IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 11 October 2022, accepted 31 October 2022, date of publication 3 November 2022, date of current version 5 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219066

== RESEARCH ARTICLE

Neuromorphic In-Memory RRAM NAND/NOR
Circuit Performance Analysis in a CNN Training
Framework on the Edge for Low Power loT

NAGARAJ LAKSHMANA PRABHU ~ AND NAGARAJAN RAGHAVAN “, (Member, IEEE)

Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore 487372
Corresponding Author: Nagarajan Raghavan (nagarajan @sutd.edu.sg)
This work was supported by the A*STAR through the Brain Efficient Nanomechanical Artificial Intelligence Computing (BRENAIC)

Programmatic Research under Grant A18A5b0056. The work of Nagaraj Lakshmana Prabhu was supported by the Ministry of Education
(MOE), Singapore, through the Research Student Scholarship (RSS) at SUTD (2018-2022).

ABSTRACT Training a CNN involves computationally intense optimization algorithms to fit the network
using a training dataset, to update the network weight for inferencing and then pattern classification. Hence,
the application of in-memory computation would enable a highly power-efficient low latency on-the-edge
CNN training technique by avoiding the memory-wall created during the external memory read/write
operation (for off chip instruction and data transfer). A memory write-verify, and re-program technique
can control the RRAM variability. Still, memory verification and re-program is a complex process with
additional resources needed for practical implementation of verification circuit. In this study, we have
demonstrated a practical (First-in Max-Out) FIMO-based cache memory called Maximum Count Binary
Comparator Layer (MCBC), using 1T3R, ITSR, and 1T7R RRAM structures by using a probability-based
accuracy improvement architecture, without the conventional verification process. We constructed 10 layered
modified MobileNET with filter size ranging from 32 - 512 and trained with Traffic Sign Recognition
Database (TSRD) using a three-tier abstraction simulation learning framework - (1) High level, 10 layered
CNN implementation with Python+TensorFlow; (2) Verilog HDL based FP32MUL and FP32ADD (32-bits
Floating Point adder and multiplier) circuits constructed with RRAM NAND gates using 1T2R structures;
and (3) Digital Look-Up-Table (LUT) model for RRAM variability. An edge learning framework (for
the forward pass) is demonstrated using digital RRAM-NAND/NOR universal gates integrated with the
Maximum Count Binary Comparator Layer (MCBC) to partially circumvent the impact of RRAM variability
and to quantify the RRAM variability on the CNN training prediction accuracy for 65nm CMOS OxRAM
(TiN/HfO,/Hf/TiN) with varying device current compliance of 5, 10, and 50uA for low power IoT
applications. The MCBC layer was simulated using a SPICE model, for which the estimated chip layout
is 1150 x 1230 nm? per logical gate input, which resulted in an overall prediction accuracy improvement
from 10% to 60% by repeating the logical operations of the NOR gate for {1, 3, 5, and 7} cycles respectively.

INDEX TERMS Resistive RAM, convolution neural network (CNN), look-up-table (LUT), in-memory
computation, image classification, CNN training, Internet of Things (IoT), complementary metal oxide
semiconductor (CMOS).

I. INTRODUCTION
In today’s deep learning era, advancement in artificial
intelligence (AI) models are achieved with bigger training

The associate editor coordinating the review of this manuscript and

approving it for publication was Mitra Mirhassani

125112

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

datasets. However, bigger is not always better. The problem
with training high-performance AI models and deploying
such models entails a tremendous amount of computation
power. The model training and inferencing are performed
typically by servers placed in the datacenter. The estimated
temperature range for a datacenter is between 21°C ~ 24°C

VOLUME 10, 2022

https://orcid.org/0000-0001-7173-910X
https://orcid.org/0000-0001-6735-3108
https://orcid.org/0000-0001-8512-6427

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

and in order to maintain the temperature range, the
conventional heating, ventilation, and air conditioning
systems (HVAC) such as Air Cooling, Free Cooling,
Two-phase Cooled Systems, etc. are used, resulting in a
substantial amount of the by product - carbon emission [1].
It has been documented that global carbon emissions due
to cloud computing amount to 2.5% to 3.7% of overall
global emissions, far outweighing the contributions from the
aviation sector [2]. Training a deep neural network (DNNs)
model takes considerable mathematical calculations, long-
running time, high energy, and dedicated parallel processing
units such as Intel CPU, NVIDIA GPU, AMD GPU, and
Google TPU performing millions of floating-point operations
per second [3], [4]. A consolidated list of popular chip makers
and their chips with operational performance to power up
cloud-based deep learning model training is shown in Table 1.
It has been documented that global carbon emissions due
to cloud computing amount to 2.5% to 3.7% of overall
global emissions, far outweighing the contributions from the
aviation sector [2]. Training a deep neural network (DNNs)
model takes considerable mathematical calculations, long-
running time, high energy, and dedicated parallel processing
units such as Intel CPU, NVIDIA GPU, AMD GPU, and
Google TPU performing millions of floating-point operations
per second [3], [4]. A consolidated list of popular chip makers
and their chips with operational performance to power up
cloud-based deep learning model training is shown in Table 1.
The parallel processing chips used for training can achieve
~10 x 10° GOPS (Giga Operations Per Second) with
a peak power consumption of ~500W and can perform
precision computation from integer 8-bits up to floating-
point 64-bits of data [5]. The recent trend shows rapid
progress in autonomous driving systems integrated with
deep learning and Al-based navigation systems deployed
for efficiency improvements in the transportation sector and
enhancing safer environments. The four major modules for
the autonomous navigation system are (1) perception and
localization, (2) high-level path planning, (3) low-level path
planning, and (4) motion controllers. Today, all four modules
use deep learning with LIDAR (to sense distance) and high-
speed automotive camera data to perform the necessary
sensing and timely control. Training an autonomous Al
model equally requires high computation power and therefore
exploring the use of in-memory technology will help reduce
the overall power consumption and enable moving the
training process from the cloud to the edge [6], [7], [8].
With an in-memory computation system, the bottle-
neck and extra power barrier to achieving high bandwidth
data transfer between the external memory chip and the
processor are significantly minimized using the non-von
Neumann architecture [9]. The application of non-volatile
memory device technologies such as resistive-switching
random access memory (RRAM), phase-change memory
(PCM), magnetic random-access memory (MRAM), and
ferroelectric random-access memory (FeRAM) are studied
for in-memory applications [10]. Here, we intend to study

VOLUME 10, 2022

TABLE 1. Popular chipsets used for cloud-based Al model training [5].

. . Peak
Make | (M| Cpwaton | Pk | Pover

) ~(W)
G;'\(T;z; 0 FLOAT16/32 10x10° 100
Nirvana2 FLOATI16/32 10x10* 500
Intel® Nirvana FLOAT32 10x10* 500
Phi7290F FLOAT64 10x10° 500
Phi7210F FLOAT64 10x10° 500
TPUIL INTI6 10x10* 500
Google® TPU2 FLOATI16/32 10x10* 500
TPU3 FLOATI16/32 10x10* 100
Baidu® Baidu FLOATI16/32 10x10° 100
Cambricon Cambricon | INT8/FLOATI16 10x10* 100
Habana Labs Goya FLOAT16/32 10x10* 100
AMD® AMD-M160 FLOATI16 10x10* 500
P100 FLOATI16 10x10° 500
NVIDIA® V100 FLOATI16/32 10x10* 500
K80 FLOAT32 10x10° 500

further the application of lower power oxygen vacancy-
based RRAM for in-memory circuits used for edge-based
training to build AI models for the autonomous system. The
oxygen vacancy RRAM (OxRAM) is popular for its ultra-
low power switching, CMOS compatible process fabrication,
high endurance cycle, and multi-bit pseudo-analog memory
storage [11]. Ultra-low-power in-memory computation is
practical to achieve low powered and battery-operated IoT
applications. However, OxXRAM devices exhibit stochastic
switching due to the oxygen ion / vacancy drift / diffusion
and irregular stochastic conductive filament formation and
rupture while switching the device between the two resistive
states, namely low resistance (LRS) and high resistance
states (HRS) [12]. The following section shows various
methodologies and process improvements performed by
different studies to deal with the imperfect switching and the
overall system performance while applied on a deep learning
neural network.

A. OVERVIEW OF RRAM VARIABILITY CONTROL
METHODS

RRAM switching variability is an inherent property of the
diffusing oxygen ions in the switching process, and two
prominent methods are widely studied to achieve a more
controlled and enhanced device switching. The first method
uses various fabrication process improvements with different
material stacks while the second method relies on using
an appropriate re-programming scheme to identify the more
defective device on the given crossbar array and re-map by
re-programming these defective devices to achieve device
performance improvement. However, the more prominent

125113

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

TABLE 2. List of various RRAM device switching variability control methodology studies.

Device
Ref # Flr[i;fﬁ?;ggfl& mi?;;ﬁig Architecture/ Fabrication Approach Variability Control Technique Remark
Approach
The crossbar needs to be shared
. Proposes an architectural solution by across multiple clL}sters of weights.
Shihao Song, . . The cluster mapping problem was
Predictive formulating the read endurance of an RRAM . .
Drexel . . formulated by exploring the Complex Mapping
[16] . - technology cell as a function of the programmed synaptic . .
University, USA . . ; cluster-to-crossbar mapping search algorithm
model (PTM) weight and uses an intelligent workload . .
(2021) mapping strate space for the maximum inference
pping strategy. lifetime by using Hill-Climbing-
based local search
Shift and Duplicate Kernel (SDK)
convolutional weight mapping architecture was N
\gl}l]hang Z_hz_mg, RRAM used. Each kernel is duplicated multiple times | Multiple copies of the same trained Increg sed area and
anghai Jiao . .) . T I P . device accuracy
[17] Tong Universit temporal and rearranged on different bit lines in a shifted | data with SDK mapping technique depending on
C}i na (2020)}/, variation Model manner, enabling higher intra-layer to select the less defective data SDKI')S comglexit
computational parallelism and reducing the plexity
number of input data loading,
Shlhm Yin, . The resistance distribution of low-resistance .
[18] Arizona State Ideal Resistor states is tightened by an iterative write-verify Program and verify Multiple
University, USA Model Re-programming
(2020) scheme
Gu{}ﬁ?ei?g:et’ Statistical Neural network training technique to mitigate
N) the impact of device-to-device variation due to . . Multiple
[19] Auto'noma de conductance . fecti ioht i . Learning and Re-programing .
Barcelona (UAB) model conductance lmper'ectlons Z'lt weight import in Re-programming
Spain (2020) ? offline-learning
Zhong Sun,
%{gf:zzf;?ae Compact The RRAM model and a program-verify Multiple
[20] Ingegnera, Conductance | algorithm with the PageRank of the Harvard500 Verification and Re-programing pe
Politecnico di L Re-programming
Milano, Ttaly model data set was computed
(2020)
Valerio Milo,
Dipartimento di To achieve an accurate MLC programming of
Elettror?lca, TiN/Ti/HO,/ the 4'—kb1t RRAM array, two program/verify Program—Verify scheme and Multiple
[21] Informazione e TiN algorithm approaches were used to modulate Re-programin Re-programmin
Bioingegneria top electrode voltage and gate voltage prog g prog g
(DEIB), Italy respectively.
(2021)
Eduardo Pérez,
THP-Leibniz- . . .
Institut fiir TiN/ALHfO/ 4-Kbit ITIR RRAM array's programming . Multiple
[22] . " parameters tuned with multi-level incremental Program and verify .
Innovative Ti/TiN step pulse and verify algorithm (M-ISPVA) Re-programming
Mikroelektronik, ’ ’ :)
Germany (2021)
The excessive oxygen vacancies generated
Yulin Feng, during the abrupt SET process result in resistive
Peking TiN/TaO/ state instability. A triangular programming S Ve Multiple
23] University, China HfO,/TiN pulse improves the proposed RRAM device Bidirectional Write-Verify Scheme Re-programming
(2021) stack's short-term relaxation and long-term
retention.
The memristor crossbar’s columns are divided
into 3 groups. The Group-1 columns that are
Jivone An defined as ‘severely defective’ are deactivated
yong An, during the training and inference. The Group-2 . .
Kookmin Pt/LaAlOs/Nb- - Measure defective RRAM array Multiple
[24] Lo . columns that are defined as moderately .
University, Korea | doped SrTiO3 . and Re-Program Re-programming
(2022) defective are re-programmed. The Group-3

columns containing fewer defects than Group-1
and Group-2 are defined as ‘normal columns’
and are used without re-programming.

125114

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

TABLE 2. (Continued). List of various RRAM device switching variability control methodology studies.

Wen-Qian Pan (1) Limit the weight range to
Huazhon ? TIN/LISiO./Pt improve utilization. (2) “with-
Universit go ; TiIN/HFO X/Ti >| read” update scheme to mitigate Quantized weights, Verify-
[25] Science a}:n d and 2 the write non-linearities. (3) reprogram and duplicated Multiple Re-programming
Technolo TVLiSiO /Pt Multiple memristors for each Kernel data
China (20%}9/’) X kernel element to reduce the
impact of C2C variation.
FIMO-based cache memory model | Hardware-based reprogramming . .
stores 3,5, and 7 input bits and scheme using 1T3R, 1T5R, and .S1mple digital RRAM array,
W . . designed as cache memory and used
TiN/HFO/Hf/ output's a single bl't ma'ltchmg the 1T7R structure for RRAM- for the reprogramming scheme
[Our Methodology] TiN maximum occurring input at a NAND and RRAM-NOR gate- without verifyine to keen the RRAM
given instant of time, resulting in level variability enhancement, vertymg P
e . j validation process quick and
probability-based accuracy applied to in-memory straiehtforward
improvement architecture. computation architecture. straig

methodology is still to improve the fabrication process and
material property. The oxygen ion movement has a stochastic
nature, and therefore it is not easy to achieve a controlled
switching comparatively on a lower current compliance
operation when the number of oxygen vacancies comprising
the filament is lower and with wider spread [13], [14], [15].
We see significant research and studies performed in the
above areas, and therefore in this paper, we are focusing
on the second method to improve the variability using a
re-programming scheme and re-mapping the more defective
array group.

The studies on the re-programming and verification using
various programming architectures involving RRAM device
model data [16], [17], [18], [19], [20] or actual fabricated
device array data or intelligent workload mapping devices
array data [21], [22], [23], [24], [25] are discussed in Table 2.
Intelligent workload mapping strategy uses Hill-Climbing-
based local search technique to map the cluster-to-crossbar
array and maximize the inference accuracy [16]. Shift
and Duplicate Kernel (SDK) convolutional weight mapping
architecture uses multiple copies of the same weights, and the
mapping algorithm would select the less defective data [17].
The above techniques used a complex mapping algorithm
to address the device variability; however, more area and
power were needed to implement such techniques on silicon.
The switching imperfection in RRAM due to stochastic
distribution of oxygen vacancies is improved by performing
a two-step write-verification scheme where the device is
programmed-verified-reprogrammed through an iterative
process to achieve the device improvement [18], [19], [20],
[21], [22], [23]. Alternatively, the defective RRAM array
is grouped according to the defect severity level and the
re-programming iterations are defined based on the severity
levels as shown by An et al. in Ref. [24]. A multiple
RRAM re-programming and verification scheme was
conducted using quantized trained weights to improve the
RRAM variability by Pan et al. [25]. However, all the listed
techniques have an additional step to verify and re-program.
Here, the verification process is much more complex than
the re-programming process and it requires additional logic
real estate on the silicon. In this study, we explore a simple
RRAM array, designed as cache memory, and used for

VOLUME 10, 2022

Register 3 Register2 Register 1

INPUT —>
=
1-bit
l X1 ~ X3, represent the outputs of
X3 3 consecutive operations for the

CLOCK—>

1-bit

X1 1)(2
same input data. The value of x,

FY) = max(x1 X2 X3) is either 1 or 0

Y, represents the final output, which
is one of the maximum occurred bits
from x; ~ x3. For instance, y; =0, x,
=0, and yx3= 1, then the output Y= 0,
since 0 occurred 2 times in y; and y,

(a)

OUTPUT (¥)

(c)
Y = max ()(1, 12'13)

OUTPl(J;I') ----
ab @ Ak |l

(0)

(b) CLOCK1 CLOCK2 CLOCK 3

1 0 1

INPUT

0O 0 1 0
U} abop b Akl

FIGURE 1. (a) Maximum Count Binary Comparator - MCBC Layer
configured with 3-bits FIMO cache memory with Register 1,2, and 3. The
input data shifted 1-bit per clock from left to right, and upon reaching

3 clock cycles, the maximum occupancy probability, F(Y) outputs a single
bit with the most occurring input bits. (b) Shows stream of 3 inputs
patterns and the most occurred bit transmitted to the output after 3 clock
cycles. (c) simulation table showing the output (Y), which is one of the
most occurred bits from x;, x and x3.

the reprogramming scheme without verification to keep the
RRAM validation process quick and straightforward. Hence,
we propose a practical and straight forward FIMO-based
cache memory model that stores 3, 5, and 7 input bits and out-
puts a single bit matching the maximum occurring input at a
given instant of time, resulting in probability-based accuracy
improvement architecture called as Maximum Count Binary
Comparator” — MCBC Layer. A two-stage combinational
circuit demonstrates the functionality of FIMO as shown in
Fig.1(a), the first stage operates as a counter logic to count
the occurrence of each input (total number of 1’s and 0’s),
and the second stage acts as a comparator to output the
maximum value from the given inputs. A simple operational
use case is shown in Fig.1(b). The maximum occurred bit
of the input stream propagated as the output, demonstrating
the probability-based write/read architecture to improve
the switching defect inherited by the RRAM device. The

125115

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

TABLE 3. Listing of other RRAM based Edge CNN learning simulation reports focusing on the variability induced performance degradation.

. Device Studied / Training
Ref | First Author . . Inference S
S Modeling Architecture Methodology Strengths and Limitations
& Affiliation Dataset
Approach Approach
Jiayun Feng 40nm ATwo—;zti)yer 3bl—1 Six l;?ASl\g AC]\I/[MCz;JI;r/?ys for gixed (firs;) I?Syer ar(lg
? . input-3b-weight . . one array for mutable (Secon
[26] Ur]:il\l/(i?:i ty Tlﬁﬁfgﬁgﬁ)"/ network in the MNIST Hybr]gg?ﬂ;ii?:e and layer. The Hybrid CIM architecture aims to
China (2‘021) SRAM arrays size of 144-40-) improve overall system accuracy; however, the
10 study was conducted on a shallow network.
A polynomial function to fit the actual memristor
pulse modulation curve was designed to accurately
describe the real memristor pulse modulation
characteristics. Based on a crossbar array of
memristors and MLP online training algorithm, the
Jie Li Ermlated FPGASARM SltLU ﬁctiva?ﬁn function is designed for low-bit
i . mulate: + algorithm. e training accuracy convergence
[27] Sg?&g;:ii} Ag/l"lg;/g—doped 1\/7118_141‘)_1(1‘)1?(;}1?6 MNIST connected to RRAM speed is very fast, and it even exceeds the
China (2‘021’) 2) Crossbar array convergence speed of software. The number of
weight updates, online training time, and power
consumption was also reduced. However, the
overhead of using ADC/DAC in a crossbar array
and the device-to-device resistive variability
applied to a wide and deeper CNN's training
accuracy are not explored extensively.
A weak RESET regime is attractive for learning, as
Pytorch Framework of it allows tuning the resistance of the devices with
Conv384, BNN with neuronal remarkable endurance. An RRAM model of the
Atreya Conv384, MP, activations and synaptic weak RESET process in HfOx RRAM integrated
Majumdar TiN/HFO Conv768, weights takes binary within the PyTorch is used to train low powered
(28] Université (10 nm)fl“xi Conv768, MP, MNIST / values (+1 and —1). A deep learning framew.ork Here, a shallow DNN
Paris-Saclay (10 nm), /TiN Conv1536, CIFAR-10 simple XNOR opera.tion was used to study the impact of RRAM variability
’ Conv512, MP, on the training accuracy; a practical DNN
France (2021) replaces the product of L . .
FC(1024-1024- the activation and the consisting of much-complicated convolution
10) weight layers, which tends to explode the RRAM
variability and extensively reduces the prediction
accuracy.
(1% Simple
RRAM network :
non- CNNI1 3x
ideality model 3x1x22,
(condyctance MaxPool 2x2, Training topo}ogles -
r.esolutlorT of 4'1» CNN2 cprrespondmg to
b‘g(;g‘:}"t)éflrgno 3x3x22x27, :rlcflflftr::ttulrivzgaor]; The studies show the effect of the RRAM ON/OFF
Qiwen Wang, device ’ MaxPool 2x2, training. (Level-1: ratio, ADC characteristics on a crossbar array, and
[29] University of conductance CNN3 MNIST / Quantiza.tion» awal;e RRAM programming variations on the training
Michigan, variation of 3x3x27x64 CIFAR-10 training, Level-2: device- network accuracy. Here, comparatively small
USA (2021) 1.56%. read Stride 2x2, awaré Level-é' tile- ERAM ar{ail lsjze is used to mimic the device-to-
current assumed | MaxPool 4x4 aware and Level-4: evice vartability.
to be 3pA and 8- and Dense Conductance weight
bit ADC) and 64x10. (2') mapping)
array size of VGG-block-
256x64 based and (3")
ResNet WRN-
16-8
A performance modeling framework for
memristor-based training-in-memory architectures
(MNSIM-TIME) is proposed to help architecture
designers evaluate the RRAM performance in a
Kaizhong Qiu CNN training network. The framework was tested
. ’ for varying RRAM imperfections and the
Tsinghua SPICE RRAM LeNet/ VGG / MNSIM 2.0 based L .
[30] University Model AlexNet CIFAR-10 training in memory prediction accuracy on various CNN networks
China (2021) architectures (LeNet/VGG/AlexNet). The SPICE RRAM model
was not considered for varying current compliance
to simulate a real-world device with different
variability switching imperfection for the given
current compliance and its impact on the training
performance.
125116 VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

TABLE 3. (Continued). Listing of other RRAM based Edge CNN learning simulation reports focusing on the variability induced performance degradation.

The challenges associated with in-situ training
are presented. A hybrid precision synapse that
Shimene Yu combines RRAM with volatile memory is
Georgia ’ In-situ training DNN designed and evaluated at the system level to
! AlO/HfO,, Ag:a-)) model on extended support accurate and fast in-situ training and
(31] ;:Cs}t:::)t]zof Si, TaOx/HfOx VGG-8 CIFAR-10 DNN+NeuroSim enable subsequent inference in an integrated
Y, framework platform. The system uses MUX-based ADC's to
USA (2021) . .
reduce the chip power consumption; however,
exploring digital RRAM logic will improve by
undoing the mixed-signal scenario.
The simulation studies feedforward, back
Hongwu propagation, weight calculation, and update in an
Jiang, TSMC’s 40nm Mixed-precision RRAM- | analog crossbar array in-memory architecture
(32] Georgia RRAM and VGG-8 CIFAR-10 based in-memory Training | with ADC overheads addressed by using RRAM
Institute of Intel’s 22nm network architecture (MINT) — array for MSB and LSB on a regular memory
Technology RRAM Modified NeuroSim array. The study does not quantify the RRAM
,USA (2020) variability and its impact on training accuracy and
efforts.
A compact relaxation model for analog RRAM
1-kb analog Device-to-system was proposed based on the statistical
Yuyi Liu, RRAM (TiN . . Y . measurement results. Non-idealities that affect
Tsinghua /TaO,/HfO,/TiN) simulation framework with on-chip training, including weight update, were
[33] o x oS VGGNet CIFAR-10 embedded compact . > . R
University, quantum point relaxation model to studied. CIM array is used for vector-matrix
China (2021) contact (QPC) benchmark the CIM multiplication (VMM). The impact of RRAM
model variability and the ADC overhead is not fully
system .
considered.
CHIMERA DNN
accelerator is fabricated in | Non-volatile DNN chip for both edge Al training
40-nm ultra-low-power and inference using foundry on-chip resistive
CMOS technology witha | RAM (RRAM) macros and no off-chip memory,
Kartik A 40-nm CMOS total die area of 29.16 mm? | fabricated in 40-nm CMOS. Here, an incremental
Prabhu, Foundry on-chi ’ (2 MB of RRAM for 37% | edge Al training algorithm, called low-rank
[34] Stanford nary P ResNet-18 ImageNet of the total die area, with | training helps overcome RRAM write energy,
. . resistive RAM
University, (RRAM) macros SRAMs and DNN speed, and endurance challenges. However, [oT
USA (2022) accelerator, occupying application requires much lower current
19% and 21%, respectively | compliance RRAM with an undesired memory
and the remaining area window overlap for training and chip
(23%) contains the RISC- | performance assessment.
V core)
3-Layered simulation
framework; (1) High level
10-layered CNN
implementation with Our study aims to shows the impact of RRAM
. Python+Tensorflow, (2) c . . .
Modified Traffic Verilog HDL based variability in an in-memory computation circuit
MONEL 0] S | oo | 48 NAND O s e e
[Our Methodology] | TiN/HfO/HF/TiN | 2 Recognitio | (32-bits Floating Point € ung sy nap
filter sizes of . CNN network, by which the learning accuracy
n Database adder and multiplier) . A
32,64,128 and — : trend impacted by variability is analyzed for
512) (TSRD) circuits constructed with different RRAM current compliance in a digital
NAND gates of 1T2R . P &
domain.
structures,
(3) Digital Look-Up-Table
(LUT) model for RRAM
variability

hardware-based reprogramming scheme uses 1T3R, 1T5R,
and 1T7R structures for RRAM-NAND and RRAM-NOR

gate applied to in-memory architecture.

VOLUME 10, 2022

The MCBC Layer acts as a special shift register, where
the (1-bit) input data is shifted-in serially into the memory
array (3-bits or 5-bits or 7-bits), and outputs a single bit of

125117

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

data matching the most occurred data from the input serial
stream, at any given instant of time as shown in Fig. 1.
The shift registers are configured with a 3-bits, 5-bits, and
7-bits memory array, and each of the memory elements is
connected in serial. For the given 3-bits, 5-bits, and 7-bits
configuration, the register takes serial input data sizes of 3,
5, and 7 respectively. Upon reaching the maximum array
size, a single output is generated with the maximum occurred
input data from the array. Total clock cycles of 3, 5, and
7 are required here for the above-described configurations
to generate a single output. We refer to the MCBC logic
scheme as Repetitive Cycles (RC), and it is further used
in our learning simulation framework to enhance and study
the RRAM variability trend while applied in an in-memory
computation circuit. Henceforth in our discussion, RC
represents the depth of the underlying shift registers array
size used in the MCBC ranging from 3 to 7. Following the
functional simulation of MCBC, we have shown a practical
implementation of the MCBC circuit using the transistor
and RRAM logic in Section III.B. We have also presented a
practical analysis of MCBC using the 65nm SPICE Transistor
model and resistor circuit.

B. VARIABILITY STUDY IN NEUROMORPHIC LEARNING
CIRCUITS ON THE EDGE
Training a CNN is an inevitable process, and significant
studies have been conducted to move the training process
from cloud to the edge system, using the low-powered in-
memory computation architecture by overriding the excessive
energy required to handle the memory wall during the
memory read-write operations. Table 3 summarizes various
edge-based in-memory studies conducted for low-power IoT
applications. A study conducted by Feng et al. in Ref. [26]
shows the OxRAM device stack used to construct a neural
network of size 144-40-10 to train the MNIST dataset using
a hybrid compute-in-memory (CIM) architecture illustrating
the CNN model accuracy impact for the given RRAM device.
In another study, a similar oxide device exploration was
conducted by Li et al. [27] on a 784-400-10 MLP structure
to emulate an FPGA+ARM based RRAM crossbar array
to train the MNIST dataset and benchmark the prediction
accuracy drop versus RRAM device variability. Adding to
this list, a (10nm) HfO4/Ti/TiN resistance distribution data
set was used to build a shallow DNN network using a Pytorch
learning framework with neuron activation that takes a binary
value (41 and —1) with a simple XOR operation scheme by
Majumdar et al. in Ref. [28]. These studies are conducted
on a simple neural network, whereas a practical network
would comprise of deep hidden layers with tightly packed
convolution operations to achieve a required prediction
accuracy. Therefore, exploring a simulation framework with
practical and deep NN layers will be useful in understanding
the trend of RRAM variability for a real-world application.
The RRAM non-ideal model performance was studied
by Wang et al. in Ref. [29] using a deep practical CNN

125118

such as VGG, and a ResNET architecture was used to train
the MNIST and CIFAR-10 datasets. Here, (1) quantization
aware, (2) device-aware, (3) tile aware, and (4) conductance
weight mapping architecture are used to study the impact
of the RRAM programming variability on the training net-
work. A second study by Qiu et al. [30] was conducted on
a deep practical CNN (LeNET/ VGG /AlexNET) using a
SPICE RRAM model. A CIFAR-10 dataset was used with
MNSIM2.0 based Training-In-Memory simulation frame-
work to perform training at the edge and analyze the CNN
prediction accuracy. The two studies aim to show the device
variability trend by using RRAM models that use a small
memory array. Hence, such a training framework can be
tested for different RRAM current compliance with varying
memory window overlap. The study with varying RRAM
current compliance is necessary to quantify the RRAM
variability and its impact on the training accuracy on a
different current compliance scale when it is considered for
an [oT application at very low power.

The RRAM crossbar array shows interesting multiplication
and addition operations implemented using Kirchhoff’s law
to apply convolution operations of CNN. The crossbar
arrangement uses comparatively fewer resources. However,
the overhead of using external peripherals such as the ADC/
DAC to read and write the data on the analog crossbar array is
significant in terms of power and area. The CNN is a parallel
architecture in nature, where the total number of parallel
processing computational elements define the throughput
latency. Hence the primary constraints for designing an IoT
system are defined by the total available processing power
and chip area occupied by the parallel processing elements,
that in turn define the latency of the system. The study
conducted by Yu et al. in Ref. [31] using TSMC® 40nm
RRAM technology and Intel® 22nm RRAM technology was
used to build a VGG-8 NN and trained on a CIFAR-10 dataset
using a modified Neurosim, with the intention of optimizing
the use of ADC by using a MUX based ADC. The same
group utilized a mixed RRAM design with RRAM memory
designed for MSB bits, and a regular memory used for LSB
bits as shown in Ref. [32]. Another work by Liu et al. in Ref.
[33], uses a 1Kb quantum point contact oxide RRAM model
to build the VGGNet on a CIFAR-10 dataset and applied on
the device-to-system simulation framework to validate the
on-chip training performance. A similar edge-based training
analysis was conducted by Giordano et al. in [34], on a
40nm-CMOS foundry on-chip RAM used on ResNet-18 with
an ImageNet dataset effectively demonstrating the training
accuracy performance. Considering the above studies, it is
evident that exploring the use of RRAM-based in-memory
computation system on a digital domain will be useful to
get rid of the ADC/ DAC overheads with a synchronized
global digital clock driving the system for a more organized
and controlled operation to achieve high speed digital in-
memory computation logic. Hence, we focus on designing
and operating the RRAM as digital memory to harness the

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

Convolution layer Pooling layer y C]
- c
L
A mmp mmp mmp — -
:E:;,m"g poer | Forward i
‘ Pass 3
< : (n) (o)
Backward [2
One Training Pass =
Cycle <= II <= <= '©
Completed =
(n-1)* L
Computations on Backward Pass R
(n) (n) (n-1)* (n) (n-1)* S
i i H i i :
. ©
/ ..5
F\ [3 o
| :
¥ ¥ 4
: (n:1) . @ - =
[
-
[i >
Gradient Descent i .a
Compute Compute Training =

Training Weights

Cost Functior

(n) = Convoluted filter data of nth training step

VF = Gradient function for computed trained weights

Loss Functions

Loss

Steps
(n-1)* = Trained filter data of (n-1)th training step

Training Loop* = (n+1)th step with next training data

[-]= Difference between expected and actual weights

FIGURE 2. The various steps of a CNN training operation are shown as forward pass and backward pass, both executed in a
loop to compute the training weight and loss function. The forward pass consists of transformation and mapping operations
such as convolution, pooling, fully connected, and softmax, whereas the backward pass computes the weight difference
between the ‘'n’ and 'n-1’ loop to derive the optimized weights and training loss or error.

advantage of avoiding the peripheral circuit overheads and
achieve high external noise immunity when designed as a
digital system.

Our current work aims to build a full-sized practical CNN
with 10 layers (filter sizes ranging from 32 to 512) of a
modified MobileNET trained with traffic road sign data
set (TSRD) with a three-tier abstraction of the simulation
learning framework - (1) High level 10-layered CNN
implementation with Python+TensorFlow; (2) Verilog HDL
based FP32MUL and FP32ADD (32-bits Floating Point
adder and multiplier) circuits constructed with NAND gates
of 1T2R structures for the logic computations; and (3) a
Digital Look-Up-Table (LUT) model for encoding RRAM
variability.

The novelty of our work is the methodology of edge
learning framework (forward pass) using digital RRAM-
NAND/NOR universal gates integrated with Maximum
Count Binary Comparator Layer (MCBC) to control the
impact of RRAM variability and to quantify the RRAM
variability on the CNN training prediction accuracy for
varying low device current compliances ranging from 5 to
50 A for ultra-low power IoT applications. We have also

VOLUME 10, 2022

demonstrated a practical implementation of the RRAM-
NAND-based standard cell and simulated it using the SPICE
model. Today we see models such as TinyML etc., targeted
for embedded processors performing well for a low footprint
application. While looking into such embedded specific CNN
architecture, the resource reduction is achieved by pruning
and shrinking the deep neural network size to fit the small
memory computing device. Such systems are popular for
binary result conditions, such as ““visual wake words” saying
YES or NO, to predict the trained label from the input image.
However, in a vision-guided autonomous system, a CNN
navigation guidance system requires a considerably higher
feature mapping than the simple YES or NO prediction
conditions, which are very well achievable using a deep
CNN such as MobileNET, which uses a wide range of filter
sizes and intense convolution operations. The large-scale
datasets such as CIFAR100 and COCO are structures with a
few hundred generalized categories, whereas the autonomous
application trained with the traffic road sign dataset, will aid
in developing a more optimized navigation system with a
higher recognition rate by training the CNN with a specific
“traffic road sign” dataset.

125119

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

Section II presents the CNN simulation framework used
to train a model to identify the road signs, wherein
the convolution operations are implemented with RRAM
variability encoded floating-point multipliers and adders and
for which, the prediction error loss is computed between
the hardware and software pipelines. Section III discusses
the results and trends obtained using the learning frame-
work for different current compliance RRAM datasets and
the prediction trend variation by applying the Maximum
Count Binary Comparator Layer to each RRAM NAND gate.
We conclude our work in Section IV after a summary and
inference based on all the analyses carried out.

Il. SIMULATION METHODOLOGY FOR DESIGN AND
IMPLEMENTATION OF RRAM BASED IN-MEMORY
COMPUTATION MODELS APPLIED TO TRAINING CIRCUIT
A. FUNDAMENTAL ELEMENTS OF CNN TRAINING
OPERATION AND WEIGHT COMPUTATION

1) TRAINING

The Training is a constructive process that involves parallel
computation to be performed on the input images by applying
convolution and linear transformation operation for feature
map extraction and finally calculating the loss function during
the Backward Pass to update the learning weights as shown
in Fig. 2. The training process is classified as Forward Pass
and Backward Pass operations; the former involves having a
batch of input images to pass through the given network in a
forward direction, and the predicted output is then compared
with the actual labels. By knowing the closest predicted value
from the actual label, the weights of the networks are adjusted
using the Backward Pass operation, during which the network
predicts close to the actual labels when the images are seen
the next time. A similar process is repeated for as many
different batches of available images, and this is regarded
as an epoch. The training process is performed for as many
epochs as necessary to achieve the desired accuracy level, and
the five steps involved are (1) Prepare the images in batch for
training, (2) Pass the batch to the network — Forward Pass,
(3) Calculate the loss between predicted and actual data, (4)
Compute the gradient for the loss function and update the
weights to reduce the loss, (5) Loop — repeat 1-4 for ‘n’
iterations to reach the required minimum error.

2) FORWARD PASS

The Forward Pass is a pipeline with stages of chained matrix
transformation functions performed to extract features from
the input image to classify it against the trained label class.
The various transformation functions are convolution, ReLU
activation function, Maxpool operation, fully connected layer
and Cross-Entropy coding (Softmax). Each layer in the
network has its own transformation, and all individual layers
constitute the total transformation of the given network. The
objective of this operation is to transform and map the inputs
to the right output class with minimum possible error [35].

125120

3) CONVOLUTION

The convolution is the sum of the products (SOP) matrix
operation of the input image to its local neighbor or filters.
By sliding the filter matrix of size (n x n) over the image
matrix (m x m), and the SOP between these two matrices
generates the feature map, with the consideration that the
size of ‘m’ is greater than 'n’. The stride is the size of the
step the convolution filter moves each time over the image
matrix [36].

4) ReLU-MAXPOOL

The rectified linear unit (ReLU) activation function is a linear
functioning operation whereby the output is equal to the given
input if it is positive, while for all other cases, the output to
be maintained at zero [37]. The ReLU is a popular function
used among many neural networks as they perform better for
a broader class of data sets. Max Pooling is a down sampling
approach to reduce the computation power and avoid network
overfit [38].

5) FULLY CONNECTED LAYER

The feed-forward neural network, known as the Fully
Connected layer, forms the last few layers in the CNN and
receives flattened or 1-dimensional data array from final
pooling or convolution layers [39].

6) SOFTMAX

The Softmax is a Cross-Entropy activation function that
predicts a multinomial probability distribution where a class
member requires no more than two class labels at the last or
output layer of the neural network [40].

7) BACKWARD PASS

The Backward Pass is an intense computation operation
where the weights are updated based on the learning rate
and by computing the past and present weight gradients [41].
Adam optimization and Stochastic Gradient Descent (SGD)
are the commonly used gradient functions and the SGD is
used as the gradient calculation algorithm in our current
training framework.

8) LOSS FUNCTION

The Loss Function, which is one of the critical operations in
the training process, is the difference between the expected
value and the predicted value. The loss is used to calculate
the gradient, and they are further used to update the weights
of the network layers [42].

9) ACCURACY METRICS

The confusion matrix is one of the more useful accuracy
matrices used to show where the trained model became
confused in predicting correct labels and help us re-train
the model with more related data sets to improve prediction
accuracy.

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

Category 1

®

NO ENTRY
L v

L =<
NO LEFT

Category 6 Category 7

LEFT TURN

L

FIGURE 3. lllustrates 10 different road sign categories labeled and used
to train the CNN model.

B. OVERVIEW OF THE TRAINING DATASET AND CNN
USED FOR SIMULATION

Autonomous vehicles are developed for safe roads by
reducing human error. However, safety here is a function of
how precisely the navigation system identifies and how fast a
decision is being made with high uncompromisable accuracy.
The navigation system must process multi-dimensional
parameters such as vehicle speed, road lane identification,
and position of other neighbors (vehicles and civil structures),
road and traffic signs, weather conditions, etc., to make
the right decision to navigate. The identification of traffic
signboards is one of the primary essences of autonomous
systems, and we have used the Traffic Sign Recognition
Database (TSRD) for our training simulation and analysis.
The TSRD is extracted from Beijing Jiaotong University,
China’s Traffic sign database repository (repo), and it consists
of 6000 images, of which 4000 images are used for training
and 2000 are test/validation images. The images are classified
into 10 categories, such as No_Entry, No_Left, No_Right,
No_Parking, Stop_sign, Entry, Left_Turn, Right_Turn, Park-
ing, and Pedestrian Crossing as shown in Fig. 3. There is
an eleventh category called Others, whereby any sign which
does not fall under the previous 10 categories will be grouped
under this, and all our simulation results are shown for the
main 10 categories only. The first 5 traffic sign categories
are the mandatory signs that signal the navigation system
to actions that represent “‘not to do” or ““can’t do”” and are
designated with a red color border (No_Entry to Stop_Sign);
whereas the next 5 sign categories include “can do”” symbols
with blue and white colored signs. The 10 categories of
labelled images were trained with 50K steps of 32 epochs
using Stochastic Gradient Descent weights optimized for
MobileNET CNN. In real-time, the front-facing camera
and traffic sign recognition system used to complement the
navigation system must cater to filter the background scenes
and should be able to read signs from an angle, faded text
and broken signboards, ensuring consistent readability during
high vehicle speed, etc. All of these conditional parameters
and considerations are out of scope of this study and
considered to be problems with already available solutions.
Here, we assume the camera system has inbuilt pre-processing
modules for image enhancement. The backend CNN system

VOLUME 10, 2022

receives a good quality image processed data set that is to be
classified into any one of the trained 10 categories with high
accuracy.

The MobileNetV1 [43] CNN is designed to operate
on small-footprint embedded devices with reduced model
size and complexity. The CNN operates with two different
convolution modules, which comprise of the Depth Separable
Convolution (DS) followed by the Pointwise Convolution
(PW). The DS performs a single convolution on every channel
rather than combining all three and flattening it. The DS is a
3 x 3 convolution operation, and all the outputs are combined
with a single 1 x 1 PW convolution in a single step. The DS
is constructed with two layers, one for filtering and the other
for combining all the outputs; hence this factorization has a
more significant reduction of computation and is suitable for
IoT applications. The MobileNet is a 30-layered architecture
with a combination of stride-2 convolution block, depthwise —
pointwise convolution block, fully connected layers, and
the softmax classifier. The convolution layers are intense
computational layers and consume more than 80% of the
overall device power. Hence, we confine our simulation and
study on the convolution layers and Fig. 4(a) shows the
slightly modified first 10 convolution layers of MobileNet,
that we have used for our device variability simulation frame-
work. Fig. 4(b) shows the core modules of every convolution
layer, such as Conv module configured with a 3 x 3 con-
volution, followed by the Batch Normalization (BN) and the
ReLU layers. In contrast, the second core, Conv_dw module,
configures a 3 x 3 convolution, BN, and is further applied
with a 1 x 1 convolution, BN and ReLU. The Conv layers
operate with a stride of 2 while Conv_dw operates with a
stride of 1. We have considered using the 10 convolution
layers in 5 different groups as shown in Fig. 4(a) with group
5 comprising of layer 1 and 2 with a filter size of 32; group
4 including layers 1 to 4 with a filter size of 32 and 64, and
further groupings are performed similarly all the way up to
group 1, with 10 layers and filter sizes from 32 up to 512.
The trained weights in Groups 1-5 are represented in a 32-bit
floating-point format, which consists of the mantissa (23-bit),
exponent (8-bits), and signed bit (1-bit).

C. LUT-BASED RRAM VARIABILITY ENCODING SCHEME
AND NEUROMORPHIC SIMULATION FRAMEWORK TO
TRAIN ROAD SIGN DATASETS

The TiN/HfO,/Hf/TiN RRAM element’s electrical
characterization data set showing device-to-device and cycle-
to-cycle variability is considered for our in-memory 1T2R
gate logic simulation. The RRAM resistance data is extracted
from Fantini et al. [15] with a varying Icomp switching data
for 5, 10, and 50 pA. The resistive element was fabricated
on a 65nm CMOS process and with an oxide thickness
of 5 nm. Since we intend to examine the low power IoT
regime, we confine our simulation to an OxRAM device
operating in a low power regime and do not consider a
CBRAM device which has comparatively higher power due
to the metallic nature of the switching conducting filament

125121

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

Type / Stride Filter Size ‘g_

Layer 1 Conv /S2 3x3x32 g <
Layer2 Convdw/S1 3x3x32 (5 o
Layer 3 Conv /S2 1x1x64 g 0
Layer4 Convdw/S1 3x3x64 oy S
Layer 5 Conv/S2 1x1x128 o
Layer6 Convdw/S1 3x3x128 o
Layer 7 Conv / S2 1x1x256

Layer8 Convdw/S1 3x3x256

Layer 9 Conv/S2 1x1x512

Layer 10 Convdw/S1 3x3x512

(a)

Group 2

Conv dw

x3 Depthwise Con

Conv

ReLU

Group 1

(b)

FIGURE 4. (a) The 10 convolution layers with filter size ranging from 32 to 512, grouped into 5 groups as shown and used in the simulation
framework; (b) Every group further comprises of core modules such as Conv module (3 x 3 convolution, Batch Normalization (BN) and ReLU) and
Conv dw module (3 x 3 convolution, BN, ReLU, 1 x 1 convolution, BN, and ReLU).

[44], [45]. The objective of our simulation framework is to
demonstrate the configuration of an RRAM-based device in
a CNN, where the device is operating in a digital domain.
The device’s Low Resistance State (LRS) is considered
as “Logic-0” state, and the High Resistance State (HRS)
is considered as the “Logic-1” in our simulation frame-
work. We have proposed a practical circuit in Section I11.B,
demonstrating a digital RRAM-based gate used to build the
convolution operations, as digital circuits with high noise
immunity and also comprising a digital synchronizing clock
for precise and high-speed operations compared to analog
circuits. We perceive RRAM devices to be configured on
a crossbar array, demonstrating a multi resistive state that
has greater power-saving and is less dense with smaller
chip area. In spite of all its advantages, the given crossbar
design exhibits a sneak path effect. Moreover, additional
peripheral circuits such as ADC and DAC are employed
to read and write from the RRAM device in a crossbar
array. Today’s image acquisition and preprocessing modules
operate in a digital pipeline with a Digital Signal Processing
(DSP) backbone, where the images captured in a CMOS
sensor are transmitted to Image Signal Processing module
for preprocessing, followed by CNN recognition and finally
to a post-processing module for final presentation. As such,
the entire pipeline is digitized.

An analog crossbar CIM (Compute-In-Memory) RRAM
system becomes challenging to fabricate as a mixed-signal
processing SoC (System On Chip) for a vision-based
neuromorphic application. The /¢y, corresponding to LRS
and HRS logarithmic resistance distribution extracted from
Fantini et al. [15] is shown in Fig. 5(a). Plotting the resistance
as a normal distribution shows an overlap region between the
LRS and HRS state, as shown in Fig. 5(b), and by considering
the LRS as Logic-0 and HRS as Logic-1, these overlap
regions show the possibility for false-0 and false-1 regions,

125122

which result in the device level variability getting translated
into the final circuit. The false-0 and false-1 regions represent
the memory window overlap region. For higher current
compliance, the overlap is minimal or negligible. For the
lower current compliance, the overlap is significant and
critical. Therefore, quantifying the impact of the device
variability for different current compliances is critical to
understand the final usability of the device.

We propose a Look-Up-Table (LUT) model to encode the
RRAM variability into an RRAM-based NAND and NOR
gate logic. The universal gates are the basic building blocks
for any digital circuit. With the RRAM NAND and NOR
logics, we aim to construct a convolution framework to
demonstrate the 10-layered MobileNET. The primary
consideration of the LUT model works by encoding the
resistance region of 0 to Logjo(0.5R) as Logic-0 and the
next half of the resistance distribution region, which is
Log0(0.5R) to Logjo(R) as Logic-1 from Fantini et al. [15]
data set for 5, 10, and 50uA respectively. A 1T2R
structure is further proposed as shown in Fig. 5(d),
where two parallel RRAM devices are connected to the
gate terminal of the MOS transistor. Here, the RRAM
resistance threshold controls the transistor gate opera-
tion in a sequence to demonstrate the NAND and NOR
functionality.

1) NOR GATE

When input A and B are at logic-0 (Zero voltage), the
transistor is not gated and stays at OFF state, as a result of
which, the output is at Logic-1 or close to the VCC (Supply
voltage). Considering the scenario where input A or B or both
A and B are supplied with a Logic-1 an equivalent current
resulting from the parallel resistors flows into the gate of the
transistor, which supplies the required gating voltage to turn
ON the gate. This will result in a low resistance path from the

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

CDF (%)
8388
LI
|
o -~
Normal PDF

P
30— — P
L LRS 7,
98 - ———y -2 > Resistance 4w,
P - 1 False ‘0 H] False '1
X =
w o[- —o
Q - -
2l wrs 1° LUT
2 i P Logic-0=_lim f(x)
1 L il 1 L 1 Ll X9 (0, Leg2000 50
3 4 5 6 7 8 logicl= m feo)
Log,(R) (a) x—o(-?::‘:;) (c)

Truth Table (NAND) vGS Gating Voltage Logic (NAND)
I(A) IB) VGS T1 OUT
1T2R vee 0{0(1 0 [0 [0 [Off High
T 0|1(1 0 | /2 |VI2|Off [High
A T o1 12 | 0 |vi2|off|wen
Sl T' 1[1]0 2 [12] v [On [tow
V Truth Table (NOR) VGS Gating Voltage Logic (NOR)
€ I(A) 1(B) VGS T1 oUT
Logic-1= (0.6 x V) to (1 x V) 001 0 | 0 [O |Off|High
Logic-0 = (0) to (0.5 x V) 0]1]0 0|1 [V |[On]tow
1(0(0 1|0V |on]|ow

11110 1|1 [v[onww|(d)

FIGURE 5. (a) Cumulative distribution function (CDF) of a 65nm OxRAM shown for 5,10, and 504A Icomp extracted from Fantini. et al. [42], where
the distribution is shown for LRS and HRS, (b) Representation of CDF converted to a normal probability distribution function (PDF), showing the
LRS and HRS memory window overlap region (False-1 and False-0). (c) A Look-Up-Table (LUT) encoded to a digital domain as Logic-0 and Logic-1
using the RRAM LRS and HRS resistance distribution with the range of {0,Log;((0.5R)} for Logic-0 and {Log;¢(0.5R),Log;¢(R)} for Logic-1.

(d) lllustration of 1T2R NAND and NOR structures, which uses the encoded RRAM variability to reproduce the Boolean truth table.

VCC to ground (GND) and cause the output to be maintained
at Logic-0 for the given input conditions demonstrating a
NOR operation.

2) NAND GATE

The operation is vice versa for the NAND gate, where the
resulting voltage from the two input resistors reaches the
gating threshold only when both the inputs are maintained
at Logic-1. The gating threshold is not met for the other input
sequences to turn ON the transistor in order to demonstrate
the NAND operation.

The RRAM-based NAND and NOR circuits demonstrated
here may work theoretically, but in order to make these
circuits a practical working system, we need to add a gate
biasing resistance and carefully choose the input resistance
range to achieve the gating sequence logic of the NAND
and NOR gates. We have simulated and shown the various
resistance values for the inputs and biasing resistance in
Section IIL.A.

The learning process used here is constructed as a three-
stage simulation framework using TensorFlow and Python
programming, as shown in Fig. 6. Stage 1 is the Forward
Pass of the MobileNET CNN with 10 layers of varying
and increasing filter size ranging from 32 to 512 and with
Depth-Wise and Point-Wise convolution modules, as shown
in the layer group of Fig. 4. The Stage-1 Forward Pass
consists of two parallel CNN computation pipelines called
the Software (SW) and Hardware (HW) pipelines. The
SW pipeline was purely implemented with the TensorFlow
framework while the HW pipeline was implemented with a
combination of Python, and Verilog HDL with the RRAM
variability encoded NAND gates used to perform the
convolution operations in all the 10 layers of the CNN.
Every NAND gate in the HW pipeline is implemented using
1T2R structure as shown in Fig. 5(d) and furthermore, the
two RRAM devices in the NAND gate are encoded with
the varying resistance data using a LUT model, where the

VOLUME 10, 2022

0 to Log10(0.5R) range defines Logic-0 and Log;o(0.5R) to
Logio(R) gives the Logic-1.

The Hardware pipeline is programmed with Python,
Verilog-HDL, and the data exchange between the two
programming languages is handled through the CSV
(Comma Separated Version) file system as shown in the block
diagram in Fig. 7. Here, the Python program implements the
10 layers of the MobileNET architecture with varying filter
sizes, the sub-routine of the convolution operations inside the
10 layers calls the Verilog program, where a combinational
circuit of 32 bits floating point multipliers and adders are
used to perform the convolution operation. As discussed in
our previous work [46], the general Verilog Convolution
implemented includes 7-layers of abstraction that exposes all
the NAND gates used for the convolution operation. Hence,
by looking at the NAND structure, we substitute our proposed
1T2R structure to obtain the truth table for the NAND as in
Fig. 7. The low-level subroutine in the Verilog code defines
the 1T2R functionality for the NAND gate and the simulation
framework uses a LUT file with 5000 varying RRAM
resistance data set for LRS and HRS, where the framework
randomly reads and assigns the resistance of the 1T2R value
based on the LUT file. Thus, the false-0 and false-1 states
from the RRAM data set are encoded into the FP32MUL
and FP32ADD modules through the 1T2R NAND structure,
which in turn affect the convolution operation performed in
the HW pipeline.

Stage 2 is the backpropagation process where the error
value is calculated as the weights difference between the
expected and computed image and a Stochastic Gradient
Descent (SGD) is implemented to adjust and update the
training weights. Here, in Stage 2, the entire process was
implemented using TensorFlow and Python, and no hardware
logic (RRAM NAND) was used. Finally, Stage 3 will be
the simulation framework to predict the difference in
calculation between the SW and HW pipelines from Stages
1 and 2. The difference between the prediction percentage

125123

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

Forward Pass

Software Pipeline Hardware Pipeline

[Laveri(conv) | | | [LAYER1(Conv) |

[LAYER 2 (Conv) | [LavER2 (Conv) |

| | :
¥ L :

[LAYER 10 (Conv) | [LAYER 10 (Conv) |

STAGE 1 |e

LAYER 10 (SGD)

STAGE 2

Backward Pass
Software Pipeline

LAYER 1 (SGD)

A

Sol e
Trained Weights,

Hardware
Trained Weights,

g

. .

Prediction Accuracy
Variability

o STAGE 3

FIGURE 6. A TensorFlow Python and a Verilog HDL-based three-stage simulation framework to validate the RRAM variability encoded CNN training
network. STAGE-1: constructed with forward pass software pipeline - SW (actual logic) and hardware pipeline - HW (RRAM encoded logic). STAGE-2:
Backpropagation using stochastic gradient descent (SGD) to update the trained weights. STAGE-3: Prediction error computation between the

accuracy obtained between SW and HW pipelines.

Image data Filter/Weights

|

Trigger.
Computation

Select —»
(3X3/1X1)

P ——

- N

CIM_OUT(File)
e

Loop

End Of Image

CIM_IN(File) |,

Verilog HDL - Convolution Module (Abstraction Layers)

FP32MUL

FP32ADD

1T2R NAND
Structure

»| NAND GATE

Convoluted Image

Python Program CSV Files

RRAM Variability as LUT

Verilog Program

FIGURE 7. Block diagram illustrating the training data and convolution operation flow from left to right (Python program to CSV files to
Verilog HDL Program and finally back to Python program). The CNN is implemented with Python, the convolution operations are
implemented with Verilog HDL (FP32MUL and FP32ADD) and the data exchange (weights and RRAM variability encoded LUT) is performed

using file operations (CSV file format).

(confidence) using SW and HW trained weights quantifies
the variability inherited from the underlying RRAM NAND
Logic (1T2R). Every NAND logic is coupled to an Arbitrary
Logic (MCBC) layer to improve the RRAM variability, as in
a computational logic pipeline, even a few gate failures can
result in a massive system calculation failure. The MCBC
layer works like an inter cache memory which takes 3 to
7 inputs and outputs the best or most occurred data among the
input at any given instance. The MCBC layer decreases the

125124

probability of device variability/failure to enhance the system
performance. The prediction error reduction is quantified for
three different configurations of MCBC (RC1, 3, and 7) in the
following results and discussion in detail. A practical MCBC
layer is demonstrated and discussed in Section III.B. The
Python pseudo-code for the SW and HW pipeline is shown
in Fig. 8, where Fig. 8(a) shows the 10 layers of convolution
implemented with the specific filter sizes, and Fig. 8(b) shows
the two different subroutines of SW and HW. The SW is

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

2 Import Tensorflow
Import Keras from Tensorflow

e P
X_in =Imread(file_name)
7 X_rin =Resize_lmage(X_in)

0 X=_conv_block(stride = ‘2', input =X, filter_size = '3x3x32")

1 X =_depthwise_conv_block(stride = '1', input =X, filter_size = '3x3x32’)

2 X=_conv_block(stride = ‘2", input =X, filter_size = '1x1x64")
X = _depthwise_conv_block(stride = ‘1", input =X, filter_size = ‘3x3x64’) E =

1 X =_conv_block(stride = ‘2", input =X, filter_size = '1x1x'128) \\\
X = _depthwise_conv_block(stride = ‘1", input =X, filter_size = ‘3x3x128") E ‘\g\
X = _conv_block(stride = ‘2", input =X, filter_size = '1x1x256") E \
X = _depthwise_conv_block(stride = ‘1, input =X, filter_size = ‘3x3x'256) \
X = _conv_block(stride = ‘2", input =X, filter_size = ‘1x1x512') AYE | |

) X =_depthwise_conv_block(stride = ‘1, input =X, filter_size = ‘3x3x'5127)

X_out = X

¥

(a)

3x3 |22 If (pipeline == 'SOFvTWA.RE')

e pif n operatior
X = PointWise.Conv2D(input_data = X , filter_weights, size = 3x3) <:J‘>O SW
else if (pipeline == 'HARDWARE')

X = InMemoryCMP.pw_conv(input_data = X , filter_weights, Size = 3x3)®o HW
X = BatchNormalization(input_data = X)

RelLU
X = ReLU(input_data = X)

0 (o} 0
[e] O O
2 Z Z
< < <

3x3 If (pipeline == ‘SOFTWARE')

X = DepthWise.Conv2D(input_data = X , filter_weights, size = 3x3) : x)
else if (pipeline == '"HARDWARE') SW

X= Iur‘»AemoryCMP dw‘,cor‘w(mpulidala =X, filter_weights, Size = 3x3)‘:/\>o HW
X= BatchN;erallzallon(lnpul_dala =X)
X = ReLU(input_data = X)
1x1 If (pipeline == ‘S?FMARE')

X = Conv2D(input_data = X , filter_weights, size = 1x1)
else if (pipeline == "HARDWARE')

=0 sw

X = InMemoryCMP.pw_conv(input_data = X , filter_weights, Size = IXI)<>O HW

| (b)

X = BatchNormalization(input_data = X)

RelLU |-, X = ReLU(input_data = X)

FIGURE 8. (a) Python pseudo-code showing the implementation of CNN by interconnected hidden layers as Python subroutine with different filter
sizes ranging from 32 to 512. (b) Snippet of the SW and HW pipeline implementation, where the HW pipeline calls the RRAM variability encoded

Verilog HDL to compute the convolution operation.

implemented with a direct TensorFlow library, and the HW
subroutine calls the Verilog model to perform the convolution
operations.

Ill. RESULTS AND DISCUSSION—-PERFORMANCE OF
RRAM BASED IN-MEMORY COMPUTATION CIRCUITIN A
CNN TRAINING SYSTEM

6000 different traffic sign images were used for the training
framework, out of which 4000 images were used for training
and the rest were test images. Stochastic Gradient Descent
(SGD) weights optimizer and an error function were used
for the purpose of configuring the framework to compute the
training accuracy given by the loss function. Final trained
weights were obtained from the 50,000 training steps
resulting from different stimulation tests using the above
parameter setup. Under various scenarios, the training
test results obtained are plotted on the Y-axis while the
corresponding training steps (epochs) are plotted on the
X-axis, and the resulting trend will be examined in depth in
the different cases as follows.

A. IMPACT OF DIFFERENT MAXIMUM COUNT BINARY
COMPARATOR LAYERS, HIDDEN LAYERS AND TRAINING
IMAGE LABEL CATEGORY ON PREDICTION ERROR FOR
VARYING RRAM COMPLIANCE

The training accuracy trend is examined for the following
parameters which include 10 convolution layers (Group 1),
10 different image categories, 10uA RRAM current com-
pliance resistive encoded data set for the HW pipeline and
four different Repetitive Cycles (RC) viz. RC =1, 3, 5, and
7 as shown in Fig. 9. The objective of this analysis is to
plot the variability in training trends for the different RC,
as it is a known fact that by increasing the RC, the RRAM

VOLUME 10, 2022

variability reduces as a result of probability. Here, we aim to
quantify the effect of variability to the corresponding trend
improvement in the final prediction accuracy for the increase
in training steps. The given figure is generated by using a
five-simulation results plotter, such as the SW pipeline
computed software trained data (SD) and four different
RRAM variability encoded HW pipeline logic with RC =
1, 3, 5, and 7, with the obtained training accuracy on the
Y-axis and the number of training steps on the X-axis. As the
training steps increase to 9000, the SD accuracy gradually
increases to 12%, but thereafter, the SD accuracy took a steep
increment to 88% when at 27,000 steps, and at 50,000 steps,
the obtained training results are 92% accurate. We use the SD
data set training accuracy as a benchmark to compare the four
different hardware trained logics. As explained, the RC3 logic
is performed by repeating the basic NAND operation three
times with RRAM encoded data to choose the maximum
occurred outcome from the three results, hence the entire
convolution operations in the given 10 layers are repeated
three times in total for RC-3. The same concept applies to
RC-5 and RC-7, meaning the operations are repeated five
and seven times respectively, while the RC-1 is simulated
with no repetitive cycle. The 10uA RRAM data set has
an approximate 10% overlap in the LRS and HRS resistive
distribution and the impact on the training accuracy is plotted
using the given overlap and different repetitive cycles. The
RC-1 reaches a maximum of 15% accuracy on the 50,000
training step, with the accuracy almost reaching a steady
oscillation state from 13,000 steps onwards. The RC-3,
RC-5, and RC-7 follow a similar trend, reaching a maximum
accuracy of approximately 30%, 60%, and 68%, respectively.
The accuracy improvement from RC-3 to RC-5 is
significantly higher than when compared to the improvement
from RC-5 to RC-7. Hence, it is evident that the increment

125125

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

[—SD —RC1 —RC3 —RC5 —RC7|

100

90
80
70
60
50
40+
301

Prediction Accuracy %

20

10

0) 10K 20K 30K 40K 50K
Training Steps

FIGURE 9. The prediction accuracy variation up to 50K training steps and
four repetitive cycles (RC1, RC3, RC5, and RC7) is plotted. Simulation
framework parameters are set as: Group 1 — 10 convolution layers,

10 image categories, and the 10xA RRAM resistance distribution encoded
dataset.

in the RC does not translate to significant accuracy
improvements and the contribution to the effects on the
prediction accuracy lies more on the underlying RRAM
resistance overlap range between the LRS and HRS rather
than the RC. The idea of using repetitive cycles to improve
RRAM logic element variability is necessary only for low
RRAM current compliance since the repetitive logic tends
to increase the power budget compared to the SW pipeline
implementation for the higher /..., devices.

The power consumption is compared for high RC - low
compliance versus low RC - high compliance scenario
considering the median LRS resistance for the S0 A and
SpuA distributions from Fig.5(a) with memory operating
voltage taken as 1.2V (CMOS Voltage). As known, more
clock cycles are required for high RC as the same operation is
repeated more times. The power difference is quantified for
scenario A: - low RC - high compliance (RC1@501A) and
scenario B:- high RC - low compliance (RC7@5pA) using
the standard power law equation with the parameters such
as current (50uA and 5pA), voltage (1.2V), LRS median
resistance (Logjo(4) and Logio(5.5)), and RC (1 and 7).
Scenario B operates with 6-clock cycles more than Scenario
A to perform a single memory operation (read); still, Scenario
B consumes only 8.6% power of the total Scenario A setup.

Following the simulation of different RC logics, the
accuracy trend between the HW and SW pipeline is estimated
by reducing the number of hidden layers. The simulation
starts out with 10 layers, followed by a reduction of 2 hidden
layers for each simulation cycle. The layer reduction is
performed by five different groups as shown in Fig. 10.
Group 1 has the greatest number of layers and convolution
elements, whereas Groups 2, 3, 4, and 5 are constructed
with lower filter sizes ranging from 32 to 256. The filter
size of the given 10 layers is 32 for layers 1 and 2, 64 for

125126

layers 3 and 4, 128 for layers 5 and 6, 256 for layers 7 and
8 and 512 for layer 9 and 10. The application of a 10-layered
CNN in autonomous vehicles and process industry settings
do function effectively while the backpropagation training
performed well with a sufficiently large volume of the dataset,
which is our basis for choosing or setting “10 layers” as
our upper limit in our simulation framework to quantify the
RRAM device variability on the prediction error rate for the
layer configurations {2~10}.

It is to be noted that a very deep CNN is not optimal from a
hardware (RRAM-based in-memory circuit) perspective due
to compounded variability as the number of hidden layers
increases. Still, a very shallow network may not have high
prediction accuracy due to the fewer feature extraction logics
used to classify the input image. On the other hand, a full
software implementation (without RRAM in-memory logic)
prefers to use deep networks as much as possible to achieve
high accuracy at the cost of high computing power. The color
scale depth of the input image (RGB or Monochrome) also
contributes to the computational intensity in every layer of the
network. Hence, a delicate balance must be met for choosing
the right network size considering the available power and
required prediction accuracy trade-offs as defined by the end
use application.

It is obvious that the reduction of the hidden layer count
will increase the performance of RRAM logic elements;
and in the recent past, there are several studies [47], [48]
conducted on exploring the usage of tiny CNN modules
for low power embedded applications with less number of
hidden layers to perform simple recognitions in real-time.
The references [47], [48] use a smaller number of layers
{VGG-1-16 (6 layers) [47] and 5 layers with filter size
from 32~4 [48]} demonstrating image classification, and
further, no benchmark comparison was conducted on the
implementation methodology of these references with our
simulation methodology. The study for different hidden layer
count complements with using CNN on IoT low power
applications by quantifying the achievable prediction
accuracy with the given low power RRAM logical element.
The simulation shown below was performed using the
parameters that include 10uA RRAM Icomp HW pipeline;
5 repetitive cycles; 10 different road sign categories and
5 different hidden layer groups. The obtained prediction
accuracy is plotted in the Y-axis and the number of training
steps on the X-axis in Fig. 10. The network prediction
accuracy decreases with the reduction of the hidden layers,
since the overall feature extraction and mapping is reduced
and more importantly, we observe that the training curve trend
differences between the SW and HW pipeline also reduce as
the filter size is lowered, as seen in Fig. 10, which shows
the quantified impact of RRAM variability over the different
filter size and computational logic. The SW and HW pipeline
prediction accuracy with Group 1 (10 layers) achieved are
92% and 59% respectively for parameters of 10uA Icomp
and 5 repetitive cycles. The SW and HW pipeline accuracy
results of Groups 2, 3, 4, and 5 with the same parameters

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

100 LAYER 10 100 LAYER 8 30 LAYER 6
SD
80 sh 80 SD 60 RC5
RC5 RC5

60 60
I 40

40 40
o
= 20
> 20 20
(3]
s (C) I (b) (c)
3 0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K
QO 50 LAYER 4 35 LAYER 2 b HIDDEN LAYERS
< 1 - I Software Pipeline
c 20 S " ‘&j — [Hardware Pipeline
o 4 SD RC5 &0 M
15 25
"C_S 30 RCS 20 60
()
o 2 15 40

10
l 10 20
5
. (d) , (e) [EINEIBFE (f)
0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K N \:9 N \3’\&’ N \}‘ \}\'} N2
90\;9"’ SFE S TS

<+— Training Steps —

(NOTE) /¢y, = 10uA & Category = 10 for (a)~(f)

FIGURE 10. Training accuracy trend plotted for the varying hidden layer count from 10 Layers to 2 Layers with an arbitrary logic repetitive
cycle (RC) of 5 and Icomp of 10uA. (a) Group 1 with 10 layers of filter sizes from 32 to 512, (b) Group 2 with 8 layers of filter sizes

from 32 to 256, (c) Group 3 with 6 layers of filter sizes from 32 to 128, (d) Group 4 with 4 layers of filter sizes from 32 to 64, (e) Group 5 with
2 layers of filter size of 32, (f) shows the overall prediction accuracy achieved at 50K steps for Groups1 ~ 5.

settings are recorded as (89/58) %, (80/60) %, (42/37) %,
and (32/31) %, respectively. Interestingly, the SW pipeline
accuracy decreased for lower number of hidden layers (as
expected) resulting from the lower count of features mapped,
while the accuracy of the HW pipeline increased with lesser
number of layers; the SW prediction accuracy drastically
reduced from 6-layers down to 4 and 2 layers due to the fact
that such low number of layers have smaller convolution filter
sizes of 64 and 32, respectively.

To be more qualitative, consider a practical application
of an IoT-enabled battery-powered smart bin sensor with
camera and inferencing modules deployed to assist the waste
management industry in increasing the re-cycling index and
contributing towards a sustainable environment. For the said
application, RC5-L4 (Repetitive Cycle = 5 and CNN Layer =
4) from Fig. 10(f) is considered more suitable for a smart bin
sensor with an in-memory edge computation system running
on battery power.

The computation power of gradient calculation for the
convolution operator’s filter data is a function of the training
image data set, the number of hidden layers, total training
steps, and the total number of labeled categories. We consider
regrouping our labeled categories used in the simulation and
retraining the other training parameters such as image data
set size and the number of hidden layers, keeping the training
steps as a constant. The intention of the regrouped image cate-
gory simulation is to further study the impact of RRAM logic
element variability on the training process for computing

VOLUME 10, 2022

the weights with highest achievable prediction accuracy. The
training data set consists of 10 categories (No Entry, Stop
Sign, No Left, No Right, No Parking, Entry, Parking, Left
Turn, Right Turn, and Pedestrian Crossing), and based on
the driving instruction/operation, the given 10 categories are
regrouped into 6 category and 2 category groups, as shown
in Table 4 for generating the training trend of SW and HW
pipelines. The 6 categories group is formulated with the fol-
lowing driving instruction logic, (1) cannot move further [No
Entry and Stop Sign], (2) only allowed to go straight [No Left,
No Right], (3) do not stop [No Parking], (4) allowed to enter
[Entry and Parking], (5) allowed to turn left or right [Left
Turn and Right Turn], (6) Watch out for pedestrians cross-
ing. An assumption made here is that there will not be any
T-Junctions and crossroads while driving in order to resolve
the tie between left or right direction sub-condition in (2) and
(5). Note that category (3) “No-Parking” and (6) ““Pedestrian
Crossing” are not clubbed together in the 10-category and
6-category group. For the 2-category group, we classify the
entire data sets into “Can Do” and “Don’t Do” categories.
The 2-category group setting is not practical to be considered
for the use in the primary navigation system for autonomous
driving as it is necessary for the recognition and features to be
mapped to a much broader class/conditions for more accurate
prediction and precise decision-making. Still, we intend to
simulate the 2-category group for comparative study on the
variability trend obtained in the prediction. However, the
2-category group-based trained weights can be used as low

125127

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

TABLE 4. Training image label re-grouping for the three categories.

Category 10 Category 6 Category 2
No Entry
No Entry_Stop
Stop Sign
No Left Don’t_Do
No_Left_Right
No Right
No Parking No Parking
Entry
Entry_Parking
Parking
Left Turn Can_Do
Left_Right Turn
Right Turn
Pedestrian Crossing | Pedestrian Crossing

powered secondary navigation system to complement the
primary navigation system. The constant training simulation
parameters are 10 CNN layers, NAND logic repetitive cycles
of RC = 5 and 10-different road sign categories, and RRAM
devices with /., ranging from 5 - 504 A. Based on the given
training parameters, the simulation was performed for 50,000
steps, and the obtained training accuracy is plotted in Fig. 11.
We see the training accuracy percentage for leomp = S0uA
increase from 92% (Category 10) to 97% (Category 6) and
further to 98% (Category 2). A similar trend is observed
for SuA and 10nA with a fractional increment in training
accuracy from their base accuracy. Hence, the reduction in
label category results in increased prediction accuracy for
the given RRAM logic element-based computation. There is
another trend that is to be noted in Fig. 11, where we see
the slope to reach the peak of the accuracy curve saturation
increasing as the category count decreases. The maximum
prediction accuracy is attained faster in fewer thousand train-
ing steps for Category 2 when compared to the other two
categories, meaning that the training for a smaller number
of categories can be stopped much earlier while achieving
the maximum training accuracy with reduced computation
power. However, the accuracy can still be further improved
with more training data set by continuing the learning process
for further performance improvement.

Precision and Recall are useful metrics to understand and
further tune the training accuracy trend with appropriate
parameters and training data settings. The precision metric
is the ratio of total true positive results to the sum of all true
positive and false-positive results, while on the other hand the
recall metric is computed using a true positive and false
negative ratio. A confusion matrix is a summary of the
prediction results for the given classification using the
number of correct and incorrect predictions which are
summarized with count values and broken down by each
class. The confusion matrix plot is intended to display the
Precision and Recall for the three-category groups of 10, 6,
and 2. Fifty images are used to compute the prediction results
for the 3 category groups; and together with the application

125128

of the trained weight obtained from 50,000 training steps
and the HW pipeline configured with SOuA RRAM logical
element with 5 repetitive cycles for every NAND logic, the
results are obtained and plotted in Fig. 12. The X-axis of
the confusion matrix represents the predicted labels results,
the Y-axis shows the labels of the actual input images,
while the diagonal represents the correct prediction, and
other elements in the matrix represent incorrect prediction.
To explain it further by looking into Fig. 12(a), the prediction
for NO- Entry label was 92.46% accurate from the result of
50 test images and the breakdown of the 8% incorrect labeling
for the given NO-Entry images classification includes NO-
Left (2.47%), No-Parking (0.67%), Parking (3.17%) and
Pedestrian-Crossing (1.23%). A similar interpretation can
be used for the Category 6 and Category 2 groups from
Figs. 12(b) and (c), respectively. The average prediction accu-
racy calculated with the diagonal elements (dark blue) from
the confusion matrix in Fig. 12 shows the trend whereby
the prediction accuracy using defective hardware (RRAM)
logic improves for a reduction in labeled image category
from 10 to 2. The average prediction accuracy for Category
101s 91.6%, Category 6 is 94.7%, and Category 2 is 97.34%.
While the prediction accuracy increases for the given RRAM
variability by 5-6%, the overall classification to more delicate
labels is significantly compromised from Category 10 down
to Category 2 which might nullify the benefits of the end use
application.

B. EMULATING NEUROMORPHIC CIRCUIT USING RRAM
DIGITAL UNIVERSAL GATES AND POWER CONSUMPTION
BENCHMARK

The truth table of the universal digital gates is presented
using a IT2R RRAM logic in sections II and Fig.5(d).
However, the proposed 1T2R structure requires a few addi-
tional passive and active electronic components to make the
circuit useful for any practical applications. As shown in
Figs. 14(a) and 14(b), simple modifications are performed on
the given 1T2R structure: an additional bias resistor (bias)
added in series to the input restores A and B giving a 1T4R
structure as in Fig. 13(a). The bias resistor acts as a voltage
divider when a voltage / logic changes across input resistors
A / B and maintains the required gating threshold voltage
to the ON/OFF Transistor switch. The load resistor acts as
a strong pull-up resistor for the output (OUT). The 2T3R
configuration is a practical circuit as well; here, the load
resistor is replaced with a second transistor to reduce the
power dissipated on the load resistor for a higher load rating.
The bias resistor draws significantly less current to gate the
transistor. Hence, all the resistors in Figs. 13(a, b) are selected
with mega-Ohm range of resistances to keep the power dis-
sipation very minimal and ensure the practicability of the
use of the circuit. The following sections show the various
resistance values and their design considerations with SPICE
simulations. Today’s modern NAND CMOS circuit, shown
in Fig. 13(c), is implemented using 4 transistors to perform
the required switching operations to exhibit the NAND truth

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

- CATEGORY 10 - CATEGORY 6 5 CATEGORY 2
2 RC5@50pA RC5@500A RC5@50pA
D 80 80 80
o
RC5@10pA
§ 60 60 RC5@10pA 60 RC5@10pA
<
c
§ 40 40
8 RC5@5pA RC5@5pA
S 20 RC5@5pA 20 20
S
g |lZ2— (a) b | (c)
0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K 0 10K 20K 30K 40K 50K

<+— Training Steps —>

FIGURE 11. Prediction accuracy trend plotted by varying the labeled image category size from 10 to 2 for Icomp (5,10, and 50 pA) with the
repetitive cycle of 5 and hidden layer count of 10, (a) 10 label group, (d) 6 label group, (c) 2 label group.

table for the give (1-bit) inputs. Between Fig.14 (b) — 2T3R
and Fig.14(c) — 4T, there is a 2-transistor saving in each
NAND gate implementation of 2T3R. The practical design
for repetitive cycle 3 (RC3) abstraction circuit is proposed
as shown in Fig. 14. The MCBC circuit function works as a
First-in Max-Out (FIMO) memory to cache the input data and
a combinational logic to output the maximum occurred input
data at any given time. We propose using the RRAM elements
with external program and bias voltages, and a transistor
structure to demonstrate a cache memory that outputs the
best of the occurrence from the input. The design of the bias,
program voltage sources, and select 1 & 2 (SEL 1&2) logic
switches are out of our current simulation scope. We assume
these peripheral circuits to be designed as a global circuit by
which few circuits can be used to program and reset the entire
array of RRAM NAND gates.

The select-1 (SEL 1) switch is used to choose between the
bias (operation voltage or input) and RESET voltage of the
RRAM devices while the select-2 (SEL 2) switch functions as
a toggle switch, programming one RRAM every clock cycle,
and for RC=3, three clock cycles used to program the three
RRAM arrays. The bias resistor connected in serial to the
input resistors Ry, Ry and R3, supplies the required gating
threshold voltage (Vgg) for the transistor (T1). The input data
holding resistors Ry, R», and R3 are connected in parallel, and
the overall equivalent resistance (Req) varies for the different
resistance values of Ry, Ry, and R3. The three parallel resis-
tors must replicate the cache memory by taking 3 input data
and output the most frequently occurring bit. The 3 RRAMs
programming sequences are shown in 4 states as in Fig. 14,
which mimics the cache memory to output the most fre-
quently received bit. With T1 being supplied with a voltage
equal or greater than Vgg, it will be turned ON, by which
the Vcc and the output are pulled low (logic-0) through T1.
The T1 operates vice versa for Vgs less than the gating
threshold by which the output is pulled high (logic-1). All the
4 combinations of Ry, Ry, and R3, and their corresponding
resistance values are shown in Fig. 14. The resistance values
for logic-0 are considered as less than or equal to IM€2, while
the logic-1 range is considered as greater than or equal to

VOLUME 10, 2022

100MS2. During State-1 (S1), where all three resistances are
of 1IM€, the equivalent resistance is about 333 k2, and the
bias resistor is fixed to 500 k2; hence the Vgs ~ 0.72V,
which is greater than the gating voltage of 0.60V, turns on the
T1. Now, for state S2, R = R, = 1M and R3 = 100M£2
resulting in Req ~ 497 k2 with a gating voltage of 0.602V
that sees across the 500 k<2 bias resistor, keeping the T1 ON.
Here for both S1 and S2, the most frequently occurring
resistance value is 1 M2 (defined by logic-0), and both also
obtained state logic-O at the outputs. A similar operation
sequence is seen at states S3 and S4, where the most occurred
resistance value is 100M€2, corresponding to logic-1 at the
outputs.

Hence, the given 1T4R logic mimics a cache memory
to output the most recurring bit from the input. A similar
sequence can be used for RC-5 and RC-7 by using 5 and 7
parallel input RRAMs. To keep the power dissipation
negligible, the resistance range must be maintained in the
range of M and above. The LT-Spice tool is used for
the simulation and analysis of the RRAM-NOR circuit.
A 65nm MOS transistor model from the Arizona State
University (ASU) repository was used to build a SPICE cir-
cuit of RRAM-NOR gate with two abstraction layers (MCBC
RC=3) connected to the input port of the NOR gate, as shown
in Fig. 15. Here the blue shaded area shows the NOR circuit,
and orange/green shaded regions will be the two MCBC
circuits. From Fig. 15, the variable resistors represent the
RRAM device {Rs ~ Rg, Rijg ~ Ri3} and the fixed
resistors are {Rp, Rj = 120M}, {Ro, R4, Rj4 = IMQ}
and Rz = 150MS. The resistance values of the MCBC
circuits are programmed as per the input sequence using the
select switch 1 and 2, as explained in the earlier section.
The NOR operation is demonstrated for 10 clock cycles or
steps for the given SPICE circuit shown in Fig. 16. Cycles
1~4 program the resistance of the RRAMs in the given
IT-4R structure, following this, in cycle 5~6 the 1T-4R
structure switched back to the operational mode after being
programmed with the required resistance values for operating
as RRAM-NOR logic when reaching the 7™ clock cycle.
Hence clock cycles 1~6 are one-time configuration cycles

125129

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

CATEGORY 10 loomp= 50pA & RC =5
90
No Entry R 0 247 0 067 0 347 0 0 123
Stop Sign| 0 90 075 | 2417 0 0 241 0 258 | 196 50
NoLeft| 3.21 0 9 0 1.9 0 0 3.74 0 0 70
NoRight| 0 0 264 [EEE 0 2.87 0 0 267 | 195 60
No Parking| 0 0.28 0 0 176 | 361 0 187 0 -
Entry| 0 355 0 0 0 0 0 423 0 »
Parking| 1.56 0 164 0 0 177 XM o067 | 101 | 09
430
Left Tumn | 3.66 0 0 0 3.03 0 0 90 29 0
420
RightTum | 1.67 | 092 0 0 0 325 | 234 0 91.8 0
10
Pedestrian Crossing | 1.07 0 0 36 0 0 0 271 0 (a)
=0

o o &
< s\oﬂ’s W

WO WO

CATEGORY 6 Icomp= 50MA &RC =5

No Entry Stop 0.65 0.94 0

N\
Ao R s a9 <
A S Y

No Left Right

No Parking

Entry Parking

Left Right Turn

Pedestrian Crossing 1.25

6\0\)
«
W e W

a9 N
R <
\ﬂ?% ?;\g“\ o
2 \a‘\ 66%\«6
? 15

O 09
A &

R
\& o?é‘\‘\

< &0
L (0%
T 300

oo

CATEGORY 2 lcomp= 50pA &RC =5

Don't Do

Can Do

“(b)

Don't Do

Can Do

FIGURE 12. The confusion matrix presented for the true-positive, false-positive, and false-negative predictions (precision and recall). Note that the
numbers in the matrix are shown in percentage and obtained from a test data set size of fifty random images. (a) 10 category data set,
(b) 6 category data set, (c) 2 category data set. All the analyses presented here is for Icomp = 50¢A and RC = 5.

during the chip power ON. Once the chip is configured
with appropriate RRAM resistance values and functions as
a computational logic to perform the convolution operation,
the latency of the RRAM-NOR gate will be just 1 cycle,
which is demonstrated from clock cycle 7~8 (NOR truth
table). A large sequence of RRAM-NOR gates is combined
to operate as combinational and sequential circuits to achieve
10 layers of convolution operation during the forward pass.
The clock cycles 7 to 10 demonstrate the NOR truth logic
where for a logic-0 (0 Volts) at inputs A and B, the gating
voltage will be OV, keeping T1 OFF and thus a logic-1 set at
the output. Similarly, for the other input sequences of A and
B, the gating voltage varies from 0.66V to 0.85V which keeps
the T1 in the ON state, and a logic-0 state is obtained at the
output; thus, demonstrating the NOR operation.

125130

1T4R 2T3R 47
vcce vcce vcc vcc
T
A B
AR OUT| A —nn| uT ouT
B —nn| B —nn A
E 5 GND 'g 5 GND
[o ; B
e (@) o () o0 (0)

FIGURE 13. Practical CMOS transistor-based NAND/NOR (universal) gate
circuit design shown with required bias resistor. (a) one transistor and
four resistors (RRAM) circuit, (b) two transistor and three resistors
(RRAM), here the weak pull up (VCC) resistor is replaced with a CMOS
transistor, (c) typical conventional four transistor circuit.

The layout design for the simulated SPICE circuit is shown
in Fig. 17, where the unit cell consists of a NOR (1T3R)

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

VCC
STATE s1 S2 S3
A/B R1@©mm)| 1M 1M 1M 100M
R2 (Ohm) 1M 1M 100M 100M
R3 (Ohm) 1M 100M 100M 100M
VGS
. Re (Ohm) | 333K 497K 980K 33M
BIA
S Vas(V) 0.72 0.602 0.405 0.018
GND GND
Bias resistance 500K Ohms T ON ON OFF OFF

Gating Threshold : 0.5V

Transistor — OFF
Logic-1

Transistor — ON
Logic-0

FIGURE 14. RRAM implemented (3-bits) as arbitrary logic and demonstrated using four states S1, S2, S3, and S4. 1M Ohm
represents Logic-0 state and 100M Ohm as Logic-1. The select switches (SEL1 and SEL2) are programmed to choose
between the bias or programming source for the RRAM (R1, R2, and R3).

AL(1T4R) - A
\& R5 > R6 & R7
R <R <R
v
R8
R
AL(1T4R) - B
R9
1M
v4 R10CR11 < R12
R <R R M3
Y, |'Nmos
R13 l
R

NOR(1T4R)
V2
R14
i 1.2
M1
R2 <R3
v3 51 20M < 150M
1.2

MOS Transistor (65nm) : Predictive
Technology Model (Arizona State University)

FIGURE 15. RRAM-NOR circuit with two MCBC RC3 logic shown. A 65nm MOS transistor SPICE
model (Predictive Technology Model (from Arizona State University)) is used to design and

simulate the in-memory unit cell.

and two MCBC circuits - MCBC-A (1T4R) on the left and
MCBC-B (1T4R) on the right. The intention is to compute
the unit cell dimension and estimate the overall chip area and
heat dissipation for 5 different groups of the CNN (Group
1 of 10 layers to Group 5 of 2 layers). The layout design rules
are as follows: (1) The MOS transistor dimension is about
140 x 140 nm? and was extracted from ST Microelectronics
65nm design toolkit [49], (2) The RRAMdimension extracted
from Fantini et al. [15] of 18 x 18 nm?, (3) The component to
component spacing is about 190nm and is based on the ST
Microelectronics 65nm design [49], (4) the other metal layers
and interconnecting dimensions follow as shown in Fig. 17.
From the layout design, the unit cell’s overall dimension
is 3190 x 1230 nm?. The NOR and NAND RRAM gates
have the same structure except for the variation in serial
and parallel resistor values; therefore, this layout design is
common for the universal gates. We omit the select switch

VOLUME 10, 2022

circuit design in the layout drawing and reframe our analysis
to the primary logic unit cell.

The proposed layout drawing here is an initial design to
illustrate the methodology of an RRAM-based NOR unit
cell structure. We certainly have room for further optimiz-
ing the unit cell layout, which we intend to explore in
our future work. Furthermore, the layout drawing can be
optimized by choosing the foundry’s design recommenda-
tions, with fine-tuned standard cell design for the specific
foundry fabrication process. The above simulation results and
dimensions of the logical compute element (RRAM gate)
were further used to estimate and project the overall chip
area, power consumption, heat dissipation, and battery life
(IoT application) for the given 5 hidden layer groups (Group
1 of 10 layers to Group 5 of 2 layers). The standard formula
used to compute the size and performance of the different
convolution groups is shown in Eqns. (1) ~ (4) below. The

125131

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

Operation Seq. CLOCK 1 2 3 4
RESET
RRAM Reset RRAM -Ve
PROG 1 +Ve (R1)
RRAM Program PROG 2 +Ve (R2)
PROG 3
Set Operation
Mode OPR SEL
A (V)
Input A
LOGIC-A
B
Input B V)
LOGIC-B
Gate Threshold Vs (V)
Vps (V]
Output os (V)
LOGIC-0
AL- RRAM Programing Cycle

+Ve (R3)

5 6 7 8 9 10
OFF
OFF
OFF
ENABLE +1.2V +1.2V +1.2V +1.2V +1.2V
oV oV +1.2V +1.2V
LOGIC-0 LOGIC-0 LOGIC -1 LOGIC -1
ov +1.2V ov +1.2V
LOGIC-0 LOGIC-1 LOGIC-0 LOGIC-1
ov +0.66V +0.66V +0.85V
ov +1.0V +1.0V +1.2V
LOGIC-1 LOGIC-0 LOGIC-0 LOGIC-0
AL-Set Operation
Mode

FIGURE 16. Ten (clock) operation sequences for MCBC RC3 RRAM reset/program cycle and RRAM-NOR truth table verification are shown using the
SPICE transistor model. Cycle 1~4 shows the RRAM programming setup, 5~6 will be MCBC preparation mode, and 7~8 demonstrates the NOR logic.

hidden layers use 3 x 3 and 1 x 1 generic convolution
block with different filter matrices sized from 32 to 512; the
estimations of the total NAND logic count to construct the
3x3,and 1 x 1 is 5.3M and 1.7M, respectively. The gate count
for the convolution modules was extracted from our previous
work [46]. The total RRAM NAND gates are given by the
sum of the product of all the convolution modules gate count
and the given filter size as shown in Eqn. (1).

n
Tige =Y. (Convge x Qpns) (1)
Layers=1
Tige = Total Logic gates in all convolution layers
Convee = Convolution operator gate count per layer
Ofins = Convolution filter size of a specific layer
n= Total number of hidden convolution layers

The dimension for a unit cell of one NOR/NAND gate with
two Maximum Count Binary Comparator Layers of size
RC=3 is estimated as (3190 x 1290 nm?) from the layout
design. Hence, the total RRAM NAND gate count and the
unit cell area give the overall chip area of the respective
hidden layer count. Other peripheral components such as
interconnecting bus, clock bus, input/output buffers, pads etc.
are not being considered during the calculation of the overall
size since these peripheral components are foundry specific.
Hence, we omit it to keep our estimation only for the required
RRAM NAND logic. Based on the above assumptions, the
overall chip size was calculated using the Eqn. (2).

Tyes = Tsc x Tige)

Total area of all the unit cells (RRAM NAND)
Size of a single standard RRAM NAND
gate with RC3 (3190 x 1290 nm?)

Tucs =
Tsc =

Eqn. (3) provides an estimate for the power consumption for
the given hidden layer count at a simulation clock frequency

125132

of 100MHz.
Eiter = Voper X Imem X —— X Tyes 3)
clk
Eiy.r = Estimated power to process one image
(Pixel size:224 x 224) at 100MHz operation
Voper = Digital logic 1 threshold voltage
Lnem = RRAM operating current compliance
Fo = Simulation digital clock speed

Today, the IoT applications are often supported by an external
battery source. Hence, we have attempted to calculate the
achievable battery life during the execution of the given
RRAM NAND-based convolution operations on the edge
using a 48V and 14Ah battery source. The size of the battery
was chosen from a standard and typical available portable
battery pack used to power up the e-scooters. Eqn. (4)
estimates the battery pack lifetime for different convolution
operations. Last but not the least, heat dissipation is one of the
primary parameters which defines the reliability and lifespan
of an IoT application. The power estimation in relation
to the battery life is shown for the RRAM-NAND logic
alone, whereas the additional power used for the synaptic
weights read /write is not considered (excluded) here as our
framework focuses only on the simulation of the in-memory
mathematical logic/operator for performing the convolution
operation.

ESVC
Bipe = (4)
pe Eiter
B = Estimated battery life to perform convolution in
all hidden layer with source (48V14Ah)
Es. = Battery source rating (48V14Ah)

A consolidation of the energy consumption and estimated
battery lifetime using Eqns. (1) ~ (4) for our simulated
in-memory circuit for the different counts of the hidden layer

VOLUME 10, 2022

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

Units (nm) M Diffusion
MCBC(1T4R) - A R4 : NorR(1T4R) (VCC | : MCBC(1T4R) - B |20 M Poly
E | M Contact
: m EENEEERI Via
| R1 :.
EA:] E - i [B:] Metal Layer
& : L R13 sao| S Metal Layer
! (]
I i i R3S . l l l g Metal Layer
R5 R6 R7 ! i R10 R11 R12 Yy
1
! m 18-nm
. i TE | TiN |30nm
R14 |
i i P Hf [10nm
i E r_‘GND HfO, 5nm
940 980 Js0 = BE | TiN [30nm
(3190) R1~R14

FIGURE 17. Unit (standard) cell design shown for two MCBC layers and one NOR gate structure using RRAM as the main design block.

TABLE 5. (Emulated) RRAM-based neuromorphic chip energy budget and battery life specification.

(Tige) (Tyes) (Ejter)Energy Consumption (Biyc)Battery Lifetime (Hours)
Group Total Chip Area (J/Image @ 100MHz) Source 48V14Ah
(Layers) | RRAM ~(mm?)
(x10'%) SpA 10pA S0pA SuA 10uA 50pA
1(10) 72 28.21 3.46 6.91 34.56 194.44 97.22 19.44
2(8) 35 13.88 1.68 3.36 16.80 400.20 200.15 40.00
3(6) 1.7 6.71 0.82 1.63 8.16 823.53 411.67 82.35
4(4) 0.8 3.13 0.38 0.77 3.84 1750 875.12 175
5(2) 0.3 1.34 0.14 0.29 1.44 4666.67 2333.33 466.67

groups and filter sizes is listed in Table 5. The table shows
that the total computational energy and the chip estate area
consumed reduce by as much as 10-20X as the hidden layer
count and the current compliance of the RRAM decrease.
However, the design challenge here is to strike a balance
whereby the required battery lifetime is met for the right
combination of the hidden layers and the RRAM switching
current. There are several [oT applications that need to work
with low maintenance frequency due to their use in remote
deployment sites and such applications should consider using
10uA RRAM with a 6-layer CNN or a 50uA RRAM
with 4-layer CNN for a 6 month to 1 year frequency of
maintenance schedule provided the prediction accuracy drop
brought over by RRAM device variability is within the
acceptable range as defined by the end application.

IV. CONCLUSION OF THE STUDY

We have simulated and quantified the impact of RRAM
variability on the training accuracy of a deep CNN, for
which three different RRAM current compliances of 35,
10, and 50nA were used corresponding to soft to hard

VOLUME 10, 2022

filamentation regimes. A suitable 65nm (TiN/HfO,/H{/TiN)
OxRAM NAND/NOR logic was constructed and simulated
for five different groups of hidden layers (convolution
operation) to show the training accuracy trend by
implementing a purely digital RRAM logic using the look-up
table (LUT) approach. Our methodology of using LUT-based
RRAM resistive encoding scheme was well demonstrated
with a suitable neuromorphic simulation framework using
Python and TensorFlow in the upper layer and Verilog
HDL in the lower layer by construction of FP32MUL and
FP32ADD using RRAM (1T4R /2T3R) based NAND logics.
We have demonstrated that adding MCBC logic with a
standard RRAM NAND logic improves the overall device
variability. The MCBC layer is estimated to consume an
extra space of 1150 x 1230 nm? per logic gate per input,
which results in an overall prediction accuracy improvement
from 10% to 60% (RC1=10%, RC3=30%, RC5=45%, and
RC7=60%). The estimated battery life can range anywhere
between 19 to 466 days for CNN layers of 10 to 2 when
configured with a 50uA RRAM switching current,
considering the maximum prediction accuracy achieved

125133

IEEE Access

N. L. Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

compared to the software training pipeline. Finally, the
in-memory circuit design with overall chip area, power con-
sumption, estimated battery lifespan, and heat dissipation
are derived for IoT application deployment for a truly edge
implementation.

As a continuation of this work, we intend to build and
simulate the backward pass computation system using the
same RRAM NAND/NOR logic in our future work and
quantify the impact of memristive performance variability
seen in the final learning accuracy trend for a completely
edge based forward and backward flow computation schema.
This study provides a practical multi-faceted design tool for
RRAM-based edge computing that enables the quantification
of the impact of CNN architecture and RRAM operating
current levels on the prediction accuracy, chip estate area,
energy consumption and battery replacement frequency. The
design tool can potentially be harnessed as a multi-objective
design optimization decision making framework for RRAM
edge compute applications depending on the end user-defined
requirements for the application in context.

REFERENCES

[1] S. Zhu, K. Ota, and M. Dong, “Green Al for IIoT: Energy efficient
intelligent edge computing for industrial Internet of Things,” IEEE Trans.
Green Commun. Netw., vol. 6, no. 1, pp. 79-88, Mar. 2022.

[2] H. Lavi. Measuring Greenhouse Gas Emissions in Data Centres: The
Environmental Impact of Cloud Computing. Accessed: Sep. 25, 2022.
[Online]. Available: https://www.climatiq.io/blog/measure-greenhouse-
gas-emissions-carbon-data-centres-cloud-computing

[3] Y. Wang, Q. Wang, S. Shi, X. He, Z. Tang, K. Zhao, and X. Chu, “Bench-
marking the performance and energy efficiency of Al accelerators for Al
training,” in Proc. 20th IEEE/ACM Int. Symp. Cluster, Cloud Internet
Comput. (CCGRID), May 2020, pp. 744-751.

[4] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of GPU kernels using performance counters,”
in Proc. Int. Conf. Green Comput., Aug. 2010, pp. 115-122.

[5]1 A.Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner,
“Survey and benchmarking of machine learning accelerators,” in Proc.
IEEE High Perform. Extreme Comput. Conf. (HPEC), Sep. 2019, pp. 1-9.

[6] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” J. Field Robot., vol. 37, no. 3,
pp. 362-386, Apr. 2020.

[71 E. Zablocki, H. Ben-Younes, P. Pérez, and M. Cord, “Explainability of
deep vision-based autonomous driving systems: Review and challenges,”
2021, arXiv:2101.05307.

[8] L.Liu, S.Lu,R.Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi, “Computing
systems for autonomous driving: State of the art and challenges,” IEEE
Internet Things J., vol. 8, no. 8, pp. 6469—6486, Apr. 2021.

[9]1 K. Roy, I. Chakraborty, M. Ali, A. Ankit, and A. Agrawal, “In-memory
computing in emerging memory technologies for machine learning:
An overview,” in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC),
Jul. 2020, pp. 1-6.

[10] S. Bavikadi, P. R. Sutradhar, K. N. Khasawneh, A. Ganguly, and
S. M. P. Dinakarrao, “A review of in-memory computing architectures
for machine learning applications,” in Proc. Great Lakes Symp. VLSI,
Sep. 2020, pp. 89-94.

[11] D.Ielmini and G. Pedretti, “Device and circuit architectures for in-memory
computing,” Adv. Intell. Syst., vol. 2, no. 7, 2020, Art. no. 2000040.

[12] A. Sebastian, M. L. Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, pp. 529-544, Jul. 2020, doi: 10.1038/341565-020-
0655-z.

[13] R. Degraeve, A. Fantini, N. Raghavan, L. Goux, S. Clima, B. Govoreanu,
A. Belmonte, D. Linten, and M. Jurczak, ““Causes and consequences of the
stochastic aspect of filamentary RRAM,” Microelectron. Eng., vol. 147,
pp. 171-175, Nov. 2015.

125134

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

S. Clima, Y. Y. Chen, A. Fantini, L. Goux, R. Degraeve, B. Govoreanu,
G. Pourtois, and M. Jurczak, “Intrinsic tailing of resistive states distribu-
tions in amorphous HfO, and TaO, based resistive random access memo-
ries,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 769-771, Aug. 2015.
A. Fantini, L. Goux, R. Degraeve, D. J. Wouters, N. Raghavan, G. Kar,
A. Belmonte, Y. Y. Chen, B. Govoreanu, and M. Jurczak, ““Intrinsic switch-
ing variability in HfO, RRAM,” in Proc. 5th IEEE Int. Memory Workshop,
May 2013, pp. 30-33.

S. Song, T. Titirsha, and A. Das, “Improving inference lifetime of neu-
romorphic systems via intelligent synapse mapping,” in Proc. IEEE 32nd
Int. Conf. Appl.-Specific Syst., Architectures Processors (ASAP), Jul. 2021,
pp. 17-24.

Y. Zhang, G. He, G. Wang, and Y. Li, “Efficient and robust RRAM-
based convolutional weight mapping with shifted and duplicated kernel,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 2,
pp. 287-300, Feb. 2021.

S. Yin, X. Sun, S. Yu, and J.-S. Seo, “High-throughput in-memory com-
puting for binary deep neural networks with monolithically integrated
RRAM and 90-nm CMOS,” IEEE Trans. Electron Devices, vol. 67, no. 10,
pp. 4185-4192, Oct. 2020.

G. Boquet, E. Macias, A. Morell, J. Serrano, E. Miranda, and J. L. Vicario,
“Offline training for memristor-based neural networks,” in Proc. 28th Eur.
Signal Process. Conf. (EUSIPCO), Jan. 2021, pp. 1547-1551.

Z. Sun, E. Ambrosi, G. Pedretti, A. Bricalli, and D. Ielmini, “In-memory
PageRank accelerator with a cross-point array of resistive memories,”
IEEE Trans. Electron Devices, vol. 67, no. 4, pp. 1466—1470, Apr. 2020.
V. Milo, A. Glukhov, E. Perez, C. Zambelli, N. Lepri, M. K. Mahadevaiah,
E. P-B. Quesada, P. Olivo, C. Wenger, and D. Ielmini, “Accurate pro-
gram/verify schemes of resistive switching memory (RRAM) for in-
memory neural network circuits,” IEEE Trans. Electron Devices, vol. 68,
no. 8, pp. 3832-3837, Aug. 2021.

E. Pérez, A. J. Pérez-Avila, R. Romero-Zaliz, M. K. Mahadevaiah,
E. P--B. Quesada, J. B. Rolddn, F. Jiménez-Molinos, and C. Wenger, “Opti-
mization of multi-level operation in RRAM arrays for in-memory comput-
ing,” Electronics, vol. 10, no. 9, p. 1084, May 2021.

Y. Feng, P. Huang, Y. Zhao, Y. Shan, Y. Zhang, Z. Zhou, L. Liu, X. Liu, and
J. Kang, “Improvement of state stability in multi-level resistive random-
access memory (RRAM) array for neuromorphic computing,” IEEE Elec-
tron Device Lett., vol. 42, no. 8, pp. 1168-1171, Aug. 2021.

J. An, S. Oh, T. V. Nguyen, and K.-S. Min, “Synapse-neuron-aware train-
ing scheme of defect-tolerant neural networks with defective memristor
crossbars,” Micromachines, vol. 13, no. 2, p. 273, Feb. 2022.

W.-Q. Pan, J. Chen, R. Kuang, Y. Li, Y. H. He, G.-R. Feng, N. Duan,
T.-C. Chang, and X.-S. Miao, “Strategies to improve the accuracy of
memristor-based convolutional neural networks,” IEEE Trans. Electron
Devices, vol. 67, no. 3, pp. 895-901, Mar. 2020.

J. Feng, Y. Wang, X. Hu, G. Wen, Z. Wang, Y. Lin, D. Wu, Z. Ma,
L.Zhao, Z. Lu, and Y. Xie, “A hybrid RRAM-SRAM computing-in-
memory architecture for deep neural network inference-training edge
acceleration,” in Proc. Silicon Nanoelectron. Workshop (SNW), Jun. 2021,
pp. 1-2.

J. Li, G. Zhou, Y. Li, J. Chen, Y. Ge, Y. Mo, Y. Yang, X. Qian,
W. Jiang, H. Liu, M. Guo, L. Wang, and S. Duan, “Reduction of
93.7% time and power consumption using a memristor-based impre-
cise gradient update algorithm,” Artif. Intell. Rev., vol. 55, pp. 657-677,
Aug. 2021.

A. Majumdar, M. Bocquet, T. Hirtzlin, A. Laborieux, J.-O. Klein,
E. Nowak, E. Vianello, J.-M. Portal, and D. Querlioz, “Model of the weak
reset process in HfO, resistive memory for deep learning frameworks,”
IEEE Trans. Electron Devices, vol. 68, no. 10, pp. 4925-4932, Oct. 2021.
Q. Wang, Y. Park, and W. D. Lu, “Device non-ideality effects and
architecture-aware training in RRAM in-memory computing modules,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2021, pp. 1-5.

K. Qiu, Z. Zhu, Y. Cai, H. Sun, Y. Wang, and H. Yang, “MNSIM-TIME:
Performance modeling framework for training-in-memory architectures,”
in Proc. IEEE 3rd Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2021,
pp. 1-4.

S. Yu, W. Shim, X. Peng, and Y. Luo, “RRAM for compute-in-memory:
From inference to training,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 68, no. 7, pp. 2753-2765, Jul. 2021.

H. Jiang, S. Huang, X. Peng, and S. Yu, “MINT: Mixed-precision RRAM-
based IN-memory training architecture,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Oct. 2020, pp. 1-5.

VOLUME 10, 2022

http://dx.doi.org/10.1038/s41565-020-0655-z
http://dx.doi.org/10.1038/s41565-020-0655-z

N. L.

Prabhu, N. Raghavan: Neuromorphic In-Memory RRAM NAND/NOR Circuit Performance Analysis

IEEE Access

[33]

[34]

[35]

[36]

[37]

[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Y. Liu, B. Gao, F. Xu, W. Zhang, Y. Xi, J. Tang, and H. Qian, ““A compact
model for relaxation effect in analog RRAM for Computation-in-Memory
system design and benchmark,” in Proc. 5th IEEE Electron Devices Tech-
nol. Manuf. Conf. (EDTM), Apr. 2021, pp. 1-3.

M. Giordano, K. Prabhu, K. Koul, R. M. Radway, A. Gural, R. Doshi,
Z.F. Khan, J. W. Kustin, T. Liu, G. B. Lopes, V. Turbiner, W.-S. Khwa,
Y.-D. Chih, M. -F. Chang, G. Lallement, B. Murmann, S. Mitra, and
P. Raina, “Chimera: A 0.92 TOPS, 2.2 TOPS/W edge Al accelerator
with 2 MByte on-chip foundry resistive ram for efficient training and
inference,” in Proc. Symp. VLSI Circuits, Jun. 2021, pp. 1-2.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks,” Synth. Lect. Comput. Archit., vol. 15, no. 2,
pp. 1-341, 2020.

V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” 2016, arXiv:1603.07285.

C. Nwankpa, W. [jomah, A. Gachagan, and S. Marshall, “Activation func-
tions: Comparison of trends in practice and research for deep learning,”
2018, arXiv:1811.03378.

M. Lin, Q. Chen, and S. Yan,
arXiv:1312.4400.

K. O’Shea and R. Nash, “An introduction to convolutional neural net-
works,” 2015, arXiv:1511.08458.

K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: MIT Press, 2012.

1. Goodfellow, Y. Bengio, and A. Courville, “Back-propagation and other
differentiation algorithms,” in Deep Learning. Cambridge, MA, USA:
MIT Press, 2016, ch. 6.5, pp. 200-220.

C. P. Robert, The Bayesian Choice (Springer Texts in Statistics), 2nd ed.
New York, NY, USA: Springer, 2007, doi: 10.1007/0-387-71599-1.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘“MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.

N. Raghavan, K. L. Pey, W. Liu, X. Wu, X. Li, and M. Bosman, “Evidence
for compliance controlled oxygen vacancy and metal filament based resis-
tive switching mechanisms in RRAM,”” Microelectron. Eng., vol. 88, no. 7,
pp. 1124-1128, 2011.

X. Wu, D. Cha, M. Bosman, N. Raghavan, D. B. Migas, V. E. Borisenko,
X. X.Zhang, K. Li, and K.-L. Pey, “Intrinsic nanofilamentation in resistive
switching,” J. Appl. Phys., vol. 113, no. 11, 2013, Art. no. 114503.

N. L. Prabhu and N. Raghavan, “Generalized convolution simulation stack
for RRAM device based deep learning neural network,” in Proc. IEEE Int.
Symp. Phys. Failure Anal. Integr. Circuits (IPFA), Jul. 2020, pp. 1-6.

Y. Wei, X. Pan, H. Qin, W. Ouyang, and J. Yan, “Quantization mimic:
Towards very tiny CNN for object detection,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 267-283.

A. Jahanshahi, “TinyCNN: A tiny modular CNN accelerator for embedded
FPGA,” 2019, arXiv:1911.06777.

F. Arnaud, F. Boeuf, F. Salvetti, D. Lenoble, F. Wacquant, C. Regnier,
P. Morin, N. Emonet, E. Denis, J. C. Oberlin, and D. Ceccarelli, “‘A func-
tional 0.69 um?2 embedded 6T-SRAM bit cell for 65 nm CMOS platform,”
in Symp. VLSI Technol. Dig. Tech. Papers, Jun. 2003, pp. 65-66.

“Network in network,” 2013,

VOLUME 10, 2022

NAGARAJ LAKSHMANA PRABHU is currently
pursuing the Ph.D. degree with the Singapore
University of Technology and Design (SUTD),
examining the impact of RRAM device level vari-
ability as an in-memory computational element for
deep learning neural network (DNN) applications.
He has over 18 years of experience in industrial
product design and development, specializing in
'Q / ,.: machine vision and cloud computation. He has six

A cientific publications to his credit relating to con-
struction methodology for look-up table (LUT)-based RRAM neuromorphic
implementation for deep neural networks accounting for RRAM device level
and cycle-to-cycle variability. He also serves as one of the Director of the
ALAI Laboratories, focusing on design and development of vision-based IoT
products and solutions (on the cloud and on the edge) for general use daily
applications.

NAGARAJAN RAGHAVAN (Member, IEEE)
received the Ph.D. degree in microelectronics from
the Division of Microelectronics, Nanyang Tech-
nological University (NTU), Singapore, in 2012.
He is currently a Tenure-Track Assistant Professor
at the Engineering Product Development (EPD)
Pillar, Singapore University of Technology and
Design (SUTD). Prior to this, he was a Postdoc-
toral Fellow at the Massachusetts Institute of Tech-

: nology (MIT), Cambridge, and at IMEC, Belgium,
in joint association with Katholieke Universiteit Leuven (KUL). His work
focuses on prognostics and health management for electromechanical fail-
ures, design for reliability, lifecycle management of nanoelectronic devices,
physics of failure, optimization of polymer nanocomposites, and uncertainty
quantification for additive manufacturing. He was a recipient of the IEEE
EDS Early Career Award for 2016, Asia-Pacific recipient for the IEEE
EDS Ph.D. Student Fellowship, in 2011, and the IEEE Reliability Society
Graduate Scholarship Award, in 2008. To date, he has authored/coauthored
more than 250 international peer-reviewed publications and five invited
book chapters as well. He served as the General Chair for IEEE IPFA
2021 at Singapore and has consistently served on the Review Committee for
various IEEE journals and conferences, including IRPS, IIRW, IPFA, and
ESREF. He is an Associate Editor of the IEEE Accgss and Microelectronic
Engineering journals as well. He was an Invited Member of the IEEE GOLD
Committee (2012-2014).

125135

http://dx.doi.org/10.1007/0-387-71599-1

