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ABSTRACT The key advantage of using power-utility-owned smart meters is the ability to transmit electrical
energy consumption data to power utilities’ remote data centers for various purposes, such as billing. Several
useful consumer-centric use cases can also be identified for the collection and further analysis of consumers’
electrical energy consumption data from smart meters. One of the use cases is home automation. Recent
related solutions for home automation involving home security and healthcare depend on the installation
of sensors and/or other devices such as video cameras, which have high costs for installation and annual
maintenance. Because the electrical energy consumption patterns mined from smart meter data are
indicative of residents’ daily life, it is possible to develop a new home automation approach based on energy
decomposition for smart home automation. Accordingly, in this work, a smart home energy management
system (SHEMS) utilizing a parallel-processing-implemented, GPU-accelerated neurocomputing-based
time-series load modeling and forecasting mechanism is proposed for smart home automation. Energy
decomposition is used to facilitate the time-series load modeling and forecasting mechanism, which
tracks appliance-level electrical energy consumption to be quantitatively modeled from circuit-level
consumption, with no intrusive deployment of networked plug-level power meters for individual electrical
home appliances. For the neurocomputing approach applied in this mechanism, an autoregressive multilayer
perceptron methodology is compared against a stacked long short-term memory methodology. The presented
neurocomputing-based time-series load modeling and forecasting mechanism facilitated by energy
decomposition is capable of predicting residents’ daily behavioral patterns by nonintrusively analyzing and
modeling relevant electrical home appliances based on their past trends for smart home automation.

INDEX TERMS Artificial intelligence, energy decomposition, neurocomputing, smart home automation,
smart grid.
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URi’d quantified usage rate of the i-th relevant electri-
cal home appliance on the d-th weekday in the
t-th time slot, statistically computed in consid-
eration of T, -x,,w"’d from the past W weeks

Pl-’“’ed rated power of the i-th relevant electrical home

appliance

B. ABBREVIATIONS

AloT Artificial Intelligence of Things
HEMS home energy management system
ADLs  activities of daily living

GPU graphics processing unit

RFE recursive feature elimination
DNN deep neural network

UR usage rate

MLP multilayer perceptron

LSTM  long short-term memory

MAPE mean absolute percentage error

I. INTRODUCTION

Smart cities can enhance our daily lives by providing com-
prehensive smart services such as smart transportation and
energy. Electricity is one of the most popular forms of energy.
As the electricity demands of consumers from downstream
sectors of an electric power grid that is to be upgraded
to a smart grid continuously increase, energy management
schemes that encourage consumers to consume less electrical
energy than they used to by raising their awareness of their
consumption levels [1] are vital. With the implementation
of such energy management, these ever-increasing electricity
demands can be satisfied.

Smart grids can make existing cities ready for future
needs, such as those of smart homes. In brief, a smart
grid can be defined as an electric power grid that uses
smart metering, automatic monitoring, and intelligent control
techniques in conjunction with information and communica-
tion technologies and Artificial Intelligence of Things (AloT)
technology to operate more efficiently, enabling energy con-
servation and carbon emission reduction [2], [3], [4], [5], [6],
[7]. In a smart grid with widespread deployment of power-
utility-owned smart meters instead of traditional rotating-disc
meters, it has become possible to automatically collect elec-
trical energy consumption data at much more fine-grained
spatial and temporal resolutions and to analyze these data at
a more granular level for several useful consumer-centric use
cases [8], [9], [10].

Fig. 1 depicts the location of a smart meter installed
for a residential consumer in a smart electric power grid.
As depicted in Fig. 1, the smart meter is located at the entry
point of the residential building’s electric grid connection.
In a smart grid, the key advantage of using smart meters is
the ability to transmit metered electrical energy consumption
data to a power utility’s remote data center [10]. Through
the automated collection of consumers’ electrical energy con-
sumption data and the analysis of these data via artificial
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intelligence (AI), several novel use cases can be realized.
From the grid-level monitoring perspective, the smart meter
in Fig. 1 is distinct from a consumer-side monitoring system
such as a building-level home energy management system
(HEMS). Such an HEMS can communicate with monitor-
ing devices such as wirelessly networked plug-level power
meters to keep track of domestic devices such as electrical
home appliances in a home environment. As a revolution-
ary paradigm for a connected home environment, a smart
home can be defined as a residence developed with AloT
technologies to enable the provision of useful user-centric
services to its occupants. Instead of addressing the building-
level or grid-level monitoring perspective, this work con-
siders time-series load modeling and forecasting for smart
home automation as one such service relevant to appliance-
level monitoring. The smart meter in Fig. 1, which is located
at the entry point of the building’s electric grid connec-
tion, can acquire circuit-level electrical energy consumption
data for building-level and grid-level monitoring purposes,
but it cannot decompose them into appliance-level electrical
energy consumption data for appliance-level monitoring pur-
poses. To achieve appliance-level monitoring, a traditional
HEMS identifies electrical energy consumption of relevant
individual electrical home appliances by means of plug-
level power meters, i.e., smart plugs, attached directly to
these appliances. This load monitoring approach, an intrusive
load monitoring approach, requires field deployment of these
HEMS instruments and incurs a high investment burden,
including installation and annual maintenance costs. As an
alternative to this intrusive approach, energy decomposition
has been developed as a so-called nonintrusive load monitor-
ing (NILM) technique to enhance the practical applicability
of HEMSs for the detailed (appliance-level) monitoring of
electrical energy consumption [11], [12], [13], [14], [15],
[16], [17], [18]. A comparative summary of energy decom-
position vs. intrusive load monitoring can be found in [14]
and [19]. Being part of an (H)EMS, energy decomposition
is the process of decomposing circuit-level electrical energy
consumption data, i.e., smart meter data, into appliance-level
electrical energy consumption data with no need for any addi-
tional plug-level power meters, thus keeping the investment
costs, including installation and annual maintenance, of the
(H)EMS to a minimum. Refs. [10], [20] present a compre-
hensive review of recent trends in energy decomposition.
Smart meter data gathered in, for instance, residential envi-
ronments and analyzed through energy decomposition based
on signal processing and Al techniques can support several
useful user-centric use cases [10], [20], [21]. One of these
use cases is home automation, including anomaly detection
for home security [22] and the recognition of activities of
daily living (ADLs) for healthcare applications [22], [23],
[24], [25]. The current techniques adopted in HEMSs for
such home automation applications depend on the installa-
tion and use of sensors and/or other devices such as video
cameras, which also require additional installation and annual
maintenance costs [20]. However, an HEMS that exploits
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FIGURE 1. Location of a smart meter installed for a residential consumer using the public utility service for domestic
purposes in a smart electric power grid. The smart meter capturing all power flows between the electric grid and the
building can lead to potential benefits on both sides. For example, ideally, the balance between energy consumption

and energy generation can be optimized.

energy decomposition for home automation purposes (based
on the premise that electrical energy consumption patterns are
indicative of residents’ daily lives) does not require such addi-
tional costs. Hence, the complexity of implementing practical
home automation for home security and healthcare can be
reduced.

Fig. 2 shows a sample of acquired circuit-level power
demand over 24 hours, from 00:00 to 24:00, in a realistic
house environment, which shows the feasibility of the iden-
tification of ADLs from such data [23]. This work presents
a smart HEMS (SHEMS) utilizing a parallel-processing-
implemented, GPU-accelerated neurocomputing-based time-
series load modeling and forecasting mechanism for smart
home automation. In contrast to a conventional home automa-
tion system with multiple devices, sensors and/or actua-
tors installed as home furnishings to unobtrusively collect
behavioral data in the home environment, the load mod-
eling and forecasting mechanism presented here is based
on energy decomposition and is capable of predicting resi-
dents’ daily behavioral patterns by nonintrusively analyzing
and modeling relevant individual electrical home appliances
based on the usage trends observed in circuit-level electri-
cal energy consumption data, which can be obtained from
a power-company-owned smart meter. Relevant electrical
home appliances can reflect behavioral routines of occupants
using electricity [26]. The work presented here is an exten-
sion of the previous work reported in [12], [13], and [23],
which presents a new methodology for modeling relevant
individual electrical home appliances by means of energy
decomposition applied on circuit-level electrical energy con-
sumption data, with a very low level of intrusiveness [27]. The
present work is different from that described in [23] and [24],
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where the load modeling and forecasting mechanism was a
heuristic-based mechanism.

This paper is organized as follows. First, the methodology
proposed in this work is presented in Sec. II. Then, Sec. III
describes the conducted experiments. Finally, the paper is
concluded with a discussion of future work in Sec. IV.

Il. METHODOLOGY

An overview of the presented parallel-processing-
implemented, GPU-accelerated neurocomputing-based time-
series load modeling and forecasting mechanism (as a
module) based on energy decomposition is depicted in
Fig. 3. Extended from the work presented in the previous
studies [12], [23], this work presents a neurocomputing-
based time-series load modeling and forecasting mechanism
based on energy decomposition for smart home automation,
in which 1) a set of neurocomputing tools accelerated by
a graphics processing unit (GPU) are processed in parallel
for time-series load modeling and forecasting and 2) the
energy decomposition method used to facilitate time-series
load modeling and forecasting is improved. For the neu-
rocomputing tools performed in the presented mechanism,
an autoregressive multilayer perceptron (MLP) methodology
is compared with a stacked long short-term memory (LSTM)
methodology.

A. HARDWARE—-THE HEMS

As depicted in Fig. 3, a house utilizing the HEMS in [13],
[23] is connected via advanced metering infrastructure (AMI)
to a smart grid. As a complement to the demand response
(DR) and non-context-aware human life-pattern identifica-
tion implementations presented in [13] and [23], this work
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FIGURE 2. A sample of acquired circuit-level power demand data over 24 hours, from 00:00 to 24:00, in a realistic house

environment [23].
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FIGURE 3. A schematic diagram of the presented parallel-processing-implemented, GPU-accelerated neurocomputing-based time-series
load modeling and forecasting mechanism, based on energy decomposition, implemented as a module of the HEMS in [13] and [23].
In [13] and [23], a metaheuristic-based residential-consumer-centric demand-side management (DSM) model and a heuristic-based

non-context-aware human life-pattern identification method have pr

presents a time-series load modeling and forecasting imple-
mentation based on energy decomposition for smart home
automation, which can also be implemented for residential
load management. As seen in Fig. 3, the house with the
HEMS (implementing the mechanism presented here) mainly
includes 1) a smart meter used to receive DR signals from
a power utility via AMI for the implementation of demand-
side management (DSM) as described in [13]; 2) a home
gateway, implemented on an embedded system as in [12] or a
laptop as in this work, which acts as an energy management
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sly been d

controller in the house; and 3) relevant electrical home appli-
ances networked wirelessly via a home area network and
monitored through energy decomposition for the identifica-
tion of ADLs as described in [23] and for smart home automa-
tion/residential load management based on time-series load
modeling and forecasting as described in this work. In the
house, two different types of installed sensors work together
in a sensor-fusion sense: 1) plug-level ZigBee-based control
relays, acting as switching gadgets, installed for remote load
control and used to label relevant electrical home appliances

VOLUME 10, 2022



Y.-H. Lin et al.: SHEMS Utilizing Neurocomputing-Based Time-Series Load Modeling and Forecasting

IEEE Access

with their load combination classes (a one-time intrusive
setup period for energy decomposition is needed for the load
combinations to be labeled and addressed through multi-
class/multilabel load identification [28]. Alternatively, this
one-time intrusive setup period can be achieved through
a preliminary stage of energy decomposition as described
in [29]), and 2) a minimal set of circuit-level current and
voltage sensors used to acquire composite electrical energy
consumption data, as smart meter data, to be decomposed
through energy decomposition into appliance-level electrical
energy consumption data. The energy decomposition results,
such as the time durations of use for each individual mon-
itored electrical home appliance, are very useful for fur-
ther analysis for applications such as the time-series load
modeling and forecasting mechanism proposed in this work.
Regarding the home gateway, it can be implemented based
on a BeagleBoard embedded system with an OMAP3530
720 MHz ARM® Cortex™-A8 processor, in which an
Apache HTTP web server, MySQL relational database, and
PHP sous Linux OS stack can be configured [12]. Here, the
presented work is implemented based on scikit-learn [30] and
TensorFlow™[31] in the Python programming language.

B. SOFTWARE—PROPOSED NEUROCOMPUTING-BASED
TIME-SERIES LOAD MODELING AND FORECASTING
MECHANISM BASED ON ENERGY DECOMPOSITION

Fig. 4 shows the workflow of the presented neurocomputing-
based time-series load modeling and forecasting mechanism
based on energy decomposition. The energy decomposi-
tion procedure involved in the mechanism is described in
Sec. II-B-1). The mechanism by which the energy decom-
position results are used for time-series load modeling and
forecasting is described in Sec. II-B-2). In this mechanism,
a set of deep learning (DL)-based neurocomputing models
developed as load behavior learners for predicting the routine
weekday behaviors of relevant individual electrical home
appliances is parallelized, wherein the deep neural networks
(DNNs) are accelerated by a GPU. Because considerable
computational power is required to allow a DNN to learn from
data, such a model can be trained faster by simply running
all operations (matrix multiplications) simultaneously rather
than one after the other. To achieve this, we use a GPU to
train our DNNSs in this work. Moreover, with such utilization
of GPU-accelerated DNNES, it is necessary to speed them up
by exploiting parallel processing, as they have very high com-
putational requirements due to 1) the large number of input—
output data pairs (note that the time-series load modeling is
framed as supervised learning) to be learned and 2) the need
to iteratively execute the algorithmic routines.

1) ENERGY DECOMPOSITION

The basic energy decomposition process can be formulated as
shown in Eq. (1), which is referenced from [28]. In Eq. (1),
1) P(t), the total power consumption (= y(¢)), corresponds
to the circuit-level composite electrical energy consumption
recorded in the z-th time slot; 2) P;(¢) represents the real
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power consumption of the i-th individual monitored electrical
home appliance (i = 1, 2, ..., N) in the #-th time slot;
3) x;(¢) indicates the on/off status of the i-th appliance in the
t-th time slot, taking values of {0, 1} where O corresponds
to the “off” status and 1 corresponds to the “on” status;
and 4) Ppas. () represents the base load, comprising perma-
nent/phantom loads, which can be profiled in advance dur-
ing a one-time intrusive setup period or a preliminary stage
of energy decomposition. Given P(¢) (= y(¢)) as acquired
from the smart meter and knowledge of Py, (¢) and P;(z),
which can also be profiled during the one-time intrusive setup
period or the preliminary stage of energy decomposition,
energy decomposition can deduce the unknown x;(¢) for the
N individual monitored appliances in the z-th time slot: [x1(¢),
X2(t),. .., xi(1), ..., xy(t)]= F(y(¢)), where F'is a well-trained
Al model. This model can return the most appropriate N
estimates of x;(¢) for all N relevant appliances in the ¢-th
time slot such that the objective metric given in Eq. (2)
[28] is minimized. The optimization objective in Eq. (2) is
expressed as a sum of superimposed absorptions Xx;(¢)P;(t)
to be deduced with respect to P(¢) and Ppgs(f) so as to
minimize the error e(¢). In this work, we use an ensemble
machine learning approach to deduce the x;(¢) for energy
decomposition of Eq. (2).

N
P(t) = Y xi(OPi(t) + Ppase(t) e

i=1

N
e(t) = |P(t) = ) &i)Pi(t) — Ppase(t) 2)

i=1

In this work, the energy decomposition workflow shown in
Fig. 4 consists of the following three steps: 1) data acquisi-
tion; 2) feature extraction, including data reduction and fea-
ture selection; and 3) load identification, for which a random
forest ensemble is implemented. In the data acquisition step,
both composite circuit-level current and voltage signals were
continuously and simultaneously acquired [12]. In the feature
extraction step, electrical features were extracted from the
acquired circuit-level current and voltage signals, including
the real power (P), reactive power (Q) and current harmonics
of up to the 111 order [12], [23], and data reduction and
feature selection were additionally performed [12], [23]. The
energy decomposition method described in [12] and [23]
involved taking a feature reading every minute and then
processing it for the collection of the extracted features to be
identified. In [12] and [23], feature selection was performed
by sequential feature selection. In this work, recursive fea-
ture elimination (RFE) [32] is applied instead. RFE works
by recursively removing features and then building a model
based on those features that remain; for this purpose, the
model accuracy is used to identify which combination of
features contributes the most to predicting the target. More
details on RFE can be found in [32]. In the load identifica-
tion step, the status of relevant electrical home appliances
monitored nonintrusively for their usage traces is deduced
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by a random forest ensemble [18], [33] in this work, and
this approach will be compared against the load identifi-
cation approaches in [12] and [23]. In [12], a backpropa-
gation artificial neural network (BP-ANN)-based ensemble
was used in combination with sequential feature selection.
In [23], a bagging-decision-tree-based ensemble, an ensem-
ble in which decision trees are used as the basis for bootstrap
aggregation [17], was applied in combination with the same
feature selection method used in [12]. In this work, a ran-
dom forest ensemble with feature selection based on RFE is
employed as the load identifier for the individual monitored
appliances, and the identified loads are further analyzed and
modeled for time-series load forecasting. To this end, RFE
and the random forest ensemble are implemented in Python
on a laptop. In addition, scikit-learn [29] is suited on the
laptop to run the presented parallel-processing-implemented,
GPU-accelerated time-series load modeling and forecasting
mechanism based on energy decomposition.

2) NEUROCOMPUTING-BASED TIME-SERIES LOAD
MODELING AND FORECASTING

This work proposes the parallel-processing-implemented,
GPU-accelerated time-series load modeling and forecasting
mechanism shown in Fig. 4, which is based on energy decom-
position. The presented mechanism involves the following
three steps.

Step 1): Parse historical energy decomposition data (on/off
statuses of nonintrusively monitored electrical home appli-
ances) to obtain the usage rates (URs) of the relevant appli-
ances through energy decomposition for time-series load
modeling and forecasting.

Step 2): Frame the time-series data, i.e., the URs parsed
in Step 1), in a supervised learning manner and build DNNs
as load behavior learners to predict load behaviors of the
relevant appliances that are representative of their routines
on weekdays for smart home automation (residential load
management).

Step 3): Train the DNNs built in Step 2) on the past trends
of the framed time-series data to forecast the future URs
of the individual monitored appliances based on their on/off
statuses. For this purpose, parallel processing is adopted for
the parallel training of the GPU-accelerated DNNs.

The three steps above are detailed in the following
subsections.

a: PARSING HISTORICAL ENERGY DECOMPOSITION DATA
TO OBTAIN THE URS OF RELEVANT MONITORED
ELECTRICAL HOME APPLIANCES FOR TIME-SERIES LOAD
MODELING AND FORECASTING

The historical energy decomposition data are parsed for
time-series load modeling and forecasting as described
below. Suppose that there are T time slots in a day, where
T=1{1,2,...,¢t,....,T}and H = {1,2,...,h,...,.H =
24 hours}. For instance, T may be equal to 1,440, mean-
ing that the time resolution is 1 minute. Further suppose
that the i-th relevant electrical home appliance is considered
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for time-series load modeling and forecasting, meaning that
energy decomposition is used to identify its on/off routines
on D weekdays, where D = {1,2,...,d,...,D = 5 days
(Monday through Friday)}, for W weeks, where W =
{1,2,...,w,..., W}. Then, the quantified UR of the i-th
appliance on the d-th weekday in the 7-th time slot can be
statistically computed in consideration of t,, -x,,wi*d from the
past W weeks, as shown in Eq. (3).

» T, x4
URi’d — weW *w t,w’ vt (3)
w

In Eq. (3), x;,,,*¢ represents the on/off status of the i-th
appliance as determined through energy decomposition on
the d-th weekday in the 7-th time slot of the w-th week; x,,w"*d
takes values of {0, 1} where O indicates that the appliance sta-
tus is “off”” and 1 indicates that the appliance status is “on”.
In Eq. (3), the x,,w"’d values are weighted chronologically by
weights t,,, which should satisfy Eq. (4). In this work, we use
a set of neurocomputing-based behavior learners to model
the occupants’ life patterns. The occupants’ life patterns are
quantified chronologically in a weighted form (based on their
routines from the past several weeks) as expressed in Eq. (3)
and are then adaptively learned for ongoing forecasting, as the

routines to be modeled may change over time.

IIEY g

Note: the predicted UR; 4 values can be transformed into
an activation profile for the i-th electrical home appliance
of interest. If the predicted value is greater than or equal
to a prespecified probability threshold, then the i-th appli-
ance is considered to be “‘on’’; otherwise, it is considered to
be “off”.

b: BUILDING DNNS FOR TIME-SERIES LOAD MODELING
AND FORECASTING

In this work, neurocomputing is used to perform time-series
load modeling and forecasting for relevant electrical home
appliances monitored through energy decomposition. Neuro-
computing is a type of computing based on an artificial neural
network (ANN) mimicking a biological neural network (NN),
which takes the form of a system of processing units known
as artificial neurons that can be linked together in various
ways to learn from arbitrary nonlinear data examples [1]. As a
type of neurocomputing, DL is usually performed based on an
ANN architecture; however, a traditional ANN contains only
two or three hidden layers, whereas a DNN can have many
hidden layers, even hundreds. Fig. 5 illustrates the general
structure of an ANN, specifically, a feedforward multilayer
DNN serving as an autoregressive MLP. It is designed and
implemented for time-series load modeling and forecasting
based on energy decomposition for smart home applica-
tions like smart home automation here. This model is shown
in order to motivate innovations in the application thereof.
As illustrated in Fig. 5, a general ANN consists of an input
layer, some numbers of hidden layers, and an output layer.
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FIGURE 4. Workflow of the presented parallel-processing-implemented, GPU-accelerated neurocomputing-based time-series load modeling and

forecasting mechanism based on energy decomposition.

The size of the input layer depends on the number of indepen-
dent input variables of the observed data to be learned. The
number of hidden layers and the number of hidden neurons
used in each hidden layer can be determined via hyperparam-
eter tuning, where the hyperparameters affect how well the
model can represent the observed data, as assessed through
learning and testing. The hyperparameters include the hidden
layer sizes, the training algorithm, the number of epochs of
iterative training, and so on. The size of the output layer
usually depends on the number of dependent output variables
of the observed data. For a model such as the fully connected
feedforward DNN illustrated in Fig. 5, the rectified linear unit
(ReLU)-style activation function is commonly used for the
neurons in the hidden layers, rather than an S-shaped function
such as the sigmoid function, in order to overcome gradient
vanishing [35], [36]; in the context of DNNS, the problem of
vanishing gradients can often arise for a model configured
with S-shaped activation functions for the hidden neurons to
be trained by a stochastic gradient-based weight optimizer
such as Adam, which was first proposed in [37], for their most
appropriate weight coefficients including biases.

A simple form of time-series forecasting can be described
as follows: upon the observation of a data point y, in the ¢-th
time slot, a one-step-ahead forecast y,41 can be computed
by n preceding data observations, namely, y;, yi—1, Yi—2,
Yi=3» - - -» Y—n—1, from the 7-th, (z-1)-th, (¢-2)-th, (z-3)-th, ...,
(t-n-1)-th time slots, respectively. This can be formulated as
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shown in Eq. (5).

Vi1 =L Oty Ye—1s V=22 Yt=3+ -« s Yi—n—1) (5)

In Eq. (5), f can be realized by means of a well-trained
feedforward multilayer ANN. In this work, however, a small
difference with respect to Eq. (5) is considered. The problem
addressed in this work is a multistep time-series forecast-
ing problem, which is addressed by the model illustrated in
Fig. 5. The model in Fig. 5 is developed as a multistep time-
series forecasting model that predicts a vector output consist-
ing of the URs, as defined in Eq. (3), of the i-th individual
monitored electrical home appliance in terms of its on/off
status in multiple time steps. That is, given an input vector
consisting of data from the last n_steps_in time steps (the
raw observed, trended time-series URs selected by a sliding
window), the model illustrated in Fig. 5 can output a vector
of predicted URs for the next n_steps_out time steps as a
multistep time-series forecast.

The developed model can be applied directly to the raw
observed, trended time-series URs, with no need to make
them stationary via differencing prior to learning; thus, it is
capable of automatically extracting and learning features
from these UR data for time-series load modeling and fore-
casting. Dropout, an effective and commonly used technique
for preventing overtraining of an Al model, can also be used
in this model. Walk-forward validation is an approach in
which a time-series forecasting model generates a forecast
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FIGURE 5. An autoregressive MLP, a fully connected feedforward DNN, applied to a trended time series of observed data for time-series
forecasting. The network contains n input neurons for observations from the t-th, (t-1)-th, (t-2)-th, (t-3)-th,..., (t-n-1)-th time slots (the lagged
observations are flattened and fed into the model) and m output neurons for forecasts for the (t+1)-th, (t+2)-th, (t+3)-th, (t+4)-th, ..., (t+m)-th
time slots. The model has an arbitrary, complex topology that can be specified as desired for performing sophisticated (human-like) decision
making. In the model, the Ly, hidden layers can perform nonlinear data transformations az(Wzrz] + by), a;(W{zz +b3), ..., ay, (W[ Z, 1+ b’-h )

where ayx denotes the activation function of the hidden neurons in the x-th hidden layer (various function types can be specified; for example, the
typical activation functions used in feedforward DNNs include the sigmoid, tanh, and rectified linear unit (ReLU) functions), Wy represents the
weight matrix, and by represents the bias vector. Dropout—an effective, commonly used technique for preventing overtraining [34] of an ANN—can
also be applied in the form of a hyperparameter with a specified value to control the model training process; another technique used to prevent

overtraining is early stopping.

for each observation one at a time. After a forecast has been
generated for a time step, the true observation corresponding
to that forecast is added and made available to the model.
In this work, the presented model is evaluated through walk-
forward validation.

Recurrent neural networks (RNNs) are a special type of
ANNSs that are adapted for applications to time-series data
such as univariate time-series data. In practice, RNNs tend to
suffer from the vanishing gradient problem. LSTM networks,
which are a sequential model including specific forget, input
and output gates, were invented to resolve the vanishing
gradient problem faced by RNNs. LSTM networks can also
be used to solve univariate time-series forecasting problems
comprised of a single series of past observations, and an
LSTM network is the most appropriate type of predictive
model for modeling sequential data with long-term depen-
dencies. Fig. 6 depicts the typical architecture of an LSTM
cell, which can be trained through repetition over time to
identify the long-term dependency between time steps and
a time series of sequential data. The output of the LSTM
cell depicted in Fig. 6 can be expressed as shown in Eq. (6).
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As seen in this equation, the output is dependent on both
the input in the current time step (X;) and the previous hid-
den state (h;_1) (the output gate determines what the next
hidden state should be). Moreover, the output is modulated
by considering the current cell state (¢;). Through a training
process, the weight and bias parameters in Eq. (6), W,, b,
We, be, Wi, b;, Wy and by, can be learned from the available
data. A stacked LSTM network is a variant of a typical
LSTM network. It consists of a series of stacked LSTM layers
used to learn from time-series data for sophisticated decision
making. Fig. 7 illustrates the architecture of the N-layer
stacked LSTM model adopted for univariate time-series load
modeling and forecasting in this work. In this work, a stacked
LSTM model and a model based on autoregressive MLP are
both used for multistep time-series load forecasting, and their
performance is compared.

ht = 0; 0 tanh(ct) (6)

In Eq. (6), o) = o(Wyx; + Woh;—1 + b,), where
1) x; is the input to the LSTM cell in the current time step,
2) h,_| represents the output of the previous hidden state, and
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3) W, and b,, are the weight and bias parameters, respectively,
of the output gate. o denotes the sigmoid activation function.
¢, = f; o1 +1; o ¢, where ¢;_1 represents the cell state
that is previous to ¢; and ¢; denotes an intermediate cell state.
f; = o (Wrx;+Wrh,_1 +byr), where Wy and by are the weight
and bias parameters, respectively, of the forget gate, which
controls information removal and retention when calculating
¢; based on the memory of the previous cell state (c¢;—1).
i, = c(Wix; + W;h,_1 + b;), where W; and b; are the weight
and bias parameters, respectively, of the input gate, which
updates the cell state (c;) based on the intermediate cell state
(¢;). ¢; = tanh(W,x; + W:h,—1 +b,.), where W, and b, are the
weight and bias parameters, respectively, for the intermediate
cell state. Finally, denotes the Hadamard product (element
wise multiplication) [38].

¢: TRAINING DNN MODELS WITH PARALLEL COMPUTING
AND A GPU

For a DNN, a complex ANN that mimics sophisticated
(human-like) decision making, a Compute Unified Device
Architecture (CUDA)-enabled GPU can be used to speed up
the network for its training process. A GPU is capable of per-
forming massive parallel computations simultaneously, and
the computation routines that must be executed to update the
weights of a network during training involve large amounts of
matrix multiplications that can be parallelized. In this work,
the training process for networks built based on the model
illustrated in Fig. 5 is accelerated by a GPU to reduce the
computation time needed for the networks to learn the trends
of the URs of individual monitored electrical home appli-
ances in order to predict their future on/off statuses. Parallel
processing is a mode of operations in which tasks (processes)
are executed simultaneously on multiple processors on one
or multiple machine(s). In parallel processing, there are two
types of execution: 1) synchronous execution, in which the
processes are completed in the same order in which their
execution was started (synchronous execution is achieved by
locking the main program until the corresponding processes
are done), and 2) asynchronous execution, in which the par-
allel processes are allowed to be executed asynchronously
(in asynchronous execution, a process may start as soon as
a previous one has finished, without regard for the starting
order; this approach does not involve locking). In this work,
in addition to the use of a GPU the speed up the model training
process, asynchronous parallel processing is adopted for the
parallel training of GPU-accelerated neurocomputing-based
load behavior learners for individual relevant electrical home
appliances to be predicted for their future on/off statuses by
the established, well-trained learners.

3) USING F; SCORE TO EVALUATE TIME-SERIES LOAD
FORECASTING MODELS

Accuracy [12] alone does not tell the full story of the per-
formance achieved when a classifier/learner is used as a pre-
dictor on a class-imbalanced dataset. In this work, as shown
in Eq. (7), F1 score [15], [31], [39] is used to evaluate
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the prediction performance of the energy decomposition and
time-series load forecasting approaches.
Precision - Recall

Fiscore =2 - — 7)
Precision + Recall

In Eq. (7), precision is the ratio of the total number of
correctly predicted positive samples to the total number of
predicted positives, and recall (i.e., the sensitivity or hit rate)
is the ratio of the total number of correctly predicted positive
samples to the total number of actual positives.

As shown in Eq. (7), F; score is the harmonic mean of
precision and recall. A classifier/learner that produces no
false positives when used as a predictor has a precision of
1.0, and it has a recall of 1.0 if it produces no false negatives.
Thus, as seen from Eq. (7), F; score has a maximum value
of 1.0 (perfect precision and recall). The higher the score is,
the better the prediction performance. Egs. (8) and (9) show
how to compute the true positive rate (TPR) (a synonym for
recall) and the false positive rate (FPR), respectively. These
metrics are typically used to construct the receiver operating
characteristic (ROC) curve [40], [41], [42] as another tool
for evaluating a classifier (a learner acting as a predictor).
In addition to the area under the curve (AUC), where a larger
AUC is usually better, the “steepness’™ of the ROC curve is
also important. This is because it is ideal to maximize the
TPR while minimizing the FPR; hence, the top left corner
of the ROC curve plot is the “ideal” point for classifica-
tion/prediction. Based on the ROC curve, the error of a trained
and tested classifier/learner serving as a predictor can be com-
puted based on the Euclidean distance from the ideal classi-
fication/prediction point (FPR=0, TPR=1) to the evaluated
(FPR, TPR) point [16], [18]. Accordingly, in addition to using
F1 score, this work also uses ROC curves, which are plotted
as FPR vs. TPR, to evaluate the prediction performance of
the energy decomposition approach based on a random forest
ensemble and of the time-series load forecasting approach
based on parallel-processing-implemented, GPU-accelerated
neurocomputing.

TP
TPR = — (8)
TP + FN
FP
FPR= ———— 9
FP+ TN

In Eqgs. (8) and (9), the number of true positives (TP) is the
number of data, i.e., examples/observations, that are predicted
to be positives and are also positive examples in reality.
True negatives (TN) similarly refer to data that are correctly
predicted to be negative observations. False positives (FP) are
data that are erroneously predicted to be positives, and false
negatives (FN) are data that are incorrectly predicted to be
negatives.

lll. EXPERIMENTS

This section demonstrates the presented parallel-processing-
implemented, GPU-accelerated neurocomputing-based time-
series load modeling and forecasting mechanism based on
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FIGURE 7. A stacked LSTM architecture that can learn a function mapping a given sequence of
past observations serving as inputs to an output observation (or a sequence of output
observations for multistep time-series forecasting). The number of hidden LSTM cells in each
hidden LSTM layer is equal to the number of time steps. Each hidden LSTM cell is made up of
hidden units to be prespecified for model training.

energy decomposition. The electrical home appliances moni-
tored in the house environment in [12] and [23] are tabulated
in Table 1. The rated power (wattage), denoted by P{“’Ed,
of each appliance listed in Table 1 was statistically computed
(estimated) from historical circuit-level power consumption
data recorded when only one appliance was in use at a
time. The wattage of the base load in the house environ-
ment was similarly statistically computed to be 0.31 kW.
In [12], the typical usage of the appliances was learned and
modeled based on the onsite-collected feature data. Specifi-
cally, in addition to the electrical features P and Q, current
harmonics of up to the 11™ order extracted via the fast
Fourier transform (FFT) from the circuit-level current signals

116756

were considered as the potential electrical features for further
selection and processed. In [12], the feature subset {P, Q,
IMagznd, IMag7‘h} was obtained (refer to [12] for more details
about the data reduction and feature selection processes).
The energy decomposition process, which is viewed as load
identification, in [12] was based on a set of BP-ANNSs that
made up an ensemble designed to classify a total of 17 load
combination scenarios (classes) in the house environment.
As reported in [12], a total of 6 electrical home appliances
were nonintrusively monitored in hot L1 of the residential
electrical wiring. Theoretically, there are 64 (=2°) possible
load combination scenarios in total that should be considered
when there are 6 appliances of interest. However, in practice,
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47 load combination scenarios were excluded since 1) some
of these possible scenarios involved power-intensive appli-
ances that would overload the conductor and 2) some of
the appliances to the remaining scenarios were not used
and labeled during the one-time intrusive setup period for
the NILM. As a result, only 17 possible load combination
scenarios were considered in total, and these same scenar-
ios are addressed for energy decomposition in this work.
In [23], a bagging-decision-tree-based ensemble was used
for energy decomposition/load identification instead of the
BP-ANN-based ensemble used in [12]; however, this ensem-
ble was applied based on the same feature subset.

In this work, a different energy decomposition method-
ology is applied for the same house environment and
compared with the energy decomposition/load identifica-
tion approaches used in combination with the sequential
feature selection method in [12] and [23]: specifically, a
random forest ensemble is used to classify feature data
selected based on RFE rather than the sequential feature
selection method used in the previous studies. The basic
energy decomposition process can be formulated as shown
in Egs. (1) and (2). Notably, electrical home appliances may
be identical in terms of P (and Q). Therefore, in practice,
additional electrical features need to be considered as fea-
ture candidates for energy decomposition to obtain x;(¢) in
Eq. (1) such that Eq. (2) is optimized/minimized. In this work,
energy decomposition is performed every minute to identify
whether each monitored appliance was currently in use in
the house environment. To this end, at each time point for
load identification, 1-second composite current and voltage
signals were acquired simultaneously and analyzed to extract
their electrical features, including P, Q and the magnitude
of the current harmonics of up to the 11™ order [12], as the
feature candidates to be examined through RFE to resolve
any ambiguities when identifying different appliances or load
combinations thereof under similar P (and Q) conditions
for energy decomposition. Notably, from the perspective of
multilabel load identification for x;(¢) [28], cyclic appliances
such as washing machines, tumble dryers and dishwashers
can be treated as appliances with varying P, meaning that
the uncertainties arising due to identical values of P (and Q)
can be addressed by means of additional extracted electrical
features. The harmonic feature candidates considered and
examined by means of RFE in this work were extracted by
applying the FFT [12] to composite current signals acquired
with a sampling frequency of 2 kHz and a signal duration
of 1 second. The RFE() function [43] in scikit-learn was
applied to implement RFE [32] for feature selection. In this
experiment, the top 7 features {P, Q, Inag"*', Inag>™, Intag™™,
Inag"™, Inag®™} were chosen through RFE as the feature
subset for consideration (the number of features to be selected
was specified as 7). The RandomForestClassifier() function
[43] in scikit-learn was applied to implement a random for-
est ensemble as a meta-estimator by fitting a number of
base decision tree classifiers on various subsamples of the
complete training dataset and then averaging to improve
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the predictive performance while controlling overfitting. The
goal of using an ensemble as a meta-estimator is to intro-
duce randomization and combine several base estimators to
achieve improved generalizability/robustness compared with
a single estimator. In ensemble averaging methods such as
the random forest method used here (in which a forest of
diverse randomized decision trees is aggregated for decision
making), the driving principle is to first build several estima-
tors independently and then average their predictions (for a
classification problem, the predicted class of a given input
is determined by voting among the trees in the forest; the
predicted class is the one with the highest mean probability
estimate across all trees). On average, such a combined esti-
mator is usually better than any single base estimator because
its variance is reduced. An advantage of a random forest
ensemble is that it can be trained in parallel; hence, in this
experiment, the random forest ensemble was parallelized.
The number of trees (estimates) was specified as 535; this
number was determined experimentally. To tune/optimize
such a meta-estimator, a grid search can be performed by
exhaustively generating all possible parameter combinations
from considered parameter values and specifying these com-
binations through manual intervention. In this experiment,
train_test_split() [43] was used to split the entire feature
dataset into two disjoint subsets: a training dataset (70%) and
a test dataset (30%), where all data examples were shuffled
before they were split.

To fully evaluate the effectiveness of the random forest
ensemble in load identification for energy decomposition,
this work examines both precision and recall to compute the
F; score. Precision and recall are often in tension (improv-
ing precision typically reduces recall, and vice versa [23]).
Table 2 shows the load classification results of the random
forest ensemble for comparison with the ensemble in [12].
As shown in Table 2, the accuracy achieved by the ran-
dom forest ensemble is 93.05% (note that in [12], accuracy
alone does not tell the full story). In Table 3, the random
forest ensemble is compared against the ensemble in [12]
and the ensemble in [23]. As reported in Table 3, the accu-
racy of the ensemble in this work is improved by 2.54%
and 1.59%, which is relative to the accuracy of 90.51%
achieved by the ensemble in [12] and the accuracy of 91.46%
achieved by the ensemble in [23], respectively. Notably, the
bagging-decision-tree-based classification approach used in
[23], which improves load classification by combining indi-
vidual diverse decision trees into a meta-estimator/ensemble,
is also superior to the ensemble in [12].

Next, we will show the feasibility of using the pre-
sented parallel-processing-implemented, GPU-accelerated
neurocomputing-based time-series load modeling and fore-
casting mechanism based on the energy decomposition
results obtained above to realize a smart home automa-
tion environment. In this experiment, the x,,w""’ values in
Eq. (3) for computing the URs of each monitored electrical
home appliance considered for smart home automation/load
forecasting were chronologically weighted with weights of
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TABLE 1. Monitored electrical home appliances in the house
environment in [12] and [23].

electrical appliance rated power (kW)
electric rice cooker 1.10
electric water boiler” 0.90
steamer " 0.80
V® 0.22
range hood * 0.14
PC* 0.35
hair dryer 1.20
washing machine 0.30

TABLE 2. Load classification results obtained using the random forest
ensemble with RFE-based feature selection in this experiment.

load class  precision recall F1 score
1 0.98 0.93 0.96
2 0.97 0.98 0.97
3 1.00 0.90 0.95
4 0.71 0.16 0.26
5 0.90 0.86 0.88
6 0.91 0.98 0.94
7 0.82 0.90 0.86
8 0.60 0.64 0.62
9 0.64 0.90 0.75
10 0.86 0.96 0.91
11 0.86 0.99 0.92
12 0.87 0.76 0.81
13 1.00 0.36 0.53
14 1.00 0.98 0.99
15 1.00 0.67 0.80
16 0.56 0.20 0.29
17 0.65 0.43 0.52
accuracy (%) 93.05

7w = [0.1,0.2,0.3,0.4] for W = {1,2,3,4(= W)} (the
routines were observed for 4 weeks), which satisfy Eq. (4),
and the computed time-series UR data were normalized and
modeled for time-series load forecasting.

The autoregressive MLP model depicted in Fig. 5, which
was used to learn the URs of the individual monitored electri-
cal home appliances, was configured through trial and error
as specified below.

o Number of hidden layers (L in Fig. 5): 3.

o Numbers of artificial neurons in hidden layers:
[100, 50, 15].

« Activation function: the ReLU function.

o Weight optimizer: the stochastic gradient-based opti-
mizer proposed in [34] (Adam).

« Strategy for preventing overtraining: dropout. Within a
layer, dropout consists of randomly ‘“‘dropping out” a
number of output features from that layer during train-
ing, where the “‘dropout rate’ represents the proportion
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of the output features that are zeroed out. Here, the
dropout rate was set to 0.1.

o Loss function: mean squared error (MSE).

o Learning rate: 0.002.

o Maximum number of epochs: 500.

A grid search that exhaustively considers all hyperparam-
eter combinations can be conducted and used to perform
hyperparameter tuning to tune/optimize the model.

In this experiment, the training process of the model
was accelerated by a GPU. The model to be reduced
for its computation time for learning was programmed in
Keras [44]—a high-level application programming interface
(API) for ANNs in TensorFlow ™based on Python—and
the programmed model was executed (i.e., trained) on an
NVIDIA® Tesla® K80 GPU, specified and provided by
Colab (Google Colaboratory). Colab allows us to program
and execute our ANNs with zero configuration and free
access to the GPU. The amount of GPU memory provided for
use was 12 GB. Here, we mainly used tf.keras.Sequential(),
which can stack network layers, for model building. In addi-
tion, the model.compile() function of Keras was used to
configure and compile the model to be trained. Finally,
the model fit() function of Keras was used to adjust the
model’s trainable parameters while minimizing the MSE loss
given the prepared input—output training data pairs. Specif-
ically, we took the computed and normalized time-series
URs from a monitored electrical home appliance considered
for time-series load modeling and forecasting and divided
the observed data sequence into input—output data pairs,
where 15 time steps were treated as the input to the model
(n_steps_in, or nin Fig. 5, =15) and 5 time steps were treated
as the output (corresponding to the associated input) of the
model (n_steps_out, or m in Fig. 5, =5) to learn a function of
the following form:

f() . Rnﬁxtepsﬁin —s RI-steps_out

To n_steps_in and n_steps_out to be specified, according
to DR programs, 5-minute settlement provides significant
opportunities for consumers to participate in the market.

In this experiment, the multiprocessing package [45] was
also used. This package is a standard Python library that
supports spawning processes using one of the Pool class’s
parallelization methods, such as starmap() for synchronous
execution or starmap_async() for asynchronous execution.
With the multiprocessing package imported, a pool of par-
allel workers can be configured to run tasks in parallel for
parallel processing and used to asynchronously parallelize
the training processes for building a set of GPU-accelerated
neurocomputing-based load behavior learners to predict the
load behaviors of the individual monitored electrical home
appliances considered for smart home automation/time-series
load forecasting. As illustrative examples, Fig. 8 shows the
training trajectories (i.e., the loss curves) for the models
configured, trained, and used for time-series load forecasting
for the monitored steamer and TV. Fig. 9 shows the results
of the TV model as an illustrative example of a load behavior
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TABLE 3. Comparison of load identification results between the random forest ensemble in this work and the ensemble methods in [12] and [23].

ensemble method

accuracy (%)

accuracy improvement (%)

[12]° 90.51 -
[23] 91.46 1.59
this work 93.05 2.54
*benchmark
0.020 0.008
0.018
0.007
0016
9 0014 i 0.006
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FIGURE 8. lllustrative examples of the training trajectories of models configured and trained as load behavior learners for two

monitored electrical home appliances: (a) a steamer and (b) a TV.

learner trained on the computed, normalized and trended URs
reflecting the on/off routines of an appliance over 5 weekdays
(Monday through Friday, T = 7200). The illustrative exam-
ple of the well-trained TV model as a load behavior predictor
(for the on/off operation routines over 5 weekdays from Mon-
day through Friday) is further detailed in Fig. 10. Specifically,
Fig. 10(a) illustrates the comparison of the predicted URs
against the actual trended data computed via Eq. (3) and
normalized. Fig. 10(b) illustrates the corresponding on/off
operation status, where if the predicted UR is greater than
or equal to a certain threshold (0.5 here), then the operation
status is considered to be ‘““on’’; otherwise, it is considered
to be “off”’. Based on such results, the total hourly power
consumption in kilowatt-hours (kWh) of an electrical home
appliance (one of the N (=5 here) monitored appliances) can
be estimated/computed as shown in Eq. (10).

) 60+60(h—1)
Prred 5 %" 0 / 60 (10)

t=1+60(h—1)

In Eq. (10), h € H.

The ROC curves of the load behavior predictors were
also drawn using the Python codes in [40] for further model
evaluation. These curves are presented in Fig. 11, where the
AUC:s are also shown.

To fully evaluate the model performance for time-series
load modeling and forecasting, accuracy alone is not suffi-
cient for evaluating a model learning form a class-imbalanced
dataset with a significant disparity between positives (appli-
ance status ‘““on” here) and negatives (appliance status
“off”’). Therefore, in addition to the ROC curves based on
the TPR and FPR as defined in Egs. (8) and (9), we compute
and report the precision, recall and F; score. Table 4 reports
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FIGURE 9. Results of the TV model as an illustrative example of a trained
load behavior learner for a monitored appliance.

the load forecasting results of the autoregressive MLP-based
load behavior predictors evaluated in terms of the different
metrics. As computed from Table 4, average F; scores of
0.79 and 0.84 are obtained for class O (appliance status ““off’)
and class 1 (appliance status “on’’), respectively, across all
the relevant appliances (note that the PC was always “on”),
and an average value of the weighted average F; score of
0.98 is also obtained. As reported in Table 4, these load
behavior predictors based on this benchmark model are able
to learn from and forecast the on/off operation routines of
the appliances with an acceptable level of performance in
multistep time-series load modeling and forecasting.

In this work, an LSTM, the stacked LSTM model depicted
in Fig. 7, is also evaluated in comparison with the autore-
gressive MLP-based model for solving the same multistep
time-series load modeling and forecasting problem. Here,
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FIGURE 10. Results of the TV model as an illustrative example of a load behavior predictor: (a) a comparison of predicted and actual URs
and (b) a comparison of predicted and actual on/off operation statuses for smart home automation/time-series load forecasting.
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FIGURE 11. ROC curves of the load behavior predictors: (a) the electric water boiler model, (b) the steamer model, (c) the TV model,
(d) the range hood model, and (e) the PC model.

the model used to learn from the URs of the individual layer with 15 (=n_steps_in) inputs; 4 hidden LSTM lay-
monitored appliances was configured experimentally as fol- ers where 100 hidden units were used each; and an out-
lows. The stacked LSTM model consisted of a visible input put (dense) layer producing 5 (=n_steps_out) outputs for
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TABLE 4. Load forecasting results of the autoregressive MLP-based load behavior predictors evaluated in terms of accuracy, precision, recall and F; score.

metrics
load model P
accuracy precision recall F1 score
off 1.00 1.00 1.00 1.00
electric water on ) 0.99 0.67 0.80
0 -

boiler weighted . 1.00 1.00 0.99

avg
off 0.97 0.98 0.99 0.99
on 0.81 0.66 0.73

steamer iohted

weis - 0.97 0.97 0.97

avg
off 0.96 0.97 0.97 0.97
TV on ) 0.95 0.95 0.95
weighted . 0.96 0.96 0.96

avg
off 0.98 0.98 0.99 0.99
on ) 0.78 0.67 0.72

range hood iohted

welgate - 0.98 0.98 0.98

avg
off 1.00 0.00 0.00 0.00
PC on ) 1.00 1.00 1.00
weighted i 1.00 1.00 1.00

avg

TABLE 5. Load forecasting results of the stacked LSTM-based load behavior predictors evaluated in terms of accuracy, precision, recall and F; score.

metrics
load model P~
accuracy precision recall F1 score

off 100 1.00 1.00 1.00
electric water on ’ 1.00 0.67 0.80
boiler weighted ] 1.00 1.00 0.99

avg
off 097 0.98 0.99 0.99
on 0.76 0.72 0.74

steamer n hted

welg - 0.97 0.97 0.97

avg
off 0.96 0.97 0.97 0.97
v on 0.95 0.95 0.95
weighted ] 0.96 0.96 0.96

avg
off 098 0.99 0.99 0.99
on : 0.74 0.74 0.74

range hood iehted

weig - 0.98 0.98 0.98

avg
off 100 0.00 0.00 0.00
pC on : 1.00 1.00 1.00
weighted ] 1.00 1.00 1.00

an

a forecast. The activation functions used in all the hidden
LSTM layers were of the default type (tanh). In practice,
based on available runtime hardware and constraints, the
LSTM layer to be stacked, specified and trained will choose
a fast NVIDIA® cuDA Deep Neural Network library
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(cuDNN)-based implementation or a pure TensorFlow imple-
mentation to train the model. If a GPU is available and
the layer meets the criteria of using the cuDNN implemen-
tation, the layer will be parallelized for training (i.e., the
model will be trained on the GPU to speed up the training
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TABLE 6. Five-day electricity demand, in kWh, estimated by the autoregressive MLP-based load behavior predictors for the 5 individual monitored
electrical home appliances.

. - electric
estimated electricity demand water steamer vV range PC
(kWh) . hood

boiler
actual 1.53 5.07 9.36 0.73 18.23
forecasted 1.03 4.35 9.35 0.60 18.24

mean absolute percentage error

(MAPE) (%) " 32.68 14.21 0.11 17.81 0.06

" Less than 10%: highly accurately estimated; 10-20%: well estimated; 20-50%: reasonably estimated; and greater than 50%: inaccurately estimated.

TABLE 7. Five-day electricity demand, in kWh, estimated by the stacked LSTM-based load behavior predictors for the 5 individual monitored electrical

home appliances.

. . electric
estimated electricity demand water steamer v range PC
(kWh) . hood
boiler
actual 1.53 5.07 9.36 0.73 18.23
forecasted 1.05 4.71 9.37 0.70 18.24
MAPE (%) 31.37 7.11 0.12 3.85 0.06

TABLE 8. Computation time by GPU-accelerated autoregressive MLP-based load behavior learners trained in serial processing vs. parallel processing.

Al methodology implemented

elapsed time (mins.)

improvement in computation
time (%)

GPU-accelerated
autoregressive MLP-based load
behavior learners trained in
serial processing

20.15 -

GPU-accelerated
autoregressive MLP-based load
behavior learners trained in
parallel processing *

16.22

+19.50

* A total of 2 parallel workers were used for the 5 GPU-accelerated autoregressive MLP-based load behavior learners for the monitored electrical home

appliances of interest for smart home automation/time-series load forecasting. The GPU memory usage was 1.56 GB.

process) [44]. For the model used in this evaluation, the
kernel, recurrent kernel and bias regularizers were based on
an L2 regularization penalty, where the regularization fac-
tors were set to 0.001. Finally, the same weight optimizer
(Adam) was used here as was used for the autoregressive
MLP-based model, and the learning rate was also set to
0.002. Table 5 reports the load forecasting results of the
stacked LSTM-based load behavior predictors evaluated in
terms of the same evaluation metrics. As computed from
Table 5, average F; scores of 0.79 and 0.85 are obtained
for class 0 and class 1, respectively, across all the relevant
appliances, and an average value of the weighted average
F; score of 0.98 is also obtained. As reported in Table 5,
the load behavior predictors based on this model consid-
ered for comparison are also capable of learning from and
forecasting the on/off operation routines of the appliances
with a satisfactory level of performance in multistep time-
series load modeling and forecasting. In fact, as seen by

116762

comparing the results shown in Tables 4 and 5, the LSTM
model slightly outperforms the autoregressive MLP model.
Table 6 shows the five-day electricity demand, in kWh,
forecasted by the autoregressive MLP-based load behavior
predictors, and Table 7 shows the five-day electricity demand
(in kWh) forecasted by the stacked LSTM-based load behav-
ior predictors. As shown in Tables 6 and 7 and compared
with the estimates obtained in [23], overall, the electricity
demand estimates are precisely forecasted. Hence, the load
forecasting performance is improved in this work. Moreover,
as shown in Table 7 and compared from Table 6 showing the
five-day electricity demand forecasting results of the autore-
gressive MLP-based load behavior predictors, overall, the
electricity demand estimates are more precisely forecasted by
the stacked LSTM-based load behavior predictors.

Table 8 reports the computation time by the
GPU-accelerated autoregressive MLP-based load behavior
learners trained in serial processing vs. parallel processing.
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TABLE 9. Computation time by GPU-accelerated stacked LSTM-based load behavior learners trained in serial processing vs. parallel processing.

Al methodology implemented

elapsed time (mins.)

improvement in computation
time (%)

GPU-accelerated stacked
LSTM-based load behavior

44.34 -

learners trained in serial
processing

GPU-accelerated stacked
LSTM-based load behavior
learners trained in parallel
processing "

36.58

+17.50

* A total of 2 parallel workers were used for the 5 GPU-accelerated stacked LSTM-based load behavior learners for the monitored electrical home appliances of

interest for smart home automation/time-series load forecasting. The GPU memory usage was 2.45 GB.

In total, 2 parallel workers were used to arrive at the
results, and the GPU memory usage was 1.56 GB.
As reported in Table 8, a 19.50% improvement in computa-
tion time was achieved through parallel processing. Similarly,
Table 9 reports the computation time by the GPU-accelerated
stacked LSTM-based load behavior learners trained in serial
processing vs. parallel processing. As reported in Table 9,
the time improvement achieved through parallelization was
17.50%, where 2 parallel workers were used and the GPU
memory usage of 2.45 GB was needed.

As demonstrated in this section, the effectiveness
of the presented parallel-processing-implemented, GPU-
accelerated neurocomputing-based time-series load modeling
and forecasting mechanism based on energy decomposition
has been confirmed.

IV. CONCLUSION

Collecting and further analyzing consumers’ electrical energy
consumption data from smart meters can enable several use-
ful consumer-centric use cases, such as home automation.
Because the electrical energy consumption patterns mined
from smart meter data are indicative of residents’ daily life,
it is possible to develop a smart home automation approach
based on energy decomposition. To this end, an SHEMS uti-
lizing a parallel-processing-implemented, GPU-accelerated
neurocomputing-based time-series load modeling and fore-
casting mechanism based on energy decomposition has been
proposed and demonstrated in this work for smart home
applications. In this work, the energy decomposition process
has been improved and further investigated as a basis for
time-series load modeling and forecasting for smart home
automation. A mechanism for time-series load modeling and
forecasting facilitated by energy decomposition has been
developed here for modeling and forecasting the load behav-
ior of relevant electrical home appliances based on parallel-
processing-implemented, GPU-accelerated neurocomputing
to predict the appliances’ operational routines. The effective-
ness of the presented work has been confirmed. The pre-
sented work is different from other recent solutions for home
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automation involving home security and healthcare; other
recent solutions depend on the installation of sensors and/or
other devices such as video cameras that have high costs for
installation and annual maintenance. Three future research
directions are drawn below. The first is to investigate a home
controller based on the NVIDIA® Jetson Nano™Developer
Kit—a small, compact and powerful embedded system that
can run multiple DNNs in parallel for applications such as
the smart home application realized in this work—to sup-
port the future implementation of the SHEMS presented
in this work within an edge—cloud collaborative paradigm.
To achieve automatic billing and energy management ser-
vices, the microcontroller units (MCUs) driving current smart
meters employ high-precision analog front-end (AFE) cir-
cuits and sophisticated data processing units. The basic com-
ponents of a smart meter’s AFE include metering equipment,
analog-to-digital converters (ADCs) and algorithms used by
the MCU acting as the meter’s host processor to interpret the
acquired raw data. In a smart grid, smart meters are required
to measure power factor and/or monitor power quality in most
industrial and many commercial field applications, although
it is typically not required in residential sectors. Therefore,
the sampling rate of a smart meter’s ADCs should be suffi-
cient to comply with the Nyquist theorem for the types and
analysis purposes of the measurements the meter is required
to make. In the case of harmonic analysis via the FFT for
power quality monitoring, the sampling rate should be at
least twice the fundamental frequency multiplied by the order
of the harmonics of interest. For 60-Hz electric distribution,
a sampling rate of 2—4 kHz is usually sufficient, as this is suf-
ficient for, for instance, common line perturbations related to
power quality monitoring. The high-rate sampling capability
used to monitor line perturbations can also be used to monitor
P and Q to improve the meter’s accuracy. Therefore, the
second future research direction is to consider the possibility
of acquiring the composite electricity current and voltage
signals required in this work from the meter with which the
SHEMS communicates with it; the work done here can be
a value-added user-centric service provided by utilities to
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customers. In [46], the hybrid load forecasting scheme based
on characteristic load decomposition (CLD) by pilot signals
for a mixed-use complex having clusters by distinguishable
commercial, residential and industrial loads is proposed,
which is developed from the perspective of building-level
load forecasting. The third future research direction is to
extend the work done here from the appliance-level load fore-
casting perspective to improve the capabilities of the above
scheme. This future work will help the CLD scheme precisely
target the representative pilot loads of each cluster (in [46],
it is assumed that a larger building size corresponds to higher
typical power consumption, and loads with the widest gross
area in a mixed-use complex are considered as representative
pilot loads).
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