
Received 28 September 2022, accepted 30 October 2022, date of publication 3 November 2022, date of current version 10 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219047

A Method for Automatic Android Malware
Detection Based on Static Analysis and
Deep Learning
MÜLHEM İBRAHIM 1, BAYAN ISSA 2,
AND MUHAMMED BASHEER JASSER 3, (Member, IEEE)
1Department of Computer Engineering, Faculty of Engineering, Turkish-German University, Beykoz, 34820 Istanbul, Turkey
2Faculty of Informatics Engineering, University of Aleppo, Aleppo, Syria
3Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor 47500, Malaysia

Corresponding author: Bayan Issa (bayan.issa.b@gmail.com)

ABSTRACT The computers nowadays are being replaced by the smartphones for the most of the internet
users around the world, and Android is getting the most of the smartphone systems’ market. This rise of the
usage of smartphones generally, and the Android system specifically, leads to a strong need to effectively
secure Android, as the malware developers are targeting it with sophisticated and obfuscated malware
applications. Consequently, a lot of studies were performed to propose a robust method to detect and classify
android malicious software (malware). Some of them were effective, some were not; with accuracy below
90%, and some of them are being outdated; using datasets that became old containing applications for old
versions of Android that are rarely used today. In this paper, a new method is proposed by using static
analysis and gathering as most useful features of android applications as possible, along with two new
proposed features, and then passing them to a functional API deep learningmodel wemade. This method was
implemented on a new and classified android application dataset, using 14079 malware and benign samples
in total, with malware samples classified into four malware classes. Two major experiments with this dataset
were implemented, one for malware detection with the dataset samples categorized into two classes as just
malware and benign, the second one was made for malware detection and classification, using all the five
classes of the dataset. As a result, our model overcomes the related works when using just two classes with
F1-score of 99.5%. Also, high malware detection and classification performance was obtained by using the
five classes, with F1-score of 97%.

INDEX TERMS Android, deep learning, malware, mobile security, static analysis.

I. INTRODUCTION
There is a growing need for an efficient malware detection
tool for Android, since that Android is the most used mobile
system [1] and there are hundreds of new applications for it
that are released each day [2], thus scanning and checking
them manually became a non-possible solution. More than
six million mobile malware samples were encountered by
McAfee in 2014 [3], and over 12 thousands Android malware
samples were detected daily in 2018 [4]. Along with the rapid
growth of malware, the new samples of Android malware
are more sophisticated than the samples that were detected

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed .

previously in regards to avoiding anti-virus detection through
code obfuscation and encryption [4].

ML-based methods, and more specifically deep neural
networks, have shown to be efficient at detecting malware,
as they are able to learn features and patterns automatically
and with multiple levels of abstraction [5] from a limited set
of training examples, thus eliminating the need to explicitly
define signatures when developing malware detectors [6].

Although there are lot of studies that tackle this subject,
most of them utilize just the application permissions and API
calls, which does not seem effective for new sophisticated
samples and for a long term, as the benign applications are
requiring more permissions and including more API calls
than malware applications. So, those two most used features

117334 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-6285-1500
https://orcid.org/0000-0002-7559-3416
https://orcid.org/0000-0001-5292-465X
https://orcid.org/0000-0001-5985-3970


M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

are not sufficient alone, and do not allow to learn the real
characteristics of malware, thus, there is a need to handle
more useful features and techniques for malware detection.
It is also noticed that the used datasets in previous papers are
outdated and not available anymore.

In addition, most of the existing studies do not consider
malware classification, as they just train the models and
classifiers to predict one of two classes, namely malware and
benign, ignoring the malware classification problem, which
is an important issue to tackle in this subject and essential
for the cybersecurity community to help perform the right
action.

Yet another limitation of the most existing studies is
the usage of traditional machine learning algorithms, which
proves inefficiency in feature engineering process by depend-
ing more on human intelligence and individual judgment [4].
On the other hand, the layered structure of deep learning
based models improve the learning of abstract and highly
non-linear patterns, which helps learn the features automat-
ically and capture the substantial characteristics of complex
data, which improves generality on new data.

Deep Learning methods, in particular, are typically bet-
ter suited to capturing semantic knowledge within Android
applications than classic ML methods, especially when
enough data is available to build a meaningful semantic
embedding [4].

In this paper, static analysis is used and a functional API
deep learning model is proposed, which takes as inputs the
most useful observed features of android applications, and
those are: the file size, Permissions, services, API func-
tion calls, Broadcast receivers, Opcode sequences, and the
fuzzy hash, which is used for similarity detection. They
are automatically extracted using Bash script and Python3,
which execute commands provided by the Androguard
tool [7].

The structure of the model with the multiple layers, helps
learn the most distinctive information from the given inputs.
Additionally, the utilization of tokenization and embedding
layers, helps in clustering and detecting the similarity in
the discrete independent text features, such as permissions.
The RNN part of the model helps learn the characteristics
of the fuzzy hash values in order, and to the best of our
knowledge, the usage of the fuzzy hash in this field is a
novel technique, and along with Recurrent neural network,
the model can detect the similarity in Android applications
so efficiently, and this also enhances the classification of
the new and modified samples. The model performance
was evaluated using four metrics, namely the accuracy, F1
score, Recall, and Precision metric, and the obtained result
is 96%.

The used dataset is ‘CICMalDroid2020’ [8] which is the
newest and most diverse dataset that combines new APK
samples as well as samples from the famous datasets that are
used in previous studies, such as AMD and MalDozer [9].
The used dataset categorizes the android application samples
into five classes: SMSmalware, Bankingmalware, Riskware,

Adware, and Benign. Using this diverse categorized dataset,
our model outputs a prediction of the application’s class,
which helps in detecting as well as classifying the Android
malware.

In summary, the contribution of our work is as follows:

• A new method for malware detection and classification
was proposed with two new proposed features in the
static analysis scope.

• Using two target classes, which are malware and benign,
our model is able to achieve very high malware detec-
tion rates evaluated by precision, recall, F1-score, and
accuracy metrics, with obtained value of 99.5% for all
of them.

• Using the five classes of the dataset, our model is able to
achieve high malware detection and classification per-
formance evaluated by precision, recall, F1-score, and
accuracy metrics, with obtained values of 97%, 96%,
97%, 97% respectively.

The rest of this paper is organized as follows: Section 2 lays
out the background to this study. Section 3 subjects existing
methods of Android malware detection, while Section 4 pro-
vides a detailed description of our proposed method with
its all steps, with Section 5 exploring the results and dis-
cussions thereof, and Section 6 shows the results of some
tested variations of our model to tune its hyperparameters,
and Section 7 shows experimental evaluation of other models,
including some traditional machine learning classifiers that
are most used in previous studies. Finally, Section 8 con-
cludes the paper.

II. BACKGROUND
In this section, we provide the necessary background that is
relevant to our proposed method.

A. ANDROID
The most widely used mobile operating system is Android,
which is built on the Linux kernel and uses the Java pro-
gramming language. Additionally, a number of drivers and
libraries have been altered to improve Android’s perfor-
mance on mobile devices. In 2005, Google began support-
ing Android Inc. financially, and in 2008, the operating
system’s first smartphones were released (HTC Dream).
Because it is open source and distributed under the Apache
License, the operating system has seen widespread and
quick development. According to AppBrain [10], over
2.6 million Android apps exist in Google Play store as
of the first quarter of 2022, with 37 percent identified as
low-quality apps.

Android uses a special virtual machine, that is, the Dalvik
virtual machine, which uses special bytecode. Therefore,
standard Java bytecode cannot be run on Android. In order to
convert Java Class files into ‘‘dex’’ (Dalvik executable) files,
Android provides the ‘‘dx’’ tool. The ‘‘aapt’’ (Android Asset
Packaging Tool) bundles Android applications into a ‘‘APK’’
(Android Package) file.

VOLUME 10, 2022 117335



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

B. ANDROID APPLICATION BASICS
Android Applications have the extension APK which stands
for Android Package Kit, the APK is made of a collection
of components, these components are categorized into four
types, where each application can be composed of one or
more of these types [11]. The four types of android appli-
cation components are:

• Activities: It is an interface component that implements
interactions with the user. Each activity is designed to
handle single user action. For instance, an appointments
list in a task manager application is an activity, and
showing the detail of an appointment is the role of a
second activity. Each activity composes of one or more
view objects, which are interface objects, such as but-
tons, labels, etc.

• Services: Or service components are background com-
ponents that run independently of the user interface.
They can operate for a long time even after the user
switches to another application. A service can play
music, download a file, or handle network transactions,
all from the background. Services can also be used
for interprocess communication (IPC) between Android
applications [12].

• Broadcast receivers: System-wide broadcast events can
occur when a device start or receive SMS or call, Broad-
cast receivers are made to listen to these events and
interact with them. They run in background even when
the app is closed.

• Content providers:Components that allow external apps
and system components to access application data.

Android applications are typically written in Java or Kotlin
and compiled into a single archive file (Android package or
APK), along with data and resource files. The components of
the APK include:

1) an XML manifest file that contains information such
as app description, components declaration (i.e. Activ-
ities, permissions etc.)

2) AClasses.dex file(s) that is a Dalvik executable file that
runs in its own instance of a Dalvik Virtual Machine (or
Android RunTime for newer versions of Android).

3) A ‘‘/res’’ directory for indexed resources like images,
icons, music etc.

4) A ‘‘/lib’’ directory for compiled code.
5) ‘‘/META-INF’’ folder including the app certificate and

list of resources, SHA-1 digest etc.
6) Resources.arsc which is a compiled resource file

C. MALWARE TYPES
There are lot of malicious software (malware) types, here we
define just the existing ones in the dataset that we used in this
paper:

• Adware: Adware is a type of software that is designed
to automatically deliver unwanted and annoying adver-
tisements to the user.

• Riskware: Riskware is any legitimate program that poses
a potential risk due to security vulnerabilities, software
incompatibility, or legal violations. These applications
are not designed for malicious purposes, but have fea-
tures that can be used for malicious purposes. If used
with malicious intent, the Riskware program can be
considered as malware. This gray area of security makes
Riskware a particularly difficult threat to deal with.

• Spyware: Monitors and sends information of victim’s
system by capturing keyboard typings, gaining access
to microphone or webcam, etc. Spyware does this by
modifying the security settings on users’ devices. It often
bundles itself with legitimate software. The SMS mal-
ware and the Banking malware categories that exist in
the used dataset belongs to spyware, where they steal
personal information from text messages, and banking
account information from banking applications, respec-
tively.

D. TYPES OF MALWARE ANALYSIS
There are two main approaches for automatic malware detec-
tion which are static analysis and dynamic analysis.

Static analysis detects the malicious application without
the need to actually run it, and that is done by analyzing the
packed files and the code which is obtained by using disas-
semblers or decompilers, and this process is called Reverse
Engineering, or Back Engineering. However, Static analy-
sis cannot detect some sophisticated malwares which have
malicious runtime behavior, like for example generating a
dynamic string which in turn downloads a malicious file.
There are also approaches to complicate reverse engineering
by using tools that obfuscate the code. The most common
and free tool for that is Proguard [13], which obfuscate the
code by renaming the classes, fields, and methods using short
meaningless names. Another commercial tool built on it is
called DexGuard [14], which is claimed to complicate static
as well as dynamic analysis. Some other tools are Ijiami
ApkProtect [15], and Bangcle [16].

From the perspective of the Android app developers, it is
insecure to allow the decompiling process of their code,
because reverse engineering is also used by attackers for
many purposes, like infecting the apps or the servers that
control the apps, searching for sensitive data hardcoded in the
code, or reusing the code for their own benefit. So, we cannot
consider the applications that contain obfuscated or encrypted
code as malicious.

Another limitation of the static analysis is the external
functions, which cannot be fetched by the static analysis, and
while the benign apps use external functions to reduce their
size on phone storage, we cannot assume that an app with lot
of calls to external funtions is considered as malware.

Dynamic Analysis detects the malicious application by
executing it in a virtual system so that the behavior of
the application can be seen in action and without the risk
of letting it infect a real used system or escape into the
enterprise network. Dynamic Analysis requires thousands of

117336 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

applications’ runs to train and test themodels; thus, it requires
lot of resources and it is also slower than the static analysis.
While it is considered in general a powerful solution for
detectingmalware applications and its accuracy is higher than
the static analysis, it also cannot detect some sophisticated
malwares which can discover that they are running in a vir-
tual system, thus, they change their behavior to deceive the
system.

Static Analysis cannot detect sophisticated malicious code,
and sophisticated malwares can hide and deceive the virtual
systemwith the dynamic analysis, so by combining those two
techniques, hybrid analysis can provide security team the best
of both approaches. For example, Hybrid analysis can apply
static analysis to data generated by dynamic analysis, like
when a malicious code runs and make changes in memory,
dynamic analysis detects that and gives alert to security team
to check that and perform static analysis on that memory
dump. Even the most sophisticated malware threats can be
found through hybrid analysis, but it is also so expensive and
time-consuming solution.

E. TOOLS FOR MALWARE ANALYSIS
There are different tools and software that use reverse engi-
neering and allow to decompile and debug android appli-
cations, some of them are Radare2 [17], Dex2Jar [18],
JADX [19], and the one we use in this paper; Androguard [7],
which is a complete framework developed in Python and
allow to analyse APK files and extract lot of features from
them, like services, resources, dex files and many others.
Additionally, every Androguard feature can be added to cus-
tomized Python scripts, making it simple to get comprehen-
sive information on a file.

One limitation of Androguard is that it can be too slow in
analysing APK files that are more than 10 MB in size. How-
ever, by testing other existing tools, nothing seems to give a
better performance. Also, some tools, like ClassyShark [20]
and ApkStudio [21] are limited to user interface, thus,
automation process of the feature extraction is not applica-
ble with them. Also, not all android decompilers allow the
extraction of all the features of Android applications, some
are limited to decompiling dex classes, and others are limited
to manifest file.

There are also different websites for malware detection, the
most known one is VirusTotal [22] which is multiscanners for
antiviruses. Obviously, this can detect new samples.

For dynamic analysis, there is DroidBox [23] which use
API call logs that can help explain APK behaviors. Another
Tool is AppsPlayground [24]. This tool aims to automate the
dynamic analysis of Android apps, however access to the tool
requires registration. SandDroid [25] combines both static
and dynamic analysis techniques.

F. CRYPTOGRAPHIC HASH FUNCTIONS
In information security, hash methods are used to generate
‘‘fingerprints’’ for documents, which characterize a possibly
large document as unambiguously as possible by means of a

short string with a fixed number of characters. Hash functions
are also used to store passwords securely in an obfuscated,
irreversible form. This process of hashing has two main prop-
erties. First, the output will be drastically altered if even one
bit of the input is altered. Second, finding another input that
generates the identical hash is computationally impossible
given an input and its hash. Examples of hash algorithms are
SHA-1 (1995 revision of SHA) which generates hash values
of 160-bit length, SHA-2 family which includes SHA-224,
SHA-256, SHA-384, SHA-512 where the number represents
the length of the hash value in bits, and MD5 hash function.

Hash algorithms are used by forensic examiners to locate
known files in collections of unknown files. An examiner
compiles a list of known files, generates and maintains the
cryptographic hash values for each of those files. During
future investigations, Every file under inquiry can have its
hash value calculated, and the examiner can then compare
those hash values to previously computed known values.
However, malicious individuals can defeat this strategy by
altering known files even by one bit, which then totally
changes the file’s cryptographic hash. However, this limita-
tion can be overcome with SSDeep, introduced in paper [26],
SSDeep ‘‘is a program for computing context triggered
piecewise hashes (CTPH). Also called fuzzy hashes, CTPH
can match inputs that have homologies. Such inputs have
sequences of identical bytes in the same order, although bytes
in between these sequences may be different in both content
and length.’’ This means that changing some bits, in other
words modifying a file, will not change the complete hash
value, and we will still be able to detect similarity between
the original and the modified file, and that is why CTPH is a
better option for detecting malwares and their variations.

III. EXISTING ANDROID MALWARE DETECTION
TECHNIQUES
There are lot of published studies regarding Android malware
detection based onmachine learning, themajority of them use
static analysis where the APK packages are analyzed and per-
ceptive features are extracted, such as permissions, API calls,
and opcode sequences. Other studies use dynamic analysis
where the applications are executed in a virtual environment
and their behaviors are analyzed, such as the consumption
of CPUs and RAMs. There are also some studies that use
a combination of the static and dynamic analysis, which is
called hybrid analysis.

Some of these studies developed tools for the end user,
which can detect malware directly on the Android device (on-
device), other studies analyze and detect themalwares outside
the Android devices (off-device).

In Figure 1, we can see a general overview of all
the reviewed studies in this article, with machine learning
approach as a common feature, and different analysis types.

A. STATIC ANALYSIS BASED MALWARE DETECTION
Opcode sequences were used in papers [27], [28] with convo-
lutional neural network (CNN) which takes the sequences as

VOLUME 10, 2022 117337



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

FIGURE 1. Overview of the existing studies.

one-hot vectors, the resulted accuracies were 88 and 99 per-
cent respectively.

The papers [29], [30], [31], [37], [44], use both permissions
and API calls, and pass them to different machine-learning
algorithms such as random forest, SVM, and logistic regres-
sion. By utilizing different datasets, various accuracies were
obtained in the range 87 – 98%.

The papers [32], [33], [34], [35], [36], use only permissions
with clustering algorithms and cross validation. The latter
proposed an on-device malware detection and remover, but
its accuracy is not given.

The study [37] uses permissions and API calls and tries
genetic algorithm in the feature selection process. After that,
the features are passed to different ML algorithms such as
J48, decision tree, random forest, and naive bayes. With
6000 total Android samples, the best obtained accuracy was
about 97%.

The paper [38] extracts opcode sequences from selected
datasets gathered between the years 2012-2015, and applies
semantic simplification of the opcode sequences to enhance
the resilience.

The study [39] uses opcode sequences and NLP (Natu-
ral Language Processing) algorithms. The obtained average
accuracy was 83.56% using 5 malware families. It is noticed
that training the model to classify more malware families,
reduces the average accuracy significantly.

The paper [40] uses API call graphs with CNN and a
lightweight classifier. the obtained accuracy was 91.27%.

The study [41] uses deep learning and ensemble classifiers
for malware detection classification. Using multiple datasets,
they train there model against static and dynamic features,
each of them independently, and just two classes were used
for static features; malware and benign.

The paper [42] uses deep learning algorithms, mainly
Graph Neural Networks (GNN) and Generative Adversarial
Network (GAN) for Android malware detection, again, this
study also divides Android samples into just two class; mal-
ware and benign, ignoring the classes of malware.

The study [43] uses an out of the box technique, by con-
verting the APK packages into audio files, they tested lot

of different classifiers and obtained high performance for
malware detection.

The study [44] concentrate on the malware category Ran-
somware, and uses swarm optimization algorithm to tune the
classification algorithm’s hyperparameters. They proposed
a method based on SVM algorithm. They categorize their
collected samples into ransomware and benign, and applied
different oversampling algorithms to it to have a balanced
dataset. Their method was able to achieve high performance
for ransomware detection.

A paper [27] published in 2017 uses convolutional neural
network (CNN) method for malware classification based on
static analysis. They disassemble the dex classes in APK
files to Smali files and from that they extract the opcode
sequences discarding the operands. This sequence of opcode
instructions then is encoded as one-hot vectors and passed
to CNN layer. The last layer is a Multi-Layer Perceptron
(MLP) which outputs the probability that the current example
is malware. Three different datasets were used and the mean
accuracy was 88%.

The paper [28] proposed a method that uses deep convo-
lutional neural network to learn from opcode sequences. The
experiments gave an accuracy of 99%.

DroidDeepLearner [45] uses static analysis with permis-
sions and API function calls features, by testing different
algorithms, the best obtained accuracywas 93.96%withDBN
algorithm and F1-score metric.

DroidDeep [46] also uses static analysis and DBN algo-
rithm. The overall obtained accuracies for different accepted
ratios between benign andmalware samples were in the range
92-97.5%.

Mlifdect approach is presented in the study [47] uses par-
allel machine learning classification method applied on 8,385
android samples. the obtained classification accuracy was
about 98%.

Another study [29] uses parallel machine learning clas-
sifiers that utilize diverse algorithms with inherently differ-
ent characteristics for early detection of Android malware.
The extracted features are API calls, permissions, and the
Standard OS and Android framework commands which are
typically placed in hidden files within the APK. The usedML
algorithms include: Decision Tree, Simple Logistic, Naïve
Bayes, and others. They used supervised learning algorithms
with McAfee dataset. They used a combined classification
strategy, which involves combining the classification judg-
ments made by each individual classifier in parallel. the best
detection rate performance of 97.5% was obtained.

The paper [30] uses static analysis where the requested per-
missions and API calls are extracted and multihot encoded,
then they are passed to different machine learning algorithms
which are SVM, random forest, and logistic regression. The
best accuracy obtained was about 98%. Three datasets were
used which are AMD, Drebin, and UpDroid.

Another paper [31] uses risky permissions and API calls
as features in the SVM algorithm. to evaluate the proposed
method, experiments were made by utilizing Drebin dataset

117338 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

and some of Google Play Applications. The overall obtained
accuracy was 86%.

The study [33] also uses permissions and passes it to
K-means clustering algorithm to detect Android malware.
An experiment was made with 500 sample Android applica-
tions the best accuracy obtained was 91.75%.

The paper [32] presents an adaptive neuro-fuzzy inference
system with fuzzy c-means clustering and depends on the
permissions feature. This approach achieves the highest clas-
sification accuracy of 91%.

PUMA [34] uses permissions approach with k-fold cross
validation to evaluate the performance of different machine-
learning classifiers. Among them, SimpleLogistic showed
best result with 84% accuracy.

Static analysis and Machine Learning was used by [48].
They extracted the APIs class under <used-permission> tag
In the Manifest file, and used three algorithms: SVM, J48
and Random Forest. It is claimed that these three algorithms
give the best result in research related to malware detection
compared by many other algorithms like KNN, Naïve Bayes
and Bagging Bootstrap. The highest accuracy obtained was
92.40%.

The study [49] uses static analysis that runs directly on
smartphones to analyse and check the downloaded applica-
tions. They used Android Asset Packaging Tool to extract the
following information from the Manifest file: permissions,
activities, services, content providers, broadcast receivers,
and filtered intents. And using a lightweight Android disas-
sembler they extract API calls and network addresses con-
tained in applications’ disassembled code. Then they embed-
ded these features in a vector space and trained a model
offline to transfer then the trained model to the smartphones
for direct analysing and predicting. The acquired accuracy
was 93.90%. The drawbacks of this study are as follows:

• The used dataset is too unbalanced: 123,453 benign
samples vs just 5,560 malware samples.

• Some collected features are not that useful: taking for
instance IP addresses that are found in the disassembled
code, it is hard to find two applications that use the same
addresses. the activity names also represent the names
of the windows and elements in the interface such as
buttons and labels. And the collected intents from the
manifest files will be empty for most of the samples (at
least today’s samples as I detected in this thesis). Thus,
these features can be a waste of time and memory.

• It became now relatively old; the data were collected in
a period from August 2010 to October 2012. Thus, the
model can not perform well on our today’s new samples.

The study [50] uses Android samples collected between
2015 and 2016, the perfectly balanced dataset with high
number of samples, and the only two target classes, helped
in giving high accuracy of 98%. The last two drawbacks
discussed for the previous study applies to this study, too.

The study [51] uses static analysis and extracts only some
of the information found in manifest files, which are permis-

sions and intent filters. The used dataset consists of 30 mal-
ware and 30 benign apps. Then an experiment was made with
235 benign and 130 malware samples to test the effectiveness
of the proposed method, the overall accuracy obtained was
about 90%.

The paper [52] uses both permissions and Control Flow
Graph to detect malware statically. The used algorithm is
Support Vector Machine, and the best obtained accuracy was
with Recall metric which gave about 85% accuracy, other
metrics, such as F1 Score, showed far lower accuracies –
below 30%.

MalDozer was proposed [9] which use API Calls with
convolutional neural network, their machine learning model
was tested on different datasets and could detect malware
samples and attribute them to their actual families with an
F1-Score of 96% - 99%.

The paper [53] proposed a new method that uses creator
information (serial number) as well as the API calls, per-
missions, intent filters, file hash, and system commands. The
obtained average malware classification accuracy was 98%.
In this paper, A serial number blacklist was made, which
we believe that is not too useful because of new malwares
will have definitely new serial numbers, so the detection and
classification accuracy for new applications is questionable.

In Table 1, we see a comparison between studies that use
static analysis and the different features they extract from
APK packages.

B. DYNAMIC ANALYSIS BASED MALWARE DETECTION
The study [54] extracts system calls from the dataset CIC-
ANDMAL2017, which are then fed to different machine
learning algorithms, its declared that among them the
K-Nearest Neighbor and the Decision Tree algorithms gave
the best malware detection rates with F1-score metric, the
rates are 85 and 72% respectively.

The study [55] proposes a parallel machine-learning model
which used different classifiers such as J48, KNN, SVM, and
random forest, to detect and classify Android malware using
dynamic features.

The Andro-profiler system was proposed in the study [56]
which depends on the system logs including the system calls
that are extracted during dynamic analysis.

Another study [57] uses dynamic analysis to extract
Sequences of System Calls to detect Android malwares. They
assume that malicious behaviors such as sending high pre-
mium rate SMS or cyphering data for ransom are imple-
mented by specific system calls sequences. So, this method
is based on the ‘‘fingerprint’’ of the malwares. Implementing
the trained model in a real device, the obtained detection
accuracy was 97%.

Dynamic analysis is also used in the paper [58] to capture
system calls during the applications’ run-time interactions
with the Android system. J48 and random forest algorithms
were used to classify a dataset consists of 50 malware and
50 benign samples.

VOLUME 10, 2022 117339



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

TABLE 1. The extracted Android applications’ features in studies with static analysis.

Random Forest Classification was used in another
study [59]. They worked with the free parameters of Random
Forest algorithm (as the number of trees and the depth of
each tree in the forest) on an Android feature dataset that was
made using dynamic analysis, where they observed differ-
ent features in battery, binder, CPU, memory, network and
permission categories, they got a high accuracy with very
tiny ratio of misclassification. They also found that in this
case and for the used algorithm, more trees in random forest
classification appears to be better, and also the depth of trees
should be not less than 16. It is also observed that the Lower
features per tree is better.

C. HYBRID ANALYSIS BASED MALWARE DETECTION
Hybrid analysis was used by Kabakus and Dogru in their
paper [60], where they used two datasets and applied dynamic
analysis on them using virtual Android device (emulator), fol-
lowed by static analysis based on permissions approach and
API Calls. Therefore, they discovered shared signs among
malicious apps such as disabling the mobile data connection
and the over-privileged permissions that are more common
than in benign apps.

In another paper [61], deep learning is used to charac-
terize and detect Android malwares. They have developed
an online deep-learning-based Android malware detection
engine ‘‘DroidBox’’ that can automatically detect whether
an app is a malware or not. Their engine was based on
TaintDroid, which is able to run a dynamic taint analysis with
system hooking at the application framework level and keep
an eye on various app operations like data leaks, cryptography
operations and mobile phone calls. Hybrid analysis technique
was conducted to extract features from each app, which fall
under one of three types: required permissions, sensitive
APIs, and dynamic behaviors. The total obtained features
number was 192. They managed to understand the charac-
teristics of malware and they reached a high classification
accuracy of 96.76%.

The study [62] uses system calls to create data pattern sets
for both malware and benign samples. new samples’ patterns
are compared with the created pattern sets to detect their
category. The obtained detection accuracy was about 91%.

OmniDroid dataset was proposed in the paper [63], which
consists of 22,000 malware and benign Android samples.
Then, static and dynamic analysis were applied to this dataset,
and ensemble classifiers were trained.

In paper [64], deep learning model was used for Android
malware detection based on hybrid analysis, the model was
tested on 165 benign and 146 malware samples. The test
results shows that hybrid analysis could increase malware
detection accuracy by 5%.

The paper [65] proposes a Tree Augmented naive Bayes
based method using API calls, permissions and system calls
features. The results showed that the malware detection with
this method can take a long time with an accuracy of 97%.

D. LIMITATIONS OF EXISTING TECHNIQUES
From the previously mentioned information, we notice differ-
ent limitations, for example, the accuracy in [27], [31], [34],
and [52] was below 90%. Also, as mentioned previously, the
used features may be insufficient, like the paper [28] which
handles the opcode sequences alone, or [30] which considers
just the API calls and permissions. The study [29], in addition
to the few features limitation, uses multiple machine learning
algorithms in parallel, which has two disadvantages, the first
one is that the traditional machine learning algorithms are
shallow and ineffective in learning complex data as discussed
before, and the second one is that this technique, with all
these parallel used algorithms, can be time-consuming and
expensive regarding the used resources. The cost of time and
resources expands significantly with the dynamic and hybrid
types of analysis.

Another important limitation to mention, is that the most
previous studies categorize the data into just two classes,
namely malware and benign, and this helps in detecting
malware samples, but not in classifying the malware into its

117340 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

correct category, and this in turn reduces the chance of taking
the appropriate precautions to protect Android devices [55].

Finally, the datasets that are used in most of the studies
are from the years 2009-2015, even in new papers that are
released after 2020 such as [38] and [37], these datasets con-
tain samples that were for older versions of android system.
Also, because of the rapid evolution of Android malware and
its techniques, which definitely affects the extracted values,
such datasets are considered outdated.

IV. THE PROPOSED ANDROID MALWARE DETECTION
METHOD
In this paper, we propose a method that is based on static
analysis, where we extract all the observed useful features
from Android applications. There are very few studies that
extract and use all those features together, and these features
are namely the permissions, services, broadcast receivers,
API calls, and opcode sequences. as the extraction of all these
features is expensive regarding the time cost and resources
like RAM and disk space usage. It is also hard to combine all
these features together in one model, and this is the reason
of our building of a functional API model, as it is, unlike the
sequential models, a practical solution that gives the freedom
to handle each input individually and independently.

Additionally, we propose two new features, which are the
file size and the fuzzy hash. The former can be very useful
feature in detecting malware, as it is strongly observed, that
the sizes of malware samples are generally under 5 MB,
while the sizes of the benign samples are more than 10 MB
in general, so there is a big difference between the sizes
of malware and benign applications. The fuzzy hash is a
powerful technique that is used for similarity detection, and
by using it along with a Gated Recurrent Unit (GRU) layer,
any application that is modified can be effectively detected.
The GRU layer lets our model learn the hash characters as
a sequence in order, as the order of the characters in the
hash values is important and meaningful, and it should not
be discarded.

By combining all of these features together, there is no
opportunity for data correlation, as the permissions, services,
and broadcast receivers are extracted from the manifest xml
file and each one represents different thing, so, they do not
correlate with each other, whereas the API calls and opcode
sequences are extracted from the classes.dex files. Although
they are both extracted from the same sources, they are some-
how independent from each other, as the opcodes represent
only the operations to be performed, and do not include any
information regarding the system functions that are called.
Obviously, the two added features are also completely inde-
pendent from the other features, as they are not extracted from
the APK components at all, but calculated by using the APK
as one file without extraction.

Figure 2 shows an overview of our method, where we
see the input which is an APK file and the output is a pre-
diction and classification, which can be one of five classes,
namely benign, SMS malware, banking malware, adware

and riskware. In the middle between the APK input and the
prediction as an output, there are two processes, which are
the feature extraction process, which uses the manifest.xml
file and the decompiled classes.dex files as well as the APK
file itself, after this process, data preprocessing is done to the
extracted features, and then these data is passed to our trained
model to give the prediction. More details about the feature
extraction process and data preprocessing can be found in the
next subsections. The data preparation and the constructed
model blocks that take place in Figure 2 are shown more
clearly and in more detail in Figure 3.
In the next sections, we talk about our method steps, where

the feature extraction process is explained in detail, then the
data preprocessing is explained in detail, too. After that, the
construction and training process of our functional API deep
learning model is explained.

A. FEATURE EXTRACTION
The first step after having the data, which are 14079 cate-
gorized Android applications, is to extract the features from
them. After doing lot of research, and also from the Android
components that are described previously, we found that the
most useful features for Android malware detection are as
follows:

1) Application size: It’s noticed that the malware sam-
ples have in general low size, most benign apps are
about three times (and more) the size of the malware
apps, and this can be very logical because the malware
developer does not make a real app with useful and lot
of functionalities, but instead want to accomplish his
purpose immediately and write any useless code along
with malware functions, and this also can be clearly
observed from the application’s category, where most
malware applications can be categorized as accessories,
such as wallpaper changer, image beautifier, YouTube
downloader, etc. Unfortunately, there is no dataset that
gives the application’s category in this way, otherwise,
we believe that it could be a very important feature.

2) Permissions: which are extracted from the mani-
fest.xml file. An app that does not have access to the
internet, does not read or write to external storage, can
be assumed as benign, on the other hand, what would a
wallpaper changer app dowith the location of the phone
or with ‘‘receive boot completed’’ permission.

3) API calls: which are extracted from the decompiled
code, and represent the functions of the system that
the application is calling in the background during its
execution.

4) Services: those are described previously and extracted
from the manifest.xml file.

5) Receivers: same as the previous one.
6) Fuzzy Hash: which can detect similarity as explained

previously in the second section.
7) Opcode sequences: which are extracted from the

decompiled code. These represent the instructions that

VOLUME 10, 2022 117341



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

FIGURE 2. Method overview.

the application will execute during its runtime. These
instructions are extracted in the same written order.

During the feature extraction process with the Androguard
tool, two errors could occur due to the reading or extraction
failure from some APK files, which was tackled by writing
and executing extra codes to eliminate the error causing
samples. Finally, the API calls, which was extracted indepen-
dently, was merged with the other features into the generated
csv file.

B. DATA PREPROCESSING
The Android applications we have are classified into five
classes. So, the features of applications were extracted from
each class separately. Thus, five csv files were obtained, one
for each class, those csv files were merged together, shuffled,
and the rows that contain any null value in any column were
deleted, then each feature were prepared individually to be
passed to our deep learning model as the following:

• Application’s size: using standard scaler, each size was
converted to a float number in the range of −1 and +1.

• opcode sequences: this feature was planned to be passed
to RNN layer(s). However, as each sequence was really
quite long, with the longest sequence that had more than
2 million opcodes (which are represented in integers),
so padding all other to that length and passing it to RNN
layer did not seem to be useful and efficient, instead,
the count of each opcode was calculated, and as we had
the opcode represented in integers, the integers were in
the range of 1 to 768, so a matrix of 768 columns was
created.

• Fuzzy Hash: A tokenizer preprocessing layer with char
level was used to represent each character in the hashes
as an integer, taking into account upper and lower let-
ters as well as the symbols, 65 unique characters were
embedded. The hashes were converted completely to
the integer sequences that resulted from the method
‘‘texts_to_sequences’’ of the tokenizer layer. Then,

pre-padding was applied to make all the hash values in
the same length, finally a reshape process was applied
to convert the hash values to three dimensions, which is
required for the next GRU layer.

• Permissions, Receivers, Services, API calls: TextVector-
ization layers are used to build vocabularies and map
these features’ values to integers. Because of the differ-
ence of the nmuber of unique values in each of these four
features, different vocabulary sizes were given, which
are shown within the brackets in Figure 3.

• Category: this is the target, which can be a number
from 0 to 4 that represents the class of the application.
which again, can be benign, SMS malware, riskware,
banking malware, and adware. This column was onehot
encoded in order to train the model to output a probabil-
ity for each class.

C. THE PROPOSED MODEL CONSTRUCTION
Figure 3 shows the construction of the model, where func-
tional API model was built in order to pass different types
and dimensionalities of inputs to the model.

As we can see, three separate consecutive dense layers
handle the Count Vectors of the opcode sequences. The value
in brackets represents the number of neurons, which is a
hyperparameter that can be tuned to get the best results.

The fuzzy hash, as it is treated as a sequence, is passed
to Gated Recurrent Unit (GRU) layer to learn from the order
of the characters in the hashes, then the output is passed to
flatten layer to reduce the shape and make it convenient to be
passed to a dense layer.

The permissions, services, receivers, and API calls inputs
are passed to embedding layers to understand the features and
cluster them (where similar words have similar embeddings),
followed by flatten layers to make their shape appropriate.
Note that we put the preprocessing text vectorization layers
into the model, so that we can pass these last mentioned four
inputs directly to the model without any processing and as a

117342 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

FIGURE 3. The proposed functional API Deep learning model for Android malware classification.

raw data, and this is called then end-to-end model, because it
accepts unhandled raw data, but we could not do that for the
other features, so the model is partially end-to-end.

The outputs from the flatten layers of the last four men-
tioned layers, as well as the output of the flatten layer of
the fuzzy hash, and the scaled size input, are passed to a
dense layer with 64 neurons, with Relu activation, which
always outputs positive number, then the output of this layer
along with the output of the last dense layer of the opcode
sequence network are passed to a dropout layer, which helps
preventing the model from overfitting. Then this output is
passed to 32 neurons of a dense layer, whose output is passed
to a final dense layer with five or two neurons, which is the
number of the classes we have, and with Softmax activation,
the neuron that has the maximum probability value in the
range 0 and+1 will win and be given as the model prediction.
With this topology, the total number of trainable parameters
of the constructed model is 12,351,695.

D. MODEL TRAINING
During the training of the model, four performance metrics
are used; the accuracy, F1 score, Precision, and Recall metric.
Our model was trained on two variations of the dataset, the
first one is with two target classes; malware and benign,
and the other one is with the five clasees of the dataset.
In Figures 4 and 5, it is evident that during training, the
training rates of the evaluation metrics progressively rise,
while the training loss fall. We can see that the model can
achieve high accuracy directly after 2 epochs. We can tell

FIGURE 4. Learning curves: the mean training loss and evaluation metrics
measured over each epoch with two target classes.

that the model has quite converged to the solution, with no
overfitting, as the performance metrics give almost the same
values both during training and when evaluating the model on
the test set.

During training, 10% of the dataset was used for testing,
and this was made to not loose lot of training data, and as we
have a high number of samples, so the test set is more than
1400 samples, and this is already bigger than the test sets used
in lot of previous papers.

The number of epochs was set to 30 and early stopping
callback was used with patience value of 4, and this stops the
training when the model does not perform better for 4 epochs.
As a result, this clearly stopping callback stopped the training
after 16 epochs.

VOLUME 10, 2022 117343



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

FIGURE 5. Learning curves: the mean training loss and evaluation metrics
measured over each epoch with five target classes.

FIGURE 6. The percentage of each class in the five target classes.

We can tell that there is no overfitting from the evaluation
results of the test set, which are shown in the next section.

V. RESULTS AND DISCUSSION
In this section, we talk about the characteristics of the dataset
we used, then the obtained results are shown. Finally, the used
tools for the preparation of the data and the training of the
model are given.

A. DATASET
There are many datasets available from different sources. The
used dataset in this paper is CICMalDroid 2020, which is
provided by the University of New Brunswick and contains
17,341 current and advanced Android samples, categorized
as Adware, Banking Malware, SMSMalware, Riskware, and
Benign. These samples come from various sources, including
VirusTotal [22], Contagio Security Blog, AMD, MalDozer
and other datasets used in recent research papers. So, it is the
most recent and diverse dataset available today. Full details
of the dataset can be found in their research paper [8] and its
underlying principles [66].

The total number of applications that were used and got
their features extracted are 14079. The percentage of each
class can be seen in Figure 6.

In order to be able to make a comparison with the most
studies, which use two classes, namely malware and bengin,
we also made another variation of the dataset, where we
merged the four malware categories into just one, and called
it simply ‘‘Malware‘‘. As a result, we got the two classes as
shown with percentage distribution in Figure 7.

FIGURE 7. The percentage of each class in the two target classes.

TABLE 2. Classification report for our model with just two target classes.

FIGURE 8. Confusion matrix of our deep learning model with two target
classes.

B. MODEL EVALUATION
In this section, we evaluate the model with the two variations
of the dataset, one with two target classes (malware, benign),
which is just for malwre detection, and the other with five
target classes, to detect as well as classify android malware.

1) EVALUATING OUR MODEL WITH TWO TARGET CLASSES
Since that the most previous studies classify android samples
into just two classes, which aremalware and benign, and since
that more classes resulting in a reduction in the overall pre-
diction accuracy, as was seen clearly in paper [39], we tested
our model on our relabled dataset, where we merged the four
malware classesmentiond previously, namely Banking, SMS,
Riskware, Adware, into one class which is just malware, and
as expected, we obtained significantly higher accuracy.

Table 2 shows the classification report obtained after eval-
uating our trained model on the independent test set.

Figure 8 shows the confusion matrix of the new trained
model evaluated on the test set.

2) EVALUATING OUR MODEL WITH FIVE TARGET CLASSES
At the end of the training, the accuracy values obtained from
the performance metrics and for each class are presented in
Table 3. We can see that the values are significantly high with

117344 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

TABLE 3. Classification report for our model with five target classes.

FIGURE 9. Confusion matrix of our deep learning model with five target
classes.

a macro average of all classes of 96%, which is the average
of the unweighted mean per label. The weighted average is
also 96%. The number of the actual occurrences of each class
in the given dataset (test dataset) can also be seen in the
‘‘#samples’’ column.

The confusion matrix in Figure 9 shows an acceptable and
high effectiveness of the model, as we can see that the classes
are predicted correctly in the range 92-99%, with the highest
classification accuracy for SMSmalware class with 99%, and
the lowest one for Banking malware class with 92%. The
percentages of false classifications are significantly low, with
the highest false classification rate of Adware predicted as
Banking malware with 3.9%.

C. TOOLS
Static analysis was used in our method, because in dynamic
analysis and as discussed previously, the sophisticated mal-
ware samples can detect and deceive the virtual system. So,
in static analysis we can detect the malware samples before
installing and running them in a device, and this is also faster
and require less resources, and allow more code coverage.

Androguard [7] was used for feature extraction process,
although it is slow in handling big files, but with testing other
existing tools, nothing seems to give a better performance.
Additionaly, some tools like ClassyShark [20] and ApkStu-
dio [21] are limited to user interface, thus, automation process
of feature extraction is not applicable with them. Also, not all
Android decompilers allow the extraction of all the features
of Android applications, some are limited to decompile dex
classes, and others are limited to manifest files.

TABLE 4. Evaluation metrics results with different dropout rates in our
model and two target classes.

TABLE 5. Evaluation metrics results with different dropout rates in our
model and five target classes.

Ssdeep tool [26] was used to calculate the fuzzy hashes,
and the ‘ls’ terminal commandwas used to extract the features
from the Android applications. To automate this process,
bash script and python are used under Gnu-Linux operating
system; Linux Mint 20 distribution, to extract the features
from each APK file one by one and build the csv dataset.

For the data preparation and machine learning, Pandas
which is used to read the data (the resulted csv files), numpy,
sklearn, tenserflow and Keras libraries are used. Matplotlib
library is also used to show the results visually in diagrams
and confusion matrices.

The process of reading, processing the data, and training
the model was carried out under google colab pro online,
to get benefit from its powerful shared resources.

VI. TUNING THE MODEL’s HYPERPARAMETERS
Although the obtained accuracy from our built model is high,
we tried to enhance its accuracy by tuning the hyperparam-
eters such as the optimizer, and the dropout rate, and we
also tried to enhance its performance by altering the number
of neurons, which in turn alters the number of the trainable
parameters. All the results will be shown for both dataset
variations (two classes, five classes).

Tables 4 and 5 show a comparison between different
dropout rates and their related results of the four used eval-
uation metrics obtained from the test set. The last row in the
table indicates that no dropout was used.

The dropout layer helps in preventing the model from
overfitting the training data, by eliminating part of the outputs
of the neurons in the previous layer. Dropout rate of 0.8means
that 80% of the data will be passed to the next layer. So, low
dropout rate like 0.2 indicates that we loose much data, and
this also reduces the model performance as seen in Table 5,
while in Table 4, we see that the results of 0.2 and 0.8 dropout
rates are almost same. Thus, the best experimented dropout
rate according to the overall evaluation results is 0.8. So,
we adopted this hyperparameter.

We tried then to reduce the number of trainable parameters
by eliminating the two dense layers that have 64 neurons,
which are shown in green color in the third and fourth hid-
den layer in Figure 3. As a result, the number of trainable

VOLUME 10, 2022 117345



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

TABLE 6. Evaluation metrics results for the our model variations with two
target classes.

TABLE 7. Evaluation metrics results for the our model variations with five
target classes.

parameters decreased from 12,351,695 to 7,510,319, we call
this ‘‘Variation A’’ of our model.

Another variation was tested by adding two dense layers
with 128 neurons, one before each of those two dense layers
with 64 neurons that was mentioned before, and by keeping
those last two layers, the number of trainable parameters was
increased to 22,042,639. Increasing the trainable parameters
cause the model to overfit the training dataset with reduced
prediction accuracy on new data, and this can be seen in the
results, with the name ‘‘Variation B’’.

Lastly, with the same model shown in Figure 3 (with-
out adding or deleting any layer), we wanted to increase
the trainable parameters a little bit, to not cause overfit-
ting like in the last variation, so we just increased the
number of neurons in the last hidden layer (the dense
layer), from 32 to 40, which increases the number of train-
able parameters slightly to just 12,352,767. We call this
‘‘Variation C’’.

Tables 6 and 7 show a comparison between the evaluation
metrics’ results for our basic model structure and its tested
variations.

As it is clearly observed, although reducing the trainable
parameters reduces the training time of the model, but it
also reduces its effectiveness. Also, increasing the trainable
parameters does not help the model to perform better, as we
see with Variation B and C.

We also did other experiments by tweaking the number of
neurons in other layers, but all the obtained results were below
the first previously obtained one.

Finally, we tried different optimizers, and the obtained
results are shown in Tables 8 and 9. Note that the Adagrad
optimizer required more training time (19 epochs) and its
results were the lowest, where Adamax optimizer took the
longest time (28 epochs).

We notice that adamax optimizer gave the same results
as adam optimizer, but it takes lot more training time, as it
required the 30 epochs to reach that accuracy.

TABLE 8. Evaluation metrics results for our model with different
optimizers and two target classes.

TABLE 9. Evaluation metrics results for our model with different
optimizers and five target classes.

TABLE 10. Overall accuracy of each tested classifier with only the first
four features and two target classes.

VII. EXPERIMENTAL EVALUATION OF OTHER MODELS
In this section, we test different classifiers that are mostly
used in previous studies, and compare them with our model,
we also make a comparison between our model and other
models in new studies that use the same dataset we used.

A. EXPERIMENTAL EVALUATION OF OTHER CLASSIFIERS
In order to be able to make a comparison between our
proposed model and the models that were used in previous
works, the most used models in previous works were tested
on our obtained dataset. The classifiers that were tested are
Stochastic Gradient Descent (SGD), Decision Tree, Random
Forest, C-Support Vector Classifier (SVC), K-Nearest Neigh-
bor (KNN), XGBoost, and Gaussian Naive Bayes (Gaus-
sianNB).

All the results will be shown for both dataset variations
(two classes, five classes).

At the beginning, only the first four features were passed
to the classifiers, namely permissions, receivers, services and
API calls. The reason for this is that these features were the
most commonly used in previous works, so we wanted to
test whether the additional features we used provide better
results or not. Tables 10 and 11 show the accuracy of the
tested Classifiers with only these four features.

We passed then all the extracted features to these classifiers
and re-checked the results, which are shown in Tables 12
and 13. It is obvious, according to the averaged accuracy of all
classifiers, that using all the features we extracted gives better
accuracy than using just the most commonly used features in
previous papers.

Using all the features, and in both variations of two and five
classes, it can be clearly seen that the performance of the best

117346 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

TABLE 11. Overall accuracy of each tested classifier with only the first
four features and five target classes.

TABLE 12. Overall accuracy of each tested classifier with all features and
two target classes.

TABLE 13. Overall accuracy of each tested classifier with all features and
five target classes.

FIGURE 10. Confusion matrix of SVC classifier with two target classes.

classifier was lower than the performance of our proposed
model. We also see clearly and as expected, that reducing the
number of classes, the results become significantly better.

In the next sections, the results of each tested classifier are
discussed in detail (with the use of all features).

1) EVALUATION OF SVC CLASSIFIER
Figure 10 shows the confusion matrix of SVC classifier,
which was trained just to predict two classes; malware and
benign. We can see that in this case, the classifier gives high
prediction accuracy formalware class, but also 36% of benign
samples are being classified as malware.

FIGURE 11. Confusion matrix of SVC classifier with five target classes.

FIGURE 12. Confusion matrix of RandomForest classifier with two target
classes.

In the case of five target classes, we see from the confusion
matrix in Figure 11, that 4.4% of the benign class samples
were incorrectly classified as adware and 1.7% of them was
classified as riskware. As we most care about the classi-
fication of the benign class against malware, the accuracy
of classification for benign class was 88% in the confusion
matrix, which is not so high.

2) EVALUATION OF RANDOM FOREST CLASSIFIER
In Figure 12, and in case of two target classes, we see that 17%
of benign samples are being classified as malware, which is
a lower false negative rate than the previous classifier, while
the prediction accuracy for malware class is still 99%.

With the five target classes, the true classification rate of
the benign class was not better from SVC classifier, as the
confusion matrix in Figure 13 shows the same rate for benign
class with 88%, and the class that is most wrongly classified
as benign is the adware class with 7.7%, which is relatively
high false classification rate.

3) EVALUATION OF SGD CLASSIFIER
With two target classes, Figure 14 shows very low classifica-
tion accuracy for benign class with just 20%.

Till now, Stochastic Gradient Descent classifier’s rates
were in the middle between SVC and Random Forest in the
case of five target classes. The confusion matrix in Figure 15

VOLUME 10, 2022 117347



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

FIGURE 13. Confusion matrix of RandomForest classifier with five target
classes.

FIGURE 14. Confusion matrix of SGD classifier with two target classes.

FIGURE 15. Confusion matrix of SGD classifier with five target classes.

shows that the benign class was mostly wrong classified as
banking with the percentage of 8.3%.

4) EVALUATION OF DECISION TREE CLASSIFIER
The confusion matrix for two target classes in Figure 16
shows that Decision Tree Classifier gives in this case high
prediction accuracy for both malware and benign classes, and
this is the best classifier in case of two classes, and compared
to the previously shown classifiers till now.

The confusion matrix for five target classes in Figure 17
shows that the benign samples were mostly classified as

FIGURE 16. Confusion matrix of Decision Tree classifier with two target
classes.

FIGURE 17. Confusion matrix of Decision Tree classifier with five target
classes.

FIGURE 18. Confusion matrix of GaussianNB classifier with target classes.

banking and riskware with 5% both, and never wrongly clas-
sified as SMS malware, as the SMS malware class has the
highest true classification rate of 98%.

5) EVALUATION OF GaussianNB CLASSIFIER
Figure 18 shows that in the case of a two target classes, the
Gaussian Naive Bayes classifier classifies almost all samples
as benign, in spite of the fact that the benign samples are a
lot less than the malware samples.

With five target classes, Gaussian Naive Bayes classifier
gave the lowest results among the tested classifiers. The
confusion matrix in Figure 19 shows that the percentage of
the true classification of benign class (48%) is lower than

117348 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

FIGURE 19. Confusion matrix of GaussianNB classifier with five target
classes.

FIGURE 20. Confusion matrix of XGBoost classifier with two target
classes.

FIGURE 21. Confusion matrix of XGBoost classifier with five target
classes.

its wrong classification as SMS malware with 55%. and this
is the only tested classifier that gave higher rate of false
classification than the rate of true classification.

6) EVALUATION OF XGBoost CLASSIFIER
In the case of two target classes, XGBoost Classifier performs
really well, with prediction accuracy of 99% for malware
class, and 92% for benign class, as seen in Figure 20.

In the case of five target classes, the confusion matrix in
Figure 21, shows that XGBoost Classifier has an overall good

FIGURE 22. Confusion matrix of KNN classifier with two target classes.

FIGURE 23. Confusion matrix of KNN classifier with five target classes.

TABLE 14. Overall comparison of our proposed model and the tested
classifiers with two target classes.

performance, with the lowest accuracy of 85% for adware
class, and highest one of 98% for SMS class.

VOLUME 10, 2022 117349



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

TABLE 15. Overall comparison of our proposed model and the tested
classifiers with five target classes.

7) EVALUATION OF KNN CLASSIFIER
In the case of two target classes, the confusion matrix of KNN
Classifier shows a prediction accuracy of 98% for malware
class, and 72% for benign class, as seen clearly in Figure 22.

In the case of five target classes, K-Nearest Neighbor
classifier gave relatively a good prediction accuracy. We can
see from the confusion matrix in Figure 23 that Adware class
has the lowest percentage of the true classification of 68%,
while SMS malware has the highest true classification rate
with 96%. The true classification accuracy of benign class
is 75%.

TABLE 16. Experimental Comparison between our model and related
works with two target classes.

Based on the results of these classifiers and the results
of our proposed model, and in case of five target classes,
we can see that the banking and adware classes have the
lowest classification accuracy, which means that the samples
used were insufficient and more samples are needed for these
classes to improve the classification accuracy.

8) EXPERIMENTAL COMPARISON WITH THE PROPOSED
MODEL
In Tables 14 and 15, we see an overall comparison between
all the classifiers and our proposedmodel for both two classes
and five classes cases respectively. It is clearly observed, that
our proposed model always gives the highest accuracy among
the tested classifiers with all metrics and for all classes.

B. EXPERIMENTAL COMPARISON WITH RELATED WORKS
In this section, we show a comparison between our model
and the studies that use the same dataset that we used, con-
sidering just the two target classes case, which are namely
malware and benign, as these studies concentrate just on these
two classes for malware detection problem, without giving
importance to malware classification issue.

As we see in Table 16, our model performs better than the
few existing new studies that use the same dataset.

VIII. CONCLUSION
Because of the rapidly increasing number ofmalware samples
that target the android operating system with most new and
sophisticated techniques, lot of studies were performed and
published in order to try to develop a tool or system to auto-
matically detect Android malware. Most of these studies do
not cover all Android applications’ features and information,
and there are lot of them with accuracy below 90%, with the
others’ performance questioned for high accuracy with new
samples.

In this paper, we proposed a new method for Android mal-
ware detection, where we built and trained a new functional
API deep learning model that handles each feature we used
individually, as we combined lot of features with different
types and dimensionalities. We extracted the most useful
features we observed, which are namely the permissions, API
calls, services, broadcast receivers, and opcode sequences, all
of them were combined in one study and one model, and to
the best of our knowledge, there are very few studies that
use all of these features together. Additionally, we proposed
completely two new static features, namely application size
and fuzzy hash. The former is a strong marker that can indi-
cate the malware, as the observed big difference between the
size of benign samples, which is generally becoming bigger

117350 VOLUME 10, 2022



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

than 10 MB, and the size of malware samples which is less
than 5 MB in general. The fuzzy hash is also an important
added feature, that is used for similarity detection, which is
in turn a very essential feature to be tackled in this subject.

We used the most recent and diverse dataset, CICMalDroid
2020, to train our model, where we extracted the mentioned
features from 14079 samples that belong to 5 classes, which is
an added advantage, as the model not just detect the malware,
but also predict its class from among four classes, namely
adware, banking malware, SMS malware, and riskware.

To compare our work with other studies, which have
the limitation of concentrating on malware detection with-
out considering the malware classification problem, we also
trained our model and performed all other experiments on
another variation of the dataset, where we merged the mal-
ware classes into one ‘‘Malware’’ class, to have only two
target classes; malware and benign, like the most related
works.

Using four metrics to evaluate the performance of our
model, namely F1 score, recall, precision, and accuracy met-
ric, all of them gave more than 96% accuracy, which is
significantly high, and this is believed to be the result of the
combination of the used features in previous studies, along
with our new proposed ones, which are the file size and fuzzy
hash.

We also tested some algorithms that are used in previous
papers which are random forest, Stochastic Gradient Descent,
Gaussian Naive Bayes, C-Support Vector, K-Nearest Neigh-
bor, XGBoost, and decision tree classifier. The experimental
results show that our model overcomes all tested classifiers
with all the evaluation metrics.

REFERENCES
[1] Operating System Market Share Worldwide Aug. 2020—

Sep. 2021. Accessed: Sep. 22, 2022. [Online]. Available:
https://gs.statcounter.com/os-market-share#monthly-202009-202109

[2] S. Avinash. (Jul. 26, 2022). Top Google Play Store Statistics 2022
You Must Know. Accessed: Sep. 22, 2022. [Online]. Available:
https://appinventiv.com/blog/google-play-store-statistics/

[3] T. Kimberly, ‘‘The evolution of Android malware and Android analysis
techniques,’’ ACM Comput. Surv., vol. 49, no. 4 pp. 1–41, 2017.

[4] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, ‘‘A survey
of Android malware detection with deep neural models,’’ ACM Comput.
Surveys, vol. 53, no. 6, pp. 1–36, Nov. 2021.

[5] S. Liu, G. Lin, Q.-L. Han, S. Wen, J. Zhang, and Y. Xiang, ‘‘DeepBalance:
Deep-learning and fuzzy oversampling for vulnerability detection,’’ IEEE
Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1329–1343, Jul. 2020.

[6] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri, ‘‘Android mobile mal-
ware detection using machine learning: A systematic review,’’ Electronics,
vol. 10, no. 13, p. 1606, Jul. 2021.

[7] Androguard: A Full Python Tool to Play With Android
Files. Accessed: Sep. 22, 2022. [Online]. Available: https://
androguard.readthedocs.io/en/latest/

[8] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and A. Ali,
‘‘Dynamic Android malware category classification using semi-supervised
deep learning,’’ in Proc. 18th IEEE Int. Conf. Dependable, Autonomic,
Secure Comput. (DASC), Aug. 2020, pp. 515–522.

[9] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer: Auto-
matic framework for Android malware detection using deep learning,’’
Digit. Invest., vol. 24, pp. 48–59, Mar. 2018.

[10] (Jul. 19, 2022). Android Statistics > Number of Android Apps
on Google Play. Accessed: Sep. 22, 2022. [Online]. Available:
https://www.appbrain.com/stats/number-of-android-apps

[11] B. Peter and P. Crowley, Modern Embedded Computing: Designing Con-
nected, Pervasive. Amsterdam, The Netherlands: Elsevier, 2012.

[12] Services Overview. Accessed: Sep. 22, 2022. [Online]. Available:
https://developer.Android.com/guide/components/services

[13] ProGuard. Accessed: Sep. 22, 2022. [Online]. Available:
https://stuff.mit.edu/afs/sipb/project/android/sdk/android-sdk-
linux/tools/proguard/docs/index.html

[14] DexGuard. Accessed: Jul. 26, 2022. [Online]. Available:
https://www.guardsquare.com/dexguard

[15] ApkProtect. Accessed: Jul. 26, 2022. [Online]. Available:
https://github.com/ijiami/ApkProtect

[16] The second generation Android Hardening Protection. Accessed: Sep. 22,
2022. [Online]. Available: https://github.com/woxihuannisja/Bangcle

[17] Libre and Portable Reverse Engineering Framework. Accessed: Sep. 22,
2022. [Online]. Available: https://rada.re/n/

[18] Tools to Work With Android.Dex and Java.Class Files. Accessed: Sep. 22,
2022. [Online]. Available: https://github.com/pxb1988/dex2jar

[19] Dex to Java Decompiler. Accessed: Sep. 22, 2022. [Online]. Available:
https://github.com/skylot/jadx

[20] Android-ClassyShark- Android and Java Bytecode Viewer. Accessed:
Sep. 22, 2022. [Online]. Available: https://github.com/google/Android-
classyshark

[21] Apkstudio. Open-Source, Cross Platform Qt Based IDE for Reverse-
Engineering Android Application Packages. Accessed: Sep. 22, 2022.
[Online]. Available: https://github.com/vaibhavpandeyvpz/apkstudio

[22] VirusTotal. Accessed: Sep. 22, 2022. [Online]. Available: https://
www.virustotal.com

[23] Droidbox. Accessed: Sep. 22, 2022. [Online]. Available: https://
github.com/pjlantz/droidbox

[24] AppsPlayground. Accessed: Sep. 22, 2022. [Online]. Available: http://
list.cs.northwestern.edu/mobile/

[25] SandDroid. Accessed: Sep. 22, 2022. [Online]. Available: http://
sanddroid.xjtu.edu.cn

[26] J. Kornblum, ‘‘Identifying almost identical files using context triggered
piecewise hashing,’’ Digit. Invest., vol. 3, pp. 91–97, Sep. 2006.

[27] M. Niall, ‘‘Deep Android malware detection,’’ in Proc. 7th ACM Conf.
Data Appl. Secur. Privacy, 2017, pp. 301–308.

[28] D. Li, L. Zhao, Q. Cheng, N. Lu, and W. Shi, ‘‘Opcode sequence analysis
of Android malware by a convolutional neural network,’’ Concurrency
Comput., Pract. Exper., vol. 32, no. 18, Sep. 2020.

[29] S. Y. Yerima, S. Sezer, and I. Muttik, ‘‘Android malware detection using
parallel machine learning classifiers,’’ in Proc. 8th Int. Conf. Next Gener.
Mobile Apps, Services Technol., Sep. 2014, pp. 37–42.

[30] S. Turker and A. B. Can, ‘‘AndMFC: Android malware family classifica-
tion framework,’’ inProc. IEEE 30th Int. Symp. Pers., IndoorMobile Radio
Commun. (PIMRC Workshops), Sep. 2019, pp. 1–6.

[31] W. Li, J. Ge, and G. Dai, ‘‘Detecting malware for Android platform:
An SVM-based approach,’’ in Proc. IEEE 2nd Int. Conf. Cyber Secur.
Cloud Comput., Nov. 2015, pp. 464–469.

[32] A. Altaher and O. Barukab, ‘‘Android malware classification based
on ANFIS with fuzzy C-means clustering using significant application
permissions,’’ TURKISH J. Electr. Eng. Comput. Sci., vol. 25, no. 3,
pp. 2232–2242, 2017.

[33] Z. Aung andW. Zaw, ‘‘Permission-based Android malware detection,’’ Int.
J. Sci. Technol. Res., vol. 2, no. 3, pp. 228–234, 2013.

[34] S. Borja, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and
G. Alvarez, ‘‘Puma: Permission usage to detect malware in Android,’’
in Proc. Int. Joint Conf. (CISIS). Berlin, Germany: Springer, 2013,
pp. 289–298.

[35] S. B. Almin and M. Chatterjee, ‘‘A novel approach to detect Android
malware,’’ Proc. Comput. Sci., vol. 45, pp. 407–417, Dec. 2015.

[36] B. Tahtaci and B. Canbay, ‘‘Android malware detection using machine
learning,’’ in Proc. Innov. Intell. Syst. Appl. Conf. (ASYU), Oct. 2020,
pp. 1–6.

[37] J. Lee, H. Jang, S. Ha, and Y. Yoon, ‘‘Android malware detection using
machine learning with feature selection based on the genetic algorithm,’’
Mathematics, vol. 9, no. 21, p. 2813, 2021.

[38] V. Sihag, M. Vardhan, and P. Singh, ‘‘BLADE: Robust malware detection
against obfuscation in android,’’ Forensic Sci. Int., Digit. Invest., vol. 38,
Sep. 2021, Art. no. 301176.

[39] D. Dang, F. Di Troia, and M. Stamp, ‘‘Malware classification using long
short-term memory models,’’ 2021, arXiv:2103.02746.

VOLUME 10, 2022 117351



M. İbrahim et al.: Method for Automatic Android Malware Detection Based on Static Analysis and Deep Learning

[40] J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, ‘‘MAPAS: A practical deep
learning-based Android malware detection system,’’ Int. J. Inf. Secur.,
vol. 21, no. 4, pp. 725–738, Aug. 2022.

[41] P. Musikawan, Y. Kongsorot, I. You, and C. So-In, ‘‘An enhanced deep
learning neural network for the detection and identification of Android
malware,’’ IEEE Internet Things J., early access, Jul. 29, 2022, doi:
10.1109/JIOT.2022.3194881.

[42] R. Yumlembam, B. Issac, S. M. Jacob, and L. Yang, ‘‘IoT-based
Android malware detection using graph neural network with adversar-
ial defense,’’ IEEE Internet Things J., early access, Jul. 5, 2022, doi:
10.1109/JIOT.2022.3188583.

[43] P. Tarwireyi, A. Terzoli, andM. O. Adigun, ‘‘BarkDroid: Android malware
detection using bark frequency Cepstral coefficients,’’ Indonesian J. Inf.
Syst., vol. 5, no. 1, pp. 48–63, 2022.

[44] I. Almomani, R. Qaddoura, M. Habib, S. Alsoghyer, A. A. Khayer,
I. Aljarah, and H. Faris, ‘‘Android ransomware detection based on a hybrid
evolutionary approach in the context of highly imbalanced data,’’ IEEE
Access, vol. 9, pp. 57674–57691, 2021.

[45] Z. Wang, J. Cai, S. Cheng, and W. Li, ‘‘DroidDeepLearner: Identifying
Android malware using deep learning,’’ in Proc. IEEE 37th Sarnoff Symp.,
Sep. 2016, pp. 160–165.

[46] X. Su, D. Zhang, W. Li, and K. Zhao, ‘‘A deep learning approach to
Android malware feature learning and detection,’’ in Proc. IEEE Trust-
com/BigDataSE/ISPA, Aug. 2016, pp. 244–251.

[47] X. Wang, D. Zhang, X. Su, and W. Li, ‘‘Mlifdect: Android malware
detection based on parallel machine learning and information fusion,’’
Secur. Commun. Netw., vol. 2017, pp. 1–14, Aug. 2017.

[48] Y. Rosmansyah and B. Dabarsyah, ‘‘Malware detection on Android smart-
phones using API class and machine learning,’’ in Proc. Int. Conf. Electr.
Eng. Informat. (ICEEI), Aug. 2015, pp. 294–297.

[49] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. E. R. T. Siemens, ‘‘Drebin: Effective and explainable detection of
Android malware in your pocket,’’ in Proc. NDSS. vol. 14, 2014, pp. 1–15.

[50] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, ‘‘A multimodal deep
learning method for Android malware detection using various features,’’
IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773–788, Aug. 2018.

[51] R. Sato, D. Chiba, and S. Goto, ‘‘Detecting Android malware by analyzing
manifest files,’’ in Proc. Asia–Pacific Adv. Netw., vol. 36, Dec. 2013, p. 17.

[52] J. Sahs and L. Khan, ‘‘A machine learning approach to Android mal-
ware detection,’’ in Proc. Eur. Intell. Secur. Informat. Conf., Aug. 2012,
pp. 141–147.

[53] H. Kang, J.-W. Jang, A.Mohaisen, andH.K. Kim, ‘‘Detecting and classify-
ing Android malware using static analysis along with creator information,’’
Int. J. Distrib. Sensor Netw., vol. 11, no. 6, 2015, Art. no. 479174.

[54] S. Shakya andM.Dave, ‘‘Analysis, detection, and classification of Android
malware using system calls,’’ 2022, arXiv:2208.06130.

[55] A. H. El Fiky, M. A. Madkour, and A. El Shenawy, ‘‘Android malware
category and family identification using parallel machine learning,’’ J. Inf.
Technol. Manag. vol. 14, no. 4, pp. 19–39, 2022.

[56] J.-W. Jang, J. Yun, A. Mohaisen, J. Woo, and H. K. Kim, ‘‘Detecting
and classifying method based on similarity matching of Android malware
behavior with profile,’’ SpringerPlus, vol. 5, no. 1, p. 273, 2016.

[57] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, ‘‘Detecting
Android malware using sequences of system calls,’’ in Proc. 3rd Int.
Workshop Softw. Develop. Lifecycle Mobile, Aug. 2015, pp. 13–20.

[58] T. Bhatia and R. Kaushal, ‘‘Malware detection in Android based on
dynamic analysis,’’ in Proc. Int. Conf. Cyber Secur. Protection Digit.
Services (Cyber Security), Jun. 2017, pp. 1–6.

[59] M. S. Alam and S. T. Vuong, ‘‘Random forest classification for detecting
Android malware,’’ in Proc. IEEE Int. Conf. Green Comput. Commun.
IEEE Internet Things IEEE Cyber, Phys. Social Comput., Aug. 2013,
pp. 663–669.

[60] A. T. Kabakus and I. A. Dogru, ‘‘An in-depth analysis of Android malware
using hybrid techniques,’’ Digit. Invest., vol. 24, pp. 25–33, Mar. 2018.

[61] Z. Yuan, Y. Lu, and Y. Xue, ‘‘Droiddetector: Android malware characteri-
zation and detection using deep learning,’’ Tsinghua Sci. Technol., vol. 21,
no. 1, pp. 114–123, Feb. 2016.

[62] F. Tong and Z. Yan, ‘‘A hybrid approach of mobile malware detection in
Android,’’ J. Parallel Distrib. Comput., vol. 103, pp. 22–31, May 2017.

[63] A.Martín, R. Lara-Cabrera, and D. Camacho, ‘‘Android malware detection
through hybrid features fusion and ensemble classifiers: The AndroPyTool
framework and the OmniDroid dataset,’’ Inf. Fusion, vol. 52, pp. 128–142,
Dec. 2019.

[64] R. B. Hadiprakoso, H. Kabetta, and I. K. S. Buana, ‘‘Hybrid-basedmalware
analysis for effective and efficiency Android malware detection,’’ in Proc.
Int. Conf. Informat., Multimedia, Cyber Inf. Syst. (ICIMCIS), Nov. 2020,
pp. 8–12.

[65] R. Surendran, T. Thomas, and S. Emmanuel, ‘‘A TAN based hybrid model
for Android malware detection,’’ J. Inf. Secur. Appl., vol. 54, Oct. 2020,
Art. no. 102483.

[66] S. Mahdavifar, D. Alhadidi, and A. A. Ghorbani, ‘‘Effective and efficient
hybrid Android malware classification using pseudo-label stacked auto-
encoder,’’ J. Netw. Syst. Manag., vol. 30, no. 1, pp. 1–34, Jan. 2022.

MÜLHEM İBRAHIM was born in Aleppo,
Syria, in 1994. He received the bachelor’s degree
in computer engineering from Turkish-German
University, Istanbul, Turkey, in 2022. He did an
internship in Frontend Development with Infina
Software Company, Istanbul, in Summer 2019.
He also made an internship in backend and fron-
tend web development and testing with Sunway
Construction Company, Malaysia, in Summer
2021. He was granted a scholarship from DAAD

organization for his bachelor’s study.

BAYAN ISSA received the bachelor’s degree in
informatics engineering from the University of
Aleppo, where she is currently pursuing the mas-
ter’s degree in artificial intelligence. She worked
as a Machine Learning Engineer with experience
building, training and testing modern models, par-
ticularly in the area of natural language processing
and image processing.

MUHAMMED BASHEER JASSER (Member,
IEEE) received the master’s and Ph.D. degrees
in software engineering from University Putra
Malaysia (UPM). He is currently a Senior Lec-
turer and the Program Leader of the B.Sc.
degree (Hons.) in information technology with
the Department of Computing and Information
Systems, School of Engineering and Technol-
ogy, Sunway University. He was granted the
Malaysian Technical Cooperation Program Schol-

arship (MTCP) from the Ministry of Higher Education (Malaysia) for
his postgraduate studies. His research interests include optimization algo-
rithms, evolutionary computation, model-driven software engineering, for-
mal specification, verification and theorem proving, artificial intelligence,
and machine learning. He is also working on several fundamental and
industrial research projects in the area of artificial intelligence and software
engineering funded by several companies and universities. Several postgrad-
uate students are working under his supervision on these projects. He is also
a member of several professional academic bodies, including the Institute
of Electronics, Information and Communication Engineers (IEICE), and
Formal Methods Europe Organization.

117352 VOLUME 10, 2022

http://dx.doi.org/10.1109/JIOT.2022.3194881
http://dx.doi.org/10.1109/JIOT.2022.3188583

