paper, refers to the
profiling which can be performed during design time to
aid the design space exploration phase (refer Section-I-2).
It helps the software, as well as the platform designer,
analyse the flow of information in an application code and
identify potential bottlenecks. Dynamic profiling, on the
other hand, is done on-the-fly after the application code
has been implemented on the target hardware platform in
order to aid on the fly or dynamic optimization during
execution of the application code. This is explained further in
Sections-I-2, I-3 and I-4.

Flow of information can be further categorized as flow of
data and flow of control. Flow of data values could be further
used in optimization techniques such as value prediction in
microprocessors. Flow of control could aid value prediction

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 10, 2022

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

116069


https://orcid.org/0000-0003-1024-081X
https://orcid.org/0000-0002-9872-1695

IEEE Access

M. K. Jaswal, S. K. Roy: DynPath—Non-Intrusive Feature-Rich Hardware-Based Execution Path Profiler

FIGURE 1. Graphical representation of a sample application code.

as well as dynamic reconfiguration or dynamic partial
reconfiguration in heterogeneous platforms [2], [4], [5], [6],

(71, (8], [9]-

1) ACCELERATION - HARDWARE V/S SOFTWARE

Any application code written in a high-level language
comprises of complex logic blocks often structured as
loops and functions. This in turn forms different paths of
execution while the code is executing in an underlying
hardware platform unit. The hardware platform may include
a processor, or an accelerator, or a reconfigurable logic
fabric. We refer to loops and functions as processes for the
rest of this paper. For example, Fig. 1 shows a graphical
representation of a sample application code comprising of
functions denoted as F1 to F5 and aloop L1. As can be seen in
the figure, L1 is nested inside F1 and is a parent to F2. Hence
the encircled F1-L1-F2 forms one path of execution. These
denotations and graphs are further explained in Section III.
As per literature [10], [11], computationally complex logic
blocks or those with commonly used functionality are often
put as functions. Loops, which are the iterative logic blocks,
often consume 90% of execution overhead. For example,
a multiply and accumulate operation on software could
take 1000s of clock cycles based on the number of loop
iterations and the latency of every instruction that is executed
sequentially; whereas, in a hardware optimized for the
multiply and accumulate operation, it will take lesser number
of clock cycles due to concurrent or parallel execution based
on the number of resources available for carrying out the
multiply and accumulate operations. The speedup can be
calculated based on a set of equations that can compare
the computation and communication costs involved when
a process is put in hardware versus implementing it in
software. While the hardware execution time can be estimated
using total loop iterations, the communication requirements
depend on the number of times the loop is executed and
can significantly impact overall speedup. Loops with more
extensive executions and fewer iterations per execution will
have more significant communication requirements than
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FIGURE 2. Design flow in modern embedded system.

similar loops with fewer executions but more iterations per
execution [12].

2) DESIGN FLOW - MODERN EMBEDDED SYSTEMS
Traversing from application-level abstraction to the hardware
level abstraction, profiling tools play a significant role
in deciding which process is implemented in software
or in hardware in the final implementation. The final
implementation is based on the target area and performance
goals to be achieved when the hardware is deployed. This
process of exploration for finalizing the implementation
hardware from an application-level considering the design
goals is called design space exploration (DSE) [1]. The
design flow for developing CPU/FPGA hybrid systems
is depicted in Fig.2 [11]. The application specified in a
high-level language (HLL) such as C/C++ needs to be
partitioned into hardware and software parts with the help
of a profiling tool. Design space exploration is carried
out to find the suitability of modules in application code
to be implemented in the software (Processor) end or
the hardware (Accelerator/Reconfigurable Architecture) end.
This is a crucial step in designing embedded systems as an
optimal partition leads to an optimal system implementation.
To partition the system, the application needs to be profiled
to identify critical regions. The reconfigurable architecture
could be based on static reconfiguration (i.e. pre-configured
e.g., usually in FPGAs) or dynamic reconfiguration (i.e.
reconfigurable on-the-fly).

3) SCOPE OF PROFILING

The principal objective of this research is to enable
hardware/software partitioning decisions for the optimal
implementation of a system on a heterogeneous computing
platform. The partitioning decisions are taken by following a
profiling-based flow that produces accurate measurements of
desired metrics. The quantifiable metric required to maximize
the throughput is the percentage of time spent in executing a
code segment. However, this will only generate information
regarding the computation overhead of a specific code
segment, function or loop. The frequency of interaction with
the neighbouring processes becomes equally important when
deciding what portion of code gets implemented in different
computation blocks of the target heterogeneous platform.
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Profiling, in general, can be categorized as software-based
profiling and hardware-based profiling [13]. Software profil-
ers modify the application code by adding instrumentation
code to derive profiling information. Hardware profilers
typically modify an existing processor implementation on
which the process to be profiled is executed. This is done
by adding counters that trigger and update counts on the
occurrence of specific events. Both approaches contribute to
overheads during run-time. With the advent of reconfigurable
architectures, we have a third category called the FPGA based
profilers. These are hardware-based profilers, augmented
to the processor on the same die and do not intend to
modify existing processor implementation or contribute
to run-time overheads. Having a hardware-based profiler
helps perform static analysis on the final target platform.
Apart from that, it also helps open opportunities to not
just profile an application code in one processor on a
platform, but also profile the code regions executing in
other computing elements and provide a holistic view of the
overall computation and communication. After the product
is deployed, the execution characteristics, statically profiled,
may differ based on real-time inputs/constraints, leaving
room for the possibility of modifying the implementation and
dynamic optimization of design goals.

Going further, in future, hardware-based profiling,
as described above, can also aid in dynamic partial
reconfiguration (DPR) based on dynamic profiling and real-
time decisions, as compared to most of the DPRs today,
which are proposed based on static profiling and DSE [2],
[9]. If the run-time execution overheads can be traced or
if it can be found out which process can become active
based on past execution history, such processes can be
reconfigured to execute on a reconfigurable hardware fabric
for acceleration. The processes or execution paths with
higher mutual invocation counts can be reconfigured for
dynamic placement in the vicinity of each other [14]. This
can help in judicious resource utilization, along with power
and performance optimization. To enable true DPR, it is
required for the system to be aware of exactly which process
is it currently executing and calculate some specific run-
time parameters, to help enable better decision making as to
whether it is worth swapping a process between hardware and
software, or vice-versa. A hardware-based dynamic profiler
is crucial for such real-time analysis. Subsection V-A points
to further details on this. Some specifications have also been
laid out in DynRP [15] to aid the same.

4) SCOPE OF DynPath

In the context stated above, non-intrusive quality of a profiler,
i.e. being able to automatically detect and identify the target
parameter (in our case, processes and their inter-relationship),
without intruding into the application code or computing
element, becomes a foremost requirement for the following
reasons. Firstly, it makes a profiler independent of the
application code, or portion of application code executing,
or portion of the application code to be executed in a target
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computing element, as well as, of any instrumentation to be
done to the code or the computing element. This is valid both
in the case of static and dynamic profiling. Secondly, it is
helpful for dynamic profiling in the context of enabling actual
dynamic reconfiguration where the processes can be swapped
between different computing elements based on real-time
execution statistics, for dynamic optimization of design goals.

This paper proposes a hardware-based non-intrusive
execution path profiler, which is not only capable of
automatically detecting and identifying the processes and
the execution paths during DSE, but can also be used
in a dynamic scenario to profile an application code
executing in a processor, without causing any run-time
overheads. The aim is to provide a better granularity of
the process inter-relationship by profiling execution paths,
the parent-child call hierarchy, and identifying processes
contributing to multiple paths. This can lead to a better
analysis of processes’ computation and communication costs
for the target heterogeneous platform during design space
exploration. When provided to the Operating System or Job
Scheduler [16], [17], [18], [19] targeted for dynamically
reconfigurable architectures, this information can help enable
seamless execution, resource allocation, and scheduling
between a processor and a dynamically reconfigurable
architecture to achieve dynamic optimization of design
goals.

The outline for the remaining paper is as follows. Section II
shares highlights of the comparison with contributions made
by existing profilers and the proposed one. Section III dives
deeper into the proposed execution path profiler, and it
outlines the objectives and terminologies for the rest of the
paper. The proposed architecture, the design decisions of
various blocks, and the FSM controller are discussed. Fig. 5
and Table 2 give a clear comparison of the proposed blocks
as compared to the existing techniques. This section also
describes an alternate design logic to reduce profiler area
overhead. The proposed execution path profiler results are
presented in Section IV and critically analyzed. Conclusion
and future scope are discussed in Section V.

II. EXISTING WORK

Table 1 shows the feature comparison of DynPath to
other similar function/loop-based profilers. Different features
considering dynamic execution path profiling, in the context
as stated in Section I are noted.

DynPath currently doesn’t support profiling in predefined
code region boundaries like SnoopP [20], as it is intended
for non-intrusive profiling. But this can be included as an
additional feature for desired logic blocks, while continuing
support for other loops and functions identified along.

GProf [21] profiles the execution of application code
(functions-only) during design time to aid DSE. During
compilation the generated application code is instrumented in
the software backend based on user-defined flags to enable
profiling. Profiling accuracy is directly proportional to the
sampling frequency. Thus, for higher accuracy, execution
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TABLE 1. Comparison with existing profilers.

Feature Process based Profilers
No. Description Proposed DynPath GProf SnoopP Kumar | DynRP

1. |Hardware Based Profiling v X v v v

2. |Real Time Profiling v v v v

3. Profile regions in user defined code X X v X X
bounds
Non-Intrusive Detection and .

4 Identification v * x v v
Nested Function Detection and . _

5. . . v v B B v
Identification * *

6. | Function Execution Cycle count X v X v v

. . v .

7. | Function Invocation count Re-stractured to feature 19 v X v v

8. | Recursive Function Identification v v X X v
Nested Loop Detection and

. . . v { v v

8 Identification * X

10. | Loop Execution Cycle count X X X v v

1 Distinguish Lloop iterations from v X - v v
Loop Invocations

. v .
12. | Loop Invocation count Re-structured to feature 19 X X v v
v
13. | Loop Iteration Count Partially re-structured to X X X v
feature 19
Function and Loop in a common . .

14. v X X X v
profiler
Non-intrusive Execution Path / Call ¥ (only function . .

15. . v b, 3 b,
Graph Formation based) x x x
Calculation of depth of path in
runtime to aid identification circuit

16. | (can later aid in further deducing v X X X X
code structure, ete.) +Path
identification

17. | Execution Path Invocation Count v X X X X
Parent-gpecific Child-Invocation . v (for functions - -

18. X X X X
Count (PCIC) only)

Path Specific Process Invocation . .
. v

" | Count (pSPIC) = = * *
Hardware optimizations for

20. | handling dynamic depth of paths v X X X X
and other related counts

overhead increases. It is able to support complex profiling
features such as recursive function detection and the number
of invocations of a child process specific to a parent process
(PCIC). However, this is not a straightforward task when a
profiler is made using hardware logic blocks. The execution
path based call graph information and the Path Specific
Process Invocation Count (PSPIC) can be inferred later from
the Gprof output through manual inference or any visualizing
tools and cannot be obtained directly through GProf. DynPath
- a hardware based profiler generates the dynamic execution
path information which is based on both, functions and loops.
This is explained much deeper in Section III along with
the design decisions and architecture to support this in a
dynamic context and without need for any form of code
instrumentation.
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In contrast to DynRP [15], DAProf [12], Kumar [11],
SnoopP and GProf, DynPath intends to present a hardware
implementation specifically focused on features necessary
for execution path profiling only. Hence it doesn’t include
execution count storage memories for functions and loops.
The process invocation count memories are efficiently
restructured to the paths these belong to. The loop iteration
count can be deduced from the invocation counts of its child
processes, except for if a loop is an innermost child. Hence
this is marked as partial restructuring in Table 1. If considered
desirable for the target system, these blocks can be easily
plugged in. These will operate independently without causing
any run-time latency overhead.

To the best of our knowledge, there also exist per-
formance profilers which focus on finding performance
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bottlenecks in hardware accelerators synthesized using High
Level Synthesis (HLS) based design flows. For example,
in HLS_Profiler [3] the profiler framework uses static and
dynamic information made available by the HLS compiler
along with special associative rules to establish accurate
Source Code (C/C++) to Clock Cycle mapping. The algo-
rithm takes design source code, compiled RTL files, wave-
forms and synthesis report as inputs. The performance profile
of the source code is available in a text file, through which
the designer can identify, optimize bottlenecks and update
the source code with appropriate pragma directives. These
steps are then repeated till the performance target is met.
However, such performance profilers are not the current focus
in this paper as these are mostly targeted toward static design
optimization.

Another profiler that makes use of execution tracing
is Intel Processor Trace (Intel PT) [22], [23]. It is an
extension of Intel® Architecture that has to be triggered
to capture information about software execution using
dedicated hardware facilities developed to cause minimal
performance perturbation to the software being traced [22].
The intention is to understand why and how did software
get to a certain point, or behaved in a certain way for
debug purposes. It offers control flow tracing (eg. branch
taken/not taken). This in turn generates information in form
of a variety of packets to be processed by a software
decoder [23]. It targets branching instructions, primarily
functions for tracing purpose. It doesn’t require to be recom-
piled with every new build or release, however, the executed
images are needed - which makes its use in JIT-compiled
environments, or with self-modified code, a challenge [22].
Loops are reported to consume 90% of execution over-
head [10]. The proposed DynPath targets to profile the
dynamic execution paths and inter-relationship between
processes (at the granularity of, and including both loops
and functions). This will help understand the execution flow,
as well as, communication overhead (inter-process invocation
frequency) to target dynamic optimization by making use
of technologies such as Dynamic Reconfiguration and JIT
compilation. This is explained in Section-I Introduction and
Section-V-A Future Scope

Ill. PATH PROFILING

Path detection foremost requires detecting and identifying
various processes (loops and functions) in execution and
their relationship. While the tracking unit as proposed in
the hardware-based profiler -DynRP does an excellent job in
detecting various individual and nested processes, it does not
preserve the information related to the path of execution these
belong to, or whether the path of execution has branched into
a separate sub-path or switched to a new path of execution at
the root node which is assumed to be the main process itself.
This section describes the specifications and design for the
path profiler.
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A. OBJECTIVE AND TERMINOLOGY
The objectives are stated as follows: -

1) Detection of the dynamic paths of execution in an
application code as opposed to static paths of execution.
Different inputs (parameters and environmental inputs)
for the application code can result in different paths of
execution being taken dynamically.

2) Carry out path identification of newly detected paths

3) Calculate the invocation count for each identified path.

4) Calculate path specific process invocation count

Fig. 3 shows the call graph capturing the execution

relationship for all the processes (depicted as nodes) existing
in a sample exhaustive application code. This sample code
is designed after studying multiple benchmark application
codes [24], [25] to include and consider the various corner
cases that could exist and is purely for illustration alone. The
calling sequence of processes as static analysis is shown from
left to right in the call graphs, represented by their unique
index numbers. Though terminology for call graphs such as
nodes, edges, iterative, branching, recursive etc. have existed
for decades [26], [27] below we define the terms specific to
the inter-relationship of process for the cases specific to path
profiling with reference to Fig. 3. The granularity of our call
graph is the function (Fn) and loop (Ln) processes as detected
by the mentioned hardware profilers, the output of which is
input to the path profiling circuit. Path of execution consists
of calling sequence of such processes from the root node (int
main). For example, Main - Fl - F2 - L1 —» F3 —
L2 constitutes one path. Similarly, Main — F11 constitutes
another path.

o Nested Nodes- Child processes that are invoked from
within a parent process and are meant to return to the
parent process on completion of their execution, at the
same point from where they were invoked. For example,
in F11 is nested inside L6.

« Conditional Nodes- Nodes where a path of execution
within the node can branch into several sub-paths of
execution due to the presence of either a case statement
or multiple if-then-else statements in such nodes. For
example, at node L4 we can have three different paths
of execution, L4 — F5, or L4 — F6, or L4 — F7,
where F5, F6 and F7 respectively, are the three different
sub-paths rooted in the node L4.

« Non-Conditional Nodes- Nodes where a path of
execution within the node does not branch into sev-
eral sub-paths of execution due to the presence of
either a case statement or multiple if-then-else state-
ments in such nodes. Thus, processes which result in
non-conditional nodes have linear execution of process
statements without any branching. For example, node F4
is a non-conditional process node.

o Level Nodes- Nodes representing processes which are
not conditional nodes. The completion of execution of
such processes initiates the execution of subsequent
processes in the application code. Such processes lie
in the same process hierarchy and hence form different
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FIGURE 3. Sample exhaustive code structure.

paths from the parent node in a sequential fashion. For
example, processes F1 and F13 are level nodes in the
same hierarchy under the main node. Once all nested
branches within F1 are exhausted, the code execution
returns to the main and invokes node F13. Similarly, F2,
F4,L4,L5, F10, F11, L6, and F12 respectively are level
nodes under F1.
Merger Node- Processes representing a special type
of level node, called the merger node on which every
conditional branched sub-path in a parent hierarchy
seems to terminate in an application code. This,
if verified by a code graph is like a non-condition level
node which is executed after a condition block in a sub-
path. For example, L3 is the merger node for the set of
sub-paths rooted in the conditional node F2.

Based on the above context, following types of path
formations could exist:-

1) Paths formed from Non branching and Non iterating
nodes/edges
Paths formed from Non-branching and Iterating
nodes/edges; iterating node is result of the process
being a loop or a recursive function; iterating edge is
result of parent node being iterative.
Paths formed from Branching and Non-iterating
nodes/edges; the branching sub-paths may or may not
merge back into a merger node.

2)

3)
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4) Paths formed from Branching and Iterating nodes/
edges
5) Process invoked in more than one paths
Further subsections give a glimpse on the path profiler
hardware capable of detecting and identifying the above
mentioned types of nodes, and path formations.

B. PATH PROFILER CIRCUITRY
a: BLOCK DIAGRAM

The path profiler has an instruction decoder and a control
logic unit which takes the runtime trace signals from the
microprocessor (Xilinx Microblaze [28]) as input, detects
the occurrence of processes (loops and functions) and shares
it with rest of the Function and Loop CAM to uniquely
identify each. In this process the CAMs generate a unique
tag for each process that is detected. This implementation is
similar to as done in DynRP [15]. We further extend on the
usage of these tag bits and include these as primary inputs
for our Path Tracking Unit along with other control signals.
Our DynPath implementation supports unique identification
for maximum of 32 processes (16 loops and 16 functions).
Fig. 4 shows the block level implementation diagram of the
path profiler. This mainly includes the Instruction Decoder
and Control Unit, the Tracking Unit, the Process Content
Addressable Memories, the Path Invocation Count Storage,

and the Path specific Process Invocation Count Storage.
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FIGURE 4. Execution path profiler block diagram.

This helps in obtaining a very detailed path profiling
information. Path Detection and Identification Logic (PDIL)
consists of Path Tracking Unit, the Link Circuitry, and
the Path Content Addressable Memory (Path CAM) with a
unidirectional flow of information. There is a separate Finite
State Machine (FSM) acting as the control unit to synchronize
these three modules.

1) PDIL-PATH TRACKING UNIT

The Path Tracking Unit operates concurrently with the
Process Tracking Unit in the block diagram shown in Fig. 4 to
detect the formation of paths while the individual processes
are in execution. With the help of a sample code structure
given in Fig. 1, we illustrate the differences between the
proposed path profiling approach and the one given in DynRP.
F1 is the first process to be invoked inside the main program.
Execution of F1 is followed by a nested process L1. L1 in its
multiple iterations goes through different execution paths. For
initial iterations, it goes through F2, for the remaining ones it
goes through F3, which in turn has F4 nested inside it. After
the iterations of L1 are completed, execution returns to F1,
which then calls another nested process F5. After completion
of F5, code execution again returns to F1. In absence of any
more process, F1 exits, and execution returns to the main
program.

The sequence of execution as detected, and the output
generated by DynRP’s function and loop tracking logic
is compared with those generated by the proposed path
tracker logic is captured and shown in Fig. 5. We summarize
below the key design decisions which helped implement the
proposed path tracking logic.

1) Pointers: The following two pointers, play a significant

role:

o Current location Pointer (cells marked in green
in Fig. 5)- The address pointed to by this primary
pointer increments and decrements, based on entry
and exit of processes during their execution.

VOLUME 10, 2022

o Next location Pointer (cells marked in red in
Fig. 5)- The movement of this pointer is only in
one direction as the path depth increments. The
pointer is reset only when the entire path exits. It all
other cases it marks the position where the fresh
entry of the path should be written. The pointer also
enables computation of depth of an existing path
during the path switch process and helps in giving
an unambiguous information related to path depth.

2) Apart from having a record of the traversed pro-
cesses, in case of a deviation from the current path,
or beginning of a fresh path, the following differences
are implemented: (i) Copy the existing path from the
tracker as an output along with the path depth (marked
in yellow in Fig. 5) and raise the path switch indication.
(i1) Retain the parent path information, i.e. the portion
before a deviation which resulted in detection of a
new sub-path. No parent information is retained if
an entirely new path begins inside the main program.
(iii) Update the current path pointer location with a
new process tag. (iv) Reset the trailing portion of the
tracking register, to avoid false data entry for a newly
detected path (Cells with blue border are reset in Fig. 5).

2) PDIL-LINK CIRCUITRY

Once a path deviation is detected, it is necessary to copy the
existing path in the Path Tracker to enable storage of any
new path resulting from the deviation. A path switch signal
is generated for the same. Link Circuitry acts as an interface
between Path Tracking Unit and Path CAM. Link Circuitry
primarily serves two purposes. First, it preserves the detected
paths until sent for identification, to avoid any possible
overwriting. This is done with help of dual temporary
path register logic (TPR). Having the consideration of this
design requirement enables easy enhancement to a FIFO
implementation in future over having a single TPR, in case
it becomes necessary from the perspective of performance.
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F1|L1|F2] 0| O F1|L1|F2] 0| O
Iteration of L1 with ELSE F1, L1, F2};
condition F1|L1|F3| 0| 0| {F3} Fi[L1|{F3J 0] o Size=3}
F1|L1|F3|F4| 0 | {F4} F1|L1|F3|F4| 0
F1|L1|F3|F4| O F1|L1|F3|F4| 0
F1|L1|F3|F4| O F1|L1|F3|F4| 0
When L1 Invocation ends and {F1, L1, F3, F4};
replaced by F5 F1|F5{F3|F4{ 0| {F5} F1|F5. 0|0 O Sivemd
F1|F5|F3|F4| 0 F1|F5, 0|0} 0
Final Register State after code {F1, F5};
execution returns to int main F1[F5[F3[F4] 0 0jojojojo Size=2

FIGURE 5. Difference between the run-time content of the tracking units based on Fig. 1 (assuming tracking register

can store up to 5 processes for illustration purpose).

Secondly, along with the path, the Link Circuitry calculates
and shares the depth of path in terms of the number of Path
CAM rows that specific path will occupy. The requirement
for this is explained in the following subsection.

3) PDIL-PATH CONTENT ADDRESSABLE MEMORY

The Path CAM stores newly detected paths if they do not
already exist in the Path CAM by comparing the newly
detected path with the paths already stored in it. The Path
CAM is different from the Function CAM or the Loop
CAM.

One option to cater to dynamic input size is to fix the
number of rows for each path assuming a maximum bound
of say, 3 rows for a path. This can lead to wastage of
memory capacity when a path occupies less than 3 rows.
To avoid this in the proposed implementation the path
configuration is chosen such that each entry can occupy
multiple rows where that the number of rows is dynamically
selected based on depth of each individual path, to ensure
better Path CAM capacity utilization. To enable a better
balance between depth of paths and maximum CAM memory
utilization a constraint of a maximum of 4 rows for any path
is imposed after studying several benchmark codes. Though,
the implementation of the control logic for the maximum
rows for any path enables parameterizing this constraint to
take care of applications where there can exist paths which
need more rows than allowed by the parameter. This enables
easier path detection and path matching in the Path CAM
logic. In the proposed implementation, path detection and
path matching are carried out outside the Path CAM. Thus,
the Path CAM in effect acts as a storage register file with
matching happening outside of it. Table-2 highlights the
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primary differences between the Function/Loop CAM and the
Path CAM.

a: PATH CAM CONFIGURATION

To enable the above Path CAM logic in the proposed
implementation with dynamic path depth, a CAM of size 32-
bit x 32-locations is chosen with following bit encoding and
bit payload information:

o Bit0: This bit in a memory location encodes the path
folding information. A value of 1 indicates start of a new
path, while a value of 0 indicates folding or continuation
of the path information in the earlier memory location.

« Bitl: Reserved bit for future use (set to O in present
implementation).

« Bit2-Bit31: These 30 bits store data from the Path
Tracking Unit. Considering the size of each process tag
to be 5 bits wide (32 processes) as mentioned in Section -
III-B, these data payload bits in a Path CAM memory
location or row can contain a maximum of 6 process
tags.

The above Path CAM configuration ensures using minimum
number of encoding bits for path start/folding (1 bit) and
maximum data payload bits used for storing path information
(30 bits). It is amenable to easily accommodating any
changes in the Path CAM memory parameters (for example,
64 bits/128 bits in any memory location) without needing
much change in the implementation logic or information
flow. Table- 4 shows how the CAM will be able to
accommodate maximum of 32 paths (1 row for each path
having up to 6 process tags) and minimum of 8 paths (4 rows
for each path having 19 to 24 process tags). The calculation
parameters for the same are first are defined in Table- 3.
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TABLE 2. Key differences usual CAM v/s proposed path CAM.

Parameter Traditional CAM used for func- | Path CAM

tion/loop
No. of Rows an entry occupies Fixed; Typically 1 Decided dynamically based on size of entry v/s CAM row size.
Matching mode Concurrent Check whether CAM filled by atleast one path or not before

proceeding for sequential matching.

Condition for the last entry in CAM

Based on availability of the last location

Depending on number of memory rows available and how many

of memory will current path occupy/require.
Matching location Matching happens inside CAM CAM acts as a storage element with matching happening out-
side of CAM.
TABLE 3. List of path CAM parameters.
Parameter | Definition Value
T Total number of CAM rows 32
C Size of one CAM row 32 bits
P Size of a path tag 5 bits
R Maximum number of CAM rows that can be occupied by a detected path set the maximum limit
D Maximum depth of path that can be accommodated. i.e. maximum number of
processes possible in a path = number of processes in a nested fashion D = (((C — (CmoduloP))/P) x R) (1)
{L,U} The lower and upper limit to the Path CAM capacity, i.e. number of paths that
can be accommodated using dynamic row limit allocation L = ((T — (T'moduloR))/R) 2
U=T 3

TABLE 4. Path CAM capacity calculation (refer Table-3 for parameter
acronyms).

R (No. of CAM | D (Maximum | {L,U} (No. of paths
rows occupied by | possible depth of | possible to accommo-
a path) path) date in Path CAM)

1 6 32

2 12 16 to 32

3 18 10 to 32

4 24 81032

To implement matching outside Path CAM, the following
circuitry is chosen to act as an interface between, the
Common Path Register and Path CAM.

b: COMMON MATCHING REGISTER (CMR)

The common matching register (CMR), externally stores the
path information of different paths, which are dynamically
stored, in the memory locations of Path CAM. One way is to
pull one row of Path CAM at a time, to mimic sequentially
the concurrent matching that happens in the Function/Loop
CAM. In this type of external sequential matching, it is
necessary to align correctly, the portions of path stored for
any full path in the Path CAM rows with the right section
of path detected by the Path Tracking Unit. This is achieved
with path encoding bits and a counter which keeps a count of
the number of sectors of the Common Path Register that are
filled. This information is provided by the Path Tracking Unit.
Unfortunately, the sequential matching approach as described
above will incur a very large latency value, considering the
fact multiple rows of CAM are allowed to store information
pertaining to a single path. Another constraint which needs
to be met is the fact that matching of a path detected during
the execution of an application needs to be completed with
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every existing path in the Path CAM, before the next detected
path arrives. In the proposed approach matching of an entire
path (1 to 4 rows) is implemented to overcome the above two
problems described above for sequential matching. This is
shown in Fig. 6. The proposed approach is based on a fixed
matching delay allocation of delta clock cycles, after which
the next detected path is taken up for matching.

For a path in the Path CAM of depth spanning four rows,
each of the first bit in each row will be appropriately encoded,
which when copied concurrently into the CMR will result
in the first bits of each sector inheriting the same encoding
from the first bits of each of the four consecutive Path CAM
rows. We use these encoded sector bit values of A, B, C and
D respectively, to decipher the presence of either path which
span four rows, or less than four rows as shown in Table- 5
for the example given in Fig. 6.

In Table-5, Cis zero in 3 cases, viz., 1, 2 and 4 respectively,
out of which it belongs to the path started by A in case
1 and 2, but not in case 4. Hence a direct mapping between the
row positions and the CMR sectors would yield false results.
It is evident that every row position marked zero needs to be
aware of previous row position values, to know where the path
actually starts from and also to find read address for the next
path. In case of it being part of a different path, it should not
be considered for current matching. We term this technique
as ‘history-based masking’.

Parallel multiplexing logic block shown in Fig. 7 inter-
facing the Path CAM and the CMR register implements the
mentioned path matching approach. It checks whether the
Path CAM rows belong to a single path; if not, it appropriately
sets the sector bit values in the CMR register to zeroes using
the select bit logic expressions for the multiplexers as given
below. The select bits for the multiplexers are driven from
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Common Path Register

|
Sector 1

1 1 | Common Matching Register

.. 1 1 1
] ] ]
Path 3 -3 0 | New Path for Comparisan |
Path 3 -2 0] Time =t + 2 * delta T T
Sector 4 | Sector 3 | Sector 2 |
Path 3 -1 1
Path 2 -2 0]
Time =t + delt Path 1-4| Path 1-3|Path1-2| Path 1 -1
Path 2 -1 1 fme ={+aeta | | | |
1 | |
Path 1 -4 0 /
Path 1 -3 0
Path 1 -2 0
Path 1 -1 1
Time t =0
>
31-2 17 0

FIGURE 6. Matching logic overview for path CAM module.

TABLE 5. Decoding path folding bit combinations -2*4=16 combinations.

Case No. A B C D Paths which the row positions represent
1 1 0 0 0 Path of depth equal to four rows starts from A.
2 1 0 0 1 Path of depth equal to 3 rows starts from A. Another path begins from the fourth row D.
3 1 0 1 0 Path of depth equal to 2 rows starts from A. Another path begins from the third row C.
4 1 1 0 0 Path of depth equal to 1 row starts from A. Another path begins from the second row B.
5 1 0 1 1 Path of depth equal to 2 rows starts from A. Two different paths start from C and D respectively,
with the path from C spanning only a single row.
6 1 1 1 1 Path of depth equal to 1 row starts from A, B, C and D respectively.
The table would continue for total 223=8 combinations, for A fixed at 1.
Path 3 -3 0 0 Common Matching Register - 120 bits
Path 3 -2 0] 3 [Path 1 - 4[Path 1-3|Path 1-2[Path 1- 1]
Path 3 -1 1 D’ Sector4  Sector3  Sector2  Sector 1
119:90 89;60 59:30 29:0
Path 2 -2 0 ( ) (* ) ( ) (“)
Path 2 -1 1 0
0 t
Path 1-4 0]
(o4 c'
Path 1-3 (0] 5
Path 1 -2 0 >
Path 1 -1 1 A 0 /
K—><2<> .
31-2 10 B
0
f
A

FIGURE 7. Logic to ensure valid path is loaded into match register.

combination of current and previous sector bits using the
masking technique. From the entries for bits A, B, C and
D shown in Table- 5, the boolean logic gate expression for
each of the multiplexer select line A’, B’, C’ and D’ are easily
derived and are given by eq. (4) to (7).

A=A )
B =B 5)
C' = B|C ©6)
D' = B|C|D (7
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Assuming the current pointer at A is the read_addr pointer
value, the address for the first row of next path based on
current path depth becomes (refer (8) to (11)):

new_read_addr
= read_addr + 1,
if A.B(where, ABCD = 11xx) ®)
new_read_addr
= read_addr + 2,
if A.(notB).C(where, ABCD = 101x) )
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new_read_addr
= read_addr + 3,
if A.(notB).(notC).(D)(where, ABCD = 1001) (10)
new_read_addr
= read_addr + 4,
if A.(notB).(notC).(notD)(where, ABCD = 1000)
(11)
The encoding for the new set of sector bits A, B,

C and D respectively for the next path matching are given
by (12) to (15).

= cam|[new_read_addr][0] (12)
= cam|new_read_addr + 1][0] (13)
= cam|new_read_addr + 2][0] (14)
= cam|new_read_addr + 3][0] (15)

4) PATH SPECIFIC PROCESS INVOCATION COUNT

Referring to the objectives laid out in Section- III-A, the
above subsections dived deeper into the path identification
process. The goal of this module is to further gain an
understanding on the contribution of each process towards the
paths that it is a part of. The hardware-based profilers [11],
[12], [15] discuss on calculating the total invocation count
of various processes executing in a dynamic context. The
objective of this module is to gather data on the number of
times a process is respectively invoked in the active paths
of execution. The block diagram for the same is shown in
Fig. 8 and described as follows. The details are made in
reference to Section- III-B1. Corresponding to the event of
path traversal being recorded in the Path Tracking Register
labelled as Register-1, the invocation counts for each specific
process in the active path are recorded in a parallel register
labelled as Register-2. Once the path is identified with the
help of Path memory logic, the data in this path specific
process invocation count (PSPIC) register is forwarded to the
PSPIC memory. The number of rows in the PSPIC memory
are made equal to the maximum number of unique process
tags that a profiler architecture can support (32 in this case).
Each row is further sectioned into maximum number of paths
that can be uniquely identified by the profiler (32 in this
case). Upon receiving the information from the Register-1
and Register-2, the invocation count for the processes of the
path are respectively accumulated in the corresponding path
tag section.

The following design considerations ensure correctness of

the information being stored in PSPIC memory hardware:-

o PSPIC memory configuration— Every PSPIC row is
divided into 32 sections which is equal to the total
number of paths supported by the architecture. This is
because one process could be a part of multiple paths.
Though not all processes will be part of multiple paths,
this is done to ensure that a static hardware resource
allocation considers this possibility for PSPIC memory,
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unlike a dynamic memory allocation that can be done in
software-based implementation.

o Invocation count for common parent processes- The
above-described implementation could lead to a false
increment in the parent process invocation count if a sub-
path (and hence the entire path) is invoked multiple times
(eg. AES benchmark, where the sub-paths to common
parent path are invoked in an iterative sequence). This
can also lead to loss of parent invocation attribution in
PSPIC memory in case of branching sub-paths. To avoid
this, Branching Pointer as mentioned in Fig. 8 is
introduced. This stores the index from which the current
sub-path branched out or if a new path originated.
This ensures that the PSPIC is attributed to all the
paths that a parent process is part of. It also helps
avoid false attribution to parent counts, when a path
is repeatedly invoked due to an iterative branching
node in it.

Design for PSPIC as shown in Fig.8 ensures least latency
for a dynamic context. Every cell of PSPIC Memory contains
a separate cell selection logic based on path number and
process number, a register for invocation count accumulation,
an adder and a comparator, and no resource sharing or
Block RAMs. This ensures 1-clock cycle latency for every
module in the profiler. This results in high utilization of
the CLB LUTSs. There is a trade-off between lower clock
cycle latency and resource utilization which is discussed in
detail in Section-IV. An alternate implementation as shown
in Fig.9, implements resource sharing with a net PSPIC clock
latency of 3 clock cycles. This is higher as compared with
the above implementation resulting in 1 clock cycle latency.
However, it is still within acceptable limits for our current
path profiling implementation and is seen to result in lower
resource utilization.

IV. RESULTS

A. PATH IDENTIFICATION, PATH INVOCATION COUNT AND
PATH SPECIFIC PROCESS INVOCATION COUNT

Paths identified in real time for the different examples listed
in Table-6 using the proposed approach are in conformance
with the description of the calling hierarchy for a process and
their process invocation counts determined and found offline
with help of DynRP and GProf. The function description in
the actual benchmark codes (CRC, BLIT, BCNT and AES-
Encrypt) corresponding to the function number, can be found
in Table-7, which is same as mentioned in DynRP [15].
The process invocation counts and DynPath based path
structures follow the results as shown in Table-1 of the DynRP
paper. Here _modsi3 and _divsi3 are Microblaze specific
functions used to perform certain floating point mathematical
operations as present in the AES-Encrypt code. Such platform
specific functions executing in a run-time context are also
detected and identified by our profiler. Loops however have
no identifiers in C semantics, hence the description is not
mentioned in the table for the same. For the sample exhaustive
code structure given in Fig.3, the intention was more on
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Path Number

N 12 3 30 31 32

Register -1 (Path Tracking Register) p2

[Fo|F1|L1|F2[2| | | | i
Branching Pointer \
Register -2 (PSPIC Register) /

| |F0||F1 ||L1 ||F2 ||L2 | | | | P30

P31

P32

Path Specific Process Invocation Count
Content Addressable Memory
(PSPIC- Memory)

FIGURE 8. Flow diagram- path specific process invocation count.

(TimeT=0) Path Number
_ R
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3 : Data
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....... (TimeT+1) Comparator IE New
and Adder © | count
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: * PSPIC
Column
Data
(Time T+3)

FIGURE 9. PSPIC implementation with resource sharing.

creating exhaustive path structures (Section-III-A) to validate
the path profiler behaviour, than achieving a specific code
functionality. Therefore function name/description is not
applicable.

Below, we discuss the path profiling results obtained for
the sample exhaustive case Fig.3 using the proposed approach
and in context with other benchmark codes. Section IV-B
analysis the comparison with GProf.

From the abstract representation of code structure for the
exhaustive sample code depicted using a directed graph and
from the results shown in Table-6, it is clear that F1 is the
primary parent node inside the main function/program, within
which the entire application code is described. This is similar
to the benchmark code AES-Encrypt, where the entire code
is inside the function named aes_main denoted as F1. For
the sample code, F1 calls a nested function F2, which then
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branches into several sub-paths inside it due to branching
conditions. These sub-paths are described below.

o If the branching condition in F2 is satisfied, the

execution goes through the first nested sub-path Path-

1 comprising of processes L1, F3, and L2 respectively;

else it executes a portion of application code inside F2

which does not have any process (i.e. either a function or

a loop) inside it excepting for some sequential program

statements. Based on the branching parameters the first

nested sub-path executes. On completion of execution

of Path-1, execution continues in the merger node L3

inside F2. Path-1 created by the Path Tracker Unit is then

written into Path CAM with its invocation count set to

1. The Path Tracker Unit then detects the second path,

i.e. Path-2 comprising of the processes F1, F2 and L3,

respectively. Subsequent to its completion it gets written
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TABLE 6. Results for path identification and path invocation count.

Code Total number of Paths executing in | Paths Detected and Identified Path
dynamic context Invocation Count
Sample code 12 Path -1 F1,F2,L1,F3,L2 1
(Fig. 3) Path -2 FI,F2,L3 1
Path -3 FI,F4 I
Path -4 FI,L4, F5 1
Path -5 FI,L4,F6 1
Path -6 FI,L5, F8 20
Path -7 FI,L5, F9 20
Path -8 FI, FI0 1
Path -9 FI,FI1 1
Path -10 FI, L6, F11 1
Path -11 F1, F12,F10 1
Path -12 FI3 1
CRC 2 Path -1 F1,L1,F2,L2 1
Path -2 FI,L3 2
BLIT 2 Path -1 F1,L1 1
Path -2 FI,L2 1
[ BCNT [ 1 | Path-1 [ L1 [ 1
AES-Encrypt 11 Path -1 FI,F2,F3,L1,L2 1
Path -2 F1,F2,F3,L3, F4 50
Path -3 F1,F2,F3,L3,F5 20
Path -4 F1,F2, F3,L3, F6 10
Path -5 F1,F2,F3,L3,L5 40
Path -6 F1,F2,F7,L6 2
Path -7 FI1,F2,L7,F8 9
Path -8 FI,F2,L7,F9,L8 9
Path -9 FI1,F2,L7,F9,L9 9
Path -10 FI,F2,F8 1
Path -11 FI,F2,L10 1

into Path CAM with an invocation count of 1 after being
ascertained that it is not present in the Path CAM. The
above two path structures seen in the sample code is
similar to the two paths, Path-1 and Path-2, respectively,
seen in the benchmark code, CRC, excepting that Path-2
is invoked twice due to F1 being invoked twice by the
main function and the “else” condition being satisfied in
the second invocation. Continuing with the description
of path formation in the sample code, it can be observed
that F4 is invoked inside F1 as a level node to F2 (refer
to terminology, Section III-A). In a similar manner L4
is a level node to F4. L4 has branching sub-paths F5,
F6 and F7 within it. With the dynamic inputs deciding
on the branching conditions, first Path-4 gets invoked
which is then followed by invocation of Path 5 for the
remaining iterations of L4. Process F7 however never
gets invoked for the given input values. This case is
similar to AES-Encrypt where one of the processes
i.e. L4 of AES-Encrypt never gets invoked [15] and is
pointed out while explaining GProf results.

Next, we have Path-6 and Path-7 formed due to iterations
of L5. It is interesting to note that the invocations counts
of these paths are equal to iteration count of L5 as
shown in Table-6, hence greater than 1, which is unlike
invocation counts for Path-4 and Path-5, respectively,
as described above. This observation is due to F8 and F9
being level nodes within L5. Hence both the paths get
invoked multiple times depending on iterations of LS.
The processes F10 and F11 in the Path-8 and 9
respectively are found invoked in multiple paths
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(i.e. path 10 and 11). This is the case as referred to
in Section III. Their path specific process invocation
counts are shown in Table-7. This case is similar to AES-
Encrypt, which includes a child process, viz., function
F8, which is called in two different paths, once due
to being nested inside L7 (Path-7) and another due
to F2 (Path-10) as shown in Table-6. DynPath here
addresses the ambiguity of contribution of F8 to each
of the paths and respective parent process execution
count, through the PSPIC feature. In reference to the
total process execution count profiled by DynRP for
function F8(=5210) and other parent processes (refer
results section from [15] for counts), the static analysis
if done shows that F8 (inside L.7) should be = 5361(L7) -
366(L1 only) - 306(F9) = 4689. Here, 4689 is also 9/10th
of total 5210 which implies F8 must be invoked nine
times in L7 and once inside F2. This is exactly as found
out through DynPath’s PSPIC feature in Table-7, thereby
providing further granularity and resolving ambiguity.

o« F10 in the sample code is a recursive function.
The recursive nature of F10 can be identified using
Gprof [21]. However, this feature is also inferred from
its higher invocation count (as shown in Table-7), despite
its not being present inside an iterating parent loop (the
path invocation count is seen to be equal to 1 in Table-6).

Once the execution of the application code in Path-11

completes, it continues to execute by invoking the neighbor-
ing level process node F13, which is in the second level of
the process hierarchy. The application code execution finally
completes after F13 completes its execution.
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TABLE 7. Path specific process invocation count v/s total process invocation count.

Code Process Path Path Specific Process Invocation Count Total
Process
Invocation
Count
F1 Path 1to 11 Invoked once being the parent node 1
F2 Path | and 2 Invoked once being the parent node 1
L1 Path 1 1 1
F3 Path 1 5 (=iteration count of L1) 5
L2 Path 1 5 (=iteration count of L1) 5
L3 Path 2 1 1
F4 Path 3 1 1
L4 Path 4 and 5 Invoked once being the parent node 1
F5 Path 4 6 (= no. of times condition met in iterations of L4) | 6
Fo6 Path 5 6 (= no. of times condition met in iterations of L4) | 6
Sample code =i Not od i dvnan Toxt
(Fig. 3) ot executed in dynamic contex
L5 Path 6 and 7 Invoked once being the parent node 1
F8 Path 6 20 (=iteration count of L5) 20
F9 Path 7 20 (=iteration count of L5) 20
Path 8 9
F10 Path 11 9 18
L6 Path 10 1 I
F12 Path 11 1 1
Path 9 1
Fll Path 10 16 (=iteration count of L6) 17
FI3 Path 12 1 1
F1 (icrc) Path 1 and 2 Invoked twice from int main 2
L1 Path 1 1 I
CRC F2 (icrcl) Path 1 256 (=iteration count of L1) 256
L2 Path 1 256 256
L3 Path 2 2 2
F1 (blit) Path 1 and 2 2 (invoked twice from int main) 2
BLIT L1 Path 1 1 (invoked in first invocation of FI) 1
L2 Path 2 1 (invoked in second invocation of F1) 1
BCNT L1 Path 1 1 (int main contains only 1 primary loop L1 which | 1
‘ ‘ is invoked once) ’ ‘
F1 (aes_main) All paths 1 (invoked once being the parent node) 1
F2 (encrypt) All paths 1 (invoked once being the parent node) 1
F3 (KeySchedule) Path 1 to 5 1 (invoked once being the parent node) 1
L1 Path 1 1 1
L2 Path 1 2 2
L3 Path 2, 3, 1 (invoked once being the parent node) 1
4 and 5
F4 (Umodsi3) Path 2 80 80
F5 (SubByte) Path 3 40 40
F6 (_divsi3) Path 4 10 10
AES-Encrypt L4 Not executed in dynamic context
L5 Path 5 40 40
F7 (AddRoundKey) Path 6 2 2
L6 Path 6 2 2
L7 Path 7,8 and 9 1 1
. Path 7 9
F8 (ByteSubShiftRow) Paih 10 1 10
F9 Path 8 and 9 9 (Child of an iterating parent- L7; Contains level | 9
(MixedColumn_AddRoundKey) child nodes L8 and L9 resulting in two paths- Path
8 and 9)
L8 Path 8 9 (= invocation count of F9) 9
L9 Path 9 9 (= invocation count of F9) 9
L10 Path 11 1 1

B. COMPARISON WITH CALL GRAPH

RESULTS FROM Gprof

Table 8 shares the call graph results generated by GProf [21]
for the exhaustive sample case given in Fig.-3. As mentioned,
GProf gives the calling hierarchy for every function that
is executed based on the code logic and dataset. Column-I
shows the count of 12 though the total number of functions is
13. This is because function F7 is not executed for the given
dataset. Thus, F7 too is not detected by DynPath which is
intended for hardware-based profiling in a dynamic context.
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Column-III gives the call hierarchy with respect to every
executed function. The function in consideration is shown
with a left alignment, whereas its parent and child nodes
which are shown with an indentation in GProf’s call graph,
are shown in the table with a right alignment. Column-II gives
the ratio of the number of times the parent invokes the func-
tion under consideration or the function under consideration
as a parent invokes the child function. In contrast to GProf,
DynPath includes loops as well. It generates output in terms
of Path Detection and Identification, Total Number of Paths,
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TABLE 8. GProf call graph output - sample code (Fig.3).

TABLE 9. GProf call graph output - Benchmarks.

Invocation Count of each Path and Path Specific Process
Invocation count in a dynamic context, without the associated
run-time overhead of code instrumentation. These can be
deduced or inferred offline by analysing the outputs generated
by GProf. However, these are not explicitly presented as
results by GProf. Additionally, F11 is part of 2 paths, Path-9
and Path-10, both having F1 as the common parent node.
DynPath captures this granularity and uniquely identifies
each path along with calculating F11°s PSPIC specific to each
path. This information cannot be obtained through GProf as
the Path-9 is generated through a Loop-L6 inside F1 itself.
One can see that the invocation count for all the functions
obtained using DynPath matches with those generated GProf,
except for F10. F10 is invoked twice, once inside F1 and
once inside F12. For every alternate invocation, it iteratively
invokes itself 8 times. This can be deduced by studying
the GProf call graph. The total invocation count for F10 =
(2416) as shown in the call graph by GProf is captured by
DynPath as 18. The recursive nature and multiple parents
are however captured by the dynamic paths and path-specific
invocation count of 9 each. We do not store “main” as the
root function in DynPath, as mentioned in some of the calling
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Code Sr. Called Function Function Name Code Sr. Called Function Function Name
No. name (Invocation Count) No. name (Invocation Count)
1 20/20 F1 F8 (20) 1 256/256 F1 F2 (256)
20 F8 256 F2
2 20/20 F1 F9 (20) CRC 2 1/1 main F1(2)
20 F9 2 F1
3 6/6 F1 F5 (6) 256/256 F2
6 F> BLIT | 1 n main FI(2)
3 6/6 FI F6 (6) 5 o
6 Fo6
5 375 1) T6)] [ BONT | NA.
5 F3 1 40/40 F3 F5 (40)
6 16 F10 F10 (1) 40 F5
172 F12 2 10/10 F2 F8 (10)
12 F1 10 F8
Sample 2+16 F10 3 9/9 F2 F9 (9)
g P 16 FI0 9 O
coce 7 7T main FI (D 3 272 3] F7 ()
(Fig. 3) I FI 2 F7
AES-
20720 8 Encrypt | 5 171 2 F3(D)
20/20 F9 1 F3
6/6 F5 40/40 F5
6/6 6 6 17T main FT (D
1/1 F2 1 F1
1/1 F4 1/1 F2
172 F10 7 1/1 F1 F2 (1)
1/1 F11 1 F2
1/1 F12 10/10 F8
8 1/1 F1 F11 (17) 9/9 F9
1 FI11 2/2 F7
9 7 FI F12 (D 71 3
1 F12
172 F10
10 }/ 1 main FI3 (1) hierarchies in GProf. This is because in case of C/C++
11 il 1 SX6)) semantics, every execution path is expected to launch from
T F2 “main.” This information, being redundant, the hardware
- fj ? E—;’ — does not store it for efficient use of memory.
i 1 M Similarly, Table 9 shows results for the CRC, BLIT, BCNT

and AES-Encrypt benchmarks. Only functions and not loops
are detected hence the process-specific call graph varies in
comparison to Table-6 and 7 accordingly. For AES-Encrypt,
F4 and F6 as mentioned in Table-7 are not detected by GProf,
as these are platform specific functions used for floating point
operations, already discussed in Section-IV-A.

C. RESOURCE UTILIZATION RESULTS

Table- 10 (Column 1 to 3) shows the resource utilization sum-
mary of the Verilog based execution path profiler as shown
in Fig. 4, for the Xilinx Kintex Embedded Kit (XC7K325T-
2FFG900C) [29]. The higher resource utilization count is
attributed to the CLB LUT based implementation of the
design logic of the Process (Function and Loop) CAM, Path
memory and the PSPIC memory and with no resource sharing
(refer Section-I11-B4). The Xilinx Block RAM based memory
implementation is not chosen for any of the profiler memories
in the context of this paper. This is due to the limitation on the
number of read and write ports allowed with a Block RAM
and the latency costs associated with every read and write
operation [15]. This is especially true for PSPIC memory
where the existing invocation counts for all the processes
in an identified path are to be incremented based on new
counts. With the hardware circuit fixed to cater maximum of
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TABLE 10. Resource utilization summary (XC7K325T-2FFG900C).

Resources Available No Resource Sharing With Resource Sharing % reduction
with  resource
sharing

Path Utilization (%) Path Utilization
Profiling Logic Profiling Logic | (%)

Slice LUTSs 203800 178276 87.48 4792 2.35 94.76

Slice Register 407600 12221 3.00 11137 2.73 9.00

F7 Mux 101900 25193 24.72 572 0.56 97.73

F8 Mux 50950 903 1.77 120 0.24 86.44

24 processes in a path as explained in Section III, for any
given path identified, the run-time execution path profiler
will have to accommodate a high net latency of 24*(read
cycle latency + write cycle latency + registering latency for
the combinational (increment) logic) as will be incurred by
the PSPIC Block RAM operations. Similar is true for the
Process CAM and the Path memory where the Block RAM
or a resource sharing based design will comparatively incur
a greater number of clock cycles in a dynamic context than a
CLB LUT based. The tradeoff however is a high utilization
of the CLB LUTs as in Table- 10 (Column-3).

Table-10 (Column-4 and 5) summarizes resource utiliza-
tion for an implementation of our proposed design based on
resource sharing. PSPIC without resource sharing consumes
90% of the total profiler area in terms of number of
FPGA Logic cells (as reported by the Xilinx Vivado Tool).
Hence, PSPIC implementation with resource sharing, has a
significant effect on reducing the overall Profiler resource
utilization. Resource sharing brings down PSPIC area by
96% and overall profiler area by 87%. Hence, Table-10 re-
affirms the tradeoff between latency and resource utilization,
in context from Section-III-B4. In FPGAs, the resource
utilization is dependent on to the kind of logic cells generated
by the Vivado synthesis tool for a chosen Xilinx FPGA
family implementing the two PSPIC versions. Hence, the
exact underlying resource utilization and selection of logic
cells by the tool for synthesis could vary with the FPGA
device family chosen.

a: NET PROFILER LATENCY

Following is the clock cycle latency for each module once
a loop/function is detected. The detection flag is raised in
the next clock cycle itself:- (1) Process Identification and
Tracking Path formation - 3; (2) Path CAM - once path change
detected - 1 or 2 - depends on whether Path CAM is empty
or filling; (3) PSPIC - 1 or 3 - depends on whether resource
sharing is enabled. Hence the latency of the proposed path
profiler lies in range of 5 to 8 clock cycles.

V. CONCLUSION

The paper discusses design objectives and implementation
details of a non-intrusive hardware-based path profiler for
modern embedded systems. This though discussed in the
context of FPGA, can be used in both static and dynamic
profiling scenarios for any target platform as discussed in
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Section I and Section V-A. The implementation focuses on
realizing the path profiler using well known basic digital logic
blocks like multiplexers, gates and registers and considering
the possibility of easy extensibility and scalability to include
more features. The design of the Path CAM matching logic
block focuses on the objective of maximizing the matching
of a newly detected path, during execution of the application
code with each path stored in the Path memory within fewer
clock cycles through a concurrent approach. This enables
multiple rows corresponding to a single path in the Path
memory to be matched concurrently with a new path detected
by the Path Tracking Unit, thereby reducing the overall path
matching latency of the Path CAM. The proposed approach
considers the feature of dynamic depth of a path when stored
in the Path CAM to result in its optimal utilization with
respect to its memory locations.

A. FUTURE SCOPE
This profiler with relevant modifications carries good scope
for real-time applications. The scope and enhancements are
discussed herewith.

1) MULTICORE PROCESSING

This profiler is currently implemented for single-core pro-
cessing system. The profiler can be replicated, to profile
individual cores in a multicore system. It can then be extended
to profile for a complete heterogeneous platform containing
multiple multicore or single-core processors and hardware
accelerator IPs or reconfigurable arrays. The intervention
of the operating system (OS) will play a crucial role in
such an implementation. The profiler must be designed
to communicate with the OS/Job Scheduler [18], [30]
and the underlying communication protocols and interrupt
mechanisms.

2) DYNAMIC RECONFIGURATION

The profiler extension to heterogeneous platform will further
aid its implementation to enable actual dynamic reconfigu-
ration, as pointed to in Section-I. Based on the literature, the
components required in an actual dynamically reconfigurable

system, namely,
1) Reconfigurable Architectures [30], [31], [32], [33],

[34]- Availability of architectures that can dynamically
reconfigure in less time.

2) Software / Operating System (OS) Support [9], [17],
[18], [19], [30], [35]- To enable seamless execution
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between a processor and reconfigurable architecture
in a system, for dynamic resource allocation and
swapping configurations between computing elements.

3) Technology Support [30], [36], [37], [38] - Enables
faster dynamic reconfiguration.

4) Profiling [11], [15], [20], [21]- To provide support to
the Software/OS with both offline and run-time statis-
tics and decide whether to reconfigure dynamically and
which specific process. Specifications for the same are
well defined in [15].

Most of the current versions of DPR implementations are
based on having static profiling-based analysis of application
codes. To aid optimal hardware utilization, the configurations
are dynamically loaded based on their turn of invocation.
However, there is no room for further dynamic optimization
based on real-time bottlenecks. Point 4, i.e. profiling process
invocation frequency and inter-relationships and if done
dynamically can help provide a holistic view to the Software
support unit to take a decision and execute the DPR flow.

Following are a some of the use cases from the existing
literature, where the proposed integration with our profiler
could be worked out in future. (1) Warp processor [35] is
proposed on similar lines. The profiler used in it calculates
run-time bottlenecks based on invocation frequency of
executing loops. Our proposed profiler can replace this
to consider both functions, loops and the execution path.
(2) ReConOS [17] aids dynamic reconfiguration between
hardware and software on thread-level for design space
exploration. This can be extended to support profiling
information received from our profiler for even better
decision making. (3) SysteMorph [32] is proposed as a
conceptual system for dynamic adaptive optimization for
application programs whose threads of behaviours change
dynamically over time based on external or environmental
inputs. It performs hot path profiling to find a part of the
instruction sequence in an application program which is
frequently executed. This is then dynamically reconfigured
using a smart hardware. Beyond instruction-based branch
path creation, the granularity of the scope to which the
instructions belong in term the functions and loops, their
hierarchy, dynamic execution path, path specific process
invocation count could further help refine this proposed
system. Due to current technical constraints these proposed
integration methods on dynamic reconfiguration are not a part
of this paper.

3) DYNAMIC VALUE PREDICTION

Apart from this, Dynamic Information Flow Analysis [4] as
referred to in Section-I is the key to performing a better value
prediction for the current generation microprocessors [4], [6].
The value prediction of a variable can either be based on
local value locality (previous values of the same variable, e.g.
x = x+5) or global value locality (inter-dependency on other
variables e.g. X =y + 2z + 3) [4], [7]. This further depends
on the logic statements and processes the variables are part
of, the branching affecting the loop and function invocations,
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the number of loop iterations, and the execution path that
influences its local and global value locality.

Having a view of flow of control and data through the
dynamic execution paths will help understand and leverage
the global locality to enable even more accurate value
prediction in high-end multi core server processors. Non-
intrusive monitoring will aid in accurately carrying out value
prediction even if a piece of executing code gets swapped
between computing elements in a DPR scenario.

Given the current granularity regarding the relationship
between various loops, functions and execution paths occur-
ring in a dynamic context, this information can prove to be
extremely helpful in profiling the factors that dynamically
influence the value of a variable. This can be done by tracking
the functions, loops, logic statements and execution paths that
a variable (and the globally influencing variables) is a part of.

4) OTHER FEATURE ENHANCEMENTS

Following feature enhancements, if done, to the current
version of the profiler, will further help its run-time
implementation for the above stated advanced application
areas. FIFO modules can be added to the design from timing
synchronization point of view. Replacement policies can
be implemented for Path CAM / Count Storage RAM as
implemented in [12]. There could be pointers to parent paths
common to multiple sub-paths in the Path CAM, instead
of storing the entire parent path to each sub-path. This
will be efficient on memory. However, this can increase
the complexity of the path decoding logic. The total path
encoding will require separate encoding for the common
parent sub-path and the different branching sub-paths in all
the paths resulting from the conditional node in the parent
sub-path. The trade-off hence will have to be analyzed.
Another trade-off could be with sequential v/s concurrent
Path CAM matching logic. The current implementation
matches the paths stored in the Path CAM sequentially,
as done externally. Concurrent path matching of a newly
detected path with every path stored in the Path Memory
could be needed to meet stringent timing constraints for some
applications. While this approach can result in very efficient
timing performance, it will require a relatively complex
matching logic, primarily due to the feature of the path
storage in the Path CAM with respect to path depths being
dynamic.

APPENDIX

SOURCE CODE

More details to the Design flow, architectural details,
test case generation and working with FPGA, for Dyn-
Path and Poster PDF for [5] are uploaded to GitHub
(https://github.com/manp-git/DynPath).
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