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ABSTRACT Alzheimer’s disease (AD) is considered the 6™ leading cause of death worldwide. Early
diagnosis of AD is not an easy task, and no preventive cures have been discovered yet. Having an accurate
computer-aided system for the early detection of AD is important to help patients with AD. This study
proposes a new approach for classifying disease stages. First, we worked on the MRI images and split
them into an appropriate format to avoid data leakage. Subsequently, a simple and fast registration-free
preprocessing pipeline was applied to the dataset. Numerous experiments were conducted to analyze the
performances of different 3D classification architectures. Finally, an ensemble learning approach is applied
to the top-performing models. The outstanding performance of the proposed method was demonstrated
using augmentation of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Our proposed
ensemble approach outperforms studies in literature for distinguishing between people with AD and mild
cognitive impairment (MCI), and MCI and cognitive normal (CN) with an AUC score of 91.28% and
88.42%, respectively. We also targeted the multiclass task, which was marginalized in previous work,
by differentiating between the three stages of the disease.

INDEX TERMS MRI, Alzheimer’s disease classification, convolutional neural network, ensemble learning.

I. INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative
disease. It is the major cause of dementia, which is a more
general term that defines a group of symptoms that affect
cognitive tasks, such as memory, thinking, and behavior.
A subject with Alzheimer’s disease survives for four to eight
years on average after being diagnosed [1], [2]. In the United
States, AD is considered the 6t leading cause of death [3] and
is expected to affect one out of 85 people in the world by 2050.
As a result, the cost of caring for AD patients is expected to
increase dramatically. Commonly, Alzheimer’s is associated
with normal aging. An increase in age is the main risk factor
for AD, and most people with Alzheimer’s are 65 years and
older. However, Alzheimer’s is not a part of normal aging [4].
These changes are associated with changes in mental cog-
nition, functional connectivity, and brain volume. As AD is
a progressive disease, all of these changes are expected to
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proceed faster in AD than in normal aging, where symptoms
gradually worsen over time. Therefore, having an accurate
computer-aided system for the early detection of AD as soon
as possible is important and urgent to help patients with AD
and their families.

Early detection of AD is not an easy task, and no prevention
methods or cures have yet been discovered. It has been proven
that the early stages of AD may begin before the clinical onset
of symptoms or visible behavioral changes arise for up to
20 years [5]. So, there is a great need for biological biomark-
ers to help predict the onset of Alzheimer’s disease instead of
the traditional diagnosis methods. These methods are limited
to clinical cognitive tests, which mainly focus on clinical
function only. Cognitive tests are primarily neuropsycho-
logical examinations that are performed by clinical experts.
These tests determine whether a person is aware of their
symptoms and their surroundings. The most extensively used
cognitive tests are the Mini-Mental State Exam (MMSE) [6],
Clinical Dementia Rating sum of boxes (CDR) [7], and Rey’s
Auditory Verbal Learning Test (RAVLT) [8].
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Several biomarkers have been used as indicators for
AD prediction [9] such as B-amyloid, neurodegeneration
indicated by tau protein measured in cerebrospinal fluid,
or synaptic dysfunction, brain atrophy, memory loss, and clin-
ical function. Due to this, there are different modalities used
for identifying these biomarkers as imaging, genetics, clinical
and demographic modalities. A lot of research on this topic
was done to fuse several modalities [10], [11], [12], [13],
[14], [15]. In our study, we focused on imaging modalities,
especially magnetic resonance imaging (MRI). Magnetic res-
onance imaging (MRI) is widely used to image the anatomy,
structure, and physiological processes of the brain and other
body parts. It is an important biomarker for quantifying atro-
phy, as it is widely available and noninvasive [16]. In addi-
tion, it is a good indicator of disease progression because a
structural MRI scan shows the contrast between gray matter
(GM) and white matter (WM) tissues. Therefore, it can be
successfully used for volume measurement.

The Alzheimer’s Disease Neuroimaging Initiative (ADNTI)
(adni.loni.usc.edu), Open Access Series of Imaging Studies
(OASIS), and Australian Imaging Biomarker & Lifestyle
Study of Ageing (AIBL) (https://aibl.csiro.au) are the most
used databases in this research topic. There have been
approximately 2567 publications in recent years, distributed
as follows:1709 for ADNI, 747 for OASIS, and 141 for
AIBL. [17], [18], [19] are represented as samples of studies
that utilized the ADNI dataset in their papers. Referenes

[20], [21], [22] used the OASIS dataset in their work. While
[23], [24] presented their work on the AIBL with ADNI
dataset. References [25], [26] utilized all these datasets by
using one of them for training and the rest for external testing.
In our work, we focused only on the ADNI dataset, since it is
one of the most used benchmarks in this field.

Alzheimer’s stage determination involves classifying sub-
jects as cognitively normal (CN), mild cognitive impair-
ment (MCI), or Alzheimer’s disease (AD) patients. MCI is
a condition that can be an early sign of Alzheimer’s, but
not everyone with MCI will develop the disease. MCI can
be further divided into progressive mild cognitive impair-
ment (pMCI) and stable mild cognitive impairment (sMCI).
Patients with pMCI are subjects with MCI who will progress
to AD, whereas patients with sMCI will remain with
MCI. Different classification experiments can be performed,
depending on the disease stage. We present the main tasks
considered in the literature according to these stages as binary
classification and multiclass tasks. The binary classification
tasks included AD vs. CN, AD vs. MCI, MCI vs. CN, and
SMCI vs. pMCI tasks. However, the sMCI and pMCI classes
were not included in our study. In a multiclass task, they
differentiated between the three stages of the disease as AD
vs. MCI vs. CN task, which is considered the most difficult
one. Several studies focused on different binary classification
tasks only, while others targeted their studies on both binary
and multiclass tasks [27].

To deal with MRI images, there are different approaches
for the input type of the network, such as 2D slice-level, 3D
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patch-level, ROI-based, and 3D subject-level [25]. Each of
these approaches has advantages and disadvantages. In the
2D slice-level approach, the 3D MRI volumes are converted
into 2D images, which helps in feeding the network with more
images. However, many slices have irrelevant information for
the disease [15], [18], [20], [28], [29], [30], [31]. At the 3D
patch level, each volume was divided into small patches with
fixed dimensions. In the 3D subject-level approach, we con-
sider the 3D volume as a whole image for each subject. Based
on the studies that compared the two approaches, there is no
significant difference between them because they generate
almost the same information but in different ways [19], [27],
[32], [33], [34], [35]. However, the 3D subject-level approach
outperforms the other approaches because 3D patches require
significant computational power. Finally, another approach
is called the ROI-based. In this approach, prior studies
[32], [36], [37], [38] only segmented a region of interest
from the entire 3D volume to be used as input to the network.
Therefore, this approach helps the network extract features
that are relevant to the disease faster than using the entire
volume.

Over the last few decades, machine learning and deep
learning have gained immense potential in computer-aided
diagnosis systems [39]. Many researchers have used neu-
roimaging data to predict AD using typical machine learning
(ML) classifiers [40], [41], [42]. The most widely used algo-
rithms are the support vector machine (SVM) and random
forest after extracting the features from the image preprocess-
ing pipeline. Recently, there are a lot of studies that use deep
learning (DL) as it has made a great contribution to the med-
ical imaging domain [43], [44], [45]. We report several DL
network architectures used in the literature. Convolutional
Neural Network (CNN) is the most widely used architecture,
either for dealing with 2D slices or for 3D volumes [25], [27],
[34]. It proved its superior performance in the diagnosis of
AD [33], [34], [46], [47]. Transfer learning has also been
applied and has proven to outperform in this problem, either
with 2D images using pre-trained architectures on ImageNet
or with 3D volumes using pre-trained autoencoders [25], [28],
[31]. Other studies have applied different architectures such
as DenseNet and Resnet [33], [48], [49], [50], [51], [52], [53].
Others have focused on using different attention modules in
their work, as in [17], [19], [37], [54], [55], [56], and [57].

Several variations have been discovered in previous stud-
ies. For example, in dataset type and size, pre-processing
pipelines, various targeted classification tasks, various archi-
tectures with various hyperparameters for the models, various
approaches for dealing with MRI images, evaluation metrics,
and strategies.

[25] examined the numerous studies that used CNNs for
AD classification. They then extended their framework to
reduce ambiguity between studies by implementing a mod-
ular set of image-preprocessing procedures, classification
architectures, and evaluation strategies. Their efforts in their
study were a good starting point to categorize the papers
based on their approach to dealing with MRI images and
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which papers had a clear data leakage in their studies. How-
ever, their training was not deterministic, and overfitting
occurred in their experiments owing to the limited data size.
[58] presented two different 3D CNN architectures for brain
MRI classification. They avoided the issue of data leaks
by selecting only the first images taken for each subject.
However, their preprocessing pipeline fails to be simple as it
involves two complex steps: skull stripping and image align-
ment. Reference [19] proposed a 3D Residual U-Net model
having a hybrid attention mechanism (3D HA-ResUNet).
Their framework includes a U-Net network that performs fea-
ture extraction at different scales of the receiving input images
and a hybrid attention module that is incorporated with the
skip connection in the U-Net model, which combines channel
domain attention and spatial domain attention. Reference
[17] proposed a framework based on the pyramid squeeze
attention mechanism for Alzheimer’s disease classification.
They only classified the AD and CN classes, without consid-
ering the MCI disease stage. In [27], different approaches
and computational techniques (3D-Subject level, 3D-patch
based, slice level) were used to deal with MRI images by
building a 3D ConvNet framework for AD, MCI, and CN
classification. Reference [10] proposed a fusion framework
that combines the features from multiple modalities, includ-
ing volumetric MRI and neuropsychological measures, using
a deep learning network inspired by state-of-the-art architec-
tures such as Google Net, ResNet, and DenseNet. Reference
[11] is another study that examined the fusion between dif-
ferent modalities. They proposed an end-to-end classification
system based on a CNN and convolutional autoencoder using
MRI and FDG-PET images. However, this study witnessed
a clear data leakage issue. Reference [12] is also another
multi-modal data fusion study. For MRI scans, they used a
3D CNN only for feature representation learning instead of
end-to-end training. Despite the improved performance, their
study has limitations, such as small dataset sizes.

All these earlier studies suffer from clarifying the type of
the used dataset from ADNI except [17] which in turn makes
the number of scans used variable and makes the compari-
son or reproduction of their experiments difficult. Regarding
preprocessing pipelines, most studies have attempted to find
the best-performing pipeline based on its speed, simplic-
ity, and enhancement of the received input MRI images.
Reference [17] proposed a pipeline in which the impact of
different image filtering approaches was quantified on model
performance. Reference [11], [12], [17], [27] presented their
preprocessing pipeline with the registration step which is a
complex step as it is considered an optimization problem [59]
and takes much time to be implemented. Reference [25] pre-
sented two preprocessing pipelines including several types of
registration. Reference [10], [19] did not mention any align-
ment step in their pipeline. Regarding the skull stripping step,
many tools are presented in [60] that are used in brain extrac-
tion, such as the machine learning-based brain extraction
tool ROBEX algorithm. Furthermore, [61] demonstrated that
ROBEX outperformed other commonly used MRI processing

115976

tools (FSL-BET, BSE, FreeSurfer, AFNI, BridgeBurner, and
GCUT). It does not require hyperparameter tuning and can
accurately achieve skull stripping while retaining the entire
brain structure of subjects to the greatest extent possible.

Regarding the massive number of studies on this topic,
it was necessary to define criteria for selecting papers that are
closer to our work. Therefore, we are interested in the studies
that followed the 3D subject-level approach for only the MRI
modality and used the baseline scans or the first scans from
baseline visits on the same classes from the ADNI dataset.

In our study, we try to remove the ambiguity that showed
up clearly in the previous work and overcome the limitations
stated previously. Accordingly, we focus on designing an
end-to-end system that can differentiate between CN, MCI,
and AD individuals through four classification tasks. Our
research contributions are listed as follows:

1) We utilized two different types of field magnetization
strength, 1.5T and 3T images from the ADNI dataset,
and tested the performance of our framework using
each of them.

2) In image preprocessing, we introduced a simple and
fast pipeline by quantifying the impact of excluding the
registration from the steps by recording a time analysis.
We also measured the effectiveness of applying aug-
mentation in improving the results.

3) We evaluated the most effective 3D deep learning archi-
tectures and compared them in several experiments.

4) We propose an ensemble mechanism that fuses the
three top-performing architectures.

The remainder of this paper is organized as follows.
In Section 2, the proposed methodology is introduced along
with the dataset description, pre-processing pipeline, aug-
mentation, and details of our experiments on different
architectures. We report the analysis and results of these
experiments in Section 3. Finally, the discussion and conclu-
sions are presented in Sections 4 and 5, respectively.

Il. MATERIALS AND METHODS

In this section, we present our proposed methodology
for Alzheimer’s detection by discussing each component
required to structure the entire system. First, we examined
baseline MRI images. Subsequently, a simple registration-
free preprocessing pipeline was applied to the dataset.
Extensive experiments were conducted to analyze the per-
formance of different 3D classification architectures. Finally,
an ensemble learning approach was applied to the top-
performing models. The workflow of the components was
designed as a block diagram, as shown in fig. 1.

A. DATASET

In this study, the ADNI database was obtained for analysis,
which is publicly available on their website. The ADNI is a
global longitudinal multicenter research study that actively
works on the early detection and tracking of Alzheimer’s dis-
ease. ADNI is composed of two different field magnetization
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FIGURE 1. Workflow of our proposed system.

TABLE 1. Summary of participant demographics of the small dataset (3T
images) in ADNI.

Subjects Age Gender
AD 31 74.23 +8.41 [65.82, 82.64] M: 11/F:20
MCI 73 75.22 £7.95[67.27, 83.17] M: 45/F: 28
CN 46 75.32£3.99[71.33,79.31] M: 18/F: 28
Total Number of scans = 150

Values are presented as mean + SD [range]. M: male, F: female.

TABLE 2. Summary of participant demographics of the large dataset (1.5T
images) in ADNI.

Subjects Age Gender
AD 133 75.63 £7.59 [68.04, 83.22] M: 69 /F: 64
MCI 311 75.93 +7.13 [68.8, 83.06] M: 201 /F: 110
CN 195 77.08 £5.22 [71.86, 82.3] M: 102 /F: 93
Total Number of scans = 639

Values are presented as mean + SD [range]. M: male, F: female.

strengths, 1.5T and 3T, which result in two sub-datasets.
The 3T dataset was small, with 150 structural T1-weighted
MRI images. The 1.5T dataset is the largest one, which
includes a total of 639 structural T1-weighted images. This
study included both types of images in the analysis pipeline.
These images were collected from subjects and included three
diagnosis groups of patients: MCI, AD, and CN. Most of the
subjects have multiple scans based on the follow-up visits
over 36 months. In the literature on using this data, there were
different methods of dealing with the scans, such as using
only one scan for each subject, taking the first scan and the
last one from the follow-up visits of each subject, or taking
all the visits’ scans and treating them independently. We
chose baseline MRI images corresponding to all visits of each
subject by considering only the scan of the first visit of the
patient. Because of this, we were able to avoid data leakage,
which occurs when each subject appears in both the training
and testing sets, by taking multiple scans. The distribution
of the participants in each group and a summary of their
demographic information are shown in Tables 1 and 2.

B. DATA PREPROCESSING

The structure of biomedical images is quite different from
that of natural images because they measure the physical
properties of the human body. Owing to the variation in the
acquisition type, biomedical images require special prepro-
cessing steps. As mentioned, we are particularly interested
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in MRI modalities from the ADNI dataset. MRI scans
are typically volumetric (3D) images. They have already
undergone pre-processing steps, including multiplanar recon-
struction (MPR), Gradwarp, B1 non-uniformity correction,
and N3 intensity normalization during the data acquisition
process [62].

In the literature, many different procedures have been pro-
posed for preprocessing MRI images. However, one of the
objectives of this study is to define a clear and fast prepro-
cessing pipeline. First, we started with whole-brain extraction
from the MRI images, also known as skull stripping. This is
the first and most required component of most neuroimaging
pipelines. This is a pivotal step towards the robustness of the
full preprocessing pipeline and the performance of the entire
system. This step aims to simplify the input of the training
model by eliminating the noise from the images, as the skull
is irrelevant information for AD prediction. Many algorithms
and techniques were used in this step. In this study, we used
the Robust Brain Extraction (ROBEX) algorithm [61]. This
method includes discriminative and generative models to
achieve the required function. The discriminative model was
a random forest classifier trained to detect the brain bound-
ary by finding the contour with the highest likelihood. The
generative model is a point distribution model that ensures
that the result is reasonable through contour refinement using
graph cuts. Aligning several 3D brain volumes for optimized
deep learning training is controversial [59], [63], which has
motivated us to study its effect as a preprocessing step on
the whole pipeline. As it is commonly employed as a tool
to preprocess data for subsequent tasks like object detection,
segmentation, or classification. We utilized nonlinear regis-
tration by adapting all images into the same space. We used
a nonlinear image registration algorithm based on diffusion
imaging in Python (Dipy) [64]. The MNI 305 atlas [65] was
used as the reference template for the registration step. There
are also many problems specific to MRI, such as inhomo-
geneous image intensities in MR images due to the scanner,
and inconsistent tissue intensities across different MR scan-
ners. Therefore, we performed voxel-intensity normalization.
Additionally, we accounted for voxel spacing, which may
vary between the images. To mark only the important regions
from the volume, 3D cropping was applied to extract only the
brain from the black background. Finally, all the images must
be resized to the same output size.
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TABLE 3. Time analysis for each step in the preprocessing pipelines.

Steps Time recorded (seconds)
Skull Stripping 125.076
Intensity Normalization 0.1
Resampling 0.11
Cropping 0.15
Resizing 0.09
Non-linear Registration 662.665
Augmentation 1.156

We present two preprocessing pipelines. The first excludes
the registration step from the pipeline and the second
includes the registration step after skull stripping. Figure 2
shows the preprocessing pipelines. We also demonstrated a
time analysis for each step included in the two pipelines,
as shown in table 3.

C. AUGMENTATION

Augmentation is an essential tool for artificially increasing
the dataset size. This alleviates the lack of labeled data,
which is a major issue in the medical field. Transformations,
including rotations, reflections, and elastic deformations, are
widely used in augmentation methods to produce training
images that closely mimic specific training examples. In this
study, we used a 3D rotation strategy to augment the training
dataset. We provide a rotation function with an angle range
from zero to 90 °. The augmenting factors differ from the 1.5T
to the 3T images and between the three classes. As there is a
clear imbalance between classes, using augmentation helped
overcome this issue. For the 1.5T images, the dataset sizes
after applying the augmentation were 904 AD, 1060 MCI,
and 996 CN. For the 3T images, the size of the images after
applying the augmentation is as follows: 74 AD, 59 MCI,
and 74 CN.

D. 3D CLASSIFICATION MODELS

In this section, we present the different 3D classification
models used in this study. 3D convolutional neural net-
works (3D CNN), modified DenseNet201-based transfer
learning, vgg-19, vision transformers, and attention modules
are among the models included.

1) 3D CONVOLUTION NEURAL NETWORKS

CNNs are multilayered structures that can successfully
capture spatial and temporal dependencies in an image
by applying suitable filters. They include the convolution
layer, pooling layer, number of consecutive fully connected
layers, and output layer. The modern CNN-based model
was manually designed by researchers using several different
layers. In this paper, we presented, reproduced, and mod-
ified different 3D CNN basic architectures from previous
studies [25], [34], [58]. The best model architecture was
selected based on results reported by Zunair et al. [66].
The architectural details of the 3D CNN model are shown
in fig. 3.
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2) MODIFIED 3D DenseNet201 BASED

TRANSFER LEARNING

Transfer learning occurs when existing models are repur-
posed to address new challenges or problems. In medical
imaging, such as cancer classification, heart function quan-
tification, and lung disease classification, transfer learning
has yielded promising results [67], [68]. All the outcomes
were demonstrated using transfer learning, delivered excel-
lent classification accuracy in medical domains, and reached
maximum results on AD classification with a small number
of datasets.

In this study, we used classification models pre-trained
on ImageNet data [69] with 1000 classes. We selected the
DenseNet201 architecture for this purpose. The rationale
behind the selection of the DenseNet architecture is that it
produces high-accuracy results and more effective perfor-
mance for computer-aided diagnosis problems. In most of the
previous work, it proved a superior performance on the same
task [33], [49], [50], [51]. It has been proven that DenseNet
architectures utilize parameters more efficiently than alterna-
tive architectures [70].

The primary focus of the DenseNet architecture is the
modification of the standard CNN. In this architecture, each
layer is connected to another layer. For the L layers, there
were L(L+1)/2 direct connections. The feature maps of all
the previous layers were utilized as inputs for each layer,
and their feature maps were used as inputs for the subse-
quent layers. Each architecture in the DenseNets consists of
four dense blocks with varying numbers of layers. Transition
layers were employed between the four dense blocks. The
fourth dense block is followed by a classification layer that
accepts the feature maps of all layers of the network to per-
form classification. To utilize transfer learning, we extracted
all convolutional layers of the model as transfer layers
and added the classifier part to these layers by modify-
ing the fully connected layers and the output classification
layer. Therefore, they learn the class-specific features of
the Alzheimer’s dataset by applying fully connected layer
compression and dropout addition. The proposed network
architecture is shown in fig. 4. The first layer was trained
using ImageNet, whereas the ADNI dataset was used to train
the remaining adaptation layers. The size of the output layer
was set equal to the class labels.

3) VISION TRANSFORMERS

The vision transformer (ViT) is a transformer used in com-
puter vision that operates similarly to transformers used in
natural language processing. The transformer learns inter-
nally by measuring the relationship between input token
pairs. In computer vision, we can use image patches as tokens.
Inspired by [71], they applied a pure transformer-based model
for video classification by suggesting four variants of the
vision transformer architectures. In our work, we chose
the spatio-temporal attention model for the dataset tasks
for Alzheimer’s diagnosis. The model captures the spatial
and temporal dependencies across slices from each volume.
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FIGURE 2. The preprocessing pipeline: (a) Registration free preprocessing pipeline, (b) Registration Preprocessing pipeline.
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FIGURE 3. 3D CNN model architecture.

Hence, it models the long-range interactions across the vol-
ume from the first layer of the transformer. To obtain the input
to the Spatio-temporal transformer, each volume is mapped
to a sequence of tokens using a tublet embedding, and then
a positional embedding is added. This type of transformer
is explored by [72] in their “Joint Space-Time” model.
Another reason for selecting this transformer is its speed in
training on our dataset, in contrast to different complex 3D
CNN architectures.

4) CHANNEL AND SPATIAL ATTENTION-BASED DenseNet

The convolutional block attention module (CBAM) is an
effective attention module for convolutional neural net-
works [73]. It consists of two sequential submodules: channel
and spatial modules, as illustrated in fig. 5. The focus of
channel attention is on what’ is meaningful given an input
image. In contrast to channel attention, spatial attention
focuses on *where’ as an informative component that com-
plements channel attention. Every convolutional block of a
convolutional neural network model includes CBAM as a
layer. It accepts a tensor containing the feature maps from
the previous convolutional layers and refines them using a
channel attention module. Subsequently, the refined tensor
was passed to the spatial attention module, which applied
spatial attention, resulting in the output of the refined feature
maps. Therefore, at each convolutional block of the deep
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network, the intermediate feature map is adaptively refined by
the CBAM module. In this study, CBAM was added as a mod-
ule after each dense block in the modified 3D DenseNet201
architecture.

5) EVALUATION METRICS

In this study, we evaluated the performance of the models
using the following metrics: accuracy (ACC), area under
the receiver operating characteristic (ROC) curve (AUC),
Balanced Accuracy (BA), and fl-score. The performance
can be obtained from the confusion matrices. The confusion
matrix of the multiclass classification is shown in Table 4.

1) Accuracy shows the percentage of the correctly classi-
fied subjects among the entire subgroups
(Tp +Tn)
(Tp+ Fp+ Ty + Fy)

Acc(binary) = €))]
where Tp, Fp, Ty, and Fy are the true positive, false
positive, true negative, and false negative, respectively.

(Ta+Tp+T¢)
(T+F)

2) AUC is the summary of the ROC curve that measures
the ability of a classifier to distinguish between classes.
As ROC plots the true positive rate against the false
positive rate at different threshold values.

Acc(multiclass) =

@

115979



IEEE Access

A. Gamal et al.: Automatic Early Diagnosis of Alzheimer's Disease Using 3D Deep Ensemble Approach

D CONV. Layer
D MaxP. Layer

. Transition Layer

Pretrained DenseNet201 Network
- Global Average
Pooling
1024

le‘ansfel‘ Leal'ning?’;

FC

ImageNet
Dataset

1000

FC p
ropout
FC
no. of
64 Cclasses
512

Proposed DenseNet201 Network based Transfer Learning

.
ADNI‘

Dataset

FIGURE 4. Proposed 3D DenseNet201 architecture.

TABLE 4. Confusion matrix of multiclass classification.
Channel Spatial Attention
Attention Module :
Modle Predicted Positive(class A) | Predicted Negative(class B) | Predicted ive(class C)
EI Actual positive (class A) True A (TA) False AB (FAB) False AC (FN)
Actual negative (class B) False BA (FP) True B (TB) True BC (TN)
O] Actual negative (class C) False CA (FP) True CB (TN) True C (TC)

Input Feature map Refined Feature map

FIGURE 5. Overview of CBAM architecture.

3) Fl-score considers both precision and recall and per-
forms a synthetic evaluation of the model performance
whereas precision calculates the percentage of samples
properly classified and the recall is the percentage of
relevant instances recovered compared to the total num-
ber of relevant occurrences.

T,
Precision(binary) = —r 3
(Tp + Fp)
. Ta
Precision(classA) = 4
(Ta + Fpa + Fca)
Recall(binary) Tr 5)
ecall(binary) = ———
g (Tp+ Fyn)
T,
Recall(classA) = 4 (6)
(Ta + Fap + Fac)
(2 * Precision * Recall)
F1 — score = @)

(Precision + Recall)
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4) BA is a metric that is used when the classes are imbal-
anced. It evaluates how well the classifier is whether
the task is binary or multiclass.

BA — (Precisi0n2+ Recall) ®)
where precision and recall differ from binary and mul-

ticlass cases as illustrated in equations 3,4,5, and 6.

IIl. EXPERIMENTS DETAILS AND RESULTS

In this section, the dataset and preprocessing setup, an abla-
tion study to illustrate the effectiveness of each module in
our method, the experimental setting, and the results of the
summarization are introduced.

A. DATASET AND PREPROCESSING SETUP

A total of 789 3D MRI images from 1.5T and 3T images were
used. We randomly selected training and testing subjects.
Only one scan was obtained for each participant during the
first visit. A 5-fold cross-validation strategy was performed,
which resulted in a fold (20%) of the data for validation and
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FIGURE 6. Output of the preprocessing pipeline with registration step:
(a) the original image, (b) Skull Stripped image, (c) Registered image,
(d) Normalized image, (e) Resampled image, (f) Resized image.

the rest for training. These images were then fed into the pre-
processing pipeline.

To apply the skull stripping algorithm, we used the Pyrobex
library in Python [74]. This software package was used
for robust brain extraction. We used Dipy for the regis-
tration. It is a Python package that is used for diffusion
imaging. It includes general image registration algorithms,
including affine and nonlinear registration. Subsequently,
azero-mean, unit-variance normalization method was applied
to the images for intensity normalization. For resampling,
we resampled the images to an isotropic resolution of
1 mm?. Finally, we cropped and resized the images to
64 x 64 x 64 as the output dimension, according to the required
input size for the used models. The output image of each step
of the pipeline is shown in fig.6.

B. ABLATION STUDY

This study is focused to investigate the independent effect
of the following parameters on our main method’s perfor-
mance such as the registration and augmentation preprocess-
ing steps, different types of field magnetization’s strength
from the ADNI dataset, different 3D encoding architectures,
and the different classification tasks.

1) THE REGISTRATION AND AUGMENTATION STEPS
First, we studied the effect of excluding the registra-
tion step and applied the augmentation strategy through a
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TABLE 5. The models’ complexity.

Model # Parameters
3D CNN 1,388,802
Modified Densenet201 25,603,776
Modified Densenet201 with CBAM 35,315,690
Vgg-19 60,062,144
Vision transformer 3,247,778

registration-free pipeline. We applied augmentation using the
3D image rotation method, and we created augmented data
for each fold only on the training part and concatenated
them to the original images. The second pipeline included
a registration step to check its impact on the performance
of the entire system. We did not apply both registration and
augmentation at the same time because they will cancel the
effect of each other. To verify the effectiveness of these two
steps, we applied this experiment by utilizing the large dataset
(1.5T images).

2) DIFFERENT TYPES OF FIELD MAGNETIZATION STRENGTH
FROM THE ADNI DATASET

We aimed to investigate the effect of using images that were
obtained from different MRI scanners with different magneti-
zation field strengths. Therefore, we applied our experiments
to 1.5T and 3T and merged these two image types. Using
3T images helped us illustrate the influence of using images
of higher quality than the 1.5T images. As the cost is a
critical factor in the market, we also focused on applying
our experiments on 1.5T images because their scanners are
more affordable than 3T scanners [75], [76], and their size is
larger than that of 3T images. We also tried to generalize our
method by applying our experiments to the merged dataset by
concatenating the 1.5T and 3T images.

3) DIFFERENT 3D ARCHITECTURES

We studied the effect of using different 3D effective archi-
tectures in our experiments. We evaluated the 3D CNN,
3D modified DenseNet, and 3D denseNet201 with the
CBAM attention module, vgg-19, and 3D vision transformer.
We selected these 3D models based on their superior perfor-
mance reported in the literature. For example, we focused on
applying the 3D denseNet 201 architecture in two ways, as it
has the advantages of feature propagation improvement and
efficient parameter utilization. The complexity of the models
is a critical parameter for deep learning models. Accordingly,
we reported the number of parameters of each of these five
models in table 6 as a metric for the model’s complexity.

4) DIFFERENT CLASSIFICATION TASKS

Four classification tasks are investigated in this study, listed
as follows: (1) AD vs CN, (2)AD vs MCI, (3) MCI vs CN, and
(4) AD vs MCI vs CN. Understanding each stage is crucial
for the accurate diagnosis of the disease at each level. Most
previous studies focused only on binary classification tasks,
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and there was a deficiency in multiclass classification tasks
[77]. Hence, we targeted both binary and multiclass tasks.

C. EXPERIMENTAL SETTING

In this study, there are three groups of experiments,
as shown in the experimental structure in fig.7: experiments
using a small dataset (3T images), using a large dataset
(1.5T Images), and finally using the merged dataset (3T
and 1.5T images). In our ablation study, we fixed some
parameters at each level of the modules in our proposed
system based on the results obtained from each experiment.
We began with an investigation to check the impact of using
registration and augmentation techniques. We applied this
experiment only on the 1.5T images, as it has more advan-
tages than using 3T or merged data. In Table 6, we obtained
the AD vs. CN task results by showing the effect of using
augmentation and without it versus using registration. The
table shows that the best results were obtained using the pro-
posed Densenet201 model on the augmented dataset, with an
AUC score of 95.82%. The second-best performance results
were obtained for the Densenet201 with CBAM architecture,
with an AUC score of 95.37%. We can see that the registra-
tion results were lower than the augmentation results. Based
on the analysis of the remaining results, we conclude that
our proposed DenseNet201, DenseNet201 with CBAM, and
3D CNN are the best-performing models compared to the
rest of the models. Therefore, we applied ensemble learn-
ing to these three models based on an averaging technique
to our proposed algorithm and recorded the results. Each
model may perform well on certain data while performing
poorly on others. Therefore, ensemble learning was efficient.
When all of them are combined, their flaws are balanced
out.

Subsequently, we fixed our next experiments to be applied
using augmentation and only the three top-performing
models, as concluded from the previous experiment.
We tested the performance of these three models on the
merged dataset for all four classification tasks, as listed
in Tables 7-10.

To check the impact of using 1.5T, 3T, and merged images,
we assessed the three top-performing models on the three
datasets for all classification tasks and reported the ensemble
results in Table 11.

All experiments were performed using 50 epochs with
a batch size of 8, and the Adam optimizer was adopted
with a LearningRateSchecule that uses a piecewise constant
decay schedule. The learning rate was le—3 for the first
6000 steps, 1le—4 for the next 6000 steps, Se—4 for the next
6000 steps, and le—5 for any additional step. The general
network parameter configuration for each experiment was
the same. These parameters were selected based on many
experiments and our computational resources’ limitations.
The implementation of our experiments was performed using
the Keras library in Python 3.7, on K80, P100, and T4 GPU
machine.
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FIGURE 7. The experiments’ structure.

IV. DISCUSSION

In this study, we introduced an end-to-end system to rec-
ognize the three AD stages using four classification tasks.
We conducted extensive experiments to highlight the con-
tributions of this study. Based on the experimental results
presented in Section 3, we can infer that

We assessed the performance using the ADNI dataset
with different image quality types. As shown in Table 11,
the results of the AD vs. CN and AD vs. CN vs. MCI
tasks improved when using the merged data. However, 3T
images achieved higher results on the AD vs. MCI and
MCI vs. CN tasks. The classification of the MCI class
is much more complicated. Therefore, AD vs. MCI and
MCI vs. CN tasks were considered challenging to the
model. Therefore, a dataset with good image quality is
an immersive factor for model learning. We assume that
the quality factor in the 3T images helps the model learn
these demanding patterns from the classes and achieve better
results.

Another aim of this study was to set a clear, simple, and fast
preprocessing pipeline for images. In our proposed pipeline,
we focused on how to prepare the images to be fed into
the model in a few steps. As demonstrated in table 6, the
results of using only augmentation outperform the experiment
of applying the registration. We concluded that the skull
stripping and the registration are the most time-hungry steps,
as reported in table 3. Hence, we did not perform any align-
ment for the images because we noticed that the time taken
for each volume to be registered with 170 slices was approxi-
mately 11 min. This time is huge compared to the time taken
to apply the augmentation function on each volume, which is
less than 1 minute. Based on the time analysis that is reported
in table 3, the total required time for the registration-free
pipeline is 126.547 seconds, while the total required time for
the registration pipeline is 788.191 seconds. By studying the
influence of augmentation in the experiments, all experiments
performed with augmentation outperformed the experiments
that were performed without applying augmentation. Hence,
we conclude that the more data samples generated, the better
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TABLE 6. All experiments Results for AD vs CN task on 1.5T dataset.

With Augmentation Without Augmentation With Registration
Model ACC BA AUC Fl-score ACC BA AUC Fl-score ACC BA AUC Fl-score
3D CNN 88.3 | 88.178 | 94.62 | AD:87.44,CN:89.06 | 73.82 | 70.539 | 77.38 | AD:60.54,CN:80.04 | 83.5 | 8201 | 8542 | AD:77.18, CN:86.92
Modified Densenet201 90.74 | 90.734 | 95.82 | AD:90.16,CN:91.24 | 76.34 | 7346 | 81.78 | AD: 6528, CN:81.58 | 80.26 | 79.278 | 83.65 | AD:75.2,CN:83.58
Densenet201 with CBAM | 88.66 | 88.576 | 95378 | AD:87.68,CN:89.48 | 74.57 | 71.407 | 80.74 | AD:65.06,CN:78.12 | 81.32 | 80.06 | 84.799 AD: 76, CN: 84.4
Veg-19 52.42 50 50.14 AD: 0, CN: 68.75 58.025 50 52.945 AD: 0,CN:73.35 59.48 50 36.33 AD:0, CN:74.57
Vision transformer 6574 | 64.81 | 69.98 | AD:60.22,CN:67.7 | 6522 | 59.689 | 58.96 | AD:37.26,CN:75.38 | 68.06 | 72.676 | 76.794 | AD: 65.52, CN: 78.52
Proposed ensemble method | 89.23 | 89.16 | 9527 | AD:88.42,CN:89.92 | 7491 | 71.80 | 79.96 | AD:63.62,CN:79.913 | 81.69 | 80.44 | 84.62 | AD:76.12, CN:84.96
TABLE 7. All experiments Results for AD vs CN task on merged dataset. TABLE 10. All experiments Results for AD vs MCI vs CN task on merged
dataset.
With Augmentation
With Augmentation
Model ACC | BA | AUC Fl-score
Model ACC | BA Fl-score
3D CNN 88.04 | 87.97 | 94.25 | AD:87.52, CN:88.44
3D CNN 68.72 | 68.87 | AD:69.8, MCI:63.26, CN:72.92
Modified DenseNet201 90.62 | 9059 | 95.65 | AD:90.22, CN:90.96 Modified DenseNet201 | 71.32 | 71.43 | AD:74.04, MCI:65.76, CN:74.56
DenseNet201 with CBAM block | 89.74 | 89.67 | 95.39 | AD:89.09, CN:90.29 DenseNet201 with CBAM block | 70.96 | 71.11 | AD:73.7, MCL:66.24, CN:74.46
Proposed ensemble method | 89.46 | 89.41 | 95.09 | AD:88.94, CN:89.89 Proposed ensemble method | 70.33 | 70.47 | AD:72.51, MCL:65.08, CN:73.98

TABLE 8. All experiments Results for AD vs MCI task on merged dataset.

TABLE 11. Ensemble learning results of different ADNI's data type for the
four classification tasks.

With Augmentation
Model ACC | BA | AUC Fl-score AD vs CN
3D CNN 77.32 | 76.95 | 84.13 | AD:74.60 MCI:79.13 Dataset | ACC | BA | AUC Fl-score
Modified DenseNet201 80.30 | 80.25 | 87.36 | AD:79, MCI:81.36 L5T | 89.23 | 89.16 | 95.27 AD:88.42, CN: 89.92
DenseNet201 with CBAM block | 78.20 | 77.60 | 85.96 | AD:74.55, MCI:80.88 3T 7633 | 76.90 | 76.7 AD:73.51, CN:76.71
Proposed ensemble method 78.60 | 78.26 | 85.81 | AD:76.05, MCI:80.45 Merged | 89.46 | 89.41 | 95.09 AD:88.94, CN:89.89
AD vs MCI
TABLE 9. All experiments Results for MCI vs CN task on merged dataset. Dataset | ACC BA AUC Fl-score
15T | 77.76 | 77.49 | 84.73 AD:75.7, MCL:79.24
With Augmentation 3T 88.01 | 88.06 | 91.28 AD:88.48, MCI:86.02
Model ACC | BA | AUC Fl-score Merged | 78.60 | 78.26 | 85.81 AD:76.05, MCI:80.45
3D CNN 7839 | 78.52 | 85.19 | MCI:78.36, CN:78.34 MCI vs CN
Modified DenseNet201 79.62 | 79.35 | 86.92 | MCI:80.04, CN:78.80 Dataset | ACC | BA | AUC Flscore
DenseNet201 with CBAM block | 78.57 | 78.78 | 84.78 | MCI:79.13, CN:77.96 = 227 | 7265 | 80.90 MCL75.58, CN73.43
Proposed ensemble method 78.86 | 78.88 | 85.63 | MCI:79.17, CN:78.36
3T 85.93 | 83.71 | 88.42 MCI:81.5, CN:86.72
Merged | 78.86 | 78.88 | 85.63 MCI:79.17, CN:78.36
the performance of the models. Augmentation helps not only AD vs MCTvs CN
in increasing the data size but also in resolving the problem of Dataset | ACC | BA | AUC Fl-score
imbalance between classes. We can see the effect of augmen- 15T | 6941 | 6969 | - | AD:72.04, MCL64.10, CN:72.16
tation on this problem by showing the BA and F1-score metric 3T 64.57 | 64.78 - AD:64.36, MCL:68.18, CN:59.21
values at the class level. In all experiments, there was a notice- Merged | 70.33 | 70.47 - AD:72.51, MCI:65.08, CN:73.98

able change in the values with and without the augmentation
experiments. We were able to achieve superior results with a
few steps of analysis of the complex MRI images instead of
the heavy multistep pipelines that currently prevail in studies,
as shown in Table 6. It was difficult to do a time analysis
of other preprocessing tools that are frequently used in the
literature, as each study works on different machine resources
with a different setup and all these variables are hard to be
fixed.

Five different models were evaluated in our study
using different dataset types. Our proposed DenseNet201,
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DenseNet201 with channel-and spatial attention-based, and
3D CNN models master the rest of the models. The best
results were obtained from the experiment using the merged
dataset by applying augmentation with an AUC score of
95.27% for the AD versus CN task. However, vgg-19, which
is the most complex model compared to the others, as illus-
trated in Table 5, achieved worse results, as shown in Table 6.
There are different approaches to applying ensemble learn-
ing. The ensemble members, or the models that contribute
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TABLE 12. Algorithm comparisons for the four classification tasks.

to the ensemble, might be of the same or distinct type.
In our study, we used several different models. We focused
on applying both approaches to the ensemble. We applied the
ensemble to every single model using 5-fold cross-validation.
We have also combined the top three most performed
models. The proposed ensemble results for the different
data types for the four classification tasks are summarized
in Table 11.

As mentioned before, there is a clear ambiguity in the
previous work. We compared our proposed approach to the
studies that followed our selection criteria, which were men-
tioned in the introduction section. We consider the dataset
used and its size, the existence of registration or augmentation
in their work, and the evaluation metrics used. Table 12 shows
a comparison of our proposed system with previous methods
for the four classification tasks. All studies mentioned in
Table 12 follow the 3D subject-level approach with baseline
scans. In most studies, it was difficult to detect the type
of dataset used in ADNI. In Table 12, unclear means that
we cannot detect the exact type of the dataset, and N/A
means that the paper did not provide this evaluation met-
ric. The uncertainty of the predictive models is important
in the scope of our problem which is dependent on two
aspects: the data uncertainty and modeling process uncer-
tainty. Regarding the data uncertainty, labeling was con-
firmed by a clinical based diagnosis not image based. Image
data acquisition quality is also an important aspect where in
ADNI, the structural MRI scans with image data have been
released to the public after passing quality control (QC) tests
at the Mayo Clinic’s Aging and Dementia Imaging Research
Laboratory [78]. For the modeling uncertainty, we designed
our experiments to incorporate k-fold analysis and we have
added the mean =+ std to represent the central tendency of
the model performance as well as its variance as shown
in table 12.

In [25], the authors studied the performance of different
approaches for MRI images using minimal and extensive
preprocessing pipelines. Their minimal pipeline included a
linear (affine) registration step. We compared our proposed
method, which does not include the registration step in the
pipeline, with their experiment, which applies the minimal
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Classification Task Study Dataset Type No. of scans Registration Augmentation ACC (%) BA (%) AUC (%) Fl-score (%)
Korolev et al. [58] unclear 111 Yes No 79 N/A 88 N/A
Senanayake et al. [10] unclear 322 No No 76 N/A N/A N/A
Vuetal. [11] unclear 400 Yes No 86.25 N/A N/A N/A
ADvs CN
Wen et al. [25] unclear 666 Yes No 82 N/A N/A N/A
Venugopalan et al. [12] unclear 398 Yes No 86 N/A N/A 86
Qin et al. [19] unclear 212 No No 92.68 N/A N/A 91.89
Proposed ensemble approach merged 405 No Yes 89.46 = 1.03 89.41 £0.88 95.09 £0.77 AD:88.94 £ 0.78, CN:89.89 & 1.14
Senanayake et al. [10] unclear 354 No No 76 N/A N/A N/A
AD vs MCI
Vuetal. [11] unclear 408 Yes No 76.52 N/A N/A N/A
Proposed ensemble approach 3T 104 No Yes 88.01 £+ 0.59 88.06 + 1.23 91.28 +0.37 AD:88.48 + 0.07, MCI:86.02 + 1.67
Senanayake et al. [10] unclear 354 No No 75 N/A N/A N/A
MCI vs CN
Vuetal. [11] unclear 422 Yes No 85.66 N/A N/A N/A
Proposed ensemble approach 3T 119 No Yes 85.93 £+ 0.71 83.71 £ 1.81 88.42 + 1.54 MCI:81.5 + 2.73, CN:86.72 + 0.61
AD vs MCI vs CN Proposed ensemble approach merged 509 No Yes 70.33 £ 1.15 7047 £1.13 AD:72.51 4 1.92, MCL:65.08 & 1.25, CN:73.98 £ 0.75

preprocessing pipeline on baseline images of the AD vs.
CN task.

According to the comparison of our method with other
studies, our method outperforms the previous studies for dis-
tinguishing between people with AD and MCI, and MCI and
CN, with an AUC score of 91.28 % and 88.42%, respectively.
Based on our selection criteria, we did not find any study that
worked on the multiclass task. Accordingly, we were able
to determine the severity of the disease and aid in its early
detection. We achieved an ACC of 70.33% for this task. Our
work can be extended to further research using datasets other
than ADNI.

V. CONCLUSION
In this paper, we present an early diagnosis system for

Alzheimer’s disease that recognizes AD, MCI, and CN
using MRI images. To address the problem of data leak-
age, we demonstrated a system that uses only the first visit
of each patient and ignores the others. Extensive compar-
ative experiments were performed to study the effects of
using various data types from the ADNI and the size of the
dataset. We investigated different pre-processing pipelines
and evaluated them using the most effective 3D classification
models. Furthermore, the proposed method alleviates the
ambiguity of previous studies. Regarding the AD vs. MCI
and MCI vs. CN tasks, we achieved the best AUC scores
using the proposed ensemble approach. It combines the three
top-performed models with a simple and fast preprocessing
pipeline and augmentation. Our proposed approach also gives
a good classification accuracy of 70.33%, for all categories,
indicating that it is a promising approach hence, contributing
to the early prediction of the disease. In future work, we will
use the clinical data from ADNI as another modality besides
MRI to increase the performance of our results and to design
a more reliable assistant tool for physicians.
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