IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 11 October 2022, accepted 28 October 2022, date of publication 3 November 2022, date of current version 10 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219049

== survey

A Survey of Deep Learning Architectures for
Privacy-Preserving Machine Learning With Fully
Homomorphic Encryption

ROBERT PODSCHWADT “, (Student Member, IEEE), DANIEL TAKABI“1, (Member, IEEE),
PEIZHAO HU?, (Member, IEEE), MOHAMMAD H. RAFIEI"1,
AND ZHIPENG CAI“, (Senior Member, IEEE)

IDepartment of Computer Science, Georgia State University, Atlanta, GA 30303, USA
2Depa.rtment of Computer Science, Rochester Institute of Technology, Rochester, NY 14623, USA

Corresponding author: Robert Podschwadt (rpodschwadt] @ gsu.edu)

This work was supported in part by the National Science Foundation under Grant 2054968 and Grant 2118083, and in part by the
Microsoft Faculty Fellowship Program.

ABSTRACT Outsourced computation for neural networks allows users access to state-of-the-art models
without investing in specialized hardware and know-how. The problem is that the users lose control
over potentially privacy-sensitive data. With homomorphic encryption (HE), a third party can perform
computation on encrypted data without revealing its content. In this paper, we reviewed scientific articles and
publications in the particular area of Deep Learning Architectures for Privacy-Preserving Machine Learning
(PPML) with Fully HE. We analyzed the changes to neural network models and architectures to make them
compatible with HE and how these changes impact performance. Next, we find numerous challenges to HE-
based privacy-preserving deep learning, such as computational overhead, usability, and limitations posed by
the encryption schemes. Furthermore, we discuss potential solutions to the HE PPML challenges. Finally,
we propose evaluation metrics that allow for a better and more meaningful comparison of PPML solutions.

INDEX TERMS Deep learning, homomorphic encryption, neural networks, privacy, privacy preservation,

machine learning.

I. INTRODUCTION

In Machine Learning as a Service (MLaaS), a service
provider (also called server or the cloud), offers computa-
tional resources and sometimes trained models to a client
who owns the data. However, the need to share data raises
privacy concerns for one or both parties; clients need to
share their data with the server, or the server needs to share
its model with the client. To address this, different private
outsourced computation techniques such as Differential Pri-
vacy [1], Secure Multiparty Computation [2], Homomorphic
Encryption (HE) [3], Functional Encryption [4], or Trusted
Execution Environments [5] have been applied to machine
learning (ML). These solutions are called Privacy-Preserving
Machine Learning (PPML). In this paper, our focus is only
on HE for privacy preservation in neural networks (NN).

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

HE has been called the holy grail of encryption [6], [7].
It offers privacy for both the client’s and the server’s data.
Since the server can do all the processing offline, no infor-
mation about the network leaks to the client. Besides, the
majority of the NN operations are HE-friendly, e.g., dot
products are very simple to evaluate on encrypted data. How-
ever, using HE with NNs poses some challenges, including
Multiplicative Depth, limited operations, and computational
complexity. Multiplicative Depth is the number of con-
secutive multiplications that can be applied to a ciphertext
before the ciphertext can no longer be decrypted correctly.
In contrast to plain data, the supported HE operations are
limited to only addition and multiplication. The ciphertext
operations computational complexity is much higher than
plaintext operations both in terms of memory consumption
and processing time.

In this work, we review state-of-the-art papers that (1)
include a wide range of solutions to the challenges of

117477

https://orcid.org/0000-0003-2997-109X
https://orcid.org/0000-0003-0447-3641
https://orcid.org/0000-0003-4923-9584
https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0002-0917-2277

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

NNs with HE, (2) present innovative solutions and establish
important techniques in the field, and (3) investigate challeng-
ing problems. We discuss their pros and cons and propose
some future avenues to tackle. Furthermore, we propose a
set of evaluation guidelines to compare solutions in terms
of resource requirements. Similar surveys mostly focus on
either a broader approach to cryptographic tools [8], secu-
rity and privacy [9], PPML libraries [10], bench-marking
and comparison of HE schemes [11], or fully HE (FHE)
compilers [12]. In contrast, our approach focuses specifi-
cally on PPML with HE for NNs. In fact, we conduct a
survey of the existing PPML research, providing an in-depth
comparison of their techniques. The main motivation behind
this work is to help the PPML research community observe
(1) current efforts/available solutions in HE PPML and (2)
the existing gaps/challenges and their potential solutions.
We analyzed the changes to neural network models and archi-
tectures to make them compatible with HE and how these
changes impact performance. Next, we find numerous chal-
lenges to HE-based privacy-preserving deep learning, such as
computational overhead, usability, and limitations posed by
the encryption schemes. Furthermore, we discuss potential
solutions to the HE PPML challenges. Finally, we propose
evaluation metrics that allow for a better and more meaningful
comparison of PPML solutions.

Our work is organized as follows: In Section II, we pro-
vide an introduction to MLaaS, HE, and NNs techniques.
In Section III, we present an overview of the selected
studies, their approaches, and strengths and weaknesses.
In Section IV, we discuss literature-based strategies to make
NN layers computation possible over HE data, dubbed mak-
ing NN HE-friendly. In Section V, we take an in-depth look at
frequently-used activation functions for HE. We discuss NNs
adaptions to HE constraints in Section VI. In Section VII,
we investigate potential security weaknesses of the selected
studies’ solutions. In Section VIII, we compare the experi-
mental results reported by the papers. In Section IX, we pro-
pose resource-independent performance metrics and evalua-
tion and reporting standards for a fair comparison of PPML
solutions. In Section X, we discuss challenges and future
research directions. We conclude in Section XI.

Il. BACKGROUND

A. MLaaS WITH PRIVACY PROTECTION

MLaasS is a form of outsourced computation, shown schemat-
ically in Fig. 1. A client uses resources provided by a service
provider (server). In MLaaS without privacy preservation
(Fig. 1a), the client sends their plain data to the server, where
an ML model processes it. Afterward, the server returns the
result to the client. The problem is that the client has no
control over what the server does with the data; it needs to
trust the server to process the data correctly and only use
it in the agreed-upon manner, e.g., the server does not sell
it to another party. The correct computation issue can be
addressed using zero-knowledge proofs [13], which is beyond
the scope of this work. Zero-knowledge proofs allow one

117478

Data owner’s domain of control

\\‘ Send data

| | 100 fun
| i computation
! - 10i0 foio
1 1 — 1010
| | —
! O ! cee -
oY =
i Data owner i N Model owner Model
I (Client) i (Server)
1 / ‘ Retrieve
ST Send result result
(a) Without privacy preservation
Data owner’s domain of control
/" Encryptdata " send encrypted data Run
(}8}8 pk 101 computation
10 0
— "]
— 3
) 2,
m s o,—<o>—|°
Data owner — Model owner HEI;;rlgnld ly
(Client) % (Server) . rode

\ Decrypt data sk yi Send encrypted result Retrieve

N - result

(b) With privacy preservation

FIGURE 1. Machine learning as a service architecture, with and without
privacy preservation. The area inside the dotted line in 1b represents the
area in which the client can keep secrets.

party to prove to another party that a certain statement is
true without revealing any other information. The privacy
of the client’s data can be protected using HE, as shown in
Fig. 1b. Here the data never leaves the control of the client
in plaintext. The server only receives encrypted data, and it
can perform HE computation on it, e.g., evaluate an NN. The
result of the computation is also encrypted. This way, the
server learns neither the input nor the output, guaranteeing
complete privacy for the data.

The client can also use the server to train a model on
encrypted data. Here they transfer an encrypted dataset and
let the server train an NN on it. This is less common due to the
high computational complexity of training an NN, especially
on encrypted data. Other techniques besides HE can provide
preservation in MLaa$S, which we will review in the following
section.

B. TECHNIQUES FOR PRIVACY PRESERVATION

Different privacy preservation techniques can be used for
MLaaS. However, some techniques are better suited for cer-
tain scenarios than others. Also, the cryptographic guarantees
the techniques provide vary. Here we will give an overview
of popular techniques, starting with the less secure and pro-
ceeding to the more secure ones.

1) FEDERATED LEARNING

[14] is a technique to train ML models on decentralized
data. The data is spread across multiple parties; the goal is to

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

train a model without needing to share the data. Each party
often trains a model locally on their own data and shares
gradient updates to train a combined model. This way, they
do not need to share their data with the other parties involved.
On its own, federate learning does not provide cryptographic
privacy guarantees [15]. However, the gradient aggregation
can further be secured using Secure Multiparty Computation.
A central authority can aggregate the gradients [16], or the
involved parties can each collect the gradient updates [17].
Hence, every party has a copy of the final model.

2) DIFFERENTIAL PRIVACY

[1] adds random noise to the data obscuring private infor-
mation in the data. Based on the amount of noise added,
a probability bound on the information leakage can be com-
puted, indicating how likely an adversary can extract private
information from the data. The main application of Differ-
ential Privacy is to protect personal information in the train-
ing data. The goal is to prevent an attacker from extracting
private information from the trained model by controlling
how much each sample can influence the parameters during
training [18]. Multiple parties can also use it to train a shared
model on distributed data without disclosing private data to
other participants [19]. The primary strength of Differential
Privacy is that it operates on standard numerical data types,
meaning most ML libraries and hardware accelerators are
supported, making the implementation and run-time over-
head negligible. On the other hand, using Differential Privacy
reduces the quality of the model predictions. Differential
Privacy does not offer any cryptographic guarantees and only
offers a probability bound on possible information leakage.

3) SECURE MULTIPARTY COMPUTATION

[20] is a term for numerous algorithms and protocols, like
garbled circuits [2], secret sharing [21], and oblivious trans-
fer [22], that allow two or more parties to jointly evaluate a
function without revealing their inputs to each other. With
these primitives, researchers have developed protocols to
evaluate NNs while preserving the privacy of the inputs [23],
[24], [25]. However, these protocols often require a lot of
communication during the computation, which can make
network latency a problem. It is possible to avoid some
communication by performing expensive pre-computation in
an offline phase [26], [27].

4) FUNCTIONAL ENCRYPTION

[4], [28] is a form of encryption that allows the evaluation
of certain functions over encrypted data. The results of these
functions are “leaked” from the ciphertexts, i.e., the result
of the function is in plain data. This is beneficial for NN
computation since only the first layer needs to be run on
encrypted data [29], [30], and the rest can be run on plain data.
However, this does leak some client data information to the
server; the server learns the model output and the intermediate
results of the computation.

VOLUME 10, 2022

5) TRUSTED EXECUTION ENVIRONMENTS

Like ARM TrustZone [31] and Intel SGX [32], are hardware
enclaves inside the central processing unit (CPU). The data
is inaccessible while inside the CPU. Before writing the
data to memory, the CPU encrypts it. However, in practice,
multiple attacks compromise the security of these hardware
enclaves [33], [34], making them less attractive for PPML.

C. HOMOMORPHIC ENCRYPTION (HE)

Public-key (asymmetric) encryption schemes [35] use sep-
arate keys for encryption and decryption. The key used for
encryption is called the public key pk, and the key used
for decryption is called the private or secret key sk. The
public key can be freely shared with anyone and be used for
encryption, but only the holder of the secret key can decrypt
the message. Public-key schemes are designed in such a way
that having access to the public key does not allow an attacker
to extract the private key [36]. In addition to being public-
key schemes, HE schemes allow computation on encrypted
data. The result of the computation is also encrypted; the
data does not need to be decrypted during the computation.
Having all the stages of the computation encrypted, from the
inputs over the intermediate values to the results, makes HE
schemes ideal for outsourced computation. After decryption,
the result of the encrypted computation is the same as if the
computation was performed on plain data [37].

For encryption, we start with a message m € M. M is
called the message space in this paper. Common message
spaces are integers M = Z, real numbers M = R, or single
bits M = {0, 1}. To encrypt m, it needs to be encoded into
a plaintext p, which comes from the plaintext space P. The
encoding of m into p is done by the encoding function encode
and the reverse operation decode. p can then be encrypted
into a ciphertext c. The transformation from a plaintext into a
ciphertext is done by the encryption function Enc. It uses the
public key to encrypt the plaintext p into the ciphertext c:

¢ = Enc(pk, p) €))

The decryption operation is performed by the decryption
function Dec, which uses the secret key sk to turn a ciphertext
¢ back into a plaintext p:

p = Dec(sk, ¢) 2)

where HE schemes differ from other public-key schemes
is that they also have an evaluation function Eval that can
evaluate a circuit C, a sequence of operations. E.g., a circuit
can be an ML model. Evaluating C on plain data and on
encrypted data gives us the same result after decryption:

vn)) =Cpo, -+ ,pn) (3)

where cg, - - - , ¢, = Enc(pk, po, - - - , pn) are the encryptions
of the plaintexts po, - - - , Pp.

We can categorize HE schemes by the operations that can
be used in the circuit C and the depth of C. The depth of a
circuit is the number of consecutive operations that need to

Dec(sk, Eval(pk, C, cg, - - -

117479

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

be performed to evaluate the circuit. Here, we provide brief
explanations of the HE schemes categorization established by
Armknecht et al. [38]:

1) PARTIALLY HOMOMORPHIC ENCRYPTION

Schemes are the “simplest” HE schemes; they only support
a limited set of circuits since they can only evaluate either
addition or multiplication on encrypted data [39], [40].

2) SOMEWHAT HOMOMORPHIC ENCRYPTION

Schemes can support both multiplication and addition on
encrypted data. However, the size of the ciphertexts grows
with every computation performed. The depth of the sup-

ported circuits can be controlled by the encryption parame-
ters [41].

3) LEVELED HOMOMORPHIC ENCRYPTION

Schemes are very similar to somewhat homomorphic
schemes in definition. However, their schemes require that
the size of the ciphertexts does not grow as operations are
performed. The depth of the circuits that can be evaluated
using Leveled Homomorphic Encryption schemes can be
controlled with a parameter d. The size of the ciphertexts
needs to be independent of d and only rely on the security
level. Leveled Homomorphic Encryption schemes that sup-
port both addition and multiplication are sometimes called
leveled fully homomorphic [42].

4) FULLY HOMOMORPHIC ENCRYPTION

Schemes have no restrictions on the circuits they can evaluate.
That means they need to be able to evaluate circuits of arbi-
trary depth and have no restrictions regarding the operations
required.

The limited circuit depth stems from the way encryption
works. In simple terms: encryption adds noise to the plain-
text, thereby obscuring it. The decryption process removes
that noise. Every operation that is performed on encrypted
data increases the noise inside the ciphertexts. If the noise
passes a certain threshold, correct decryption becomes impos-
sible [43]. One solution is to decrypt a ciphertext ¢ and then
encrypting it again, leading to a fresh ciphertext ¢’ with a reset
noise level. However, this requires access to the secret key sk.
To address this issue, Gentry [3] describes how to build an
FHE scheme out of a scheme that can evaluate its decryption
function on encrypted data by proposing a bootstrapping
method:

¢’ = Bval(pk, Dec, Enc(sk), ¢) 4)

In Eq. 4, the decryption circuit, C = Dec, is evaluated
with an encryption of sk as input. This does not completely
reduce the noise inside the ciphertext but reduces the noise
level; hence, further computation can be performed. The
bootstrapping operation can be performed as often as neces-
sary, allowing FHE schemes to evaluate circuits of arbitrary
depth.

117480

Scalar Operations:

[2J+[1] [s]+[2] [o]+[x] [1]+[1]-[3]
SIMD Operations:

[2[slofa]+[1]2][1]1]=[3]10]1]2]

FIGURE 2. Scalar vs Single Instruction Multiple Data (SIMD) operations
with 4 slots.

However, bootstrapping relies on circular security, i.e.,
the secret key needs to be encrypted with its correspond-
ing public key [44]. Circular security can be eliminated by
using keyswitching [45], [46]. Keyswitching uses a chain
of different secret keys where each key is encrypted with
the following key in the chain. Evaluating the bootstrapping
function using one of the keys from the chain results in the
ciphertext ¢’ being encrypted with the next key in the chain.
However, once all keys in the chain have been used, no further
computation can be performed. Additionally, bootstrapping
is computationally expensive, which is why it is often not
used in practice. We refer the reader to Brakerski [45] for
a complete discussion of FHE and to Armknecht et al. [38]
for more in-depth information about the different HE scheme

types.

D. SINGLE INSTRUCTION MULTIPLE DATA

Single Instruction Multiple Data (SIMD) [47] is a form of par-
allel processing. It can be applied to encrypted data in some
HE schemes [48]. SIMD operations can reduce the computa-
tional overhead introduced by encrypted computation. SIMD
allows the user to encode multiple messages into a single
plaintext. Operations on the plaintext (or a ciphertext that
encrypts it) are performed on all messages encoded within it.
The number of messages a ciphertext can hold is called slots.
The number of filled slots does affect the complexity of the
operations; they have the same complexity if one or all slots
are filled. The encryption parameters govern a ciphertext’s
number of slots. Fig. 2 shows the difference between scalar
and SIMD additions in an example with four slots. However,
in practice, the number of slots is typically in the order of
thousands. In the scalar case, the operation requires four
additions, but when using SIMD, four values can be packed
together, and only one addition is necessary. All schemes,
except for TFHE [49] (a fast Fully Homomorphic Encryption
scheme over the Torus) support SIMD operations.

E. HOMOMORPHIC ENCRYPTION (HE) SCHEMES

Some authors, especially in earlier work, use the YASHE (Yet
another somewhat homomorphic encryption scheme) [50]
scheme. However, Albrecht et al. [51] show that this
scheme can be attacked using subfield attacks. The
other four schemes rely on the Ring Learning With
Errors [52] hardness assumption, a problem that is thought
to be quantum hard. Like YASHE, BGV (Brakerski/Fan-
Vercauteren scheme) [42] and BFV (Brakerski-Gentry-
Vaikuntanathan) [53] only support integers. The CKKS

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

TABLE 1. A comparison of fully homomorphic encryption (FHE) schemes with respect to their supported message space, supported operations on
encrypted data (division is only with respect to plaintext divisors), Single Instruction Multiple Data (SIMD) support, and strengths and weaknesses.

Message Space Supported Operations
Scheme Integer | Real | Binary | Addition | Multiplication | Division | Bitwise SIMD Strengths Weaknesses
YASHE . . .) - exact arithmetic - not secure
- plaintext overflow
BFV - exact arithmetic - plaintext overflow
BGV - exact arithmetic - plaintext overflow
- real numbers
CKKS) d1V1s1qn - approximate arithmetic
- no plaintext
overflow
- fast bootstrapping | - slow polynomials
TFHE ¢ ¢ - fast binary gates - no SIMD
(Cheon-Kim-Kim-Song scheme), also called HEAAN implementations of CKKS and BFV without bootstrapping.

(Homomorphic Encryption for Arithmetic of Approximate
Numbers), [54] scheme enables computation on real num-
bers. However, we need to relax the definition of HE to
include CKKS. The usual definition for HE requires that the
result of computation on encrypted data and plain data must
be the same. CKKS only performs approximate computation.
The result on encrypted data and plain data will be almost
the same except for a small approximation error. The authors
designed the scheme so that the error will first appear in
the least significant bits of the results. The TFHE [49]
scheme only supports individual bits as messages. It sup-
ports various binary gates from which complex circuits can
be built. One of its main features is comparatively fast
bootstrapping.

In Table 1, we compare the strength and weaknesses of the
schemes. YASHE has the obvious downside that it is insecure.
YASHE, BGV, and BFV all perform exact computation on
integers, meaning the result on plain and encrypted data will
be the same. These schemes’ downside is that they need to
deal with growing values during computation. The absolute
value of the plaintext in the encrypted ciphertext can not
grow larger than one of the scheme’s parameters, the plaintext
modulus. If, during the computation, the values grow larger
than the plaintext modulus, the decryption will no longer be
correct. The parameters must be chosen large enough to hold
any possible value that could arise during the computation.
The problem worsens because the schemes only support inte-
ger messages and no division. A typical approach is to encode
floating point numbers as integers by scaling them up by a
constant factor. However, repeated multiplication, as in dot
products or polynomials, quickly drives up the magnitude
of the encrypted values. And due to the lack of division
operation, there is no possibility to scale the values and reduce
their size during computation.

There are some encryption libraries that include one
or more of the aforementioned encryption schemes. PAL-
ISADE [55] is an encryption library that provides sup-
port for BFV, BGV, CKKS, and TFHE. HElib [56],
the first FHE library, supports BGV, BFV, and CKKS.
However, it only supports bootstrapping for BGV and
BFV. SEAL [57], a popular encryption library, provides

VOLUME 10, 2022

HEAAN [58], the official implementation of the CKKS
scheme, is the only library that supports CKKS bootstrap-
ping. The TFHE library [59] implements the scheme by the
same name.

F. NEURAL NETWORKS (NNs)

In this paper, we focus on privacy preservation for NNs.
NNs are weighted, directed graphs in which input nodes
are connected to output nodes through several hidden nodes.
Nodes, also called neurons or units, are organized in layers.
Typically, the computation of a layer is the weighted sum of
all inputs to which a non-linear activation function is applied.
An iterative optimization algorithm, like stochastic gradient
descent, updates the weights to reduce a loss function. This
process is also called training.

1) NNs ON ENCRYPTED DATA

The majority of the computation, the weighted sums, in an
NN can be performed on encrypted data. The non-linear
activation functions pose the main problem. It is impossible
to efficiently evaluate the most common activation functions
like the Rectified Linear Unit (ReLU), Hyperbolic Tangent
(Tanh), Softmax, and Sigmoid on encrypted data. Without
these non-linearities, the NN would only be able to learn
linear functions.

2) TRAINING VS. INFERENCE

Often, privacy-preserving solutions for NNs only cover infer-
ence. On the other hand, training is more computationally
expensive since it requires a forward and backward pass
through the model. The increase in operations leads to signifi-
cant noise buildup, making training a much higher multiplica-
tive depth process than inference. Furthermore, the weights
will be encrypted with the same key as the data, meaning the
server will have a model it cannot access after.

Ill. STRENGTHS AND WEAKNESSES

This section provides an overview of state-of-the-art literature
in the emerging field of PPML with NNs and HE, along with a
critical review of their strength and weaknesses (summarized
in Table 2).

117481

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

A. LOW OVERHEAD

Bourse et al. [60] propose a method for privacy-preserving
NN inference to evaluate NNs of arbitrary depth on the
MNIST repository. To achieve this, the authors perform boot-
strapping after every layer. Due to a significantly reduced
message space, the used ciphertexts are small; however, it is
unclear if this approach is scalable to more complex data.

B. HIGH THROUGHPUT

Dowlin et al. [61] propose CryptoNets, one of the first solu-
tions using FHE for NN inference. Chabanne et al. [62]
propose an extension of CryptoNets [61]. They show that
using a batch normalization layer before each activation
layer stabilizes training with polynomial activation functions.
Hesamifard et al. [63] build CryptoDL, a system similar to
CryptoNets [61]. However, the authors aim to find a better
low-degree polynomial approximation for Sigmoid, Tanh,
and ReLU, thereby improving the quality of the network’s
predictions.

All these solutions, e.g., CryptoNets and CryptoDL, use
SIMD batching to offset some of the computational overhead,
allowing them to process large batches of inputs efficiently.
The downside is that they can only process small batches
with a large overhead. Another weakness is the limited plain-
text space and the accommodations authors need to make
to account for it. Zhang et al. [64] develop a solution for
encrypted speech recognition that also employs SIMD batch-
ing. Although their solution has unconstrained message space
in contrast to, say, CryptoNets and CryptoDL, the final decod-
ing of the NN’s output needs to be performed by the client.

C. IMPROVED COMPUTATION

Lou et al. [65] propose a solution called SHE for Shift-
accumulation-based leveled-HE-enabled deep NN, based on
TFHE, which allows the implementation of the ReL.U func-
tion and max-pooling layers. This solution increases the per-
formance since there is no need for function approximation.
However, TFHE performs matrix operations slower than the
other HE schemes.

Chou et al’s [66] solution, called Faster CryptoNets,
improves upon the work by Dowlin et al. [61] by pruning
and quantizing the models to reduce the number of required
operations and increase the sparsity in the weights’ polyno-
mial encoding. This encoding increases the efficiency of the
multiplication algorithms [67].

Jiang et al. [68] introduce an algorithm for HE matrix
multiplication based on CKKS. It uses one ciphertext to
multiply two d x d matrices, a complexity of O(d), which
is an improvement over Halevi [56], with a complexity of
0(d?) and d ciphertexts. The authors build a new framework,
called E2DM (which stands for encrypted data and encrypted
model), for privacy-preserving NN inference based on this
algorithm and its extension for non-squared matrices.

Brutzkus et al. [69] present different encrypted data rep-
resentations using SIMD and ways to switch between these

117482

representations to reduce the latency of NN. These data rep-
resentations reduce the memory requirement and allow to per-
form operations like convolutions and matrix multiplication
efficiently. Lee et al. [70] propose an algorithm for faster
encrypted convolutions with a stride of two based on SIMD
data packing. For convolutions with stride one, the authors
use the algorithm presented by Juvekar et al. [71]. Further-
more, to speed up the computation of polynomials, they use
a baby step giant algorithm [72]. For evaluating deep models,
like Resnet-20 [73], the authors implement advanced boot-
strapping techniques [72], [74] in SEAL. Mihara et al. [75]
propose a solution for training NN privately. To speed up
the computation, the authors propose a new SIMD matrix
batching technique in which a matrix is arranged diagonally
into a ciphertext. This new arrangement reduces the number
of operations required to transpose the matrix. A considerable
downside of this solution is that it requires an interactive
phase for noise removal, despite being evaluated on a tiny
dataset. A shared weakness of the above solutions is that they
all rely on a particular data layout that needs to be designed
case-by-case.

Jang et al. [76] propose a variation of the CKKS
scheme, MatHEAAN (Matrix HEEAN), that specializes
in matrix operations. Based on this scheme, the authors
implement Gated Recurrent Units (GRU) [77] to han-
dle sequential data. Since recurrent NNs (RNNs) typically
have high multiplicative depth, the authors use their cus-
tom bootstrapping algorithm to refresh the noise during
computation.

D. HARDWARE ACCELERATION

PrivFT by Al Badawi et al. [78] is a privacy-preserving
adaption of fastText [79] for text classification. fastText is
a model for text classification. PrivFT proposes the fol-
lowing privacy-preserving solutions: (1) using a plaintext
model and encrypted inputs for inference and (2) using an
encrypted dataset for training an encrypted model. To speed
up inference, the authors implement a Residue Number Sys-
tem (RNS) variant of CKKS [80] over GPUs. In an RNS,
integers can be represented as the residuals (remainders) with
respect to two coprime integers. In HE, this can be used to
keep the coefficients of polynomials small, which speeds up
computation.

Al Badawi et al. [81] implement and evaluate convolutional
NNs (CNNs) over HE ciphertexts using the BFV scheme
on graphic processing units (GPU) to speed up the compu-
tation. The authors use plaintext space Chinese remainder
theorem (CRT) decomposition for deeper networks to avoid
overflows. CRT allows the authors to split the plaintext into
multiple smaller values with respect to some primes. It should
be noted that such use of CRT requires frequent swapping out
of GPU memory.

E. PROBLEMS WITH HIGH MULTIPLICATIVE DEPTH
Podschwadt and Takabi [82] propose a privacy-preserving
text classification solution using word embeddings and

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

TABLE 2. Strengths and weaknesses. + indicates a strength and — a weakness. A blank field means a solution is neither strong nor weak in this area.
And ? means the information is missing in the study. For a link to the implementation, see Table 3.

£|E
o | B]
2123 g
E|E | 5 | 2 °
=582 g ¢ E z
5| S |9 | < s | £12| %5 =
3122|325 ||2|E|E|E |28
2l ¥ g 8|2|8 |22 |5|le|2|<
5| 2|2 |2 |2|E 2|5 |2 8|2 %
> = S =] 2 = = = @ <}
Study SIE|Z|E|E|2|&|0|& |0 |3 |3 | Comments
Al Badawi et al. [81] - + - + + + -
Nandakumar et al. [85] - - + ? + + + - Model training on encrypted data
Bourse et al. [60] + | - + | + ? + | + + + | Unclear generalizability
Chabanne et al. [62] - - + ? ? ? - Unknown crypto parameters
+ - - + + - Performance drops on CIFAR-10
Faster Cryptonets [66] - + ? - - + - + - Transfer leamingpapproach
CHET [87] + + + + + + - Automatic optimizations
Cryptonets [61] - + + + + + +
CryptoDL [63] - + + + + | + ? +
E2DM [68] + + + ? + + + +
SHE [65] - + + - + + + +
Brutzkus et al. [69] - + + + ? + + +
ngraph-he [86] - - - ? + + + +
Mihara et al. [75] - + | + + ? + + + - Small evaluation task, model training on encrypted
data, uses client interaction
Podschwadt & Takabi [82] | - + + - + - - + | Requires client interaction during computation
. + + + | + - + - -
PrivET [78] - + ? + | + - + - - Model training on encrypted data with a small num-
ber of epochs
CryptoRNN [84] ? + - + - - - Requires client interaction; small evaluation task
RNN Blocks [83] + - - + ? +
Zhang et al. [64] - + ? ? ? + - ? -
Lee et al. [70] - + | + ? + + + - Uses bootstrapping; ReLU function
Jang et al. [76] - + | + ? + + + - Uses bootstrapping; GRU

RNNs, which are known to have high Multiplicative Depth.
However, the authors outsource the embedding operation to
the client, which requires sharing the embedding layer with
the client. Furthermore, interactions between the client and
server are required to reset the noise. In a later study, the
authors enhanced their solution [83] to eliminate such inter-
actions. They introduce a new architecture, dubbed parallel
RNN blocks, which reduces the multiplicative depth of the
problem by splitting the input sequence into smaller chunks
and processing them in parallel. Bakshi & Last [84] pro-
pose CryptoRNN for RNN privacy-preserving classification.
However, this approach requires client-server interactions for
noise removal, although it only uses small datasets. Nan-
dakumar et al. [85] propose a privacy-preserving solution
for training fully-connected NNs on encrypted data, which is
also known to possess high Multiplicative Depth. The trained
model is also encrypted with the data owner’s key; only
the encrypted network is accessible by the server. Training
data and network parameters are all in binary representation;
the authors only encode a single bit, although the ciphertext
can hold more information. The authors use bootstrapping
to refresh the ciphertexts to keep the noise under control.
Bootstrapping is necessary after each layer in the forward and
backward pass. The downside of the approach is the large
overhead brought on by bootstrapping and inefficient data
encoding.

VOLUME 10, 2022

F. USEABILITY

Boehmer et al. [86] develop nGraph-HE, a backend for
Intel’s nGraph graph compiler. nGraph-HE takes existing
HE-friendly NNs from popular ML frameworks like Tensor-
Flow or PyTorch and translates them into HE operations. The
goal is to require as little knowledge about HE as possible.
nGraph-HE can perform several optimizations that speed up
the NN inference. CHET is an optimizing compiler for tensor
circuits over HE by Datathri et al. [87]. CHET’s optimizations
are encryption parameter selection, data layout selection,
rotation key selection, and fixed-point scaling factor selec-
tion. The compiler uses a cost model to find the most efficient
operations and crypto parameters.

IV. NEURAL NETWORK (NN) LAYERS WITH
HOMOMORPHIC ENCRYPTION (HE)

Designing an NN architecture depends on the task and the
data. It is not a simple task and requires domain knowledge
and experience, even on plain data. Encrypted data adds
another layer of complexity to architecture design. The archi-
tecture needs to fit the task and data; it needs to be within the
constraints of the focus HE scheme. In this section, we dis-
cuss common NN layers and their applicability to encrypted
data. Table 4 presents a list of studies that provide solutions
to make common NN layers encryption-friendly.

117483

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

TABLE 3. Links to available implementations.

Study Link

Bourse et al. | https://github.com/mminelli/dinn

[60]

Cryptonets https://github.com/microsoft/CryptoNets
[61]

CryptoDL [63] | https://github.com/inspire-lab/CryptoDL
E2DM [68] https://github.com/K-miran/HEMat
SHE [65] https://github.com/qianlou/SHE
Brutzkus et al. | https://github.com/microsoft/CryptoNets
[69]

ngraph-he [86]
Podschwadt &
Takabi [82]

https://github.com/NervanaSystems/he-transformer
https://github.com/inspire-lab/CryptoDL

RNN Blocks | https://github.com/inspire-lab/CryptoDL
[83]
Input Hidden Output
Layer Layer Layer

Ciphertext noise

FIGURE 3. A multi-layer perceptron with one hidden layer. On encrypted
data, the ciphertext noise grows as computation progresses into the
lower layers.

A. FULLY CONNECTED AND CONVOLUTIONAL LAYERS
Fully Connected layers are the simplest forms of NN layers
(Fig. 3). The fundamental building block is a neuron or unit
(Fig. 4). Given inputs x;, weights w;, a bias b and an activation
function f, an output, y = f(b + Y ., wix;), is computed.
Instead of computing the output of every neuron individually,
for the neurons of a layer, the output values can be computed
using simple matrix multiplication. Previous studies summa-
rized in Table 4 all support fully connected layers.

Unlike fully connected networks, CNNs often include var-
ious NN layers, such as convolution, pooling, and batch
normalization. Fundamentally, fully connected and convolu-
tional layers are similar. In a convolutional layer, a window

117484

Easy to compute with HE
A

¥
Hard to compute with HE

FIGURE 4. Calculating the output value of a single neuron using the
inputs x;, weights w;, bias b, and activation function f. In most
homomorphic encryption schemes, evaluating f is hard.

TABLE 4. A list of common layers and which studies support them on
encrypted data.

Study

Al Badawi et al. [81]
Nandakumar et al. [85]
Bourse et al. [60]
Chabanne et al. [62]
Faster Cryptonets [66]
CHET [87]
Cryptonets [61]
CryptoDL [63]
E2DM [68]

SHE [65]

Brutzkus et al. [69]
ngraph-he [86]
Mihara et al. [75]
Podschwadt & Takabi [82]
PrivFT [78]
CryptoRNN [84]
RNN Blocks [83]
Zhang et al. [64]

Lee et al. [64]

Jang et al. [76]

¢ | Convolutions

' | Batch Normalization

' | Max Pooling

® | Average Pooling

' | Scaled Average Pooling

' | RNN
' | GRU

ooooooo0ooooooooooooFu"yConnected

Vi Yz |v1a Vi {Viz | V13

Vi1 |Vaz |¥2s Yau | Y22 | Va3

T Y31 (V32 | Va3 X110 | X2 [*¥13 | X4 | . Yi1 |Y3z2 Va3

X1 | X12 | X¥13 | XA

x5 | X2z | %23 J5
X2,1 | X22,.4%23 |X24 31 22 23, 24

[e x: x357| x: X:
X31"| X32 (X33 |Xsa 31 [X372 | X33 X34

Xg |Xa2 |Xaz |x.
X41 |Xaz |Xa3 |Xaa el il Ml Mt

L J L)
Y

Next step: move the window across the input

T
Initial Step

FIGURE 5. Connection between the input and the output for convolutions
and pooling layers. The two differ in the function applied to values in the
window.

is moved across the input data (Fig. 5). Each cell in the
window has a weight associated with a weight. The out-
put of the window is the weighted sum of all elements in

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

12,1

14,1

6‘9
bl (%
V130 e
r-- &
Y11 Y1z Vs

Perform Sumalong |y's, [y's |y'as

convolution the channel
for each axis
channel

3,11 X321 X331 X341

K411 K421 K431 K441

FIGURE 6. Convolutions on inputs with multiple channels.

the window. For multiple channels, the window is moved
across all channels, and the output of each cell is summed
up along the channel dimension (Fig. 6). Like fully con-
nected layers, convolution layers can be expressed as matrix
multiplications and dot products. Matrix multiplication and
dot products are HE-compatible since they only consist of
additions and multiplications. No work needs to be done to
adapt them to HE. However, a naive implementation can be
costly; every element of a matrix/vector is a single ciphertext.
The naive implementation of d-dimensional matrix multipli-
cation requires d> multiplications and the dot product of two
d-dimensional vectors requires d multiplications.

One strategy for speeding up computation is to reduce
the number of operations needed. SHE [65] replace matrix
multiplication and dot product with shift operation to reduce
the number of multiplications. When a number is represented
in binary format, as in SHE, multiplying it by two can be
achieved by shifting the decimal point right by one. In fact,
multiplying by any power of two is simply shifting the
decimal point. Shift operation requires quantizing the NN’s
weights to be a power of two and representing the NN’s inputs
as fixed-point numbers in their binary representation. Faster
CryptoNets [66] uses a very similar approach. The authors
also quantize the NN’s weights to be a power of two, giving
them a sparse polynomial (mononomial) representation. Mul-
tiplication between ciphertexts and these sparse plaintexts is
much faster. Research on plaintext [88] suggests that weight
quantization does not sacrifice accuracy.

Another option is using the SIMD operations offered
by many schemes. The goals are to use fewer ciphertexts,
decrease latency, and organize the data to speed up compu-
tation. This organization is called ciphertext packing. It is
essential to have efficiently packed ciphertexts since it can
drastically reduce the number of operations needed to eval-
uate specific algorithms. For example, E2DM [68] includes
an encoding map that allows packing one or more matrices
in a single ciphertext for efficient matrix multiplications.
PrivFT [78] uses a packing structure that encodes the input
in a relatively small number of ciphertexts. For efficient dot
products, the embedding matrix is packed vertically. Brutzkus
et al. [69] propose packing schemes for efficient convolutions
and matrix multiplications. The packing schemes are mem-
ory efficient since they use fewer ciphertexts. The authors
propose algorithms for switching between packing schemes
depending on the operation, i.e., convolutions or matrix

VOLUME 10, 2022

multiplications. Lee et al. [70] propose a packing scheme
for strided convolutions. In contrast to E2DM and PrivFT,
the CHET compiler [87] can automatically select packing
schemes depending on the input model, HE scheme, and
data domain by introducing a cost model. Mihara et al. [75]
develop a diagonal ciphertext packing scheme for efficient
matrix transpose operation; it boosts the training backpropa-
gation speed.

The primary challenge of ciphertext packing schemes
is that they need to work efficiently with data for opera-
tions such as convolutions or matrix multiplications; there is
no unique packing scheme for all data/operations. Besides,
except for CHET [87], other techniques such as E2DM and
PrivFT require trial and error to identify efficient ciphertext
packing schemes. Furthermore, packing often requires rota-
tions of the slots. Switching packing schemes, which often
requires rotations, impacts the overall NN runtime. Addition-
ally, the transformation from one representation to another
needs to be considered when calculating the noise budget.

Most HE schemes support SIMD operations except for
TFHE; it cannot be used in these packing schemes.

B. POOLING LAYERS
Pooling layers are often crucial to the success of CNNs.
Pooling layers, like convolutional layers, work by moving a
window across the data (Fig. 5). The output of the window
is the pooling function, which is applied to all values in the
window. The most common pooling layer is max-pooling,
where the pooling function is the maximum of all values
in the window. However, it is inefficient with HE schemes
except SHE [65]; it benefits from the TFHE scheme. Some
studies replace the max-pooling operation with either aver-
age [62], [81], [87] or scaled (by a constant factor) average
pooling [61], [63], [64], [66], [86]. The most common scal-
ing factor is the number of input elements; it turns average
pooling into input summations without any multiplication
(i.e., plaintext division) operation. The advantage of using
average pooling is the tighter control over the magnitude of
the values. The parameters of the HE scheme need to be
chosen so that all values that occur during computation fit
into the plaintext space. With average pooling, the output of
the pooling operations is in the same range as the inputs. With
scaled average pooling, the output values can grow larger. The
cost of using average pooling is an additional multiplication.
Al-Badawi et al. [81] show that pooling is not necessary
on simple data sets such as MNIST, but on more complex
data sets such as CIFAR-10, it does improve performance.
Usually, studies that utilize MNIST do not implement pooling
layers in their NNs.

C. BATCH NORMALIZATION LAYERS

Batch normalization stabilizes the training process on plain
data by reducing the internal covariate shift. It forces the
inputs to a layer to follow a zero-mean normal distribu-
tion. This normalizing operation makes inputs with large
absolute values less likely. Chabanne et al. [62] used batch

117485

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

V V
A‘{ H he = f(Wx; +Vhe_y +b) ey

;

o

®?

(a) An unrolled RNN
‘V‘rq 4 hy 4 heyr }V_
(N S
w

%

w
@

(b) Noise propagation in an RNN

FIGURE 7. Overview of a simple recurrent neural network (RNN) layer 7a
“unrolled” along the time dimension £. The red dotted line in 7b shows
the initial input value passing x, through every unrolled layer.

normalization to stabilize NN training with polynomial acti-
vation functions. Polynomial activations usually work well
in a small interval around zero. Outside of that interval, they
are unbounded and have rapidly growing derivatives during
training (exploding gradient problem). By placing a batch
normalization before a polynomial activation layer, the prob-
ability of encountering values outside the optimal polynomial
activation range decreases. In addition to stabilizing training,
it helps prevent values from overflowing the limits of the
plaintext space. This approach is used in many studies [63],
[64], [65], [66], [86].

D. RECURRENT LAYERS

There is little work on PPML using recurrent layers. Simple
recurrent layers (Fig. 7a) at their core are similar to fully
connected layers; they only consist of matrix multiplication.
The depth of recurrent layers depends on the number of
elements in the input sequence (Fig. 7b). Recurrent layers
often have higher multiplicative depth (i.e., more noise),
requiring numerically larger crypto parameters than convo-
lutional or fully connected layers. Noise buildup prevents the
network from completely processing the inputs. Large crypto
parameters require more computation and memory resources.
To alleviate these challenges, Podschwadt and Takabi [82]
and Bakshi & Last [84] (CryptoRNN) propose to use the
client to remove the built-up noise in the ciphertext. Cryp-
toRNN uses simple RNNs with client communication too.
They refresh noise at three predefined points in the networks:
1) after every multiplication, 2) before every non-linear acti-
vation function, and 3) after processing each sequence ele-
ment. It should be noted that at point (2), the client also

117486

computes the activation functions. Similarly, Podschwadt and
Takabi [82] use naive matrix multiplication and a degree
three polynomial Tanh approximation in simple RNNs. The
authors dynamically decide when to use the client for interac-
tive noise removal depending on the remaining noise budget
(which prevents unnecessary communication) instead of at
predefined points.

In a later study, Podschwadt and Takabi [83] propose
RNN Blocks, an RNN architecture that does not need client
interaction. It reduces the multiplicative depth by splitting
each instance into multiple shorter chunks across the time
dimension. Any recurrent operation on these chunks is paral-
lelized, decreasing the multiplication depth significantly due
to shorter chunks. The RNN produces an output for each
chunk; they are then concatenated and fed to a fully connected
layer.

Later recurrent layers such as long short-term memory [89]
(LSTM) (Fig. 8), or gated recurrent units [77] (GRU), impose
even higher multiplicative depth due to their complex struc-
ture. SHE [65] modified the LSTM structure to use the ReLU
function, which is comparatively easier to compute using
TFHE than Tanh. Typically, RNNs use the Tanh function,
which requires at least a polynomial of degree three for an
adequate approximation. The authors also replace all the
multiplications with shift operations, which they can perform
at no cost to the noise budget.

Jang et al. [76] implement GRUs on encrypted data using
their proposed encryption scheme MatHEAAN. The internal
structure of a GRU is similar to that of an LSTM and intro-
duces high multiplicative depth. To address this issue, the
authors rely on bootstrapping during the computation of the
network.

RNN architectures are not well suited for execution
over homomorphically encrypted data [83]; they require
either fundamental changes as seen in SHE [65], and RNN
Blocks [83], bootstrapping [76], or establishing client com-
munication as seen in [84] and [82]. However, interactive
communication takes away some HE key advantages over
Secure Multiparty Computation, such as the lower commu-
nication overhead and the ability to perform the computation
independently from the client.

The primary strength of RNNs is that they have some
“memory”” of previous states. However, it is their downfall
on encrypted data since this “memory”” produces networks
with a large multiplicative depth.

E. EMBEDDING LAYERS

Word embeddings are real-valued vector representations of
words’ meaning in natural language processing; they are
useful tools since they turn words into real values (instead
of integers) to be later fed to NNs. There are different word
embedding methods. PrivFT [78] relies on the fasttext [79]
architecture, where the words need to be encoded into ““one-
hot” vector representations. In a one-hot vector representa-
tion, all elements are zero except one. In PrivFT, the client
does the one-hot encoding. On plaintext, the translation from

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

Fe = (W [he-y, xe] + br)
Ie = (W [he—1,] + by)
€ = tanh(We [he—1, x¢] + bc)
0¢ = 0(Wo [he-1,x¢] + bo)

® Elementwise Multiplication
@ Elementwise Addition

| Noise increasing
operations

FIGURE 8. Internals of a long-short term memory (LSTM) cell with
noise-increasing operations highlighted.

a word to one-hot encoding would happen on the server.
However, this operation is prohibitively costly over encrypted
data. The client sums up all the one-hot encodings, encrypts
the results, and sends the ciphertext to the server alongside the
number of encoded words. The client transmits this number
of words in plain. The server multiplies the vector with the
embedding matrix and scales the results with the number of
encoded words. Podschwadt and Takabi [82], [83] also work
with textual data. In their work, they outsource the embedding
to the client. The client performs the embedding operation
(a simple table lookup) and sends the encrypted result to the
server for computation.

In all approaches above, the server needs to share some
information about the model and the data with the client. They
all need to provide the client with an enumerated vocabulary
of all the words known to the model. This only leaks very little
information. In Podschwadt and Takabi [82], [83] studies,
the client also needs to access the learned embeddings in
plaintext. This plaintext access is not a problem in their later
work RNN Blocks [83], where they use publicly available,
pretrained embeddings. However, using publicly available
embeddings prevents the server from using fine-tuned or self-
learned embeddings and keeping them secret from the client.
Besides, embeddings further increase the size of the data.
Embeddings often turn a single word into a vector of 100+
real values, increasing size during encryption.

V. ACTIVATION FUNCTIONS

PPML approaches are often different from standard ML in
their choice of activation functions. The choice of activa-
tion often depends on the scheme. With some HE schemes,
one can use popular NN activation functions. For example,
SHE [65] uses the TFHE scheme, enabling the user to imple-
ment ReLU on encrypted data using binary gates. Bourse
et al. [60] use a step function that outputs either 1 or —1 based
on the sign of the input value. This sign function can be
evaluated using a custom bootstrapping operation in TFHE.
Every activation function evaluation is also a bootstrapping
operation, allowing unlimited deep networks. However, train-
ing a network with the step function is difficult since it

VOLUME 10, 2022

does not provide gradient information. Another option for
using standard activation functions is client-side computa-
tion. CryptoRNN [84] outsources the computation of the
activation function to the client, allowing the authors to use
arbitrary activation functions.

In other schemes, low-degree polynomials are popular
choices for activation functions since most schemes can eas-
ily evaluate polynomials. The simplest non-linear polyno-
mial, the square function f(x) = x2, is often used as a
replacement for ReLU [61], [63], [64], [68], [69], [75], [81],
[84], [86]. The square function is relatively fast and adds little
overhead to the computation. However, it does not perform
well in all problem domains. For example, using it in RNNs
is infeasible due to its rapidly growing derivative [82]. The
square function can not be used to replace ReLLU in an already
trained network since their outputs are too different.

More complex polynomials can reduce the approximation
error. The Stone-Weierstrass theorem [90] states that any
continuous function can be approximated with arbitrary pre-
cision over a closed interval using polynomials. However,
accurate approximation requires high-degree polynomials,
which introduce large computational overhead and noise. One
needs to find a trade-off between approximation accuracy and
polynomial degree for HE solutions.

Chabanne et al. [62] study polynomials with even degrees
two, four, and six as approximations of the Relu function.
They find the approximations by applying the *“polyfit”
method of the numpy' package to the output of ReLU on the
standard normal distribution. The authors use this distribution
since they put a batch normalization before every ReLU
activation function. Combining polynomial activation func-
tions with batch normalization can also help during training;
polynomial activation functions’ unbounded derivatives can
lead to exploding gradients, which are counteracted by batch
normalization. Hesamifard et al. [63] propose a method for
finding approximations of common activation functions. The
authors find a polynomial approximation for the function’s
derivative using Chebyshev polynomials [91]. By integrating
that function, they can find an approximation for the activa-
tion function. The intuition behind their approach is that the
derivative of the activation function plays a large role in train-
ing the NN, and approximating it more closely leads to better
results. Their approximation approach is used by Podschwadt
and Takabi [82], and RNN Blocks [83] to approximate the
Tanh function, with degree three polynomials, for the use in
RNNE.

Lee et al. [70] approximate the ReLU functions as
ReLU(x) = %x(l + sign(x)). They use a composition of
polynomials [92] to approximate the sign function. In their
experiments, they use three polynomials of degrees 7, 15,
and 27. This allows for a very accurate approximation of
ReLU that can replace the activation in a trained NN without
the need for further fine-tuning. However, the high degree of
the polynomials requires bootstrapping to control the noise.

1 https://numpy.org

117487

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

The authors further propose a method for approximating the
softmax function:

e
Z;:l 9’

Using the least-squares method, the authors use a degree
12 polynomial to approximate the exponential function.
To compute the inverse function, the authors use Goldschmidt
division [93], allowing them to approximate the division as a
series of multiplications. Al Badawi et al. [78], use minimax
approximation [94] to find a polynomial approximation for
the softmax function. Minimax approximation is to minimize
the maximum error. Using this approach, the authors find
1/8x> 4+ 1/2x + 1/4 as an approximation of the softmax
function. Since the softmax function is usually the last oper-
ation in an NN, most studies leave its evaluation to the client.
However, this poses a risk since directly exposing the logits of
the NN to the client makes it more vulnerable to adversarial
and model inversion attacks.

CHET [87], nGraph-HE [86] and Jang et al. [76] use
a different approach to finding polynomial approximations.
Rather than numerically finding an approximation, in poly-
nomials of the form f(x) = a,x" + Apo1 X"V apx? +
aix, the coefficients a; are learned during the NN’s training.
CHET and nGraph-HE learn polynomials of degree two while
Jang et al. [76] train polynomials with degree seven, which
requires bootstrapping during inference.

Nandakumar et al. [85] do not use polynomial approxima-
tions for the sigmoid activation function; they use a lookup
table instead [95]. The client needs to precompute the table
before running the network.

softmax(x) = foreachi=0,1,---,n

VI. ADAPTIONS TO HE CONSTRAINTS

A. DATA ENCODING

Most HE schemes support only integer messages. CKKS
supports real numbers, while TFHE only supports individual
bits. Most plaintext ML applications work on either 32 or
64-bit floating-point numbers. This means that solutions
using CKKS (see Table 5) can use real numbers. However,
since computation in CKKS is approximate, these solutions
must correctly choose the precision parameter to ensure accu-
rate classification on encrypted data.

Solutions based on schemes other than CKKS need to
adapt to the reduced message space. CryptoDL [63] chooses
an integer-only solution. They scale the weights of the net-
work and round them to be integers. Al Badawi et al. [81]
use a similar approach. They also use integers as inputs but
use CRT to decompose the values into multiple parts. This
decomposition keeps individual values smaller and thereby
leaves room for intermediate values. Large intermediate val-
ues can become a problem in CryptoDL [63]. The authors
need to make sure that intermediate values never overflow
the message space by choosing the crypto parameters large
enough.

Many solutions use fixed-point encoding to address the
limited message space [61], [62], [64], [65], [66], [85], [87].

117488

Fixed-point encoding suffers from the same problems that
other integer-only solutions suffer, mainly the overflow of the
message space.

SHE [65], and Nandakumar et al. [85] encode the
fixed-point number in binary representation despite using
different encryption schemes. In the case of SHE [65], this
is due to the limitation of the encryption scheme. However,
Nandakumar et al., [85] use the binary representation to use
a lookup table as an activation function. However, this binary
representation leaves a lot of the ciphertext’s capacity unused,
as it can hold much larger numbers than a single bit.

Bourse et al. [60] have an even more radical encoding
approach. The authors map all input values to either —1 or
1 to fit their computation scheme. They do this by dividing
the original message space in half and mapping everything
equal to or larger than the mean to 1 and everything smaller
to —1. However, this mapping loses a significant amount of
information. While all other schemes have to deal with small
losses due to their encoding or approximate computation, the
authors reduce the information by over 99%. In our opinion,
this is due to using MNIST in the experiments. The MNIST
images are already high contrast, greyscale and have very
few color gradients. Removing 7 of the 8 bits of information
should not harm the recognizability of the digits. The authors
note: ““...aquick visual inspection of the result shows that the
digits depicted in the images are still clearly recognizable.”
It is questionable if this would hold for other datasets than
MNIST.

B. WEIGHT CONSTRAINTS AND CONVERSION

Some studies place further constraints on the weights or their
encoding to often help speed up computation. As discussed
in the previous section, solutions that work on integers or
fixed-point encoding need to transform their weights into
integers. This transformation is done by applying a scaling
factor to the weights of each layer. However, for each layer,
the scaling factor needs to be carefully computed since,
depending on the degree of the polynomial activation func-
tion, the neuron values might have already been significantly
magnified due to the previous layer’s scaling factor. The
scaling can cause the weights to grow large in the last network
layers, causing overflow problems.

Other studies use varying forms of quantization. Chou
et al. [66] use quantization to enforce sparsity in the poly-
nomial representation of the weights, speeding up the com-
putation. Zhang et al. [64] use Lloyd-max quantization [96]
of the network’s weights during training. Lloyd-max quanti-
zation quantizes the network’s weights based on their local
density instead of uniform intervals. Although Lloyd-max
quantization increases the network’s predictions quality on
fixed-point numbers, it does not speed up computation like in
other solutions.

SHE [65] uses fixed-point numbers in their binary rep-
resentation. To speed up NN computation, the authors
use log-quantization to transform all weights into powers
of 2. The quantized weights allow them to replace the

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

multiplications with shifts and accumulators. Shifting oper-
ations are fast since they do not require an operation on the
encrypted data itself. Bourse et al. [60] not only discretize the
inputs as either -1 or 1 but also the weights. The discretization
of inputs and weights allows the authors to run an NN with
all binary values, speeding up computation.

C. CONSTANT FOLDING

Reducing the number of operations increases performance.
Several studies include constant folding to reduce the number
of operations. Constant folding is to combine constant fac-
tors of successive operations into one. Boehmer et al. [86]
describe how to fold some factors of the activation func-
tions into the previous layer’s weights. When a polynomial
activation layer follows a convolutional or fully connected
layer, one of the polynomial coefficients can be moved to the
previous layer’s weights, removing one ciphertext-plaintext
multiplication. Similarly, the authors show how to fold a
batch normalization layer into the previous layer. The aver-
age pooling and linear layers (e.g., convolutional layer) can
be collapsed or folded [61]. Boemer et al. [86] replace the
average pooling with a scaled average pooling layer when
an average pooling layer follows a linear layer. The authors
move the scaling factors into the weights of the linear layer.

D. CLIENT-SIDE COMPUTATION

Some solutions offload work to the client to work around
some of the limitations of HE. Chou et al. [66] and
Brutzkus et al. [69] propose using a transfer learning-like
approach. Chou et al. [66] use the topmost layers of an NN
already trained on a general task and fine-tune the lower
layers on a specific task. The upper layers are sent to and
evaluated by the client on plaintext. The client encrypts the
upper layers’ output and sends it to the server, which evaluates
the lower layers. Brutzkus et al. [69] use a similar technique
where the client runs data through a pre-trained NN. The
NN’s output is encrypted and sent to the server for further
processing. This output is smaller than the original inputs
and can be classified using shallow NNs. The client-side
NN works as a form of dimensionality reducer. While both
approaches reduce the computation the server needs to per-
form on encrypted data, they place a higher computational
burden on the client. Podschwadt and Takabi [82], and RNN
Block [83] use a somewhat similar approach in which they
send the embedding part of the NN to the client for the
embedding operation. Compared to Chou et al. [66] and
Brutzkus et al. [69], this is less computationally expensive for
the client but requires a more extensive data transfer since the
embedding process increases the dimensionality of the data.
The client can perform these computations in a setup phase
independent of the server.

Several authors involve the client more deeply in compu-
tation by establishing interactive protocols. Interactive proto-
cols require multiple rounds of client-server communication
to complete the computation. For example, CryptoRNN [84]
uses the client to compute the activation functions. The

VOLUME 10, 2022

server sends the preactivation values to the client. The client
computes the activation function on plaintext and sends the
encrypted result back to the server. Since the client decrypts
and encrypts the data, this operation also refreshes the noise.
The authors also study a different protocol in which the client
only performs noise removal. The noise removal happens at
fixed points in the NN: after every multiplication, after every
activation function, or after every sequence element. While
this does not allow the use of standard activation functions
(e.g., Tanh), it can help preserve the privacy of the NN.
Before sending the data to the client, the server can add a
random value which it can subtract later. This random value
is to preserve the privacy of the NN; without it, the client
would learn the internal state of the NN computation, e.g.,
reconstructing the weights. Adding such a random value is
impossible when the client computes the activation function;
the activation function cannot be reversed to remove the
random value. Podschwadt and Takabi [82] use a similar
approach. However, they do not use fixed points to refresh
the noise. The authors monitor the noise and dynamically
decide when to refresh, avoiding unnecessary communica-
tion. Client communication is usually a replacement for boot-
strapping, as noted by Mihara et al. [75]. In their study, the
authors use the client to refresh the noise during training.
They opt to send the data to the client after every minibatch
during training instead of using bootstrapping. The authors
show that replacing bootstrapping with interactive protocols
usually saves computation time.

E. BOOTSTRAPPING

Bootstrapping removes the depth restrictions that HE solu-
tions face. Although interactive protocols can alleviate these
problems, too, they introduce network latency and can lead
to information leakage. Nandakumar et al. [85] use boot-
strapping during the training to refresh the noise. However,
they need to perform bootstrapping after every layer in the
forward and backward pass, adding significant overhead.
Unlike CryptoRNN [84] and Podschwadt and Takabi [82],
Jang et al. [76] propose a communication-free RNN using
bootstrapping during inference for noise refresh. The authors
measure the noise budget after processing every sequence ele-
ment and perform bootstrapping if necessary. Lee et al. [70]
use bootstrapping to run the comparatively deep ResNet-20
architecture. Using leveled FHE, the crypto parameters would
be prohibitively large. The authors utilize bootstrapping oper-
ations during ReL U polynomial approximation and after con-
volutional operations. Bootstrapping after convolution opera-
tions reduces the number of rotations required by the packing
scheme and speeds up the computation. Furthermore, the
authors do not use all the slots in a ciphertext since they find
that sparsely packed ciphertexts are faster to bootstrap.

F. BATCHING

In Section IV-A, we already discussed ciphertext pack-
ing using SIMD processing. Another way of using SIMD
processing is to process multiple instances simultaneously,

117489

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

so-called batching, at no additional cost. A common form of
batching is to encrypt the same feature of multiple instances
into a single ciphertext, leading to one ciphertext per feature.
Since ciphertexts are usually orders of magnitude larger than
plaintexts, this form of batching requires a lot of memory.
It is also less efficient for a single instance or small batch
processing. Supported batch sizes are usually large (> 1000),
and the memory and runtime requirements are independent of
the number of instances in a batch. It makes no difference if
1 or 1000 instances are being processed. Batching typically
has a decent amortized time per instance. Still, the latency is
relatively large, making it more attractive for bulk processing
and less attractive for close to real-time applications. Cryp-
toNets [61] uses this approach with a batch size of 4096.
CryptoDL [63], and Al Badawi et al. [81] support a batch size
of 8192. Podschwadt and Takabi [82] use a comparatively
small batch size of 128 for their works on RNNS. In contrast,
their RNN Blocks work [83] uses batch sizes of up to 32,768.
Nandakumar et al. [85] also work with smaller batch sizes of
60 or 1800 instances, depending on the parameters.

G. TRAINING ON ENCRYPTED DATA

Even with powerful computational resources available,
PPML training needs to be severely constrained to be some-
what practical. It needs interaction with the client, as used
by Mihara et al. [75], or the task needs to be simplified. Typi-
cally, on plain data, models train for many epochs. Al Badawi
et al. [78] need to constrain the training to two epochs with
large minibatch sizes. Nandakumar et al. [85] circumvent this
problem by using bootstrapping. However, bootstrapping is
so expensive that the authors need to simplify the problem
drastically; the NN model is relatively small, and they sub-
sample the input data from 28 x 28 to 8 x 8. Even with these
simplifications, training one minibatch takes 40 minutes.
With the parameter settings used in the paper, a minibatch
contains 60 instances. The MNIST dataset contains 60,000
training instances. Using this configuration, one epoch of
training would take 666.7 hours or almost 28 days.

VII. SECURITY

A. ENCRYPTION SCHEMES

Except for the YASHE scheme, most schemes rely on the
Learning with Errors or its ring variant Ring Learning with
Errors. Learning with Errors is the problem of finding a linear
function with multiple inputs given a number of function
outputs. However, some of the outputs may be noisy. Ring
Learning with Errors is the extension of Learning with Error
to polynomial rings. YASHE scheme is based on NTRU
(Number Theorists are US); its security can be compromised
by subfield lattice attacks [51]. In addition to enabling FHE,
these problems are quantum hard. (Ring) Learning with
Errors can be reduced to worst-case problems over ideal
lattices. By definition, FHE schemes can not be secure against
chosen-ciphertext attacks (CCA). Further, Li et al. [97] show
that the CKKS scheme is not secure against chosen-plaintext

117490

TABLE 5. HE schemes and libraries used by the different studies. * added
CKKS bootstrapping. ** own implementation based on NTL
(https://libntl.org/).

Study Scheme | Library
Cryptonets [61] YASHE | SEAL
Chabanne et al. [62] BGV HElib
Nandakumar et al. [85] BGV HEIib
CryptoDL [63] BGV HElib

Al Badawi et al. [81] BFV SEAL, A*HE
Faster Cryptonets [66] BFV SEAL
Brutzkus et al. [69] BFV SEAL
Encrypted Speech [64] BFV SEAL

CHET [87] CKKS SEAL, HEEAN
E2DM [68] CKKS HEEAN
CryptoRNN [84] CKKS SEAL

Podschwadt & Takabi [82]
RNN Blocks[83]

CKKS HEIlib
CKKS HEIlib

PrivtFT [78] CKKS SEAL
Mihara et al. [75] CKKS SEAL
ngraph-HE [86] CKKS SEAL
Lee et al. [70] CKKS SEAL*
Jang et al. [76] CKKS wx
Bourse et al. [60] TFHE TFHE
SHE [65] TFHE TFHE

TABLE 6. HE libraries and which schemes they support. The
Bootstrapping column shows if the library supports bootstrapping. The
GPU column shows support for GPU hardware acceleration.

Library BGV SlL;[I):p;?rtedCSIE};(eSm i TFHE Bootstrapping | GPU
SEAL D . .

HElib . . e (BGV only)
HEAAN . .

TFHE .]

A*HE . .

attacks (CPA). An adversary can draw conclusions about the
secret key from the errors in a decrypted plaintext introduced
by the scheme’s approximate nature. HElib [56], for exam-
ple, circumvents this problem by adding key-independent
noise to the plaintext during decryption. However, this
approach further reduces the accuracy of decrypted
values.

The underlying hardness assumption of prevalent schemes
such as BGV, BFV, CKKS, and TFHE (Table 5) is known
to be secure. However, CKKS has a vulnerability that does
not stem from the hardness assumption but from the noise
management in the scheme.

B. INFORMATION LEAKAGE

Information leakage can occur in various directions. For
example, either information about the client’s data can leak
to the server, or the server’s model can leak to the client. All
approaches in this survey focus on protecting the privacy of
the client’s data; however, the model’s privacy can also be a
concern. While the client does not have direct access to the
model’s parameters, Tramer et al. [99] show that an attacker
can reverse engineer a model with access only to the model’s
predictions. Interestingly, there is more information leakage
about the model to the client on encrypted data. One reason is

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

TABLE 7. Resource requirements, Tasks performed, Dataset Performance, and Runtime reported by different studies.Memory and Communication
(Com.) are values reported in the studies. Performance shows the impact of the changes to facilitate encrypted execution. Plain gives the performance of
the model on plain data, Enc. the performance of a similar model that is HE-friendly; and Loss is the relative difference.

Study :askl Dataset Memory Com. gle:ifl(l)rman;zenc Toss Runtime BS
Badawi [81] ° MNIST < 16 GB** 0.98 GB - 96% - 5.16 s 8,192
CIFAR-10 < 16 GB** 1.77 GB - 77.5% - 30443 s 8,192
Nandakumar [85] e | o | MNIST < 250 GB* - 96.4% 96% 0.4% 0.7-6.5n* 60
Bourse et al. [60] e | MNIST - 7.82 KB 96.75% | 96.43% | 0.3 % 1.65s 1
Chabanne et al. [62] . MNIST - - 99.59% | 99.30% | 0.3 % - -
. MNIST < 48 GB* 0.41GB 99.13% | 99.17% -0.04% 45.7 s 1
Faster Cryptonets [66] e | CIFAR-10 < 1433 GB* 1.57 GB 86.76% | 75.99% | 12.41% | 0.9h 1
e | [98] < 1433 GB* 789.2 GB - 69.89% | - - -
CHET [87] e [MNIST < 224 GB* - 99.3% 99.3% 0% 352s 1
e | CIFAR-10 < 224 GB* - 84% 81.5% 2.9% 164.7 s 1
Cryptonets [61] e | MNIST < 16 GB* 0.36 GB - 99% - 250's 4096
CryptoDL [63] e | MNIST < 16 GB* - 99.56% | 99.52% | 0.04% 320s 8,192
vp e | CIFAR-10 <16 GB* - 942% | 91.4% | 2.9% 32h 8,192
E2DM [68] e | MNIST - 0.02 GB - 98.1% - 28.59 s 64
e | MNIST < 1024 GB* 0.12 GB - 99.77% | - 9.3-1249s | 1
SHE [65] ° CIFAR-10 < 1024 GB* 0.16 GB - 74.1% - 0.6-3.3h 1
e | ImageNet < 1024 GB* 7.7 GB - 69.4% - 5-63.9h 1
e | Penn Treebank < 1024 GB* 0.01 GB - 89.8 & 2.1%‘ 576 s 1
e | MNIST - - - 98.95% | - 0.29-7.29s | 1
Brutzkus etal. [69] o | CIFAR-10 12GB ; - 741% | - 730 1
ngraph-he [86] e | MNIST < 376 GB* - - 99% - 16.7 s 4,096
&rap e | CIFAR-10 < 376 GB* - - 62.10% | - 0.4h 8,192
Lee et al. [70] e | CIFAR-10 172 GB - 92.95% | 92.43% | 0.5% 29h 1
Mihara et al. [75] e | o | Iris - - 98.05% | 98.47% | -0.4% 29.8h" 20
Podschwadt & Takabi [82] e | IMDB < 32 GB* 15.20 GB - 86.47% | - 05h 256
RNN Blocks [83] e | Amazon Reviews | 120 —216 GB | 19-100GB | 81.86% | 79.46% | 3% 29h 32,768
* e | IMDB 120 - 216 GB | 19-100GB | 78.53% | 74.95% | 3% 29h 32,768
. IMDB < 16 GB** 0.38 GB - 91.5% - 79s 1
. YELP < 16 GB** 0.38 GB - 96.1% - 7.8s 1
PrivFT [78] e | AGNews < 16 GB** 0.38 GB - 92.5% - 7.8s 1
e | DBPedia < 16 GB** 0.38 GB - 98.8% - 7.74s 1
e | o | YoutTube Spam 120 GB 549 GB 86.3% - 121 1Y
e | Robot Navigation | - 1.6 MB 96.2% 96.2% 0% 02s -
e | Wearable sensor - 2.7 MB 87.7% 87.7% 0% 0.2s -
CryptoRNN [84] e | EEGEye State | - 12 MB 725% | 725% | 0% Ils -
e | Occupancy - 9.5 MB 99.7% 99.7% 0% 0.8s -
Jang et al. [76] e | MNIST 1 GB - 94.6% 94.2% 0.4% 0.7h -
) o | deepTarget 1GB - 89.7% 89.7% 0.0% - -
Encrypted Speech [64] e | Switchboard - - 122%% | 13.5%% | 10.7% - . -
. Cortana - - 12.9% 7t 14.8%7t 14.7% 373 ms -

Training (T) and Inference (I) indicate which task is performed and on which Dataset.
Memory shows the tasks required memory, where * indicates the total memory available (an upper bound of the required memory), and ** indicates that

authors only report GPU memory and not the total memory.

Communication is the amount of data that needs to be transferred between the client and the server to complete the task. (# means reported by the original

authors).

Performance values are accuracy; except for ¥ which is word error rate (WER) and # which is Perplexity per Word (PPW). Wall-clock runtime reported by
the different studies. © indicates training of the entire network, # training time of a mini batch. < is the average latency per utterance.

that it is common practice to leave the decoding of the results
to the client (usually softmax or beam search [64]). These
raw values make it easier for the client to learn the network’s
weights. Another reason is that the client can infer some of
the network architecture through the crypto parameters. Espe-
cially when using leveled HE, the client gains information
about the depth of the computation because the multiplicative
depth is directly correlated to the number of layers in NNs.
The server can obfuscate this information by choosing larger
parameters than the network requires, increasing running
time and memory consumption. Alternatively, bootstrapping
can deny this information to the client. However, this also

VOLUME 10, 2022

increases resource requirements. Additionally, the encoding
methods used with ciphertext packing can reveal the model’s
information.

The information leakage becomes even more severe when
the client needs to participate in the computation. CryptoRNN
[84] and Podschwadt and Takabi [82] face the problem of
revealing internal states (e.g., layer’s outputs) to the client
during noise removal. Knowing the internal state could allow
the client to learn the model’s parameters since the client
learns the exact number of units used in the hidden lay-
ers. Furthermore, with access to the intermediate states, the
client gains more information than assumed by most model

117491

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

stealing attacks [100]. It can potentially use this additional
information to improve the attack. The server can prevent
the client from learning the actual internal state by adding
randomness to the data before sending it to the client for
noise removal. The server can remove the randomness once
the client returns the encrypted ciphertext to the server. This
obfuscation becomes more complicated when the client com-
putes nonlinear functions, as in CryptoRNN [84].

Multiple approaches need to share additional informa-
tion with the client for preprocessing. Podschwadt and Tak-
abi [82], RNN Blocks [83], and PrivFT [78] need to share all
the words known to the model. Unless the model operates
in a very specific domain with a very specific vocabulary,
the client does not gain valuable information. Podschwadt
and Takabi [82] and RNN Blocks [83] additionally need to
share the embedding matrix. However, this does not leak any
information to the client since there are plenty of pretrained
embeddings [101] that are publicly available. So, the client
does not learn anything new about the model.

When it comes to the security level in bits, many
studies opt to use 80-bit [60], [76], [81], [85]. Only
Hesamifard et al. [63], RNN Blocks [83], and Faster Cryp-
tonets [66] choose parameters that provide 128-bit security
or more. Authors often decide to use a lower security level
since it does speed up computation.

VIIl. REPORTED EXPERIMENTS
In this section we compare the experimental results presented
in the selected studies.

A. TASKS AND DATASETS

The task and data used for evaluating PPML solutions in
various studies are essential for comparison. The data sig-
nificantly influences the network architecture and affects the
encoding scheme. For example, it is easier to encode a fixed
set of discrete values, such as images, than to encode a range
of continuous values. Many high-performing model architec-
tures have been developed for image processing. Images are
easily resizable, often with little information loss. Smaller
images mean less data to encrypt and fewer input features,
resulting in fewer computations within the network and less
memory. Changing the dimensions of other data types is not
easy. Text, for example, cannot be resized despite it consisting
of discreet values. Additionally, models designed for text
processing are usually more complex, which results in a
higher multiplicative depth. Below we discuss some of the
datasets used in various PPML studies (Table 7).

Image classification is the most common task used to eval-
uate PPML solutions. The MNIST hand-written digit dataset?
is, perhaps, the most widely used image dataset [60], [61],
[62], [63], [65], [66], [68], [81], [85], [87]. It consists of
60,000 training and 10,000 test samples distributed across
ten classes. Each sample is a 28 by 28 pixels grey-scale
image of a hand-written digit between 0 and 9. However,

2http://yann.lecun.com/exdb/mnist/

117492

simply demonstrating a PPML solution works on MNIST
is insufficient; it might be good for comparison with sim-
ilar solutions, but it has the significant downside of being
too simple and too clean as an evaluation dataset. Strate-
gies that work on MNIST do not necessarily work on other
datasets.

The CIFAR-10? dataset is a better choice since it is closer
to a real-world dataset than MNIST. It contains 50,000 train-
ing and 10,000 test 32 by 32 pixels color images across
ten classes. Some solutions, [63], [65], [66], [81], [87],
additionally evaluate on the CIFAR-10 data. SHE [65] is
the only solution that tackles the much harder Imagenet*
dataset. Their solution evaluates over a million 224 by
224 pixels color images in 1001 classes from Imagenet.
Color images, such as CIFAR-10 and Iamgenet, are more
complex since they usually have three channels compared
to the single channel in grey-scale images. MNIST images
consist of 28 x 28 = 784 pixels. In comparison, the only
slightly larger CIFAR-10 images contain 32 x 32 x 3 =
3072 pixels, let alone Imagenet; it contains approximately
50 times as many pixels as a CIFAR-10 image, specifically
224 x 224 x 3 = 150, 528 pixels.

Text classification is not as common as image tasks to
evaluate PPML solutions. IMDB movie review dataset® is,
perhaps, the most common PPML text evaluation dataset,
as seen in Podschwadt and Takabi [82], RNN Blocks [83],
and PrivFT, [78]. The dataset contains 50,000 movie reviews
grouped into negative and positive reviews.

Zhang et al. [64] and Lou et al. [65] are the only works
focusing on tasks other than classification. Classification
tasks seem to be easier to handle in the encrypted domain.
One explanation is that the NN’s output is easily inter-
pretable and of comparatively low dimension. As shown in
Zhang et al. [64], the interpretation of the NN output requires
much more computation on the client side.

B. RESOURCE REQUIREMENTS

All solutions share the problem of having high resource
requirements. Comparing their runtime is difficult since some
experiments were performed on laptops and others on big
servers with up to a hundred CPU cores. That is why we
only highlight a few noteworthy runtimes. Solutions are more
comparable in terms of memory consumption and commu-
nication overhead. However, papers do not always report
memory requirements. Authors often only report the configu-
ration of their test system. Knowing the system configuration
gives us at least an upper bound on the memory requirement.
Unfortunately, not all solutions report their communication
overhead either. A complete overview of the memory and
communication requirements can be found in Table 7.

3https://wvvvv.cs.toronto.edu/ kriz/cifar.htm]
4https /Iwww.image-net.org/
5 https://ai.stanford.edu/ amaas/data/sentiment/

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

1) COMMUNICATION

We can see that batched solutions for MNIST [61], [63],
[66] need to transfer about 330-410MB. Due to their pack-
ing scheme, E2DM [68] only needs to transfer 17.4MB.
Other solutions using ciphertext packing should require data
transfers of similar size. As the datasets grow in complexity,
so does the size of the data. On CIFAR-10, the ciphertexts are
much larger except for SHE [65], which only needs 160MB.
Hesamifard et al. [63], and Faster Crypotnets [66] need
1,803MB and 1,160MB, respectively. To encrypt a single
ImageNet image, SHE [65] requires 7.7GB. On medical data
of similar size, in Faster Cryptonets [66], the client needs
to transfer 789.2GB. Podschwadt and Takabi [82] do not
use ciphertext packing, and the client does need to transfer
encrypted vector representations. Initially, the client needs
to send 14 GB. On top of that, there are several interactive
phases during computation to remove the noise during the
evaluation of the network, which amounts to a total of
15.2 GB.

In their later work [83], the client needs to transfer between
8.75GB and 100GB depending on the split of the input data.
However, this solution does not require interactive phases
during computation. Both approaches transfer a similar num-
ber of ciphertexts in the beginning. The significant differ-
ence in size can be explained by RNN blocks [83] using
more secure crypto parameters. When training a model on
encrypted data, the client needs to send the entire training
data in encrypted form. On the Youtube Spam Collection,
with less than 2000 instances, the encrypted training data in
PrivFT [78] comes in at roughly 550 GB. We can see that
the communication overhead for solutions with ciphertext
packing is significantly smaller than for solutions without.
Solutions with batching can reach pretty low amortized over-
head. However, it is questionable if that would be beneficial
in a real-world setting. It seems more likely that a client has a
few instances for processing instead of the thousands required
to best use the naive batching schemes.

2) MEMORY

The size of the ciphertexts is not only an issue in transmission
but also impacts the memory requirements of the server.
Like with communication, the overhead of solutions with
ciphertext packing requires less memory than those without.
Since cloud computing and pay-as-you-use models make
machines with hundreds of gigabytes of memory relatively
easily accessible, memory consumption is only a secondary
issue. However, if we consider hardware acceleration, such
as GPUs, the memory becomes an issue again. GPU mem-
ory is typically much smaller and can become a bottleneck.
Therefore, looking at the memory requirements of these sys-
tems can give us a good idea of how much they can benefit
from hardware acceleration. Many solutions [61], [63], [66],
[69], [82] can be run on commodity hardware, requiring less
than 48 GB of RAM. As the datasets get more complex,
the models also become more complex. The Faster Cryp-
tonets [66] CIFAR-10 model needs 1433.6 GB of memory.

VOLUME 10, 2022

In comparison, Al Badawi et al. [81] only need 187 GB.
To use GPUs, which have only 16 GB of memory, the authors
perform subtasks and swap data in and out of GPU mem-
ory. In comparison, training takes less memory. The main
difference in the communication overhead is that while all
the training data needs to be transmitted, it does not need to
be in memory all at once. This difference is why Al Badwai
et al. [78] and Nandakumar et al. [85] can train on 250 GB or
less memory.

3) RUNTIME

Two approaches emerge (Table 7) for reducing runtime. (1)
Reducing the per instance runtime by using batching to run a
large batch at once, and (2) using ciphertext packing to reduce
the runtime of running the network on a single (or a small
number) instance.

For example, CryptoNets [61] was the first HE-based solu-
tion on MNIST and takes 250 seconds. Brutzkus et al. [69],
using the same model as CryptoNets [61], managed to achieve
a 2.2s runtime mainly through ciphertext packing. However,
the runtime per instance of CryptoNets is only about 0.06s.
With more powerful hardware and optimizations of the HE
code, nGraph-HE [86] can achieve a total runtime of 16.7s
while using batching, achieving a per instance runtime of
0.004s. We can see in Table 7 that this trend holds for MNIST
models. Packing solutions are faster, while batching solu-
tions offer better per-instance runtime. However, the question
is how applicable batched solutions are. Considering the
MLaaS paradigm (Fig. 1), it is questionable that a user would
have thousands of instances that need classification at once.
It seems more likely that the client would only have a few
instances they would like to have classified with little delay.
However, there is no clear answer to which approach is better,
as it depends on the usage scenario.

As expected, larger datasets and models take longer to
run. The CHET compiler optimizes the fastest CIFAR-10
model [87]. It takes only 164.7s, which is faster than the Al
Badawi et al. [81] model executed on GPUs. The model takes
553 seconds on a single GPU, while it takes 304 seconds
on four GPUs in parallel. CHET [87] wins out here due to
ciphertext packing, which Al Badawi et al. [81] does not use.
However, the authors also benefit from the compiler opti-
mizations, which we can see compared to Brutzkus et al. [69].
Their CIFAR-10 model takes 711 seconds, despite using spe-
cialized ciphertext packing strategies. Solutions that do not
use ciphertext packing [63], [65], [66] take much longer with
3300-12000 seconds to evaluate the CIFAR-10 model. It is
worth noting that the SHE model [65] using bootstrapping
would take 42.5 million seconds (492 days). The weakness
of batched approaches becomes apparent on these deeper
models and more complex datasets. Deeper models require
either large crypto parameters or bootstrapping. Either one
increases the computation cost. Batched approaches require
many ciphertext objects as input and intermediate results,
while packing approaches can keep the number of ciphertexts
low. While this causes memory problems, it also increases

117493

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

the runtime since operations need to be performed on more
objects.

Studies using bootstrapping for deeper models,
Lee et al. [70], and Jang et al. [76], do not use batching.
Lee et al. [70] use bootstrapping to run ResNet-20 [73] on
encrypted data. While the classification of one CIFAR-10
instance takes almost 3 hours, the model achieves the best
accuracy with 92.43%. Jang et al. [76] run a GRU model
on the MNIST data achieving 94.2%. They treat each image
row as an entry in a sequence, leading to a sequence of
length 28. As discussed earlier (Section IV-D), the depth of
RNNs depends on the length of the input sequence, creating
a model with high depth. In their evaluation, processing
one sequence element takes 90s. In both studies [70], [76],
the authors note that a significant portion of the runtime is
used by bootstrapping. In Lee et al. [70], 31.6% of time is
spent performing bootstrapping in between layers. However,
there are additional bootstrapping operations during batch
normalization and activation functions, which are not counted
in 31.6%. The bootstrapping cost would be even higher if
batching were used [70].

Training on encrypted data is even slower than
inference. Using bootstrapping and SIMD batching,
Nandakumar et al. [85] need 40 minutes per minibatch on
MNIST. Mihara et al. [75] propose an encoding that takes
only 29 hours to train for 400 epochs. However, the authors
only evaluate the model on a tiny dataset. PrivFT [78]
uses a more realistic YouTube spam dataset; training takes
120 hours using 8 GPUs in parallel. Training on encrypted
data does not seem very practical at this point. The resource
requirements are almost prohibitively large, especially when
coupled with bootstrapping. Bootstrapping is practically nec-
essary for training due to the noise growth in the encrypted
data. Performing training without bootstrapping either limits
the number of epochs or other options for noise removal need
to be used, such as interactive phases.

C. PERFORMANCE IMPACT
All approaches in this work change the NN architecture to
facilitate execution over encrypted data. As discussed earlier,
these changes often include different activation functions
than those used on plain data. However, these changes often
come at a price in NN performance. For example, polynomial
activation functions are not ideal from an ML perspective and
are a concession to the limitations of HE schemes. In Table 7,
we summarize the performance of the models evaluated in the
studies. The Enc. column shows the performance of models
that can be run on encrypted data; all the operations have
been changed to HE-friendly alternatives, and all changes to
reduce complexity have been made. The performance of these
models is usually similar between actual encrypted execution
or execution on plaintexts.

Most studies use accuracy as the metric for their evaluation.
Accuracy a is defined as:

Ye

a =
yc+yf

&)

117494

With y. as the number of correct predictions and yy as
the number of false predictions. Zhang et al. [64] perform
encrypted speech recognition. Here the model transcribes a
spoken piece of text. Accuracy is not the best metric for
this task. In their work, the authors use word error rate wer.
Given the number of deletions d (words that were missed in
transcription), the number of insertions i (words that were
added during transcription that were not in the original text),
the number of substations s (words that were transcribed
differently than they appear in the original text), and the
number of correct words n, wer is defined as:

wer = —— 6)

SHE [65] also works with textual data. However, the
authors perform next-word prediction and user perplexity per
word (PPW) as their metric. Jurafsky and Martin [102] define
it as follows: “The perplexity [...] of a language model on a
test set is the inverse probability of the test set, normalized by
the number of words.” Given an input sequence of length n
consisting of the word wy, wa, - -+ , w, we can compute the
PPW as:

n

1 1
PPW = — @)
n E Pwilwi, ..., wi—1)

where P(w;|wi, ..., w;_1) is the conditional probability of w;
given wi, ..., wi—1. The choice of metric is not dependent on
privacy preservation, only on the task and data.

The Plain column presents the model’s performance with-
out any changes. This performance is not supposed to be
state-of-the-art, but it shows what the model architecture
could achieve with standard ML best practices. According to
the Table, this information is often missing. The Loss column
states the relative drop in performance between the standard
ML model and the model capable of encrypted execution.
A negative value indicates that the HE-friendly model per-
forms better than the standard model.

Relative loss is an important metric to judge the quality of
a PPML solution. Only reporting the result of the HE-friendly
or encrypted model on the task is insufficient, as it does not
capture any performance sacrifices made to enable encrypted
execution. On the other hand, comparing the performance of
the HE-friendly model only to state-of-the-art (if the state-of-
the-art performance is achieved using a different architecture)
is interesting. Still, it does not capture the entire picture. State-
of-the-art models are often vastly more complex than models
that can be run on encrypted data.

The ideal is a three-way comparison involving state-of-
the-art performance on the task, plaintext model, and HE-
friendly model. Reporting performance like this allows for a
better comparison of approaches independent of the task and
dataset.

IX. PROPOSED EVALUATION CRITERIA
Tables 2 and 7 compare the approaches from different
angles. We can see that not all studies report the same

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

information. Even if they report the same information, it is
often not directly comparable. For example, is an approach
that achieves 99% accuracy on MNIST better than one that
reaches 80% on CIFAR-10? Or is the solution running in
90 seconds on a big server faster than the solution taking
120 seconds on a laptop? Comparing the speedup and per-
formance of different solutions is often not straightforward.
As previously mentioned, comparing runtimes is an issue
due to hardware differences. Both memory and bandwidth
requirements are hardware-independent performance indica-
tors and only depend on the algorithm and the crypto param-
eters. We find, however, that only some solutions report their
memory or bandwidth requirements. From the observations
made during this work, we propose metrics and evaluation
guidelines that focus on comparability and help make robust
claims about the proposed solution.

A. RESOURCE REQUIREMENTS

Efficiency is important when executing ML models, espe-
cially on encrypted data. However, wall-clock time offers
poor comparability since it is very hardware dependent.
When evaluating the runtime of a PPML approach, two ques-
tions are of particular interest: (1) How does the solution
perform compared to the plaintext model? and (2) how does
it perform compared to other solutions?

We can achieve the first objective by running the model,
first on the plaintext and next on encrypted data, and compar-
ing the wall-clock time. However, it is crucial to choose the
correct execution environment. If the encrypted solution runs
without hardware acceleration, running the plaintext version
on the CPU provides a fair comparison. If the PPML solution
uses hardware acceleration, so should the plaintext solution
for comparison. Either way, the same hardware should be
used for plain and encrypted execution.

Comparison with other PPML solutions is more compli-
cated. Comparing the wall clock numbers provided in other
studies can be a decent indicator, but it provides an incom-
plete picture. Often the hardware that experiments are per-
formed on is too different for a direct comparison. One pos-
sibility is to run the other PPML solutions oneself. However,
this runs into the problem that the source code is often not
released. Only half of the papers in this study made their
source code available. Not having access to the source code
would only leave the implementation from scratch, which
can be time-consuming. We propose hardware-independent
guidelines. Ideally, authors should report their time require-
ments in terms of HE operations. They should break down the
basic operations of the ML algorithm and report the number
of HE additions, multiplications, and rotations required. For
example, in Cryptonets [61], a fully connected layer (without
bias and activation function) with m inputs and n neurons
requires n * m ciphertext-plaintext multiplications and n *
m — 1 ciphertext-ciphertext additions. In Jiang et al. [68] the
same layer requires 3n + 2m ciphertext-plaintext multiplica-
tions, 3n+2m+log(n/m) ciphertext-ciphertext additions and
3m + 5./n + log(n/m) rotations because of their encoding

VOLUME 10, 2022

scheme. By comparing the two, we can see that, for larger n
and m, Cryptonets require many more operations. This way
of reporting complexity gives us a simple way of comparing
the efficiency of the two solutions.

Other resource requirements also offer us insight into
the complexity of different solutions and can be used as a
comparison metric. Since HE ciphertext and keys can be
large, the maximum memory required during execution is an
informative statistic. However, only a few studies report the
exact memory requirements [70], [76], [83]. Often only the
memory capacity of the test system is reported. While this
gives us an upper bound, it only allows a rough comparison.
Especially on systems with a lot of memory, the difference
between the maximum and required memory can be signif-
icant. Therefore we recommend reporting two metrics for
memory requirements: (1) the maximum amount of memory
required to run the solution, and (2) the size of a single cipher-
text and the size of the required keys, public key, evaluation
keys, rotation keys, etc. This information allows us to under-
stand the memory requirements better; it is also beneficial
when reporting the bandwidth requirements. While HE-based
PPML solutions are mostly non-interactive [61], [63], [65],
they still often require large amounts of bandwidth due to
the size of the ciphertext and keys. We encourage reporting
the communication requirements, which many solutions do.
Ideally, the communication would be broken into multiple
parts, the number and size of ciphertexts and the different
keys and their respective size. The increase over plaintext
should also be reported for both memory and bandwidth.
Using these metrics provides comparability with the plaintext
versions and other encrypted solutions.

We propose reporting the following values:

o Times it takes to run the model on plain and encrypted
data using the same hardware

« Complexity in terms of HE operations

o Maximum memory required

« The size of basic objects (ciphertexts, keys, etc.)

o The size of the data that needs to be transferred; broken
down by basic objects

B. MODEL PERFORMANCE
In terms of prediction quality, the model’s performance is of
equal importance to the efficiency of the execution. To facil-
itate comparison, it is recommended that the authors report
the state-of-the-art. PPML solutions are unlikely to reach
state-of-the-art due to adaptions to facilitate HE computation.
It is still important since it indicates how well the solution
performs in the grand scheme. We can also use it to compare
different PPML solutions by comparing the relative loss in
performance over the state-of-the-art. This comparison even
works, to some extent, for solutions evaluating PPML models
on other tasks.

The loss in performance over state-of-the-art is important
for comparison as well. However, another important metric
is the loss incurred by adaptions to make computation using

117495

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

HE feasible. In previous sections, we discussed several such
adaptions, such as polynomial activation functions, weight
quantization, average pooling, etc. These changes usually
come at a performance cost. To measure the performance
impact, we suggest training two models. The first model,
we call A, has all the necessary changes to be run on encrypted
data. The second model, dubbed B, has the same structure as
A but uses the best plaintext ML practices. If, for example,
model A uses a fully connected layer with 200 neurons and
square activation, model B should use a fully connected layer
with 200 neurons and ReLU activation. The comparison of
the performance of A and B shows the cost of the privacy
preservation changes. The lower the difference, the better
solution. The final important value is model A performance
on actual ciphertexts. This step is essential to show that,
for example, the approximate computation of CKKS or a
plaintext space overflow does not alter results on encrypted
data.

Another critical part of performance evaluation is selecting
an evaluation task and dataset. A large part of the work has
been done on image classification, and most authors use the
MNIST dataset as one or even their only evaluation task.
However, the relative loss on the MNIST dataset is usually
lower than on more complex datasets, such as CIFAR-10.
This difference is not surprising since MNIST is a straightfor-
ward and clean dataset. Techniques that work on MINST do
not necessarily transfer to other data sets. Despite this weak-
ness, six of the works considered here only use MNIST. Only
using MNIST for evaluation does not allow us to make strong
claims. Authors should show that their proposed method can
also perform well on more complex data. MNIST has a place
in the evaluation due to its widespread use, making it suit-
able for comparison. However, we recommend additionally
evaluating more complex data sets such as [103], [104], and
[105].

We propose reporting the following values:

« Difference to the state-of-the-art

« Performance of the model with HE adaptions

o Performance of model without HE adaptions

« Performance on encrypted data

« Evaluate datasets other than MNIST (or similar simple
data sets in other domains)

X. CHALLENGES AND DIRECTIONS

As discussed in the previous sections, there are still many
hurdles to making HE-based PPML practical. This section
summarizes where the challenges lie and discuss potential
directions and approaches.

A handful of libraries are available that support one or
more encryption schemes. However, even if libraries support
the same scheme, they are not interoperable. For instance,
ciphertexts or keys do not have a standardized format. The
same is true for the encryption parameters. The interpretation
of what a parameter means can differ between libraries. In the
past few years, there has been an effort to standardize HE

117496

by the community [106]. This standardization effort [107]
includes an overview of the security and secure parameter
recommendations, potential applications, and design consid-
erations. It is a good start, but at the moment, developing
solutions locks one into using a particular library.

Choosing a library is usually difficult; developing a
well-performing secure PPML solution without in-depth
knowledge about HE is hard, if not impossible. PPML devel-
opers need to have expertise in both ML and security. PPML,
using HE, has not been widely adopted by the ML commu-
nity, likely due to the high barrier of entry that is HE and
the lack of user-friendly tools. On the other hand, security
researchers often lack ML knowledge. The ML community
has developed user-friendly tools allowing fast plaintext ML
development [108], [109], [110]. These tools hide much of
the complexity from the user; such complexity is necessary
to understand when implementing solutions based on HE.

There should be an effort to develop HE-based PPML
libraries by a shared community of ML specialists and crypto
experts. Some work has been done on easing the entry from
both sides by using compilers [86], [§7]. Compilers not only
make it easier to get started, but they can also significantly
improve performance by applying optimizations. Compila-
tion can help speed up the execution of encrypted data.
However, the models are designed with plaintext execution
assumptions.

Fast and efficient techniques on plaintext are not always
the best solution for encrypted data [61], [63]. Researchers
should take a more holistic approach that considers the entire
ML pipeline. Much of the work focuses on running existing
model architectures on encrypted data [61], [70], [87]. This
work is often done by making small changes to the model
architecture to make it HE-compliant and training the model
from scratch [65], [66]. Ideally, the compiler suite would be
able to perform all these transformations automatically while
optimizing the process end-to-end. Most ML techniques in
the field are minor adaptions of strategies that work on the
plaintext [61], [65], [78]. But developing solutions specif-
ically for encrypted execution might require new types of
networks, activation functions, or optimizers.

Activation functions are a bottleneck in NNs using HE.
These non-linear functions are necessary for the network to
perform well. However, on encrypted data, they significantly
impact the noise budget [66], [70]. Multiple alternatives have
been proposed, but most of them make training the model
harder, often due to their unbounded and non-monotonic
derivatives [62], [83]. Other solutions that do not impact
training, such as replacement after training or lookup tables,
suffer from a loss in model performance [70]. Polynomials
are an adequate replacement for traditional activation func-
tions [61], [63], [70]. The question if there are activation
functions that perform well, both on encrypted and plain data,
is still open and worth investigating.

The need for HE-specific algorithms and adaptions is
especially apparent in training. Work investigating training
on encrypted data is minimal [75], [78], [85]. One of the

VOLUME 10, 2022

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

big reasons is the noise build-up and the resulting need for
bootstrapping or interactive noise removal. Solutions that
use neither are limited to using training hyperparameters,
such as batch size and the number of epochs, that are sub-
optimal [78]. Approaches that do use bootstrapping are very
slow and computationally expensive [76], [85], [111]. On the
one hand, faster bootstrapping would remove some of the
computational overhead of training on encrypted data, and we
could use standard training parameters. On the other hand,
having a training algorithm that works with the parameters
required by HE would eliminate the need for bootstrapping
or interactive noise removal and make training much more
feasible.

Performance is not only an issue during training but
also during testing. Researchers can evaluate models on
the CIFAR-10 dataset within a reasonable time [81], [87].
However, larger models and larger inputs still take hours to
compute [65], [70]. Hence, scaling up to larger, real-world
datasets is costly. Improvements in latency and memory con-
sumption have been due to ciphertext packing [25], [68],
[69]. Without it scaling up to real-world data is impractical.
Packing can reduce the memory requirement by an order of
magnitude. Models on the CIFAR-10 dataset that do not use
packing require hundreds of GB of memory [65], [66], [87],
making scaling up to datasets like ImageNet near impossible.

Another potential source of increased performance is hard-
ware accelerators like GPUs or FPGAs (Field Programmable
Gate Arrays). Al Badawi et al. [81] ran models using HE on
GPUs, but memory constraints were severe. High-end GPUs
do not have more than 50GB of memory. The memory limi-
tation of GPUs calls for new encoding and packing schemes
for efficient execution. Research on GPU-aided HE is not
limited to ML applications. For example, Geraldo et al. [112]
propose an implementation of BFV accelerated by GPUs.
Their results show an up to 5 times speedup in homomor-
phic operations. Increasing the efficiency of NNs can also
help reduce the memory and runtime requirements of PPML.
Much work has been done on running plaintext ML appli-
cations on resource-constrained devices like phones [113],
[114]. Techniques used in that area, such as pruning and
quantization, can be implemented in PPML [115]. Chou
et al. [66] investigated reducing the number of computations
in the network through pruning. Helbitz and Avidan [116]
tackled the computational overhead of PPML by reducing the
ReLU count in the network. They show that activations can be
grouped, and one activation output can be used for all in the
group. The accuracy impact on this grouping is low, while it
can provide about 30% speedup. They test their system using
two and three-party computation. If a similar speedup can be
observed on HE systems or if it is even applicable to other
activations, then ReLU still needs to be investigated.

Most PPML solutions focus on client data privacy; it is
guaranteed if the underlying schemes remain secure. How-
ever, if these systems are to be adopted in practice, model
providers likely need more assurance that their models are
secure. As discussed in Section VII-B, server-side model

VOLUME 10, 2022

information can be leaked using HE. To the best of our
knowledge, there is no research into mitigating information
leakage to the client when using HE-based PPML.

XI. CONCLUSION

In this paper, we reviewed scientific articles and publica-
tions in the particular area of Deep Learning Architectures
for Privacy-Preserving Machine Learning with Fully Homo-
morphic Encryption. This specification narrows down the
literature to a limited number of publications that are (1)
well-known, (2) practical, (3) often library-included, and (4)
usually cover a variety of HE techniques and deep learning
architectures. The primary motivation behind this work was
for the PPML researchers to observe (1) state-of-the-art HE
PPML solutions and (2) the HE PPML challenges and their
potential solutions. The primary challenges in implementing
HE PPML include significant computational, memory, and
latency overhead, in addition to incompatible operations and
limited network depth. The most efficient approach to address
the computational overhead is ciphertext packing. Solutions
that use ciphertext packing often achieve much lower runtime
and memory requirements. However, finding the best packing
strategy is a complex and time-consuming task. Compiler-
based solutions can assist with packing scheme selection.
The problem of incompatible operations is much more sig-
nificant for studies that do not use TFHE. However, TFHE-
based studies cannot use ciphertext packing, limiting ways
to reduce computational overhead. The problem of limited
network depth arises from the noise build-up during com-
putation. Authors could address the noise build-up using
bootstrapping. However, bootstrapping further increases the
computational overhead. Therefore most authors do not use it
and rely on leveled HE and try to offset the reduced network
depth in other ways. To compare the effectiveness of the
resulting solutions, we have proposed evaluation criteria in
this study. These proposed evaluation criteria will show a
complete picture of a solution’s performance and improve the
comparability of different approaches.

REFERENCES

[1] C.Dwork and A. Roth, “The algorithmic foundations of differential pri-
vacy,” Found. Trends Theor. Comput. Sci., vol. 9, nos. 3—4, pp. 211-407,
2013.

[2] A. C. Yao, “Protocols for secure computations,” in Proc. 23rd Annu.
Symp. Found. Comput. Sci. (SFCS), Nov. 1982, pp. 160-164.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,”

in Proc. 41st Annu. ACM Symp. Symp. Theory Comput. (STOC),

Bethesda, MD, USA: ACM Press, 2009, p. 169. [Online]. Available:

http://portal.acm.org/citation.cfm?doid=1536414.1536440

D. Boneh, A. Sahai, and B. Waters, “‘Functional encryption: Definitions

and challenges,” in Proc. Theory Cryptogr. Conf. Cham, Switzerland:

Springer, 2011, pp. 253-273.

[5] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution envi-
ronment: What it is, and what it is not,” in Proc. IEEE Trust-
com/BigDataSE/ISPA, vol. 1, Aug. 2015, pp. 57-64.

[6] D.J. Wu, “Fully homomorphic encryption: Cryptography’s holy grail,”
XRDS, Crossroads, ACM Mag. Students, vol. 21, no. 3, pp.24-29,
Mar. 2015.

[7]1 D. Tourky, M. ElKawkagy, and A. Keshk, ‘“Homomorphic encryption
the, ‘holy grail’ of cryptography,” in Proc. 2nd IEEE Int. Conf. Comput.
Commun. (ICCC), Oct. 2016, pp. 196-201.

[4

=

117497

IEEE Access

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Azraoui, M. Bahram, B. Bozdemir, S. Canard, E. Ciceri, O. Ermis,
R. Masalha, M. Mosconi, M. Onen, and M. Paindavoine, “SoK: Cryptog-
raphy for neural networks,” in IFIP International Summer School Privacy
Identity Management. Cham, Switzerland: Springer, 2019, pp. 63-81.
N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “SoK: Security
and privacy in machine learning,” in Proc. IEEE Eur. Symp. Secur.
Privacy (EuroS&P), Apr. 2018, pp. 399-414.

B. Pulido-Gaytan, A. Tchernykh, J. M. Cortés-Mendoza, M. Babenko,
G. Radchenko, A. Avetisyan, and A. Y. Drozdov, “Privacy-preserving
neural networks with homomorphic encryption: Challenges and oppor-
tunities,” Peer-to-Peer Netw. Appl., vol. 14, no. 3, pp. 1666-1691,
Mar. 2021, doi: 10.1007/s12083-021-01076-8.

C. G. Mouris, F. Dimitris, and N. G. Tsoutsos, “New insights into
fully homomorphic encryption libraries via standardized benchmarks,”
Cryptol. ePrint Arch., Tech. Rep. 425, 2022. [Online]. Available:
https://eprint.iacr.org/2022/425

A. Viand, P. Jattke, and A. Hithnawi, “SoK: Fully homomorphic encryp-
tion compilers,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 1092-1108.

C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang, “Mystique: Efficient
conversions for zero-knowledge proofs with applications to machine
learning,” in Proc. 30th USENIX Secur. Symp., 2021, pp. 501-518.

J. Koneny, H. Brendan McMahan, D. Ramage, and P. Richtarik, “Fed-
erated optimization: Distributed machine learning for on-device intelli-
gence,” 2016, arXiv:1610.02527.

V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang,
A. Dehghantanha, and G. Srivastava, “A survey on security
and privacy of federated learning,” Future Gener. Comput.

Syst., vol. 115, pp.619-640, Feb. 2021.[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. Mcmahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017, pp. 1175-1191.

N. Senanayake, R. Podschwadt, D. Takabi, V. D. Calhoun, and S. M. Plis,
“Neurocrypt: Machine learning over encrypted distributed neuroimaging
data,” Neuroinformatics, vol. 20, pp. 1-18, May 2021.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308-318.

N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar,
and U. Erlingsson, “Scalable private learning with PATE,” 2018,
arXiv:1802.08908.

D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to
secure multi-party computation,” Found. Trends Privacy Secur., vol. 2,
nos. 2-3, pp. 246-270, 2018.

O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali. New York, NY, USA: Association for
Computing Machinery (ACM), 2019, pp. 307-328.

M. O. Rabin, “How to exchange secrets with oblivious transfer,” Aiken
Comput. Lab, Harvard Univ., Tech. Rep. TR-81, 1981. [Online]. Avail-
able: https://eprint.iacr.org/2005/187

W.-S. Choi, B. Reagen, G.-Y. Wei, and D. Brooks, “Impala: Low-
latency, communication-efficient private deep learning inference,” 2022,
arXiv:2205.06437.

S.Li, K. Xue, B. Zhu, C. Ding, X. Gao, D. Wei, and T. Wan, “FALCON: A
Fourier transform based approach for fast and secure convolutional neural
network predictions,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR). Seattle, WA, USA: IEEE, Jun. 2020, pp. 8702-8711.
[Online]. Available: https://ieeexplore.ieee.org/document/9156980/

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via MiniONN transformations,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017, pp. 619-631.

D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Proc. Annu. Int. Cryptol. Conf. Cham, Switzerland: Springer, 1991,
pp. 420-432.

D. Beaver, ‘“Precomputing oblivious transfer,”” in Proc. Annu. Int. Cryp-
tol. Conf. Cham, Switzerland: Springer, 1995, pp. 97-109.

A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc.
Annu. Int. Conf. theory Appl. Cryptograph. Techn. New York, NY, USA:
Springer, 2005, pp. 457-473.

P. Panzade and D. Takabi, “Towards faster functional encryption for
privacy-preserving machine learning,” in Proc. 3rd IEEE Int. Conf. Trust,
Privacy Secur. Intell. Syst. Appl. (TPS-ISA), Dec. 2021, pp. 21-30.

117498

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

T. Ryffel, D. Pointcheval, F. Bach, E. Dufour-Sans, and R. Gay, “Par-
tially encrypted deep learning using functional encryption,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 32,2019, pp. 1-10.

(2019). Learn the Architecture—TrustZone for AArch64. [Online]. Avail-
able: https://developer.arm.com/documentation/102418/0101/?lang=en
F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” Hasp@ isca, vol. 10, no. 1,
pp. 1-5,2013.

D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa, “An off-chip
attack on hardware enclaves via the memory bus,” in Proc. 29th USENIX
Secur. Symp., 2020, pp. 1-8.

J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical attack
framework for precise enclave execution control,” in Proc. 2nd Workshop
Syst. Softw. Trusted Execution, Oct. 2017, pp. 1-6.

W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, pp. 644-654, Nov. 1976.

R. L. Rivest, A. Shamir, and L. Adleman, ““A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120-126, Feb. 1978, doi: 10.1145/359340.359342.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Found. Secure Comput., vol. 4, no. 11,
pp. 169-180, 1978.

F. Armknecht, C. Boyd, C. Carr, A. Jaschke, and C. A. Reuter, “A guide
to fully homomorphic encryption,” Cryptol. ePrint Arch., vol. 45, p. 35,
2015.

P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.
Berlin, Germany: Springer, 1999, pp. 223-238.

T. Elgamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469-472, Jul. 1985.

Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-LWE and security for key dependent messages,” in Annu.
Cryptol. Conf. Cham, Switzerland: Springer, 2011, pp. 505-524.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, pp. 1-36, Jul. 2014.

M. V. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Proc. Annu. Int. Conf.
Theory Appl. Cryptograph. Techn. New York, NY, USA: Springer, 2010,
pp. 24-43.

Z. Brakerski, S. Goldwasser, and Y. T. Kalai, ““Black-box circular-secure
encryption beyond affine functions,” in Proc. Theory Cryptogr. Conf.
New York, NY, USA: Springer, 2011, pp. 201-218.

Z. Brakerski, “Fundamentals of fully homomorphic encryption,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali. New York, NY, USA: Association for
Computing Machinery (ACM), 2019, pp. 543-563.

K. Han and D. Ki, “Better bootstrapping for approximate homomor-
phic encryption,” in Proc. Cryptographers’ Track RSA Conf. Cham,
Switzerland: Springer, 2020, pp. 364-390.

M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Trans. Comput., vol. C-21, no. 9, pp. 948-960, Sep. 1972.

N. P. Smart and F. Vercauteren, ““Fully homomorphic SIMD operations,”
Designs, Codes Cryptogr., vol. 71, no. 1, pp. 57-81, 2014.

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, ‘‘Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE,”
in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. Cham, Switzerland:
Springer, 2017, pp. 377-408.

J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for
a ring-based fully homomorphic encryption scheme,” in Proc. IMA Int.
Conf. Cryptogr. Coding. Cham, Switzerland: Springer, 2013, pp. 45-64.
M. Albrecht, S. Bai, and L. Ducas, “A subfield lattice attack on over-
stretched NTRU assumptions,” in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2016, pp. 153-178.

V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learn-
ing with errors over rings,” J. ACM, vol. 60, no. 6, p. 43, 2013, doi:
10.1145/2535925.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, Mar. 2012.
J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur. Cham, Switzerland: Springer, 2017, pp. 409-437.

VOLUME 10, 2022

http://dx.doi.org/10.1007/s12083-021-01076-8
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/2535925

R. Podschwadt et al.: Survey of Deep Learning Architectures for PPML With Fully HE

IEEE Access

[55]

[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(2015). PALISADE Homomorphic Encryption Software Library—An
Open-Source Lattice Crypto Software Library. [Online]. Available:
https://palisade-crypto.org/

S. Halevi and V. Shoup, “Algorithms in Helib,” in Proc. Annu. Cryptol.
Conf. Cham, Switzerland: Springer, 2014, pp. 554-571.

(Nov. 2020). Microsoft SEAL (Release 3.6). [Online]. Available:
https://github.com/Microsoft/SEAL

(Apr. 2021). Snucrypto/HEAAN.
https://github.com/snucrypto/HEAAN

I. Chillotti, N. Gama, M. Georgieva, and M. Izabacheéne, “TFHE: Fast
fully homomorphic encryption over the torus,” J. Cryptol., vol. 33, no. 1,
pp. 34-91, 2018.

F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in Proc. Annu. Int.
Cryptol. Conf. New York, NY, USA: Springer, 2018, pp. 483-512.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Machine Learn.,
2016, pp. 201-210.

H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” JACR Cryp-
tol. ePrint Arch., vol. 2017, p. 35, Mar. 2017.

E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” 2017, arXiv:1711.05189.

S.-X. Zhang, Y. Gong, and D. Yu, “Encrypted speech recognition using
deep polynomial networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Dec. 2019, pp. 5691-5695.

Q. Lou and L. Jiang, “SHE: A fast and accurate deep neural network
for encrypted data,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 10035-10043.

E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
CryptoNets: Leveraging sparsity for real-world encrypted inference,”
2018, arXiv:1811.09953.

S. Akleylek, N. Bindel, J. Buchmann, J. Krdmer, and G. A. Marson, “An
efficient lattice-based signature scheme with provably secure instantia-
tion,” in Proc. Int. Conf. Cryptol. Africa. Cham, Switzerland: Springer,
2016, pp. 44-60.

X. Jiang, M. Kim, K. E. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), Toronto, ON, Canada, Oct. 2018,
pp. 1209-1222, doi: 10.1145/3243734.3243837.

A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy pre-
serving inference,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 812-821.
J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No, “Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network,”
IEEE Access, vol. 10, pp. 30039-30054, 2022.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low
latency framework for secure neural network inference,” in Proc. 27th
USENIX Secur. Symp., 2018, pp. 1651-1669.

J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, ““Effi-
cient bootstrapping for approximate homomorphic encryption with non-
sparse keys,” in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn.
Cham, Switzerland: Springer, 2021, pp. 587-617.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, “High-precision
bootstrapping of RNS-CKKS homomorphic encryption using optimal
minimax polynomial approximation and inverse sine function,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Cham, Switzerland:
Springer, 2021, pp. 618-647.

K. Mihara, R. Yamaguchi, M. Mitsuishi, and Y. Maruyama, “‘Neural net-
work training with homomorphic encryption,” 2020, arXiv:2012.13552.
J. Jang, Y. Lee, A. Kim, B. Na, D. Yhee, B. Lee, J. H. Cheon, and S.
Yoon, “Privacy-preserving deep sequential model with matrix homomor-
phic encryption,” in Proc. ACM Asia Conf. Comput. Commun. Secur.
New York, NY, USA: Association for Computing Machinery, May 2022,
pp. 377-391, doi: 10.1145/3488932.3523253.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
2014, arXiv:1409.1259.

[Online]. Available:

VOLUME 10, 2022

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

A. A. Badawi, L. Hoang, C. F. Mun, K. Laine, and K. M. M. Aung,
“PrivFT: Private and fast text classification with homomorphic encryp-
tion,” IEEE Access, vol. 8, pp. 226544-226556, 2020.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” 2016, arXiv:1607.01759.

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full RNS variant
of approximate homomorphic encryption,” in Proc. Int. Conf. Sel. Areas
Cryptogr. Cham, Switzerland: Springer, 2018, pp. 347-368.

A. Al Badawi, C. Jin, J. Lin, C. E. Mun, S. J. Jie, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. R. Chandrasekhar, ‘“Towards the AlexNet
moment for homomorphic encryption: HCNN, the first homomorphic
CNN on encrypted data with GPUs,” [IEEE Trans. Emerg. Topics
Comput., vol. 9, no. 3, pp. 1330-1343, Jul. 2021.

R. Podschwadt and D. Takabi, ““Classification of encrypted word embed-
dings using recurrent neural networks,” in Proc. PrivateNLP@ WSDM,
2020, pp. 27-31.

R. Podschwadt, “Non-interactive privacy preserving recurrent neural
network prediction with homomorphic encryption,” in Proc. IEEE 14th
Int. Conf. Cloud Comput. (CLOUD), Apr. 2021, pp. 65-70.

M. Bakshi and M. Last, “Cryptornn-privacy-preserving recurrent neural
networks using homomorphic encryption,” in Proc. Int. Symp. Cyber
Secur. Cryptogr. Mach. Learn. Cham, Switzerland: Springer, 2020,
pp. 245-253.

K. Nandakumar, N. Ratha, S. Pankanti, and S. Halevi, ‘“Towards
deep neural network training on encrypted data,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2019,
pp. 40-48.

F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “Ngraph-HE: A
graph compiler for deep learning on homomorphically encrypted data,”
in Proc. 16th ACM Int. Conf. Comput. Frontiers, 2019, pp. 3—13.

R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “CHET: An optimizing compiler
for fully-homomorphic neural-network inferencing,” in Proc. 40th ACM
SIGPLAN Conf. Program. Lang. Design Implement. New York, NY,
USA: Association for Computing Machinery, Jun. 2019, pp. 142-156,
doi: 10.1145/3314221.3314628.

A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless CNNs with low-precision weights,”” 2017,
arXiv:1702.03044.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

M. H. Stone, “The generalized Weierstrass approximation theorem,”
Math. Mag., vol. 21, no. 5, pp. 237-254, 1948.

T. J. Rivlin, Chebyshev Polynomials. Mineola, NY, USA: Courier Dover,
2020.

E. Lee, J.-W. Lee, Y.-S. Kim, and J.-S. No, “Minimax approximation of
sign function by composite polynomial for homomorphic comparison,”
IEEE Trans. Dependable Secure Comput., early access, Aug. 18, 2021,
doi: 10.1109/TDSC.2021.3105111.

R. E. Goldschmidt, “Applications of division by convergence,” Ph.D. the-
sis, Dept. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA,
USA, 1964.

G. Meinardus, Approximation Functions: Theory and Numerical Meth-
ods, vol. 13. Cham, Switzerland: Springer, 2012.

J. L. H. Crawford, C. Gentry, S. Halevi, D. Platt, and V. Shoup, “Doing
real work with FHE: The case of logistic regression,” in Proc. 6th
Workshop Encrypted Comput. Appl. Homomorphic Cryptogr. (WAHC),
Feb. 2018, pp. 1-12.

P. Scheunders, “A genetic lloyd-max image quantization algorithm,”
Pattern Recognit. Lett., vol. 17, no. 5, pp. 547-556, May 1996.

B. Li and D. Micciancio, “On the security of homomorphic encryption
on approximate numbers,” in Proc. Annu. Int. Conf. Theory Appl. Cryp-
tograph. Techn. Cham, Switzerland: Springer, 2021, pp. 648-677.

V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu,
A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros,
and R. Kim, “Development and validation of a deep learning algorithm
for detection of diabetic retinopathy in retinal fundus photographs,”
J. Amer. Med. Assoc., vol. 316, no. 22, pp.2402-2410, 2016, doi:
10.1001/jama.2016.17216.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ““Stealing
machine learning models via prediction APIs,” in Proc. 25th USENIX
Secur. Symp., 2016, pp. 601-618.

M. Juuti, S. Szyller, S. Marchal, and N. Asokan, “PRADA: Protecting
against DNN model stealing attacks,” in Proc. IEEE Eur. Symp. Secur.
Privacy (EuroS&P), Jun. 2019, pp. 512-527.

117499

http://dx.doi.org/10.1145/3243734.3243837
http://dx.doi.org/10.1145/3488932.3523253
http://dx.doi.org/10.1145/3314221.3314628
http://dx.doi.org/10.1109/TDSC.2021.3105111
http://dx.doi.org/10.1001/jama.2016.17216

IEEE Access

R. Podschwadt et al.:

Survey of Deep Learning Architectures for PPML With Fully HE

[101] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532-1543.

D. Jurafsky and J. H. Martin, “N-gram language models,” in Speech

and Language Processing, 3rd ed. Hoboken, NJ, USA: Prentice-

Hall, Jan. 2022, pp. 37-38. [Online]. Available: https://web.stanford.edu/

~jurafsky/slp3/

R. He and J. McAuley, “Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering,” in Proc. 25th Int.

Conf. World Wide Web, Apr. 2016, pp. 507-517.

[104] A. Krizhevsky and G. Hinton, Learning Multiple Layers of Features From
Tiny Images. Toronto, ON, Canada: MIT Press, 2009.

[105] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘“‘ImageNet classification

with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,

pp. 84-90, 2017.

(2016). Homomorphic Encryption Standardization—An Open Industry /

Government / Academic Consortium to Advance Secure Computation.

[Online]. Available: https://homomorphicencryption.org/

[107] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homomorphic
encryption security ~ standard,” HomomorphicEncryption.org,
Toronto, ON, Canada, Nov. 2018. [Online]. Available:
https://homomorphicencryption.org/standard/

[108] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp. 2825-2830, Mar. 2011.

[109] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, “TensorFlow: A system for large-
scale machine learning,” in Proc. 12th USENIX Symp. Operating Syst.
Des. Implement. (OSDI), May 2016, pp. 265-283.

[110] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, and L. Antiga, ‘“‘Pytorch: An imperative
style, high-performance deep learning library,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32,2019, pp. 1-18.

[111] E.Lee,J.-W.Lee,J.Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi, “Low-
complexity deep convolutional neural networks on fully homomorphic
encryption using multiplexed parallel convolutions,” in Proc. Int. Conf.
Mach. Learn., 2022, pp. 12403-12422.

[112] P. G. M. Alves, J. N. Ortiz, and D. F. Aranha, “Faster homomorphic
encryption over gpgpus via hierarchical dgt,” in Proc. Int. Conf. Financial
Cryptogr. Data Secur. Cham, Switzerland: Springer, 2021, pp. 520-540.

[113] K. Nan, S. Liu, J. Du, and H. Liu, ““Deep model compression for mobile
platforms: A survey,” Tsinghua Sci. Technol., vol. 24, no. 6, pp. 677-693,
Dec. 2019.

[114] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: Automl for
model compression and acceleration on mobile devices,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 784-800.

[115] E. Aharoni, M. Baruch, P. Bose, A. Buyuktosunoglu, N. Drucker, S. Pal,

T. Pelleg, K. Sarpatwar, H. Shaul, O. Soceanu, and R. Vaculin, “HE-

PEX: Efficient machine learning under homomorphic encryption using

pruning, permutation and expansion,” 2022, arXiv:2207.03384.

I. Helbitz and S. Avidan, ‘“Reducing ReLU count for privacy-preserving

CNN speedup,” 2021, arXiv:2101.11835.

[102

[103

[106

[116

ROBERT PODSCHWADT (Student Member,
IEEE) received the B.S. and M.S. degrees in
computer science from Hochschule der Medien
Stuttgart, Germany, in 2012. He is currently pursu-
ing the Ph.D. degree with the University of North
Texas.

From 2012 to 2017, he worked as a System
Developer at Rhode & Schwarz Cybersecurity.
He is also at Georgia State University with Prof.

: Daniel Takabi at the INSPIRE Center. His research
interests include PPML using HE and attacks on neural networks using
adversarial examples.

117500

DANIEL TAKABI (Member, IEEE) received the
B.S. degree in computer engineering from the
Anmirkabir University of Technology, Tehran, Iran,
in 2004, the M.S. degree in information technology
from the Sharif University of Technology, Tehran,
in 2007, and the Ph.D. degree in information
science and technology from the University of
Pittsburgh, Pittsburgh, PA, USA, in 2013.

He is currently an Associate Professor in com-
puter science and the Next Generation Scholar
with Georgia State University, Atlanta, GA, USA. He is also a Founding
Director of the Information Security and Privacy: Interdisciplinary Research
and Education Center, which is designated as the National Center of Aca-
demic Excellence in Cyber Defense Research. His research interests include
various aspects of cybersecurity and privacy, including privacy-preserving
machine learning, adversarial machine learning, advanced access control
models, insider threats, and usable security and privacy. He is a mem-
ber of ACM.

PEIZHAO HU (Member, IEEE) is currently
an Associate Professor with the Department
of Computer Science, Rochester Institute of
Technology. He has served as a Technical
Program Committee and an Organizing Com-
mittee for a number of conferences and work-
shops, including PerCom and LCN. In addition,
he has served as a Reviewer for international
journals, including the IEEE TRANSACTIONS ON
INFORMATION FoRrENSICS AND SECURITY and the IEEE
TrANSACTIONS ON DEPENDABLE AND SECURE CoMPUTING. His research interests
include privacy-preserving cloud data analytics, specifically homomorphic
encryption and multiparty computations, and distributed systems, including
mobile and pervasive computing and blockchain.

MOHAMMAD H. RAFIEI received the Ph.D.
degree in civil engineering focused on machine
learning (ML) from Ohio State University (OSU),
in December 2016, under Dr. Hojjat Adeli.
He continued his ML research as a Postdoctoral
Researcher in infrastructure engineering and neu-
roscience at OSU, between February 2017 and
August 2018. Then, he joined Johns Hopkins Uni-
versity (JHU) as a Postdoctoral Fellow, in August
2018, and an Adjunct Assistant Research Scien-
tist, in September 2019, working in ML nano-scale materials simulations.
He worked as a ML Course Developer and an Instructor at the Engineering
for Professionals Graduate-Level Program, JHU, in 2020. He joined the
INSPIRE Center, Georgia State University, in January 2021, as a Postdoc-
toral Fellow working on the emerging area of privacy-preserving ML.

ZHIPENG CAI (Senior Member, IEEE) received
the B.S. degree from the Beijing Institute of Tech-
nology and the M.S. and Ph.D. degrees from the
Department of Computing Science, University of
Alberta. He is currently an Associate Professor
at the Department of Computer Science, Geor-
gia State University, USA. Prior to joining GSU,
he was a Research Faculty with the School of Elec-
trical and Computer Engineering, Georgia Institute
of Technology. His research interests include the
Internet of Things, machine learning, cyber-security, privacy, networking,
and big data. He was a recipient of an NSF Career Award. He served as a
Steering Committee Co-Chair and a Steering Committee Member for WASA
and IPCCC. He also served as a Technical Program Committee Member
for more than 20 conferences, including INFOCOM, ICDE, and ICDCS.
He has been serving as an Associate Editor-in-Chief for High-Confidence
Computing (HCC) (Elsevier) journal and an Associate Editor for more than
ten international journals, including IEEE INTERNET OF THINGS JOURNAL, IEEE
TrANsACTIONS ON KNOWLEDGE AND DaTA ENGINEERING, and IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY.

VOLUME 10, 2022

