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ABSTRACT Social networks are often published in the form of a simple graph. The simple graph
representation of a social graph shows the dyadic relationship among the social entities whereas it is unable to
efficiently represent the relationship amongmore than two entities, such as the relationship found in the social
groups. This type of relationship is called super-dyadic relationship, and it can be effectively represented by
a hypergraph model. This work proposes an anonymization scheme called rank-label anonymization for the
privacy-preserving publication of a hypergraph structure. Here, an attack model called rank-label attack is
proposed, and an anonymization solution is provided to counter this attack. The percentage of disclosure
risk shows that the rank-label attack is stronger than the existing rank attack. We propose a method based
on sequential clustering to achieve rank-label anonymization called sequential rank-label anonymization
(SA). Another algorithm called greedy rank-label anonymization (GA) is also proposed. The quality of the
anonymization solution reported by SA and GA is compared with the help of normalized anonymization cost
(NCost). Results show that the NCost reported by SA is less than that of GA for both Adult and MAG-10
datasets. In Adult dataset, approximately 58% and 62% reduction in the average execution time of GA and
SA are obtained than that of a general-purpose computing system due to the use of a high-performance
computing system. In MAG-10 dataset, this average reduction percentage is reported to be 56% for GA and
53% for SA. The time complexity of SA is found to be O(n4) whereas it is O(n3) in case of GA.

INDEX TERMS Anonymity, hypergraph, sequential clustering, privacy preservation.

I. INTRODUCTION
In this information age, social media plays a vital role in infor-
mation dissemination where social network is the underlying
interconnection structure among the social entities that work
as a backbone for information propagation. The advance-
ment in social networking and social media has attracted
several industries to use such platforms as a medium to
disseminate the information about their products and ser-
vices. One of the applications of social media is found in
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e-governance service popularization [1]. Effective analysis
of the data gathered by using social media platforms is
essential to gain insight of information dynamics. The data
gathered by social media platforms are available in text and
graph forms. Although the type and quality of service are
important for service popularity in such platforms, analyzing
the graph structure of social connections is also crucial to
understand the nature of response to a service. By this, the
key players of service adoption, the category of the social
entities using the service, and the non-responsive region of
service can be identified. Furthermore, the strategic decision
for effective advertising can be carried out to popularize the
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service. However, this type of extensive data analysis may
lead to the identity disclosure of the social entities. Hence,
necessary steps must be taken and implemented to ensure
privacy preservation of the social entities during the data
analysis.

Most studies in the literature [5], [13], [34] are focused
on a simple graph model where an edge can connect only
two nodes. This type of relationship is known as dyadic
relationship. A generalization of graph structure, known as
hypergraph, can represent more complex connections than
that of a simple graph [17], [23]. A hyperedge can connect
more than two nodes. The relationship represented by the
hypergraph is called as super-dyadic relationship [28]. In this
work, we utilize a hypergraph model to represent the connec-
tions between the group of users, and hyperedge labels are
used to show the users in a particular social group. A realistic
view on the hypergraph publication and attack models is
presented in [17]. The attack on hypergraph publication is
possible as the network information is easily available with
high utility, the background knowledge about the hypergraph
properties along with target’s behavior enables an adversary
to disclose the identity of an entity in the network. The
hypergraph properties like rank information, label informa-
tion, etc. can be used by an adversary to disclose the iden-
tity of an entity. Herein, rank-label information is used as
an attack model, and rank-label anonymization is used as
a solution to obstruct this attack. The proposed rank-label
attack is a stronger version of the existing rank attack [17]
because it shows a higher disclosure risk than rank attack
that is clearly depicted in the result. The proposed rank-
label anonymization is an improvement of the existing rank
anonymization proposed in [17]. Nonetheless, a rank attack
was reported in the year 2013 because no other develop-
ment on this model was being conveyed in the literature
then. We have represented the idea of rank-label anonymiza-
tion in [23]. However, this work presents an extended and
more formalized framework with a detailed explanation on
the rank-label attack and anonymization. The anonymization
concept is formalized as a mathematical model where min-
imization in the cost of anonymization is represented as an
objective function, and the privacy requirement is treated as a
constraint.

We propose two approaches for rank-label anonymization:
(i) Sequential rank-label anonymization (SA) (discussed in
the Proposed methodology section) and (ii) greedy rank-label
anonymization (GA) (discussed in the Result and discussion
section). The anonymization cost/privacy preservation cost
PPCost is used as a metric to measure the cost incurred due to
anonymization. The solution that meets the privacy require-
ment with the least PPCost is the best solution. We propose
a normalized version of the PPCost metric called NCost.
The results show that SA performs better than GA because
the NCost is found to be lesser in SA than GA. The time
of execution of GA is less than that of SA because it uses
some parts of SA. The experiment is extended to a high-
performance computing system and reports a reduction in

the average execution time for GA and SA than that of the
general-purpose computing system.

The major contributions of this work are as follows:

• Disclosure of the rank-label information is used as
an attack model wherein the identity of a person can
be disclosed from the combination of rank and label
information of the published hypergraph. Rank-label
anonymization is proposed as a solution to handle a
rank-label attack.

• The problem of anonymization is mapped to an opti-
mization problem where the objective is to minimize
the anonymization cost by satisfying the privacy require-
ment.

• Two anonymization algorithms SA and GA are pro-
posed. The comparison between the two algorithms is
depicted using NCost as a parameter.

• The implementation is extended to a high-performance
computing device to reduce the response time.

Organization of Paper: The remaining part of this paper
is organized as: Section II discusses the related work, fol-
lowed by basic concepts and motivation in Section III.
Section IV focuses on the system model and problem
statement. Section V presents the proposed methodology.
Section VI covers the results with analysis. Section VII con-
cludes the paper with future scope.

II. RELATED WORK
Nowadays, social media plays a crucial role in information
dissemination. Governments are also concerned about the
effective use of social network platforms, such as Facebook
and Twitter, for spreading e-governance service informa-
tion [1], [8], [21], [33]. Landsbergen [15] presented the use
of social media in many departments of the US govern-
ment. Dwivedi et al. [10] presented a survey on the use of
social media in e-governance. Magro [20] pointed out some
important uses of social media, such as in policy making,
disaster management, and digital divide. The prime objec-
tive of the government in e-governance is to enhance citi-
zens’ participation for achieving effective decision making.
Kacem et al. [14] proposed a framework for investigating the
users’ and communities’ profiles available in the social media
to meet this requirement. The citizens’ profiles are extracted
from Facebook, and the interactions between the citizens
are also established. The community profile is built using
this information, and users who use the same e-governance
service are placed under the same community. These two
types of profiles are helpful in decision making for service
adaptation in a much more effective manner. However, the
uses of social media introduce some serious concerns regard-
ing privacy and security of users’ information. Bandy and
Mattoo [4] elucidated the challenges in maintaining secu-
rity and privacy of the users while social media is used in
e-governance. Alguliyev et al. [2] pointed out the threats of
targeting security and confidentiality of social network users.
To meet these security requirements, new policies must be
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set up, and modifications in the existing policies/guidelines
must be dynamically conducted. Accordingly, the changes
and upgrades in technical support, such as designing and
implementing new algorithms/programs, are required to keep
up with the modifications in the policies/guidelines. The
security and privacy of users’ data can be ensured by using
different cryptographic techniques, such as like private-key
cryptosystem, public-key cryptosystem, and authentication
protocols. Some privacy preservation techniques are also used
to ensure privacy [35], [36], [37], [38]. Anonymization is one
of such techniques that is framed to ensure privacy-utility
trade-off [22], [39]. This technique aims to meet the privacy
requirement along with utility of the data by allowing effec-
tive data analysis [25], [26]. The concept of anonymization
started with relational data [29] and later extended to graph
data [5], [6], [7], [25]. Given that this work focuses on graph
anonymization, we discuss some prominent contributions in
this field. Naive anonymization is one of the earliest con-
tributions in this domain. This method removes the label
information from the nodes to hide the identity of concerned
person. However, this method is an ineffective approach of
dealingwith identity disclosure; in such a scenario, disclosure
of the identity is possible by simple structural information,
such as the degree of the node [13]. K -degree anonymity is
used to overcome the shortcomings of naive anonymization
[19]. Several privacy threats are modeled, and solutions are
proposed to counter those attacks. Majority of the works
in this field are devoted toward anonymization of a sim-
ple graph model of the social networks [5], [7], [27], [30],
[34], [40]. Few recent works address the issue of privacy
preservation in the hypergraph model [3], [16], [17], [18],
[31]. Asayesh et al. [3] used local recording and hypergraph
model to meet k-anonymity in the relational data publication.
Li and Shen [16], [17], [18] used a hypergraph model for
representing social network. They proposed rank attack as
a privacy threat and rank anonymization as a solution to
this attack. The proposal of this work is based on rank-label
attack, which is an improved version of rank attack. Rank-
label anonymization of a hypergraph is proposed as a solution
to counter rank-label attack. The salient features of some
prominent contributions in the field of graph anonymization
along with this work are presented in Table 1.

III. BASIC CONCEPTS AND MOTIVATION
In this section, the basic concepts on hypergraph are
explained. Moreover, the motivation behind the develop-
ment of rank-label anonymization approach is presented. This
work is based on a more generalized representation of simple
graph called hypergraph. An edge in a simple graph can
connect two vertices.Meanwhile, an edge in a hypergraph can
connect any number of vertices. This type of edge is known
as hyperedge. The hypergraph can represent a community
structure in an effective manner than the simple graph [24].
In a simple graph, a community can be represented as a
clique, where all the nodes are connected to each other by
edges.

TABLE 1. Important features of some prominent graph anonymization
approaches and proposal of this work.

The security threat/attack considered in this work falls
under the class of identity disclosure risk, where a disclosure
of the identity of an actual social entity associatedwith his/her
digital counterpart, such as Facebook and Twitter accounts,
may occur from the publication of the graph. Rank attack is a
kind of identity disclosure attack used to disclose the identity,
and rank anonymization is a solution to this attack [17]. Our
contribution in this work is to propose a new and stronger
attack than rank attack called rank-label attack and to create
a rank-label anonymization solution to counter this attack.
Definition 1 (Hypergraph): A hypergraph can be repre-

sented as H = (V , <E , L>), where V is the set of vertices,
< E , L > is the set of hyperedge, label pairs. If the hyper-
graph contains m number of hyperedges then Um

i=1Ei = V .
Set L is the collection of labels that are assigned to the
hyperedges. In Fig. 1, the vertices are V1, V2,. . . ,V8. The
set < E , L > contains four hyperedges with their labels,
namely, < {1, 2}, a>, <{2, 3, 4, 6}, b>, <{6, 7, 8}, b>,
and <{5, 7}, a>.

The degree of a node v in a hypergraph is the number of
hyperedges incident on v. This notion of degree in a hyper-
graph is the same as that of a simple graph. The rank of a
hyperedge is the number of nodes covered by a hyperedge.
The rank of an edge in a simple graph is two.
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FIGURE 1. Original hypergraph.

FIGURE 2. Two-rank anonymized version.

Definition 2 (Vertex Rank-Label Tag): The rank-label tag
of a vertex v in hypergraph H is denoted as <R|L>, where R
denotes the ranks of the hyperedges arranged in a descending
order, and L is the labels of hyperedges in the same order. For
example, in Fig. 1, <R|L> of vertex 7 is <3, 2|b, a>.
The motivation behind the proposal of this work comes

from the rank attack in a hypergraph proposed by Li and
Shen [17]. The rank tag of a vertex v is the R part of the
rank-label tag<R|L>. Li and Shen proposed a rank attack for
identity disclosure. The<R|L> information of the vertices is
presented in Table 2 for Figs. 1, 2, and 3. First, we consider
the rank attack [17]. In Fig.1, vertices V2, V6, V7, and V8 is
easy to uniquely identify from the rank information. The rank
anonymized graph (Fig. 2) of the graph shown in Fig. 1 is
obtained after applying the rank anonymization proposed in
[17]. Fig. 2 is a two-rank anonymized graph of Fig. 1 because
another vertex with same rank exists for each vertex in this
graph. Hence, a node can be identified with 0.5 probability
from the rank information of Fig. 2 (Table 2 ).

In this work, we propose a new attack called rank-label
attack. In this attack model, <R|L> information is used for
the attack. In Fig. 2, if we use <R|L> information, then
vertices V1, V2, V5, V6, V7, and V8 are uniquely identified.
Fig. 3 shows a two-rank label anonymized graph for the graph
presented in Fig. 1. A k rank-label anonymized hypergraph
can be obtained by applying rank-label anonymization pro-
posed in this work. Suppose after applying this anonymiza-
tion, we obtain Fig. 3, which is a 2 rank-label anonymized
graph of Fig. 1. In Fig. 3, the probability of identifying a node
from <R|L> information is 0.5 because one more node with
same <R|L> exists for each node here.

FIGURE 3. Two rank-label anonymized hypergraph.

TABLE 2. Rank-label information.

IV. SYSTEM MODEL AND PROBLEM STATEMENT
This section discusses the overall system model along with
the problem statement. The system model provides the sys-
tem’s detail for setting up the framework and the overall
problem is stated as a problem statement.

A. SYSTEM MODEL
The system model contains five important entities: Social
Media Service Provider (SMSP), Hypergraph Publisher (HP),
Hypergraph Anonymizer (HA), External Party (EP), and
Open Publishing Platform (OPP).

• SMSP: The SMSP provides a platform where the cit-
izens/ users can create their profiles and interact with
each other.

• HP: The HP represents the group interactions among the
social entities through a hypergraph model. Moreover,
HP publishes the hypergraph structure for understanding
group dynamics.

• HA: The HA converts the original hypergraph represen-
tation/structure to an anonymized version that provides
privacy preservation with minimummodifications in the
original hypergraph.

• EP: The EP is an entity that asks the SMSP about the
hypergraph structure to analyze the group dynamics.
This EP may be another company seeking this informa-
tion.

• OPP: The OPP is an open platform that publishes data
openly to enable further analysis/research on the data.

The detailed system model is shown in Fig. 4. The sequence
of operations carried out by the five entities is as follows:
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FIGURE 4. Proposed system model.

1. SMSP supplies the group information to HP. HP con-
verts this group information to a hypergraph and sup-
plies the same to the SMSP.

2. SMSP verifies the hypergraph representation.
3. SMSP supplies the original hypergraph representation

to HA by defining the objective and constraints of
anonymization.

4. HA coverts the original hypergraph to an anonymized
version.

5. SMSP verifies the anonymized version. If SMSP finds
that the anonymized version is not as per the require-
ment, then it sends back the feedback to HA. This
process is repeated until a desired version is obtained.

6. SMSP provides the anonymized hypergraph for publi-
cation to EP as per its requirement.

7. If the process is not initiated by any EP, then SMSPmay
go for open publishing of data through OPP to enable
further research on group dynamics.

3. Analysis on the anonymized hypergraph enables essen-
tial data analysis without identity disclosure.

B. PROBLEM STATEMENT
The problem statement is all about the anonymization oper-
ation performed by HA. Given the original hypergraph H,
the HA converts it to an anonymized hypergraph H∗ that
satisfies k rank-label anonymity with minimum information
loss (PPCost).

Definition 3 (Rank-Label Attack and k Rank-Label
Anonymity): Given a hypergraph H = (V , <E , L>), if the
<R|L> tag of a vertex v is unique in H then v can be iden-
tified by an adversary with a prior background knowledge of
<R|L> tags of all vertices of H . A hypergraph H is k rank-
label anonymized if it contains at least k − 1 other vertices
having the same rank-label <R|L> tag for each vertex v.
Definition 4 (Problem Definition): The problem state-

ment can be mathematically stated as H → H∗: min
(PPCost). Here, the original hypergraph H is transferred
to an anonymized hypergraph H∗. Accordingly, the cost
of anonymization incurred by the anonymization process is
minimized. An optimal solution in polynomial time is not
possible because this problem is computationally hard [17].
Hence, our objective is to find a better possible approximate
solution that minimizes PPCost.

V. PROPOSED METHODOLOGY
The proposed methodology works in two folds: (i) Devel-
oping a hypergraph structure representation of the social
connections (Social Graph/Network) and (ii) anonymization
of the hypergraph structure to ensure privacy preservation.
The overall approach discussed in this section is sequential
rank-label anonymization (SA). Meanwhile, greedy rank-
label anonymization (GA) is discussed in the Result and
discussion section for a comparative study.

A. HYPERGRAPH STRUCTURE OF THE SOCIAL
CONNECTIONS
Representing the social graph/network in the form of hyper-
graph structure helps the SMSP in analyzing the citizens’
adoption to services, understanding the group dynamics of
a particular service, and setting the target to popularize the
service. The hyperedges in the hypergraph can be constructed
from the user profiles by looking at their service commonal-
ities. Fig. 5 shows the conversion of a simple graph/network
to a hypergraph representation. In this figure, we assume two
services, for example a and b. A node (representing citizen)
in the simple graph is labelled with a number and service
name used by that citizen. Here, the hypergraph presented in
Fig. 5 is obtained where the group/cluster density is fixed to
50%. This type of grouping evolves in the graph/network due
to triadic closure, focal closure, andmembership closure [11].
According to triadic closure, two persons become friends if
they have maximum friends in common. In per focal closure,
two users using the same type of services become friends with
each other. In the per the membership closure, if majority of
the friends of a person are using service x, then that person
also uses service x after certain period. Hence, all the three
closures are set with predefined probability thresholds where
the closure relationship evolves if the probability exceeds the
threshold value. The simple graph of Fig. 5 is assumed to be
obtained after a few evolutions of the initial network. The
hypergraph below is obtained after the evolution of friend-
ships.

VOLUME 10, 2022 118257



D. Mohapatra et al.: Rank-Label Anonymization for the Privacy-Preserving Publication of a Hypergraph Structure

FIGURE 5. Simple graph to a hypergraph and vice versa.

Lemma 1: The conversion from simple clique graph (Gaif-
man Graph) to Hypergraph is a one-to-one relationship and
so is the reverse.

Proof: The nodes are labelled 1,2, . . . , n in the clique
graph G. The following steps are used to convert a simple
clique graph G to a hypergraph H.

i. V← Set of vertices of G
ii. X← V
iii. i←1
iv. Repeat

a. Pick a node with label ‘i’ from X
b. Select a group of interconnected neighbors of ‘i’

and make them a group with ‘i’ and represent
them as a hyperedge in H if no such hyperedge
exists. Repeat it for all interconnected groups.

c. Remove ‘i’ fromX if all its neighbors are included
in H

d. i← i+ 1
Until (i == n+ 1)

As the hypergraph H preserves the same labelling of G,
the node to node mapping from simple clique graph to
hypergraph is one-to-one. Likewise, the conversion from
Hypergraph to simple clique graph with same labelling is
one-to-one. An illustration is shown in Fig. 5 that depicts this
one-to-one mapping.

B. HYPERGRAPH ANONYMIZATION
The second phase converts a hypergraph to an anonymized
hypergraph. Here, the whole objective is to obtain an
anonymized hypergraph that satisfies k rank-label anonymity.

FIGURE 6. Flow of hypergraph anonymization.

This phase is again divided into three steps. First, the modifi-
cation operation is considered because the complexity of the
conversion procedure and the cost of anonymization depend
upon the modification operation. Thereafter, sequential clus-
tering is used to generate a k rank-label anonymized sequence
from the original rank sequence. Finally, the rank-label
anonymized hypergraph is constructed from the k rank-label
anonymized sequence. The flowchart of the overall approach
is shown in Fig. 6. The steps are elaborately explained in the
subsequent subsections.

1) FIXING MODIFICATION OPERATION
Modification operations on the graph are required for trans-
forming an original graph to an anonymized graph. The
modifications on the graph are carried out after generating
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an anonymized sequence. However, the operations need to be
decided beforehand.

In the literature, various studies have been reported on the
simple graph modification operations, such as vertex addi-
tion/deletion and edge addition/deletion [6], [7]. However,
very few studies have discussed about the hypergraph opera-
tions [17]. The complexity of implementing hypergraph oper-
ations is more than that of simple graph operations. Among
the different hypergraph operations, we choose EXPAND
EDGE operation. In this operation, a hyperedge can be
expanded to cover more vertices. This operation has two
variants (i) EXPAND EDGE with an addition of a new vertex
and (ii) EXPAND EDGE without addition of a new vertex.
In the first variant, the new vertices are first added. Then,
hyperedge is expanded. In the second variant, the hyperedge
is expanded to cover more vertices from the existing vertices.
Hence, the first variant is much costlier than the second one.
In this work, we consider EXPAND EDGE without vertex
addition as our modification operation.

2) GENERATION OF RANK-LABEL ANONYMIZED SEQUENCE
This step is crucial in the anonymized hypergraph construc-
tion. Here, we discuss how to measure the distance between
the rank-label tags followed by the rank-label anonymized
sequence generation using sequential clustering.

a: DISTANCE BETWEEN RANK-LABEL TAGS
The vertices of the hypergraph are assigned with their rank-
label tags. The anonymized k rank-label sequence can be
generated by the transformation of some rank-label tags to
another tag, ensuring that all vertices have at least k − 1 coun-
terpart equivalents according to the rank-label tag. We eval-
uate the distance between the rank-label tags to meet this
transformation. On this basis, the anonymization cost is for-
mulated in the form of an optimization function.

Equation 1 presents the formulation that computes the
distance between two vertices vi and vj with tags < Ri,Li >

and < Rj,Lj >, respectively.

D
(
vi, vj

)
= (

∑
k

(
Rik − Rjk

)2)1/2 + ϕ
(
Li,Lj

)
, (1)

where Rik represents the k th component of the rank of vertex
vi, and Li is its label. Meanwhile, Rjk represents the k th com-
ponent of the rank of vertex vj, and Lj is its label. Equation 2
defines function ϕ(Li,Lj), which finds the distance between
the labels.

ϕ
(
Li,Lj

)
=

∑
k
h
(
Lik ,Ljk

)
, (2)

where h(Lik ,Ljk ) defines the lowest level of the concept
hierarchy, where the k th label of Li and Lj meet, divided by
the number of levels in the concept hierarchy. If two labels
are same, then they are assigned with zero directly without
any computation.

The same idea can be extended to measure the distance
between a vertex and a group.Moreover, the distance between

FIGURE 7. Concept hierarchy of some hypothetical groups.

two groups is measured, considering complete linkage func-
tion [12].
Illustration: Fig. 7 shows a concept hierarchy of some

hypothetical groups (i.e., a, b, c, and d). A and B are the
upper-level abstraction or the categories under which the
groups are present. X is the topmost category of the groups.
The groups are generalized from the bottom to the top. Let
us consider two vertices v2 and v6 of Fig. 5 with rank-label
tags <4,2|ba> and <4,3|bb>, respectively. D(v2, v6 =
((4-4)2+(3-2)2)1/2 + (0+2/3) = 1.66. Meanwhile, the dis-
tance between v6 and v7 of Fig. 5 with tags <4,3|bb> and
<3,2|ba> can be computed as D(v6, v7 = ((4 − 3)2 + (3-
2)2)1/2+ (0+2/3) = 2.08.

b: GENERATION OF THE k RANK-LABEL ANONYMIZED
SEQUENCE
In this step, the k rank-label anonymized sequence is gen-
erated from the original rank sequence by using sequential
clustering [30]. The distance measurement is used for formu-
lating the cost of anonymization. The sequential algorithm
is better than the greedy approach [5], [30] because the
readjustment of cluster assignment is possible in the later
phase. Algorithm 1 discusses the overall process of k rank-
label anonymized sequence generation.

The objective of the anonymized sequence generation is
to generate such a sequence that minimizes the cost of
anonymization/privacy preservation cost (PPCost) given in
Equation 3. The constraint limits the group size in the range
[k , 2k).

PPCost =
m∑
i=1

G(i)∑
j=1

D(< Rij|Lij >, < Ri|Li > ∗),
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subject to k ≤ Size (G (i)) < 2k, 1 ≤ i ≤ m,

(3)

wherem defines the number of groups, and Size(G(i)) denotes
the number of elements in each ith group. The optimal rank-
label tag < Ri|Li > ∗ is the anonymized rank-label tag of
the ith group to which other rank-label tags are mapped, the
PPCost is incurred due to this transformation. Hence, the job
of the sequential clustering is to find the < Ri|Li > ∗ that
minimizes the PPCost.

Algorithm 1 k Rank-Label Anonymized Sequence (RS, k)
Input: Rank-label Sequence (RS) of the original hypergraph

H with parameter k
Output: k rank-label anonymized sequence AS

1: Begin
2: Consider that each v ∈ V is an individual group
3: for each ith group
4: {
5: if(k ≤ Size (G(i))
6: {
7: Merge two groups G(i) and G(j) using

minimum distance D(G(i), G(j)) and
complete linkage function

8: if (Size(merged group) ≥ 2k)
9: First k vertices are assigned to one group,

and the rest are assigned to another group
10: }
11: }
12: do
13: {
14: for each vertex v ∈ V
15: {
16: Evaluate the distance D from v to all groups by

using complete linkage
17: Assign v to group G(i) if D(v, G(i)) is minimum
18: if (Size (merged group) ≥ 2k)
19: The first k vertices are

assigned to one group, and the rest are
assigned to another group

20: }
21: } while (swapping possible)
22: AS← Substitute the rank-label of all vertices by the rank-

label of the vertex at maximum distance from others
23: if (Realize(AS ))
24: {
25: return(AS)
26: }
27: else
28: {
29: Perform minor modification in AS
30: go to step-23
31: }
32: End

In Algorithm 1, steps 2–11 convert the vertex set into
groups of vertices where each group has the group size
defined by the constraint given in Equation 3. Distance D
is computed using Equation 1. Steps 12–21 are used for
cluster reassignment to satisfy the objective function shown
in Equation 3. Step 22 generates anonymized sequence AS
that substitutes the rank-labels of all vertices of a group with
the rank-label of the vertex with maximum distance to make
it compatible with EXPAND EDGE without vertex addition
operation. Steps 23–31 check the realizability by using a
hypergraph realizability Algorithm 2, Realize (AS). The real-
ize (AS) algorithm returns 1 if the anonymized sequence is
realizable; otherwise, it returns 0. If AS is not realizable, then
minor modification in AS is performed to make it realizable.
Hypergraph realization is explained in detail in the next sub-
section.

c: HYPERGRAPH REALIZATION
The anonymization of a hypergraph is possible only when
realization is guaranteed. The anonymized degree and
anonymized rank sequences must be realizable to generate
an anonymized hypergraph. Realization plays a vital role in
ensuring hypergraph anonymity. The following steps are used
for hypergraph realization:

1. The hypergraph is converted to Gaifman graph [28] that
represents each hyperedge as a clique. Gaifman graph
is a simple graph representation of hypergraph.

2. Havel–Hakimi algorithm [32] is used to test the realiz-
ability.

These steps are represented in Algorithm 2.

Algorithm 2 Realize (AS)
Input: AS← k rank-label anonymized sequence
Output: 1 denotes realizable

0 denotes not realizable

1: Begin
2: Convert the rank sequence of the anonymized

hypergraph H∗ to degree sequence (DS) of the
equivalent Gaifman graph.

3: Test the graphic property of DS using the
Havel-Hakimi method

4: if(DS is graphic)
5: return(1)
6: else
7: return(0)
8: End

Algorithm 2 tests whether the anonymized rank sequence
AS is graphic or not. If the sequence is graphic, then it leads
to the construction of a hypergraph. Step 2 of the algorithm
converts the rank sequence AS of the anonymized hypergraph
to the DS of the equivalent Gaifman graph. Gaifman graph is
a simple graph where the edge of a hypergraph is represented
as clique. The labels of all simple edges of Gaifman graph are
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equal to the label of the corresponding hyperedge. Generating
the DS from AS is intuitive. Once DS is generated, the rest of
the steps (3–7) are used to verify if this sequence is graphic or
not. We use the Havel–Hakimi method [32] to test the graphic
property.
Definition 5 (Rank Summation (RSum) of a Vertex): The

RSum of vertex v is the summation of all the ranks present in
the rank tag of v. Let RS be the rank tag of a vertex v, RS =
{R1, R2, . . . , Rm}, where v is a member of m hyperedges.
Then, RSum =

∑m
k=1 Rk.

Lemma 2: If the rank tag of a vertex v in hypergraph H is
RS, then the degree of v in the equivalent Gaifman graph G
is RSum-Deg(v, H ).

Proof: Given hypergraph H , the rank tag of a vertex v is
RS=<R1, R2, . . . . . . , Rm >, where m is the degree of node v
in H (i.e., Deg(v, H )). The rank sum RSum is the summation

of ranks RSum =
m∑
i=1

Ri. The hypergraph can be represented

as an equivalent Gaifman graph, where each hyperedge is
represented as a clique. Hence, the degree of v in Gaifman

graph is
m∑
i=1

(Ri − 1) (i.e., RSum−Deg(v, H )). �

Lemma 3: In a hypergraph H , the number of vertices with
odd(RSum−Deg(v, H )) is even.

Proof: This Lemma is useful in proving the realizabil-
ity of a hypergraph from its rank sequence (collection of
rank tags). Hypergraph can be easily converted to a simple
graph where each hyperedge is represented as a clique in
the equivalent simple graph. A hyperedge with n number of
vertices is equivalent to a clique with n vertices. According
to the previous result of graph theory, the number of vertices
with odd degree is even, and it is true for all the simple
graph equivalent of hypergraph. The degree of a node N in
an equivalent simple graph can be interpreted, as shown in
Lemma 2. Hence, the number of vertices with odd RSum is
even. �
In the hypergraph shown in Fig. 3, the rank sequence is

RS = {<3>, <4, 3>, <4>, <4>, <3, 2>, <4, 3>, <3,
2>, <3>}. Sequence RSum = {7, 7, 5, 5, 4, 4, 3, 3} is in
a descending order and the degree sequence DS = {5, 5, 4,
4, 3, 3, 3, 3} in an equivalent simple graph. According to the
Havel–Hakimi result, theDS is graphic. Hence, RS is graphic.
This notion means that we can construct a hypergraph
from RS.

3) CONSTRUCTION OF A RANK-LABEL ANONYMIZED
HYPERGRAPH
We use the incidence matrix for the construction of an
anonymized hypergraph H∗ from the original hypergraph H .
Incidence matrix can more accurately represent the hyper-
graph because it uses an edge–vertex relationship. The
vertices present in the hyperedge are marked 1 for that
hyperedge, and the rest are marked as 0. The construction
takes place in two phases. In the first phase, the anonymized
incidence matrix IM∗ is constructed from IM by EXPAND

EDGE. In the second phase, H∗ is constructed from IM∗.
These steps are represented in Algorithm 3.

Algorithm 3 Hypergraph Construction
Input: Original hypergraph H with rank-label sequence RS

and anonymized rank-label sequence AS
Output: Hypergraph H∗ satisfying AS

1: Begin
2: IM← Incidence matrix of H (labels are assigned to

columns of IM)
3: IM∗←IM
4: Obtain Gaifman degree sequence DS(RS) and DS(AS)

using Lemma 2.
5: Find residual sequence Res←DS(AS)-DS(RS)
6: while (Res not null)
7: {
8: In Res, if two vertices Vi and Vj have +ve residue

ranks, then add 1 in the equivalent Gaifman graph.
Reflect the changes in IM∗.

9: Reduce the corresponding rank by 1. Adjust the
labels accordingly.

10: }
11: Construct H∗ from IM∗
12: return (H∗)
13: End

In Algorithm 3, step 2 finds the incidence matrix IM of
the original hypergraph H . Step 3 assigns IM as the initial
instance of the anonymized incidence matrix IM∗. Step 4
finds the Gaifman graph degree sequence of RS and AS
(i.e., DS(RS) and DS(AS)). Step 5 computes the residual
sequence Res, that is, the difference between DS(RS) and
DS(AS). Steps 6–10 compute IM∗ by hyperedge expansion
that establishes new relationships. Step 11 constructs the
hypergraph H∗ from the IM∗. The +ve residue rank of a
vertex is the remaining positive rank that can be included in
the hyperedges. The Step 12 returns H∗.

VI. RESULT AND DISCUSSION
This section discusses the results obtained from the imple-
mentation of the proposed approaches. At first, we consider
the Adult dataset [9] for this implementation and analysis.
A greedy-based approach of hypergraph anonymization is
proposed to set a comparison framework for the SA approach.
The experiment is extended further to a real labelled hyper-
graph dataset MAG-10 [41].
System Specification: Experiments are carried out in a

2.40 GHz Intel(R) Core (TM) i7-4770 processor with a mem-
ory support of 4 GB and Microsoft windows 8.1 professional
operating system (System 1).
Dataset Details:We prepare a synthetic hypergraph struc-

ture by considering the Adult dataset [9] that is used for
the experiment and analysis because the original hypergraph
structure is not available. This dataset contains 48,842 records
with 15 attributes. Among these attributes, 14 are independent
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TABLE 3. Independent attributes of the Adult dataset and their type.

attributes, and 1 is a dependent attribute (represents classifica-
tion labels). The dataset details of the independent attributes
are illustrated in Table 3. This table shows the name of
14 independent attributes and separates them into two groups:
Continuous and Categorical. All the continuous attributes are
chosen for the experiments, and the categorical attributes are
not used. Furthermore, the dependent attribute is not used.

A. IMPLEMENTATION STRATEGY
The following steps are used to generate an original synthetic
hypergraph structure from the Adult dataset and for the sub-
sequent application of the proposed approaches:

1. We consider four groups (a, b, c, and d), as shown in
Fig. 7.

2. The similarity between the vertices is obtained by
using the continuous attributes presented in Table 3.
Euclidean distance is used to measure the similarity
between two vertices. A similarity matrix that contains
the similarity between all pairs of vertices is created.

3. The four labels (a, b, c, and d) are assigned to all
48,842 vertices (each record of the dataset is considered
a vertex). The distribution of labels is set to be uniform
(25% of the total number of vertices).

4. A vertex v is picked at random and assigned with
label a. Then, n − 1 (where n = 25% of the total
number of vertices) number of similar nodes of v are
obtained and assigned with the same label. Then, the
group is assigned with a hyperedge. The same process
is continued for the rest of the three labels. This step
continues until all the vertices are labeled. This labeling
procedure assigns multiple labels to 10% of the ver-
tices that are intentionally incorporated. Subsequently,
we generate a hypergraph structure.

5. The proposed SA and GA are applied on the structure
obtained in step 4.

B. GREEDY RANK-LABEL ANONYMIZATION (GA)
The greedy based approach is proposed to set a comparison
framework with SA approach. This approach adopts the same
method as discussed in SA, but with some changes. In the
greedy approach, steps 12–21 of Algorithm 1 are removed
because this part uses sequential clustering for the readjust-
ment of the cluster assignment. The rest of the steps are the
same as those of SA. In GA, cluster adjustment is not possible
in the later phase. Hence, GA takes less time than SA, but

FIGURE 8. Rank vs rank-label disclosure (in %).

the quality of solution is better in the case of SA as it allows
readjustment in the later phase.

C. RANK VS RANK-LABEL DISCLOSURE
Rank disclosure occurs when a vertex can be identified with a
disclosure probability p if it does not have at least a k−1 coun-
terpart with the same rank [17]. The same idea is applicable
for the rank-label disclosure of a vertex with a disclosure
probability p if it does not have at least a k − 1 counterpart
with the same rank-label tag. We consider five different k
values (3, 8, 10, 12, and 15) and observed the disclosure risk
% (the percentage of records suffers from a disclosure risk)
according to rank and rank-label disclosure. Both the disclo-
sure risks are observed on the synthetic hypergraph structure
obtained from the Adult dataset. Fig. 8 shows that the risk
of disclosure increases when k increases. Furthermore, the
disclosure risk due to rank-label disclosure/attack is higher
in all cases compared with the rank disclosure/risk, as shown
in Fig. 8.

D. COMPARISON BETWEEN SA AND GA
The two approaches are compared by considering the cost of
anonymization as an evaluation parameter. The optimal cost
of anonymization obtained by Equation 3 is a non-normalized
one. Scaling down the cost of anonymization (PPCost) to [0,
1) is possible by applying Algorithm 4.

Algorithm 4 Normalized_Cost (PPCost )
Input: PPCost← Anonymization cost/privacy

preserving cost
Output: NCost← Normalized cost

1: Begin
2: if(PPCost == 0)
3: NCost← 0
4: else
5: NCost ← (1− 1

PPCost+0.1 )
6: return (NCost)
7: End

Algorithm 4 returns 0 when PPCost is 0. In such a sce-
nario, the rank-label tags are equal and do not need any
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FIGURE 9. Normalized cost (NCost) of anonymization in GA and SA.

FIGURE 10. Time of execution (in seconds) of GA and SA in system 1.

modifications; otherwise, the algorithm returns a value in
between (0, 1) (i.e., a value greater than 0 and less than 1).
The normalized cost never attains 1 because 1

PPCost+0.1 never
turns to 0. This situation occurs because we added 0.1 as a
constant value. If this constant is not added, then the algo-
rithm returns a value of 1 when the PPCost value is 1, which
violates the requirement when the PPCost value exceeds 1,
the NCost goes down. In most cases, PPCost is greater than
1. Hence, we add constant 0.1. Any other constant value may
also be considered on behalf of 0.1.

We compute the NCost incurred by SA and GA for the five
k values (3, 8, 10, 12, and 15). This comparison is clearly
depicted in Fig. 9. NCost increases with the increase in the k
value. NCost must be less in SA than in GA in all the cases.
Fig. 10 shows the time (in seconds) required by GA and SA in
System 1. GA takes lesser time than SA because it executes
some steps of SA only.

E. EXTENDING THE EXPERIMENT TO A
HIGH-PERFORMANCE COMPUTING (HPC) SYSTEM
The implementation takes a long time in a typical system,
such as System 1, as shown in Fig. 10. To reduce the time
and enhance the efficiency, we extend the experiment to
an HPC system (i.e., PARAM Shavak HPC system with
CPU@2.60 GHZ, 28 cores, and 96 GB memory) (System 2).
A comparison between the execution time (in seconds) in
Systems 1 and 2 is shown in Figs. 11 and 12 for GA and SA,
respectively. The percentage reduction in time due to the use

FIGURE 11. Time of execution (in seconds) of GA in Systems 1 and 2.

TABLE 4. Time of execution (in seconds) of GA with % reduction.

TABLE 5. Time of execution (in seconds) of SA with % reduction.

of an HPC system (System 2) can be computed for GA and
SA by using Equations 4 and 5, respectively.

% reduction in time (GA)

=
TGA (System1)− TGA (System2)

TGA (System1)
× 100, (4)

% reduction in time (SA)

=
TSA (System1)− TSA (System2)

TSA (System1)
× 100, (5)

where TGA and TSA denote the execution time (in sec-
onds) of GA and SA, respectively. Tables 4 and 5 show the
percentage reductions in time for GA and SA, respectively.
The percentage value is rounded up to a whole number.
We observe an average of 58% reduction in time in GA and
an average of 62% reduction in time in SA due to the use of
System 2.

F. EXTENDING THE EXPERIMENT TO A REAL-WORLD
DATASET
TheMAG-10 dataset is considered from [41] where the nodes
are authors and the hyperedges represent publications. The
labels of the hyperedges are the conferences in computer
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FIGURE 12. Time of execution (in seconds) of SA in system 1 and
system 2.

TABLE 6. Essential information about the MAG-10 dataset.

FIGURE 13. Concept hierarchy of 1-10 labels of MAG-10.

science. The detail information regarding the dataset is given
in Table 6.

A concept hierarchy shown is Fig.12 is constructed by
considering the 1 to 10 labels of hyperedges. This concept
hierarchy is used in the process of rank-label anonymization.

Fig. 14 shows the NCost comparison between SA and GA
for datasetMAG-10. The observation in this dataset is also the
same as the Adult dataset. The SA reports less NCost than GA
for k values 2, 3, 4, and 5. As per the execution time shown is

FIGURE 14. NCost comparison between GA and SA in MAG-10.

FIGURE 15. Time of execution (in seconds) of GA and SA in System 1 for
MAG-10 dataset.

FIGURE 16. Time of execution (in seconds) of GA and SA in System 2 for
MAG-10 dataset.

Fig. 15 and 16, GA takes less time than the SA in both System
1 and System 2.

The reduction in time for SA and GA is computed
using Equations 4 and 5 respectively for MAG-10 dataset.
An average of 56% reduction in time of execution is
reported in GA whereas it is 53% in SA due to the use of
System 2.
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G. ANALYIS ON TIME COMPLEXITY
The time complexity of the proposed SA (Algorithm 1) is
O(n4). In Algorithm 1, steps 3-11 take O(n3) time as the outer
loop is executed for O(n) times, in step 7, complete linkage
function is computed from a distance matrix that takes O(n2)
time. Hence, steps 3-11 take O(n)xO(n2) =O(n3) time. Steps
12-21 take O(n4) time. Here, the do. . .while loop is executed
for O(n) times. The for-loop in steps 14-20 is executed for
O(n) times. Step 16 takes O(n2) time for the distance matrix
computation. Hence, steps 12-21 take O(n)xO(n)xO(n2) =
O(n4) time. Steps 23-31 depend on hypergraph realization
i.e., Algorithm 2. The process of hypergraph realization takes
O(n2) time as it applies Havel-Hakimi method. Therefore, the
complexity of the Algorithm 1 is O(n3)+ O(n4)+ O(n2) =
O(n4). GA adopts the same strategy as SA but without cluster
readjustment in the later phase. GA uses all the steps of SA
(Algorithm 1) except steps 12-21. Hence, the time complexity
of GA is O(n3). Due to less time complexity, GA is more
scalable as compared to SA.

H. ANALYSIS ON DE-ANONYMIZATION PROBABILITY
Here, we discuss the possibility of de-anonymization of a
published k rank-label anonymized hypergraph. As EXPAND
EDGE without vertex addition operation with relabeling of
hyperedges is considered for the construction of anonymized
hypergraph from the original hypergraph, the original hyper-
graph can be reconstructed from the anonymized one by
considering all possible hyperedges through SHRINK EDGE
without vertex deletion operation i.e., opposite of EXPAND
EDGE without vertex addition operation with all possible
hyperedge labels. Let us consider the anonymized hyper-
graph has m hyperedges say < E1, L1 >, < E2, L2 >,
. . . . . . . . . , <Em, Lm >. Assume that it contains l number
of distinct labels such that l ≤ m. An original hyperedge
can be reconstructed from an anonymized hyperedge < Ei,
Lj > by considering one among all subsets of Ei excluding
the null set i.e., one from (2Rank(Ei) -1) subsets, combined
with one among all l labels. Hence, the probability of recon-
structing the original hyperedge is 1

(2Rank(Ei)−1)∗l
. By combin-

ing all hyperedge reconstruction probabilities, we find the
probability of reconstructing the original hypergraph to be

1
lm
∏m
i=1 (2

Rank(Ei)−1)
. As this reconstruction probability is less,

the reconstruction of original hypergraph from the published
k rank-label anonymized hypergraph is very difficult.
Lemma 4: The probability of de-anonymization in pro-

posed rank-label anonymization is less than that of rank
anonymization.

Proof: Let us assume that both the rank-label
anonymization and rank anonymization use EXPANDEDGE
without vertex addition operation to convert a given hyper-
graph to its anonymized version. As discussed above, the
probability of de-anonymization in k rank-label anonymiza-
tion is 1

lm
∏m
i=1 (2

Rank(Ei)−1)
. In case of rank anonymization,

the probability of de-anonymization is 1∏m
i=1 (2

Rank(Ei)−1)
as

the label information is not used in rank anonymization.

As 1
lm
∏m
i=1 (2

Rank(Ei)−1)
< 1∏m

i=1 (2
Rank(Ei)−1)

, the de-
anonymization is difficult in rank-label anonymization than
that of rank anonymization. �

VII. CONCLUSION AND FUTURE SCOPE
This work proposes a hypergraph model of social structure
according to social connections and label information. Here,
we propose a stronger attack model than the existing rank
attack called rank-label attack. We have proposed SA and
GA to counter the rank-label attack. SA is found to be better
than GA according to normalized anonymization cost metric
NCost for both Adult and MAG-10 datasets. In both datasets,
GA takes less time than SA, but the quality of solution is
not better than that of SA. Furthermore, GA and SA are
implemented in two systems, namely, Systems 1 and 2. The
averages of percentage reduction in time are 58% and 62%
in GA and SA in System 2 for Adult dataset, respectively.
In MAG-10 dataset, average reduction percentage is reported
to be 56% and 53% for GA and SA respectively. GA and
SA report O(n3) and O(n4) time complexity respectively. This
work can be further extended to address some other types of
attacks. In the near future, a stronger attackmodel performing
better than the rank-label attack can be modeled, and the
corresponding anonymization solution can be developed.
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