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ABSTRACT With advancements in machine learning technology, networks are becoming increasingly
complex, and the extent of the computation involved is increasing. Consequently, the computation time
and power consumption of the learning process are increased. The error tolerance of neural networks has
attracted attention as an approach to solving this problem. Because neural networks can tolerate small errors,
it is possible to reduce the calculation speed and power consumption at the expense of accuracy. In this study,
we propose a method to reduce the power consumption of the circuit by lowering the operating voltage of
the static random-access memory (SRAM) that is utilized to store the weights. In the proposed method,
using two different operating voltages of SRAM, we used different bit error rates (BERs) for error-tolerant
and non-error-tolerant. We demonstrated the relationship between the BER and recognition rate, and the
appropriate combination of the BER and circuit configuration that maintains a high recognition rate.

INDEX TERMS Neural network, SRAM, approximate computing.

I. INTRODUCTION
Advances in machine learning technology have facilitated the
recognition and classification of data by computers with at
least the same or improved levels of accuracy compared to
humans. Machine learning is widely used in various applica-
tions such as image classification [1] and speech recognition
[2]. These algorithms require considerable computation to
achieve high recognition accuracy, which increases compu-
tation time and power consumption.

The error tolerance of neural networks has attracted signif-
icant attention as an approach to solving this problem. A neu-
ral network is an algorithm that imitates the human brain
with a hierarchical structure of multiple neurons connected
in layers back and forth. Because features are distributed
and stored across neurons, errors in a few neurons or slight
fluctuations in the weight of stored synapses do not result in
a complete loss of information. Therefore, we sacrifice the
accuracy of the synaptic weights to reduce the calculation
time and minimize power consumption. Previous research
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has included methods related to weight sharing [3], quan-
tization techniques that reduce the number of bits required
to store weights through approximate computing [4], and in-
memory computing that applies the physical properties of cir-
cuit elements [5], [6], [7]. In this study, we improved energy
efficiency by lowering the supply voltage of static random-
access memory (SRAM) used for the weights. In similar
research, there is a method that involves using 6T-SRAM and
8T-SRAM with different bit error rates (BERs) and another
method uses 9T-SRAM and 12T-SRAM to perform inference
with high accuracy even at low voltages [8], [9]. However, the
increasing circuit area poses an issue [10], [11].

This paper presents a low-power neural network system.
The proposed scheme uses only 6T-SRAM to avoid increas-
ing circuit area. The energy efficiency was improved by
lowering the supply voltage of the SRAM storing the weights.
However, SRAMs have a higher BER when the supply volt-
age is reduced because of the effect of static noise margin
[12], [13], [14]. Higher BER can lead to low recognition
accuracy. So, this study, first, clarifies the conditions of the
operating voltage that can achieve a recognition accuracy
99% as high as that of error-free circuits (in which BER is

116982 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8316-7281


K. Kozu et al.: Low Power Neural Network by Reducing SRAM Operating Voltage

0 for any memory cells). A single-precision floating point
(32 bits) is used to store the weights. The floating point
consists of three parts: the sign, exponent, and mantissa.
When an error occurs in the exponent part of the floating
point, as compared to the mantissa part, it is expected to have
a significant impact on recognition accuracy. Therefore, using
two different operating voltages, we designed the system in
such a manner that the BER can be set low for bits that
have a large impact on recognition accuracy and high for bits
that have a smaller impact. Appropriate bit selection reduces
power consumption while simultaneously maintaining a high
recognition accuracy.

This paper is organized as follows: Section II introduces
preliminary knowledge, Section III describes the proposed
memory structure, Section IV presents the simulation and
evaluation, and Section V concludes the paper.

II. REVIEW
A. NEURAL NETWORKS
An NN is an algorithm designed to mimic neural circuits in
the human brain and has a hierarchical structure consisting of
a large number of neurons. The strength of the connections
between the neurons in each layer is set by a parameter
called ‘‘weights’’ The values of the neurons in the next layer
are obtained by performing multiply-accumulate operations
on the weights and values of the neurons, and further pass-
ing them through a nonlinear activation function. There are
several types of NNs such as convolutional neural networks
(CNNs) and recurrent neural networks. In this paper, we dis-
cussed the most basic type of NN, that is, the fully connected
neural network.

An NN involves two processes: learning and inference.
In the learning process, the weights were optimized using a
training dataset. In the inference process, the weights opti-
mized in the training process were further used to classify and
evaluate the data. The learning process consists of a forward
propagation process and a backpropagation process. In the
forward propagation process, the sum-of-products operation
of neurons and weights and nonlinear transformations using
activation functions are performed in order, starting from the
input layer. The values of the output layer obtained in this pro-
cess were passed through the objective function to derive the
error from the target value. In backpropagation, the weights
of each layer are adjusted using the error backpropagation
method to reduce the error. In the inference process, only the
forward propagation method was used for the evaluation.

The proposed scheme targets errors occurring in the train-
ingmode.When an error occurs, weight information stored in
SRAM makes unwished change. The changed wrong weight
is used in the inference mode. So, this can lower recognition
accuracy.

B. FLOATING POINT REPRESENTATION
A floating-point number is expressed without a fixed decimal
point. It consists of a significant part, an exponent part, and

a mantissa part. The IEEE754 floating-point format defines
half-precision (16bits), single precision (32bits), double pre-
cision (64bits), and quadruple precision (128bits). In this
study, we used a single-precision floating point (32bits) in
IEEE754 format. The IEEE754 floating-point format can
represent not only normalized numbers but also denormalized
numbers, infinity, and not a number (NaN). The correspon-
dence between each bit and the type of data that can be
represented is listed in Table 1. When an error occurs in the
exponential part, it is necessary to consider the possibility
that the value is no longer a normalized number or numerical
error.

TABLE 1. Data expressed in floating point.

C. SRAM
Static random-access memory (SRAM) is a volatile memory.
Compared with dynamic random access memory (DRAM),
which is also a volatile memory, SRAM consumes less power
and is capable of high-speed processing. In contrast, it is more
difficult for SRAM to achieve a higher density than DRAM
because of the complex structure of the recording element.
In this study, we used SRAM to store weights. Figure 1 shows
a model of the BER versus the operating voltage for the
SRAM.We used the graph of the SRAM failure rate presented
by Yang et al. [11]. It shows the BER for SRAM with a
process rule of 28 nm when the operating voltage varies from
0.45 V to 0.8 V. Low operating voltage brought about high
BER. This is caused by static noise margin [12], [13], [14].

III. PROPOSED METHOD
Figure 2 shows a model of the memory structure for storing
NN weights in memory. Each weight was stored at a single-
precision floating point. If the operating voltage of the SRAM
is lowered in the model shown in Figure 2, the BER of all bits
will be higher, and errors will strongly affect the recognition
rate. Therefore, we propose the model shown in Figure 3.
In the model, we used two different operating voltages for
the SRAM, where we supplied a higher voltage for the bits
that are strongly affected by the errors and a lower voltage
for the bits that are more tolerant to the errors. By lowering
the operating voltage of the SRAMs using error-tolerant bits,
we reduced the overall power consumption. At the floating
point, bit flipping in the high-order bits significantly affects
the value. Therefore, we set a low BER for the top n bits of
the exponential part and a high BER for the other bits.
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FIGURE 1. A model for SRAM operating voltage and bit error rate.

FIGURE 2. A model of the memory structure for NN weights.

FIGURE 3. Proposed model of memory structure for NN weights.

IV. SIMULATION
A. SIMULATION CONDITIONS
In Section 4, we reveal how an increase in BER affects the
recognition rate. We used Python as the simulation tool and
employed the MNIST dataset to train a fully connected DNN
composed of four neuron layers. The number of nodes in
each layer is set to 784-256-128-10 [15]. The mini-batch
method was used for training, where the number of steps was
5,000 and the batch size was 600. The number of training

FIGURE 4. Recognition rate when BER is constant.

data is 60,000 and the number of test data is 10000. The
learning rate is set to 0.5, and the ReLU function is used
for the middle layer activation function and the SoftMax
function for the output layer activation function. The neural
network weights are initialized with a Gaussian distribution
with a standard deviation of 0.01. For the evaluation criterion,
we used 0.9704, which is 99% of the recognition rate of
0.9803 when the BER of all the bits was 0.

B. SIMULATION OF EXISTING MODEL
Figure 4 shows the relationship between the BER and recog-
nition rate when the BER is assumed to be constant for all
bits. For the recognition rate, we used the average value of the
successful learning among the three simulations. When BER
was less than 10−8.7, the recognition rate was greater than
0.9704. However, when the BER was greater than 10−8.7, the
learning was unsuccessful.

We consider the cause of the learning failure to be an
error that occurs in the exponential part. Learning failed
because certain weight values increased significantly and
propagated to the entire system. It is also possible that the
learning process fails because the floating point indicates a
nonnormalized number. In the single-precision floating point,
the exponent part is (01111111)2 when the number is greater
than or equal to 1.0, and less than 2.0. If there is an error in the
most significant bit of the exponent, the weights will indicate
NaN or infinity and the learning will fail. However, in this
study, we did not observe any learning failures that could be
attributed to this cause. This is because the weights diverged
owing to errors earlier than the learning progressed, and the
weights exceeded 1.0.

C. SIMULATION OF PROPOSED MODEL
Figure 5 shows the relationship between the BER and recog-
nition rate when the BER of the high-order n bits of the
exponential part is set to 0. For the recognition rate, we used
the average value of successful learning among the three
simulations. In Figure 4, the recognition rate is polarized,
whereas, in Figure 5, it gradually decreases. This indicates
that the error in the most significant bit of the exponent has
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FIGURE 5. Recognition rate when the high-order n bits of the exponential
part are protected.

TABLE 2. Efficiency of memory voltage at each bit.

a strong impact on the recognition rate. When the BER was
less than 10−5.2, the recognition rate was 0.9704 or higher
under all the conditions. Among those with a recognition rate
of 0.9704 or higher, the highest BER was for n = 8 and
BER = 10−3.8.
Table 2 lists the memory voltage characteristics.

We obtained the maximum BER among the BERs with a
recognition rate of 0.9704 or higher, and the corresponding
operating voltage of the SRAM. In addition, we determined
the ratio between the memory voltage of all bits at 1 V and
the memory voltages under each condition. When n = 8, the
efficiency was the highest and the memory voltage decreased
to approximately 60%. When n 6= 8, the memory voltage
decreased to approximately 61-65%

D. SIMULATION OF LOW VOLTAGE SRAM
In Subsection D, we simulated the behavior of the SRAM at
the memory voltage calculated in Subsection C. We used the
most efficient voltage 0.47V for evaluation and 1V for com-
parison. We used HSPICE and a 45 nm and 22 nm PTM for
the simulation and set the operating environment at 27◦C and
1.0V supply voltage. In this study, the parasitic capacitance
is simulated as 1pF HSPICE was a circuit simulator provided
by Synopsys.

Table 3 (A) summarizes the delay times and power con-
sumption of the 45 nmRTMmodels. In terms of reading delay
time, the delay time was 0.219ns when the memory voltage

TABLE 3. Characteristics of low voltage SRAM (A) 45 nm mode.

was 1V, while it was 2.502ns when the memory voltage was
0.47V, a significant increase. We assume that this is owing
to the parasitic capacitance of the bit lines because the read
delay time decreased significantly in a simulation where the
parasitic capacitance was lowered from 1 pF. In terms of write
delay time, the delay time was 1.022ns when the memory
voltage was 1V, while it was 0.548ns at 0.47V, almost half the
delay time. This is because the voltage of 0.47V is almost half
of 1 V. This shortens the time to charge memory cells. The
power consumption was 107.29 nW when the memory volt-
age was 1 V, whereas it was 73.02 nW at 0.47 V, a reduction
of approximately 32%. Table 3 (B) shows the results using
the 22 nm PTM model. The simulation conditions are the
same as for the 45 nm PTM model shown in Table 3 (A).
The comparison results between 1 V and 0.47 V are similar
to those for 45 nm. For example, the reading latency for 1 V is
much shorter than that for 0.47 V. The writing latency for 1 V
is almost twice as long as that for 0.47 V.

V. CONCLUSION
In this paper, we proposed a method to reduce power con-
sumption by using two different operating voltages for the
SRAM that stores the weights during neural network training.
The existing model requires a BER of 10−8.7 or less to
achieve as 99% high recognition accuracy as the error-free
circuit, but by protecting the most significant bit of the expo-
nential part, we achieved the 99% high recognition accuracy
with a BER of 10−5.3 or less. By protecting all eight bits of
the exponential part, we achieved a BER of 10−3.8, keeping
the 99% high accuracy. The highest efficiency was achieved
when the high-order 8 bits of the exponential part were
protected, resulting in a memory voltage of 0.47V, reducing
the overall memory voltage by about 40%. In addition, the
power consumption was reduced by about 32%, but there
were still issues such as an increase of 1142% in the read
delay time.

The proposed scheme is evaluated with only the MNIST
dataset and a small NN. We expect the proposed scheme is
available for a large dataset and NN, such as ResNet. The
future work includes the evaluation of such a large system.
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