IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 September 2022, accepted 27 October 2022, date of publication 1 November 2022, date of current version 11 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3218779

== RESEARCH ARTICLE

Machine Learning Algorithms and Frameworks
in Ransomware Detection

DARYLE SMITH -, SAJAD KHORSANDROO ", AND KAUSHIK ROY

Department of Computer Science, North Carolina A&T State University, Greensboro, NC 27411, USA
Corresponding author: Daryle Smith (dsmith18 @aggies.ncat.edu)

ABSTRACT Ransomware has been one of the biggest cyber threats against consumers in recent years. It can
leverage various attack vectors while it also evolves in terms of finding more innovative ways to invade
different cyber security systems. There have been many efforts to detect ransomware within the workforce
and academia leveraging machine learning algorithms, which has shown promising results. Accordingly,
there is a considerably large body of literature addressing various solutions on how ransomware threats
can be detected and mitigated. Such large and rapidly growing scientific and technical materials start to
make it difficult in knowing the actual ML algorithm(s) being used. Hence, the aim of this paper is to give
insight about ransomware detection frameworks and those ML algorithms which are typically being used to
extract ever-evolving characteristics of ransomware. In addition, this study will provide the cyber security
community with a detailed analysis of those frameworks. This will be augmented with information such as
datasets being used along with the challenges that each framework may be faced with in detecting a wide
variety of ransomware accurately. To summarize, this paper delivers a comparative study which can be used
by peers as a reference for future work in ransomware detection.

INDEX TERMS Artificial Neural Network (ANN), cyber security, deep convolutional neural network
(DCNN), deep neural network (DNN), Hardware Performance Counter (HPC), Long Short Term Memory
(LSTM), machine learning (ML), ransomware, Recurrent Neural Network (RNN), Sum of Product (SOP),
Support Vector Machine (SVM), Term Frequency and Inverse Document Frequency (TF-IDF), The Onion

Routing (TOR).

I. INTRODUCTION

Ransomware has been a threat against typical end users, busi-
ness units, and the government in recent years. For example,
it has targeted medical centers, schools [1], universities [2],
and police departments [3], to name a few. It was even pre-
dicted that ransomware would account for around $20 billion
in loss alone towards organizations in 2021 [4]. Ransomware
is a form of malware designed to control access to data or a
system until a requested ransom amount from the attacker is
satisfied [5]. Detection of ransomware is tricky and a resource
hungry task because it is hidden within the application layer
payload. Mitigation can also be difficult because of the use
of encryption against the application. Though more studies
and evaluations have been involved in other areas of malware,
ransomware specifically has not been the focal point, and
the push to improve security measures and discovery have
been stagnant [5]. There are two types of ransomware: first,

The associate editor coordinating the review of this manuscript and
approving it for publication was Jun Wu.

locker-ransomware, which is designed to lock the victims’
computer, to prevent them from using it; Second, and most
common nowadays, is crypto-ransomware, which encrypts
personal files to make them inaccessible to its victims [55].
Frameworks applying static and dynamic analysis, as well as,
ML algorithms, have been aiding with ransomware detection,
and due to the nature of executing the ransomware, a high
accuracy rate would be expected. However, analysis takes
a relatively long time, leaving gaps where the malicious
payload can intrude the sandbox system without detection.
This entire process alone is overly complicated. In this paper,
we focus on those ML algorithms that are mostly used in
ransomware detection. We also provide a brief review of com-
mon ransomware frameworks using such algorithms, along
with their results.

When it comes to ransomware attacks, cybercriminals have
perfected these techniques over the years. However, both
academia and industry have been trying to address these
threats and protect victims by learning from past experi-
ences and utilizing technological advancements over time [6].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 10, 2022

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

117597

https://orcid.org/0000-0001-6382-278X
https://orcid.org/0000-0003-0649-9247
https://orcid.org/0000-0002-9026-5322

IEEE Access

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

Nonetheless, these attacks are growing daily. The underly-
ing reason is that combating ransomware is challenging [7].
Ransomware typically relies on strong encryption that
is easy to accommodate due to the vast amounts of
open-source implementations. It also makes use of most
infection techniques that are employed by modern malware
families. Ransomware benefits from the common elusive
methods utilized by modern malware and it frequently uses
application programming interfaces (APIs) to carry out mali-
cious actions that make it difficult to differentiate from benign
applications. Furthermore, it uses TOR networks (The Onion
Routing networks) to keep its communication anonymous,
and unregulated payment techniques like cryptocurrencies
to get paid without easily disclosing the identity of the
attackers [8].

The remaining structure of this paper is organized as fol-
lows and investigated perspectives can be found in Figure 1:
Section 2 reviews required research background and provides
a comprehensive review of different ML algorithms used in
ransomware detection. Section 3 will provide an analysis
of ransomware frameworks that use ML algorithms, their
challenges, evaluations, and results. This section also expands
on the importance of this research, consolidating all the men-
tioned frameworks in a table, providing a description of each
framework’s name, the algorithm(s) of choice, the year it
was created, overall results, and challenges. Section 4 will
speak about some future concerns and defense topics of
ransomware, ending with concluding the paper in section 5.

Ransomware Detection

4
I 1 1

Research
Background

I_I_I

Ransomware
Types

— Ransom32

—(RAA

—-‘coronanus
p

— WannaCry

—(Ryuk

Frameworks Future Research

—|Behavior Based Threats Security

ML Algorithms

= Technology
L

—IDecision Tree
e
Random
Forest
o

'
1
1
'
1
1
1
1
'
1

! RATAFIA
LsTM 1
e '
1
1
'
1
1
1
1
1
1
'
1
1

i

Ransomware
as a Service
D
Manpower

)
[Design |

Principles |
e

)
— Governance.

2
z
8
2

[RansomWall [quanum

LN Computing |
(Eemernoy)

|
jahomm

'
1
1
1
1
[
1
1
1
1
1
1
1
1
1
1 __[Gradient Tree| CryptoKnight
1 boosting

1

! EldeRan
1 SVM

DRTHIS

FIGURE 1. An overview of discussed ransomware.

Il. RESEARCH BACKGROUND

This section will briefly cover different types of ransomware
that are common across the cyber security community. It will
also cover typical machine learning algorithms used in ran-
somware detection.

A. Ransom32
With the emergence of social media and its popularity in
the younger generations, new ransomware families are being

117598

created by cybercriminals to target web pages with the
use of JavaScript. One such example is Ransom32, which
first appeared in late 2015. Until its discovery, no other
ransomware attack was used with that programming lan-
guage [9]. This type of ransomware-as-a-service is unique
because, being written in JavaScript, it uses a web browser to
initiate its attack. The impact of this threat is far superior in
nature because it can be used theoretically on any operating
system where a web browser exists. This grants Ransom32
so-called “write-once-infect-all” capabilities [9]. Nonethe-
less, Ransom32 has only been detected on a Windows-based
platform thus far. It can be found on most underground TOR
sites and can be downloaded by the affiliated user. To down-
load the executable, one must have a bitcoin address, as this
is the way payments of ransom are made.

The developers of the Ransom32 software take a 25% cut
of any ransom made, and the rest goes to the user of the
affiliated program [9]. When the Ransom32 executable runs,
it extracts several files. During this process, a shortcut is
created in the start menu, and the ransomware will start at
login which guarantees the malware will be executed every
time the system is started. The shortcut points to a chrome.exe
executable file that is typically an NW.js package. This pack-
age contains JavaScript code used for encryption using AES
and extracts to folders such as %AppData% and % Temp%.
Furthermore, this is the piece that contributes to performing
the harmful events towards the compromised system [10].
With NW.js being a legitimate framework and application,
antivirus coverage in this area is still very weak in nature.
Any black hat or white hat developer can use this executable
to create and distribute native apps that run just like nor-
mal executables [11]. Furthermore, when looking closer into
Ransom32, it runs under the context of the user without hav-
ing any administrative rights or permissions. Figure 2 gives a
general idea of how a member can join the affiliate network,
then ultimately be granted access to download the malicious
code for use. The member would also be able to see statistics
related to the software such as the number of payments that

Membership Attack

T T

member joins through

TOR network victim logs into email

Affiliate Console N
member adds bitcoin address to victim opens email then downloads
activate the portal and open attachment
ol
Ransom32 Client 2 | S

Statistics Download

chrome.exe launches
NW.js along with other files
that start encryption

!

Ransom Note
FIGURE 2. Ransom32 membership and attack process flows.

VOLUME 10, 2022

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

IEEE Access

have been made and the number of installations that have
been completed. The figure also shows the process of how
a Ransom32 attack can occur.

function (NOWuidbsIBSbdbiubix() {
var d_pn = "dosbiuiyvuvWIYVUWGTVICydbsbobsiodbwyev";
var flo = new ActiveXObject (ADODB.Stream");
var runer = WScript.CreateObject("WScript.Shell");
var wher = runer.SpecialFolders("MyDocuments");

wher = wher + "\\" + "st.exe";

flo.CharSet = "437";

flo.Open();

var pony = d_pn.replace(/NMSIOP/g, "A");

var pony_ar = CryptoJS.enc.Base64.parse(pony);
var pony_dec = pony_ar.toString(CryptoJS.enc.Utf8);
flo.Position = 0;

flo.SetEOS;

flo.WriteText(pony_dec);

flo.SaveToFile(wher,2);

flo.Close;

wher ="\"" + wher +"\"";

runer.Run(wher);

FIGURE 3. A deobfuscated function installing Pony.

B. RAA

The second example of JavaScript ransomware is RAA,
which spreads via email attachments pretending to be legit-
imate document files. These files typically have a valid file
format with a JavaScript extension, making the victim believe
its authenticity. Once the file is opened, it works just as
any other ransomware attack. The victim host’s files will
be encrypted, and a ransom will be demanded. RAA also
infects the victim’s computer by installing Pony, a well-
known password-stealing malware embedded in a JavaScript
file. A sample code of how this happens can be found in
Figure 3. This malware can collect browser passwords and
other critical information on infected systems. Two security
researchers initially discovered RAA and according to them,
itencrypts files using code from an open-source library called
Crypto]JS [12]. This code handles cipher algorithms such
as AES, DES, to name a few [12]. RAA targets images,
Ms-Word, Ms-Excel, Photoshop, .zip, .rar, sparing pro-
gram files, Windows files, AppData, and Microsoft files by
appending a ““.locked” to the end of the filenames [12]. Upon
further analysis, Trend Micro™ discovered that the RAA
ransomware is written in Jscript and not JavaScript [13].
Jscript is designed for Windows® systems and executed
by the Windows Scripting Host Engine through Microsoft
Internet Explorer (aka IE), but not via the Microsoft Edge
browser. Jscript carries some semblances with JavaScript
because they are both derived from ECMAScript.! Jscript
is the implementation of ECMAScript while JavaScript is
the Mozilla implementation of ECMAScript [53]. Jscript can
access objects exposed by IE and some systems objects such

1ECMAS(:ript is a Javascript standard that helps ensure the interoperabil-
ity of web pages across different browsers.

VOLUME 10, 2022

as the Wscript2 [54]. It is believed that the attackers behind
the RAA ransomware are using the Jscript scripting language
to make detection more difficult and to make complications
easier. Most malware attacks are written in compiled pro-
gramming languages with ransomware often disguised as
executables. Nonetheless, using languages which are not typ-
ically used to deliver malware, such as scripting languages,
could be less prone to detection [13].

C. CoronaVirus

Ransomware affiliates switched to COVID-19-themed social
engineering tactics during the 2020 pandemic to carry out
threats [14]. Mobile applications that looked legitimate would
download various forms of ransomware using spam attach-
ments that claim to provide health and safety information
about COVID-19 [15]. As the global pandemic increased the
need for health centers, the exposure to cyber-attacks also
boosted. This situation increased the number of ransomware
attacks within the health sectors, and Corona ransomware was
born [16]. This was a new strain that focused specifically on
hospitals and the encryption of patients’ health records. After
the host became infected, it displayed a COVID-19-themed
ransom message and demanded payment in Bitcoin [14].

Phishing Website ‘

url
Downloader
WSHSetup.exe
kpotStealer
— file1.exe
L 5 oronavirus

Ransom
le2.exe

| 3 Hard Disk Drives (1)
CoronaVirus (C:)
=

——
27.5 GB free of 59.9 GB

FIGURE 4. CoronaVirus delivery flow.

The Covid-19 pandemic also opened the doors for many
ransomware attacks against employees. Due to the threat of
catching the virus, many companies began to offer employ-
ees the opportunity to work remotely [43]. This increases
exposure to cyber-risks because individuals connect through
less reliable and unsecured Internet connections. Employ-
ees that accessed corporate networks using personal devices
provided a way to get into the hands of unauthorized
individuals through unsanctioned channels [43]. Attackers
also focused heavily on sophisticated phishing techniques.
According to [44], an APWG report showed 267,372 phish-
ing campaigns were reported in the first quarter of 2020,
increasing (19.06%) over 2019 during the same period.
In Figure 4 below, the CoronaVirus delivery flow begins
with a phishing website, locking the file system, then fully
compromising the hard drive until the ransom has been paid.

2Wscript are generic scripts specifically executed in Windows based
platforms.

117599

IEEE Access

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

D. WannCry

WannaCry, introduced itself and targeted computers running
the Windows operating system [45]. It encrypts a victim’s
data using Microsoft’s flawed protocol EternalBlue, then
demands payment in Bitcoin once the infection has taken
place [46]. This vulnerability allows the adversaries to exe-
cute a remote code on the infected machines by sending
specially crafted messages to an SMB v1 server, connecting
to TCP ports of unpatched Windows systems [47]. WannaCry
also works as a network worm because it includes a transport
mechanism to automatically spread itself, Figure 5 shows
this visual. This feature makes the attacks more effective and
requires defense mechanisms that can react quickly and in
real time. Furthermore, WannaCry has an encryption com-
ponent that is based on public-key cryptography. The virus
impacted more than 200,000 computers in over 150 coun-
tries [48]; Ukraine, India, Russia, and Taiwan were the four
most affected countries [49]. Vladamir Putin, president of
Russia, blamed the United States for the attack due to their
involvement with developing EternalBlue, but it was later
determined a group of North Korean hackers were responsi-
ble [50]. Microsoft began providing patches for older system
versions on the day of the outbreak, but the count of attacked
systems continued to rise as new versions and variants of
the ransomware were constantly released [51]. The spread of
the virus was slowed by the work of Marcus Hutchins, who
discovered a “‘kill switch” inside the virus [52], [60].

File delivered via Drop ransomware file Drop component files
exploit running as a which performs for creating ransom
service encryption note

Encrypt local and

Arrives via exploit shared files

A — N
[—] mssecsve.exe @WanaDecryptor@.exe
H —>
v — -
tasksche.exe) WNCRY
(encryptor) ij(‘ ——

MS17-010

queries domain
via Isass.exe

used as a kil
A switch

wnry config file

spread to other devices

FIGURE 5. WannaCry process flow as a network worm.

E. RYUK

In mid to late 2018, a new type of ransomware started
targeting specific victims and carried out its attacks against
enterprises [56]. Ryuk mostly infected its targets via other
malware [57] and attacks would disable the Windows system
restore option, making it impossible to restore encrypted files
without a backup [58]. During infection, Ryuk first shuts
down 180 services and 40 processes [59]. These services
and processes could prevent Ryuk from doing its own work
and are needed to facilitate the attack. At that moment,
the encryption logic can begin. Ryuk encrypts files such
as photos, videos, databases, and documents — all the data
you care about — using AES-256 encryption. The symmet-
ric encryption keys are then encrypted using asymmetric
RSA-4096. Ryuk can encrypt remotely and perform

117600

Wake-On-Lan, waking computers for encryption [59]. These
abilities contribute to the effectiveness and reach of its
encryption and the damage it can cause. Ryuk accounts for
three of the top 10 largest ransom demands of the year in
the CrowdStrike 2020 Global Threat Report, with amounts of
USD $5.3 million, $9.9 million, and $12.5 million [59]. The
Russian hacker group, WIZARD SPIDER, is said to be the
creator of Ryuk, and in 2020 during the coronavirus pandemic
an attack was targeted against Universal Health Services [59].
The fortune 500 company has health care facilities in both
the US and UK, with exposure stemming from a phishing
email [61]. Figure 6 demonstrates how Ryuk can attack an
Active Directory that has been misconfigured.

T -

‘The Cyber Threat Ryuk encrypts all

deleting backups network and
and shadow. creates a ransom

ded deploys Ryuk copies. note

onto the system i

FIGURE 6. Common Ryuk attack with regards to a misconfigured active
directory.

F. MACHINE LEARNING WITH RANSOMWARE

Machine Learning (ML) has become a mature technology
that is being applied to a wide range of business problems
such as web search, online advertising, product recommen-
dations, object recognition, and so on. As a result, it has
become imperative for researchers and practitioners to have
a fundamental understanding of ML concepts and practical
knowledge of end-to-end modeling [17]. Machine Learning
contains the use of statistical methods for the detection of
patterns within data and those patterns are constructed against
mathematical models [17]. These models are then used to
make predictions against future data. Machine Learning is
being used extensively by companies across a broad spectrum
of applications and there are many other areas such as game
playing, unmanned cars, and automated question answering
where ML is poised to drastically change the way technology
affects our lives.

There have been multiple attempts to detect ransomware,
and a plethora of researchers have tested against sev-
eral frameworks. Various surveys that have condensed ran-
somware characteristics and attacks to provide a full spectrum
of what ransomware really is, how it works, and how to
limit its threat. However, a study against Machine Learning
algorithms specifically used to detect ransomware and the
classification of those frameworks have not been addressed
directly. Due to the advancement of social media and enriched
websites involving user input and interaction, it is important
to understand what algorithms are providing the best results
in detecting ransomware so that the research community can
improve the areas that are not working. Furthermore, as the
threat of ransomware continues to grow, having a direct go-
to-guide of algorithms that have proven to be effective will

VOLUME 10, 2022

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

IEEE Access

help the research community spend less time analyzing irrel-
evant information. To fill this research gap, a broad study
of ransomware detection frameworks and tools that utilize
ML algorithms are reviewed. This research shows how those
frameworks are used in relation to ransomware detection, the
ML algorithm of choice, and the results of accuracy to predict
and classify ransomware.

The following sections will discuss the typical algorithms
that are used in detecting ransomware. These algorithms
are performed under multiple trials of data sets and are
often combined with other algorithms using cross validation
analysis.

1) DECISION TREE

Decision Tree algorithm belongs to the family of supervised
learning algorithms where learning and prediction steps are
performed. The model in the learning step is developed based
on given training data, and the model in the prediction step
model is used to guess the response for given data [18].
Unlike other supervised learning algorithms, the decision
tree algorithm can be used for solving both regression and
classification problems. When using a Decision Tree, the
goal is to build a training model that can predict the class
or value of the target variable by learning simple decision
rules inferred from prior data. For predicting a class label
for a record, one would start from the root of the tree. The
values are then compared with the root attribute along with
the record’s attribute. The branch which links to that value
is followed, based on the comparison, and jumps to the next
node [18]. The name itself suggests that it uses a flowchart
like a tree structure to show the predictions that result from a
series of feature-based splits. It starts with a root node and
ends with a decision made by leaves. There are two types
of Decision Trees based on the type of target variable being
used: Categorical Variable Decision Tree and Continuous
Variable Decision Tree. A categorical variable decision tree
is illustrated by Figure 7.

Decision Trees follow the Sum of Product (SOP) represen-
tation. Every branch from the root of the tree to a leaf node
having the same class is the conjunction (product) of values,
and different branches ending in that class form a disjunction
(sum). The main purpose of a Decision Tree is to detect which
attributes are needed to consider as the root node. The tree’s
accuracy is dependent upon its decisions on how it splits its
nodes, and they use multiple algorithms to decide to split a
node into two or more sub-nodes. The creation of sub-nodes
increases the homogeneity of resultant sub-nodes, meaning
the purity of the node increases with respect to the target
variable. The decision tree splits the nodes on all available
variables and then selects the split which results in the most
homogeneous sub-nodes [18]. One problem that must be
accounted for is overfitting, which happens when a tree is
overly complex and does not generalize against the trained
data. To correct this problem, a data compression technique
called pruning is performed to reduce the size of the tree by
removing sections that provide limited value [62].

VOLUME 10, 2022

Ransomware Sample Data

/ N\

Feature A Feature B

7N 7\

Sub Feature 2A Sub Feature 28

2%

Sub Feature 28b

Sub Feature 1A

6 Sub Feature 2Aa Sub Feature 2Ab

FIGURE 7. A breakdown of decision tree using ransomware sample data.

Sub Feature 18

Sub Feature 2Ba

2) RANDOM FOREST

Random Forest is a supervised learning algorithm that builds
a forest of decision trees, usually trained with the bagging
method. This method gives awareness that a mixture of
learning models increases the overall result. Random Forest
can be used for both classification and regression problems
and typically has the same hyperparameters of a Decision
Tree [19]. While growing trees, this algorithm adds additional
randomness to the model in hopes of producing an even better
model. Instead of searching for the most important feature
while splitting a node, it searches for the best feature among
a random subset of features [63]. Trees can become more
random by using random thresholds for each feature rather
than searching for the best possible thresholds. Random forest
is a great algorithm to train early in the model development
process, to see how it performs. Its ease makes building a
good random forest quite simple. The algorithm is also a
great choice for developing quick models and showing good
metrics of the importance it assigns to features. The perfor-
mance of Random Forest is quite consistent and is difficult for
other algorithms to achieve [19]. Random Forest algorithms
are not ideal in the extrapolation of data, nor does it produce
satisfactory results with sparse data. They typically will spend
more time when compared to a decision tree and require
more resources for computation [20]. Figure 8 provides an
example of how ransomware data may be used with the
random forest tree.

Ransomware Sample Data

SubFeawre SubFeature SubFeatre SubFeature SubFeatre SubFeature SibFeatre SubFeature

® 6 @6 ® 6 o

Result —) Average €= Result

Decision Tree Decision Tree
1 2

Final Result

FIGURE 8. Random Forest tree operations.

3) LONG SHORT TERM MEMORY
Long Short Term Memory is a type of recurrent neural
network (RNN) capable of learning order dependence in

117601

IEEE Access

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

sequence prediction problems. They use special units and
standard units, which include a memory cell that can main-
tain information in memory for long periods of time. The
core concept of an LSTM is the cell state and three gate
phases [21]. The cell state acts as a gateway that transmits
relative information all the way down the sequence chain.
It can be thought of as the memory of the network. The cell
state carries information throughout the sequence processing,
allowing data from an earlier time step to be present later. This
process helps reduce the effects of short-term memory. As the
cell state goes on its journey, information is either added or
removed to the cell state via gates. These gates are different
neural networks that decide which information is allowed on
the cell state [21].

The first gate, the forget gate, decides whether the data
should be kept from the previous timestamp or forgotten.
Information from the previous hidden state and information
from the current input is passed through a sigmoid func-
tion where values come out between O and 1. The closer to
0 means to forget the data, whereas the closer to 1 means
to keep it [22]. The second part is called the input gate, and
it is used to quantify the importance of the new information
carried by the input. It passes the previous hidden state and
current input into a sigmoid function that decides which
values will be updated. It also transfers the hidden state and
current input into the tanh function which helps regulate the
network. The sigmoid output will decide which information
is important to keep from the tanh output and it uses the
same 0 and 1 approach as the forget gate. The output gate
passes the updated information from the current timestamp
to the next timestamp, deciding what the next hidden state
should be. Because LSTM can give more accurate predictions
from recent information, it solves the problem of long-term
dependencies by trying to predict words in long term memory.
LSTM can maintain information for a long period of time and
is used for processing, predicting, and classifying time-series
data [21], [22], [64].

4) NAIVE BAYES

Naive Bayes is a classification algorithm based on the Bayes
Theorem for calculating probabilities and conditional prob-
abilities [23]. It is not a single algorithm but a family of
algorithms that share a common principle. This algorithm
is extremely fast and is mainly used with large datasets.
It assumes that the occurrence of a particular feature does not
affect the other and is known to outperform some of the better
classification methods [24]. A Naive Bayes model consists of
a large block that includes an input field name, an input field
value, and a target field value. The model is used to record
how often a target field value appears together with a value of
an input field. The value of the probability-threshold param-
eter is used if one of these fields of the block is empty, which
occurs when a training-data record with the combination of
an input field value and target value does not exist. The NB
algorithm using ransomware data is shown in Figure 9.

117602

1. Load ransomware data
def sampleset(Rdata)
Input: Ransomware Sample Data

Output: Farray //features

Larray //labels | classes

2. Split data into training and test sets
def tts(data, Larray, size, state)
Input: size = percentage of test data used
state = randomness value
data, Labels_Array

Output: A_train

A_test
B_train
B_test

3. Create the NB classifier
nb = nbC()

4. Train the model
nb.fit(A_train, B_train)

5. Predict the response for test dataset
B_pred = predict(A_test)

FIGURE 9. Code snippet of a NB algorithm using ransomware data.

5) GRADIENT TREE BOOSTING

Gradient Tree boosting is a machine learning algorithm
used for building predictive models regarding its prediction
speed and accuracy, especially with large and complex data.
It works with both classification and regression problems that
utilize weaker learners to generate a more accurate predictor.
It relies on the intuition that the best possible next model,
when combined with previous models, minimizes the overall
prediction error. A gradient-boosted trees model is made in
a stage-wise fashion as in other boosting methods, but it
generalizes the other methods by allowing optimization of
a random differentiable loss function [25]. It is composed
of three elements: a loss function to be optimized, a weak
learner to make predictions, and an additive model to add
weak learners to minimize the loss function.

Overfitting is a problem in Fitting the training set too
closely can lead to degradation of the model’s generalization
ability. Some regularization techniques reduce this overfit-
ting effect by constraining the fitting procedure. One way to
achieve this goal is by using the number of gradient boosting
iterations for its regularization parameter [25]. Increasing this
reduces the error within the training set. However, it must not
be set too high. Monitoring the prediction error on a sepa-
rate validation data set can also aid in selecting the correct
number of iterations. Several other regularization techniques
can be used such as the depth of trees. A higher value in this
regularization parameter typically shows that the model will
overfit the training data.

6) SUPPORT VECTOR MACHINE

Support Vector Machine is an algorithm used for both regres-
sion and classification tasks but is primarily used in classifi-
cation objectives. It does not require high computation power
but still produces significant accuracy. The support vector
machine algorithm finds a hyperplane in an N-dimensional
space that classifies the data points. The classification is

VOLUME 10, 2022

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

IEEE Access

performed by finding the hyper-plane that differentiates the
two classes very well [26]. They are effective in high dimen-
sional spaces and can still be useful in cases where the
number of dimensions is greater than the number of sam-
ples. SVMs use support vectors, a subset of training points
in the decision function, providing memory efficiency. The
versatility of the algorithm is also a key point as it can use
different kernel functions against the decision function or
even use custom kernels. However, overfitting will occur if
the number of features is much greater than the number of
samples. SVMs do not provide probability metrics and must
use five-fold cross validation. The SVM algorithm has been
applied in biological science for use in the categorization of
protein; it has also been widely used with the classification
of images, producing higher accuracy results than traditional
query refinement schemes [26]. In Figure 10, pseudo code of
the SVM algorithm using ransomware sample data is shown.

1. Load ransomware data
def dataset(ransomwareData)
Input: Ransomware Sample Data
Output: Features_array, Labels_Array

2. Split data into training and test sets
def train test split(data, Labels_Array, size, state)
Input: size = percentage of test data used, state = randomness value
data, Labels_Array
Output: X_train, X_test, y_train, y_test

3. Create the SVM classifier
svm = svm(()

4. Train the model
svm.fit(X_train, y_train)

5. Predict the response for test dataset
y_pred = predict(X_test)

6. Evaluate accuracy using actual and predicted values
accuracy score(y_test, y_pred))

FIGURE 10. Code snippet of a SVM algorithm using ransomware data.

Ill. RANSOMWARE DETECTION FRAMEWORKS

This section investigates several ML-based frameworks
which are widely used in detecting ransomware. Some of
the reviewed frameworks utilize one ML algorithm while the
others might use multiple. These frameworks yield promising
results in detection of different types of ransomware and
have potential to be used in future research works by the
cyber security community. In what follows, eight state-of-
the-art frameworks including Behavior Based [27], DNAact-
Ran [28], RANDS [30], RATAFIA [32], RansomWall [33],
CryptoKnight [34], EldeRan [35], and DRTHIS [40] will be
studied and compared.

A. BEHAVIOR BASED

A proposed behavior-based framework was built for defin-
ing dynamically monitored valuable features of high sur-
vivable ransomware (HSR) [27]. The analysis of HSR was
conducted within an isolated sandbox environment, through
the Term Frequency-Inverse document frequency (TF-IDF).

VOLUME 10, 2022

By doing so, the most relevant features that provided optimal
performance in detecting new ransomware were extracted.
Detection models were also developed for HSR, and they
utilized supervised machine learning algorithms on many
prominent features. It was proven that this framework’s detec-
tion method achieved high accuracy and less false positive
rate for detecting HSR in the early phases of ransomware.
These methods have also been validated with an extensive
experimental evaluation to show their effectiveness. Lastly,
the capabilities of the proposed method were compared to
the results of previous work, other classifiers, and VirusTo-
tal. The framework itself is broken into 3 phases. The first
phase includes gathering ransomware and benign data from
a variety of sources. Once gathered, the data is checked and
labeled under a particular malware family using VirusTotal
software. The second phase analyzes the samples using a
Cuckoo sandbox and generates a report in JSON format of its
findings. Within the sandbox, log files are submitted through
pre-processing tasks, and when finished, the relevant features
are extracted to get valuable feature sets. Those features
are applied against the term frequency and inverse docu-
ment frequency (TF-IDF) algorithm for feature selection. The
last phase uses supervised machine learning algorithms Sup-
port vector machine (SVM), and Artificial Neural Network
(ANN) to derive statistics of the data.

Three different experimental evaluations were conducted
to measure the performance of the framework. The first
evaluation used the train-test splitting method which divides
the whole data set into training and testing data. The dataset
was split randomly with a uniform distribution of 80:20
ratio as training and testing, respectively. The experimental
results of ANN showed an accuracy of 0.958 with 0.101 false
positive rates, while SVM presented a higher false positive
of 0.109 compared to ANN and an accuracy of 0.932. In the
train-test splitting method, the data can become obscure and
irrelevant, which is why the second experimental evaluation
is used. The 10-Fold cross-validation technique can prevent
the overfitting problem and estimate the effectiveness of the
detection models. The best accuracy obtained by SVM is
by presenting 0.982 of area under the curve (AUC) with
less than 0.035 of false positive rate [27]. It is important
to examine the ability of the classifiers to distinguish the
ransomware from benign samples. Therefore, precision and
recall are applied to both datasets and presents 0.945 and
0.942 respectively. SVM also showed better accuracy of
0.952 when compared to MLP that showed 0.945 of detection
rate and 0.036 of false positive rates.

The last evaluation used selected subset features which
eliminate the redundant and irrelevant features and reduces
the dimensionality of the dataset. The features were divided
into seven subset features (top20, top30, top40, top50, top60,
top70, top80) by considering their importance and ranking
based on phase 2 processing. The results of the experi-
ment demonstrated that ANN showed the highest accuracy
of 98.79% when the top30 of the feature set was used
as training and testing [27]. However, this classification

117603

IEEE Access

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

accuracy had dramatically decreased to 95.63% when the
top20 of the feature set was used. The best model of SVM
presented an accuracy of 97.6% when top40 of the feature
was applied while training the model [27]. ANN and SVM
both had low classification accuracy when the top 80 of
the feature set was used to train and test, which indicates
that more features do not improve the performance of the
classifiers.

B. DNAACT-RAN

DNAact-Ran is a Machine Learning-based digital DNA
sequencing engine used in classifying and detecting ran-
somware. It uses an active ML approach for sequencing its
digital DNA and detects ransomware in three key process
steps: Feature Selection, DNA Sequence Generation and
Ransomware Detection. Feature selection removes irrelevant
features and reduces storage and computational cost. It is
considered the most important process of machine learning.
Multi-Objective Grey Wolf Optimization (MOGWO) and
Binary Cuckoo Search (BCS) algorithms are used to select the
relevant features from the collected dataset. MOGWO uses
a grid and archive approach with selecting the most dom-
inant features, while BCS uses a heuristic search approach
to determine its features [28]. Figure 11 gives the complete
architecture of DNAact-Ran.

|| Data Preprocessing > Feature Selection

Ransomware
Dataset

L Design Criteria < :

l

[Training Data

]

Active Leamning
Classifier

)

Trained Data

Test Dataset

Generate DNA
Sequence

l

K-mer Fi

Ransomware

In the digital DNA sequence generation step, a new dataset
is used to generate the digital DNA sequence after the feature
selection process is completed. The design constraint of dig-
ital DNA is then computed, and the k-mer frequency vector
is generated for the DNA sequence. A new dataset is then
generated for the ransomware detection training phase based
on those calculations. A synthetic DNA representation of a
digital artifact is used because it does not represent the content
of biological DNA. DNA is represented computationally by
character strings containing only the characters A, G, Cand T,
therefore, Pedersen et al. [29] created a reversible translation
of the byte sequence of a digital artifact which mapped binary
pairs into those string characters [28]. The DNA sequence
design is used as an approach of control and DNAact-Ran

FIGURE 11. DNAact-Ran architecture.

117604

uses 3 constraints (Tm, GC Content, and AT_GC Ratio) to
avoid inadequate data.

The last step used by DNAact-Ran is the actual ran-
somware detection step. The dataset is trained using an active
learning classifier. Once this process is done, digital DNA
sequences are randomly generated from the test data where
it is classified as good-ware or ransomware. Finally, the
ransomware family is detected using the traditional ML clas-
sification algorithms. Machine Learning applications strug-
gle with the amount of time and effort required to interpret
large amounts of data sets that are required for supervised
learning in the process of training a high-accuracy classifier.
To solve this issue, active learning has been proposed and
designed to decrease the cost by finding data points to be
used by the learning algorithm. The active learning algorithm
uses three parameters for determining accuracy: Smoothing
Parameter (SP), Regularization Parameter (RP), and Learn-
ing Rate (LR). The data was tested against traditional ML
algorithms and the experiment showed a 78.5% detection
accuracy for Naive Bayes, 75.8% for Decision Stump, 83.2%
for AdaBoost, and 87.9% for the proposed solution [28]. This
experiment partially proves that active learning classifiers are
better at detecting ransomware more efficiently.

C. RANDS

RANDS is a windows-based anti-ransomware tool that
implements a multi-tier framework with ransomware traits
archive and machine learning algorithms. The architecture
of RAND:s is classified in three tiers: Analysis, Learning,
and Detection. The first tier checks the traits of different
ransomware families in a recursive test routine in a virtual
test environment. The virtual environment is utilized to avoid
the severe damage and malfunctions of ransomware on the
platform system. The second tier studies the combined traits
from the archive using a hybrid machine learning algorithm
to generate the classification model. The generated classifi-
cation models will be used to detect any suspicious activity
against the actions or traits in the last tier too. The last
tier applies the classification model to detect any unknown
ransomware variant via a computer scan [30] which alerts
the system’s user that a ransomware is going to possibly
infect the system. RANDS machine learning algorithm uses
a hybrid approach. It uses both Decision Tree and Naive
Bayes decision functions due to their pruning margins for
more accurate categorization. The Decision Tree algorithm
generates its predictions of the traits within a tree structure
of nodes, leaves, and branches throughout the pruning and
tree building process [31]. The Naive Bayes algorithm is used
for predicting the actual category of the overlooked traits in
the vague nodes of Decision Tree. The Bayes’ probabilistic
theorem is used when a trait that goes unclassified cannot be
classified.

To test and demonstrate whether RANDS could adapt
the zero-day ransomware variants and their corresponding
families, performance metrics including Detection Accuracy
Rate, Mistake Rate, Miss Rate, and Elapsed Time along

VOLUME 10, 2022

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

IEEE Access

with plots of ROC curve have been utilized through exper-
iments [31]. The ten-fold cross evaluation routine inferred
that RANDS could manifest its adaptive and effective clas-
sification against zero-day ransomware. That was accred-
ited by the hybrid machine learning approach that RANDS
utilized. RANDS implemented ransomware traits to distin-
guish different ransomware families and identify their related
variants. However, the performance trend line reported at
certain days showed erratic behavior caused by the qualities
of ransomware families and their corresponding variants that
might be varied. Results showed a 96.27% average accuracy
rate and 1.32% average mistake rate throughout the real-time
assessment [31].

D. RATAFIA

An unsupervised detection framework RATAFIA uses a DNN
architecture and Fast Fourier Transformation to develop a
highly accurate, fast, and reliable solution to ransomware
detection using minimal trace-points. The advantage of using
an unsupervised technique is that the learning process does
not require a labeled dataset, which is often difficult to obtain
considering the occurrences of several newer unknown vari-
eties of ransomware. RATAFIA specifically was created to
learn the behavior of a system under observation with the
statistics obtained from a cluster of Hardware Performance
Counter (HPC) events [32]. The first phase of RATAFIA
tests its robustness and uses an analysis in the presence of
expensive SPEC benchmarks. It is observed that the execu-
tion behaviors of HPC events are significantly different from
normal observations, and the sequences of time-series data
in which RATAFIA processes are treated as being malicious
due to reaching computational thresholds. However, these
are simply the SPEC programs creating false positive errors.
The second phase uses FFT to try to eliminate the false
positive by changing the HPC values from time domain to
frequency domain. This is done to understand the repetitive
pattern within the values because ransomware executable
runs encryption repeatedly on multiple files. The entire detec-
tion procedure does not need any template of the malicious
process from beforehand. Instead, it thrives on an anomaly
detection procedure to detect infectious ransomware in as
less as 5 seconds with almost zero false positives, using
frequency analysis [32]. The proposed detection method
works on any platform having HPCs. However, the tunable
hyper-parameters will be different for different systems. The
determination of values for these parameters is a one-time
process, which will be accomplished during the training of
autoencoders. RATAFIA uses a template of the normal sys-
tem behavior in terms of HPC values to train the autoen-
coders. The advantage of using HPCs is that they are difficult
to tamper with. While one may increase some HPC values
by a program, it is difficult to reduce the HPC values without
explicitly targeting the HPC registers.

E. RANSOMWALL
RansomWall protects against cryptographic ransomware
using a layered defense system. The features that are

VOLUME 10, 2022

generated during the sample’s execution aid in organizing
the layers in a computational order. It is implemented solely
for Windows operating system. RansomWall’s architecture
models that of a hybrid approach utilizing a joint static and
dynamic analysis to compute values of the selected feature
set [33]. The Machine Learning Engine is used to develop
a generalized model which is effective against zero-day ran-
somware attacks. It takes feature values collected by static,
dynamic and trap layers as input and classifies the executable
as ransomware or benign. The engine is trained offline using
supervised algorithms and the training data consists of fea-
ture values with ransomware and benign labels. The Trained
Machine Learning Engine then uses the learned model to
classify executables in real-time based on input feature val-
ues. The following supervised machine learning algorithms
are evaluated based on performance: Logistic Regression,
SVM, ANN, Random Forests, and Gradient Tree Boosting.

The ransomware sample set has a 12-Fold Cross Validation
performed on it. In each test run, Machine Learning Layer
is trained on all samples from 11 out of 12 Cryptographic
ransomware families and 221 out of 442 samples from benign
software [33]. The learned model is tested against remaining
benign samples on the evaluation setup and all samples from
the last ransomware family. Since most of the successful
ransomware attacks are zero-day intrusions, this process of
evaluation is selected, with samples from an entirely new
ransomware family or its upgraded variant. During the evalu-
ation, the functionality of the File Backup Layer is verified to
check if the files are correctly backed up for suspicious pro-
cesses after receiving classification output from the Machine
Learning Layer.

The metrics show the best results with Gradient Tree
Boosting Algorithm. RansomWall attains a detection rate
of 98.25% with near-zero false positives with this algorithm.
The Gradient Tree Boosting algorithm provides effective
handling of heterogeneous data, high predictive power and
robustness to outliers resulting in high performance [GG].
Analysis of false negatives show that two ransomware sam-
ples abruptly terminated after encrypting only a few files.
As the resulting file system activity is reduced, samples do not
get detected. Limited file system activity is leading to false
negatives due to the low number of such files on the user’s
system. The rest of the false negatives come from decision
boundary errors.

F. CRYPTOKNIGHT

CryptoKnight was built to classify cryptographic primitives
in compiled binary executables using the Dynamic Convo-
lutional Neural Network (DCNN) algorithm. It introduces
a learning system that can easily integrate new samples
through the scalable synthesis of customizable cryptographic
algorithms. CryptoKnight’s architecture is intended to limit
human interaction, allowing the structure of an effective
model at run-time [34]. The entire system is comprised of
three stages:

117605

IEEE Access

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

1. Procedural generation guides the synthesis of unique
cryptographic binaries with variable obfuscation and
alternate compilation.

2. Assumptions of cryptographic code aid the discrim-
ination of diagnostics from the dynamic analysis of
synthetic or reference binaries to build an ‘image’ of
execution.

3. A DCNN fits variable-length matrices for ease of train-
ing and the immediate classification of new samples.

CryptoKnight was tested on many applications using non-
library linked functionality and analysis showed that it is a
viable solution that can quickly learn from new cryptographic
execution patterns to classify unknown software [34]. Cryp-
toKnight also demonstrated that it could classify results faster
compared to that of previous methodologies and is consider-
ably re-usable. At a 96 % accuracy rate, CryptoKnight con-
firmed that cryptographic primitive classification in compiled
binary executables could be successfully achieved using a
DCNN algorithm.

G. ELDERAN

In 2016, EldeRan was developed to identify the most sig-
nificant ransomware features and use them to detect ran-
somware [35]. The framework is based on the observation of
actions or events that typically occur within ransomware and
goodware samples in its early stages. Ransomware and good-
ware sample datasets are dynamically analyzed in a sandbox
environment first. From the two datasets, EldeRan retrieves
and analyses the following classes of features: Windows API
calls, Registry Key Operations, File System Operations, the
set of file operations performed per File Extension, Directory
Operations, Dropped Files, and Strings. Other than Strings,
the rest of the features are collected while dynamically
analyzing the ransomware. Once the monitoring phase has
completed, the Mutual Information criterion [37], a feature
selection algorithm is used to choose the ones that are most
relevant. The feature selection process is not always used in
machine learning algorithms, but for EldeRan, it helps with
performance and provides more competence in the algorithm
[38]. Finally, the matrices containing these features are used
in a Regularized Logistic Regression classifier. This classifier
will return ransomware or goodware once detected and is
also run online on a PC to classify new samples, which can
come from infected websites or multiple infected vectors.
The training set is analyzed offline and completed within
minutes in the sandbox environment while new applications
are classified at run-time through an online classifier, which
is also fast [36].

EldeRan was conducted in three different experiments.
The first experiment tested how performant EldeRan was
compared to two other classifiers, SVM (Support Vector
Machine) and NB (Naive Bayes) [36]. It was determined
that both SVM and EldeRan outperformed NB, and EldeRan
slightly edged SVM. These metrics were evaluated against
the AUC (Area Under the Curve) using between 50 and
1500 features, all supported by MI criterion. A structure of

117606

100 random splits was introduced for each explored value,
where 80% of the samples were used for training and 20%
as test samples. It is determined that all three classifiers
show maximum performance at 400 features, and the accu-
racy showed no improvement beyond that number [36]. The
second experiment observes the performance of the previous
classifiers along with VirusTotal. The top 400 features were
used for the original three classifiers, and the test covered
all the methods averaging the results over 100 independent
train/test splits with 80% of samples for training. It is deter-
mined VirusTotal shows better performance when compared
to the other algorithms, although EldeRan is just slightly
behind. The last experiment tests how effective EldeRan
can detect new families of ransomware. For new families of
ransomware, it is common for them to share the same char-
acteristics and goals of previous classes [37]. Datasets were
clustered into 11 classes using their known family name,
since the naming conventions of the antivirus (AV) vendors
are not always consistent or compatible amongst them. Two
cases were considered by selecting the top 100 and 400 fea-
tures according to the MI criterion. For eight of the ran-
somware families the detection rate is above 90% and for ten
families the detection rate is above 80%, both occurring when
using 100 features. When using 400 features, the detection
rates become worse with only five families achieving 90%
and eight families achieving 80%. The average detection rate
is higher (93.3%) when using only the top 100 features than in
the case of using 400 features (87.1%) [36]. Figure 12 below
shows an average ROC of the test samples.

—— EldeRAN
- SVM 1

Detection

06}
---- Naive Bayes

VirusTotal

I L
0 0.1 0.2 03 04 05

False Alarm

FIGURE 12. Average ROC for the test samples over 100 random splits for
EldeRan, the SVM, NB, and VirusTotal [36].

Some limitations of EldeRan existed. If the ransomware
remained silent or waited for user interaction within the
sandbox environment, EldeRan does not properly extract the
ransomware, therefore, goes undetected. Secondly, no other
applications were running within the sandbox environment,
which was purposely done to eliminate the ransomware
checks to evade detection. Lastly, the original ransomware
and goodware data samples were limited because EldeRan
could not process empty API calls efficiently during the
dynamic analysis phase. This reduced the dataset by half the
samples. Ultimately, EldeRan can only detect ransomware
once the infection occurs [39].

VOLUME 10, 2022

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

IEEE Access

H. DRTHIS

DRTHIS was developed to determine ransomware from
goodware and to identify their families. It uses LSTM and
CCN deep learning techniques for classification. Based on
the application sequence of activities, a binary classifier,
a Deep Feature Extractor (DFE), and a One Class Classifier
(OCCs) are all used for hunting ransomware samples and
identifying their families. The system records executed events
when a user launches an application, and within the first
10 seconds of application execution, the captured sequence
is transformed to detect if a given sample is considered ran-
somware [40]. Ransomware samples that have been identified
are sent to the system to categorize its family. During the
threat intelligence phase, DFE is used to extract a vector to
feed the OCC, and it contains the pre-trained model LSTM or
CNN. This is the step that produces the family. DRTHIS does
a data transformation task to transform textual sequences of
events into a numerical form. Then, the combining and label-
ing component combines input datasets into one integrated
dataset suitable for our deep learning tasks. It is notable that
combining, and labeling creates two separate datasets with
the same samples but different class labels [40].

DRTHIS uses both ransomware samples from new fam-
ilies and unforeseen benign applications. The created OCC
generated 24% wrong prediction when it classified 16 out
of 66 Locky samples as goodware. DRTHIS also wrongly
classified one Cerber sample and two TeslaCrypt samples as
a new family of ransomware [40]. DRTHIS takes advantage
of One Class Classifier to determine if a sample belongs
to a known family of ransomware or whether it belongs
to a new family. Samples from CryptoWall, TorrentLocker
and Sage families are used for evaluating the performance
of the system against samples from unforeseen families.
DRTHIS correctly recognized these three families as a new
family without any conflict with the trained families. 99% of
CryptoWall, 75% of TorrentLocker and 92% of Sage sam-
ples are correctly detected as samples from a new family
of ransomware. DRTHIS wrongly classifies 1 CryptoWall
sample (1%), 4 TorrentLocker samples (14.2%), and 1 Sage
sample (1.2%) as goodware. DRTHIS identifies 2 Torrent-
Locker samples (7%) and 1 Sage sample (1.2%) as Cerber
samples. Three samples (3.8%) of Sage and 1 sample (3.5%)
of TorrentLocker are also detected as TeslaCrypt [40]. Due
to the fast classification of new instances, DRTHIS can be
considered as a basic method in the cyber security industry
for implementing new threat hunting and intelligence tools.

I. A COMPARATIVE ANALYSIS OF FRAMEWORKS

Section 3 has provided details of several different frame-
works. The below table captures those frameworks and con-
solidates data points and metrics for quick references. The
table is composed of the author’s reference of work, the name
of the framework, the dataset quantity, the number of features
(if applicable), the type(s) of machine learning algorithms
used, the year it was created, the results, and the challenges
each framework faced. The first important factor about these

VOLUME 10, 2022

frameworks is the datasets. Most have been manipulated
based on feature selection to improve the accuracy of each of
their respective models. However, the framework RATAFIA
is very different from the others. For example, it does not
follow the traditional procedures of using ML algorithms
because it strictly factors in performance based on unsuper-
vised learning.

Another observation between these frameworks in
Table 1 below is the ML algorithms used. Each framework in
this research was specifically chosen to bring about nuances
in the related field, therefore, the approach of each framework
is different and all use different algorithms. As this paper
is collectively bringing about research geared towards ran-
somware detection, providing a variety of different frame-
works that are not producing the same results gives better
insight as to what is happening in this area of research study.
Lastly, this paper gives awareness as to how ransomware
detection was conducted years ago versus how it has been
advanced and improved in recent years.

IV. FUTURE OF RANSOMWARE

Trends show that ransomware attacks will continue to surge
in 2022 and will continue to be a top threat for all sectors [41].
Ransomware-as-a-Service, which is a powerful asset, will
also boost malicious attacks on end users, as it does not
require anyone to have any technical knowledge. An increase
in the usage of Initial Access Brokers (IAB) is also projected
to peak, as they gain access to a victim’s network and then sell
it to open ransomware markets for profit. The Covid 19 pan-
demic will continue contributing to more ransomware related
activities as it has caused a drop in employment. Many com-
panies currently do not have the workforce to increase their
cyber security measures or provide awareness, and mitigation
tactics are lacking. Financial impacts have reduced funds for
companies to invest in such software and are steering smaller
companies in the direction of bypassing security measures
altogether. It is also noted that ransomware operators are
likely to intensify the ways that they pressure victims into
paying ransoms by contacting customers of interest, engaging
in media sources and journalists, or simply calling victims
directly [41].

Defenders of ransomware will have to stay ahead of the
advancement of ransomware schemes. For instance, IoT
devices and 5G networks create many loopholes for ran-
somware intrusions. Integrating security technology, secure
design principles, and governance at each phase of an organi-
zation’s IoT and 5G landscapes will also need to be set forth in
each sublayer. Quantum computing is also being used in the
detection of ransomware and is projected to reach maturity
within the next few years [42]. Detection algorithms could
be enriched with quantum technology to expedite the iden-
tification and decryption of encrypted malware. Defenders
would also be able to use quantum computers to decrypt
malice communications using proactive monitoring. Lever-
aging quantum could also disrupt the flow of ransomware in
its attack sequences once it has encrypted its targeted file.

117607

IEEE Access

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

TABLE 1. ConsolidateD view of frameworks.

Author Framework Dataset Features ML Year Results Challenges
Algorithm
[35] | EldeRan 582 malicious 50 - 1500 Regularized 2016 96.3% detects after the system is
Logistic accuracy infected
942 benign Regression
unable to detect silent
ransomware
[40] | DRTHIS 879 samples Multiple, CNN 2018 97.2% considered as a mediocre system
specifically | LSTM accuracy for executing new threat hunting
(219 benign) for hunting techniques
[34] | CryptoKnight 750 original N/A DCNN 2018 | 96% accuracy | can only classify known
samples samples
150 trained
samples
/33] | RansomWall 1,016 samples Multiple Gradient Tree | 2018 | 98.25% Windows OS only
across 5 Boosting accuracy
(442 benign) different
stages
[32] | RATAFIA 4 ransomware N/A DNN 2019 | ransomware unable to pinpoint HPC events
programs FFT detection to one individual process being
within 5 executed
seconds
determining disk encryption
processes from malicious ones
[/30] | RANDS 10,000 samples N/A Naive Bays 2019 | 96.27% Windows-based platform only
Decision Tree average
(500 benign) accuracy
[28] | DNAact-Ran 300 out of 1,524 16,383 out MOGWO 2020 | 87.9% Partially proves active ML
used 0f 30,970 BCS accuracy algorithms detect ransomware
used active better
learning
(150 malicious) must improve performance by
constantly adjusting the active
(150 benign) learning algorithm parameters
[27] | behavior-based 1,254 3,930 that SVM 2020 98.7% More added features decrease
malicious samples | was ANN accuracy performance
relevant TF-IDF
1,308 benign
samples

In [65], the authors present a new type of framework
called Detection Avoidance Mitigation (DAM). It can handle
classification, detection, and mitigation all in one go. Its
architecture consists of typical detection techniques using
static and dynamic analysis, avoidance techniques such as
system updates and patches, and mitigation techniques such
as reverse engineering. DAM evaluated different combat
strategies for preventing ransomware attacks and widespread
financial losses, proving that avoidance techniques are the
most desirable in protecting users and organizations from
ransomware.

Lastly, the first blockchain-based ransomware schemes
were introduced in [66]. The authors focused on smart con-
tracts to contribute to the paying of single files or refunding
the ransom payment back to the victim if the decryption keys
were not sent within a reasonable time. The results of this
research showed no practical countermeasures when using

117608

public blockchains, therefore, more research interests in the
area is needed as this shows a concern.

V. CONCLUSION

In recent years, ransomware has continuously been a top
topic in cybersecurity and attacks are now taking place not
only on individuals but organizations as well. Ransomware
has evolved from elementary scareware and locker related
user interfaces, to cryptographic and fileless ransomware.
In this paper, we provide a comprehensive survey of ran-
somware types, common frameworks that are used to detect
ransomware, and the ML algorithms in which they use.
A detailed list of all pertinent information is gathered and
arranged in a table. Though other research papers have
provided reviews with similar concepts, these surveys have
not captured the explicit details in one place as this research.

VOLUME 10, 2022

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

IEEE Access

By collecting such material and providing a comparative
study, this paper provides a means for others to foresee an
area of interest and investigate parts where improvements can
be made due to poor results or limitations. Ultimately, this
paper can provide direction to those who are looking to utilize
one of the mentioned frameworks for advancement in future

work.
REFERENCES
[1] L. Abrams. (2020). SunCrypt Ransomware Shuts Down North

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Carolina School District. Accessed: Jan. 11, 2021. [Online]. Available:
https://www.bleepingcomputer.com/news/security/suncrypt-ransomware-
shuts-down-north-carolina-schooldistrict/

BBC News. (2020). Northumbria University Hit by Cyber Attack.
Accessed: Jan. 11, 2021. [Online]. Available: https://www.bbc.com/
news/uk-england-tyne-53989404

B. Fraga. (2013). Swansea Police Pay $750 ‘Ransom’ After
Computer Virus Strikes. Accessed: Jan. 11, 2021. [Online]. Available:
https://www.heraldnews.com/x2132756948/Swansea-police-pay-750-
ransom-after-computer virus-strikes

L. Freedman. (2020). Ransomware Attacks Predicted to Occur
Every 11 Seconds in 202 With a Cost of $20 Billion. Accessed:
Jan. 11, 2021. [Online]. Available: https://www.dataprivacyandsecurityin
sider.com/2020/02/ransomwareattacks-predicted-to-occur-every-11-
seconds-in-2021-with-a-cost-of-20-billion/

K. Savage, P. Coogan, and H. Lau. (2015). The Evolution of Ransomware.
[Online]. Available: https://its.fsu.edu/sites/g/files/imported/storage/
images/information-security-and-privacy-office/the-evolution-of-
ransomware

I. Segun, B. I. Ujioghosa, S. O. Ojewande, F. O. Sweetwilliams,
S. N. John, and A. A. Atayero, “Ransomware: Current trend, challenges,
and research directions,” in Proc. World Congr. Eng. Comput. Sci., 2017,
pp. 169-174.

A.Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “UNVEIL:
A large-scale, automated approach to detecting ransomware,” in Proc. 25th
USENIX Secur. Symp., 2016, pp. 757-772.

D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi, E. Bursztein,
K. McRoberts, J. Levin, K. Levchenko, A. C. Snoeren, and D. McCoy,
“Tracking ransomware end-to-end,” in Proc. IEEE Symp. Secur. Privacy
(SP), May 2018, pp. 618-631.

L. Abrams. (Jan. 4, 2016). Ransom32 is the First Ransomware Written in
Javascript. BleepingComputer. Accessed: Jan. 12, 2021. [Online]. Avail-
able: https://www.bleepingcomputer.com/news/security/ransom32-is-the-
first-ransomware-written-in-javascript/

KnowBe4. (2021). Ransom32 Ransomware-as-a-Service.
Accessed: Jan. 12, 2021. [Online]. Available: https://www.knowbe4.com/
ransom-32-ransomware-as-a-service

S. Sjouwerman. (Feb. 5, 2019). First Javascript-Only Ransomware as
a Service Poses New Threat. TechBeacon. Accessed: Jan. 12, 2021.
[Online]. Available: https://techbeacon.com/security/first-javascript-only-
ransomware-service-poses-new-threat

M. J. Schwartz and R. Ross. (Jun. 20, 2016). Latest Ransomware Relies on
JavaScript. Bank Information Security. Accessed: Dec. 2, 2021. [Online].
Available: https://www.bankinfosecurity.com/latest-ransomware-relies-
on-javascript-a-9212

(Jun. 16, 2016). New RAA Ransomware Uses Only JavaScript to
Infect Computers. Accessed: Jan. 12, 2021. [Online]. Available:
https://www.trendmicro.com/vinfo/mx/security/news/cybercrime-and-
digital-threats/new-raa-ransomware-uses-only-javascript-to-infect-
computers

J. Tolbert. (2020). Malicious Actors Exploiting Coronavirus Fears.
Accessed: Jan. 12, 2021. [Online]. Available: https://www.kuppingercole.
com/blog/tolbert/maliciousactors-exploiting-coronavirus-fears

Brooke Crothers. (2020). Apps Designed to Track COVID-19
Might be Full of Ransomware, Report Says. [Online]. Available:
https://www.foxnews.com/tech/apps-track-covid-19-full-ransomware
Acronis. (2020). Digital CoronaVirus: Yet Another Ransomware Com-
bined With Infostealer. Accessed: Jan. 12, 2021. [Online]. Available:
https://www.cbronline.com/news/tesla-cyber-attack

VOLUME 10, 2022

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). New York, NY, USA: Springer-Verlag,
2006.

N. Chauhan. (Jan. 2020). Decision Tree Algorithm, Explained. KDnuggets.
Accessed: Jan. 22, 2021. [Online]. Available: https://www.kdnuggets.
com/2020/01/decision-tree-algorithm-explained.html

N. Donges. (Jun. 22, 2021). A Complete Guide to the Random
Forest Algorithm. Accessed: Jan. 22, 2021. [Online]. Available:
https://builtin.com/data-science/random-forest-algorithm

O. Mbaabu. (Dec. 11, 2020). Introduction to Random Forest in
Machine Learning. Accessed: Jan. 22, 2021. [Online]. Available:
https://www.section.io/engineering-education/introduction-to-random-
forest-in-machine-learning/

J. Brownlee. (Jul. 7, 2021). A Gentle Introduction to Long Short-
Term Memory Networks by the Experts. Machine Learning Mastery.
Accessed: Jan. 24, 2021. [Online]. Available: https://machinelearning
mastery.com/gentle-introduction-long-short-term-memory-networks-
experts/

S. Saxena. (Mar. 16, 2021). Introduction to Long Short Term Memory
(LSTM). Analytics Vidhya. Accessed: Jan. 24, 2021. [Online]. Available:
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-
short-term-memory-lstm/

S. Ray. (Sep. 11, 2017). 6 Easy Steps to Learn Naive Bayes Algo-
rithm With Codes in Python and R. Analytics Vidhya. Accessed:
Jan. 24, 2021. [Online]. Available: https://www.analyticsvidhya.com/
blog/2017/09/naive-bayes-explained/

P. Domingos and M. Pazzani, “On the optimality of the simple Bayesian
classifier under zero-one loss,” Mach. Learn., vol. 29, pp. 103-130,
Nov. 1997.

C. Li. (2016). A Gentle Introduction to Gradient Boosting. Accessed:
Jan. 26, 2021. [Online]. Available: https://www.ccs.neu.edu/
home/vip/teach/MLcourse/4_boosting/slides/gradient_boosting.pdf

R. Gandhi. (Jul. 7, 2018). Support Vector Machine—Introduction to
Machine Learning Algorithms. Accessed: Jan. 26, 2021. [Online].
Available: https://towardsdatascience.com/support-vector-machine-
introduction-to-machine-learningalgorithms-934a444fca47

Y. A. Ahmed, B. Kocer, and B. A. S. Al-rimy, “Automated analy-
sis approach for the detection of high survivable ransomware,” KSII
Trans. Internet Inf. Syst., vol. 14, no. 5, pp.2236-2257, 2020, doi:
10.3837/T11S.2020.05.021.

F. Khan, C. Ncube, L. K. Ramasamy, S. Kadry, and Y. Nam,
“A digital DNA sequencing engine for ransomware detection
using machine learning,” IEEE Access, vol 8, pp.119710-119719,
2020.

J. Pedersen, D. Bastola, K. Dick, R. Gandhi, and W. Mahoney, ‘““Blast your
way through malware analysis assisted by bioinformatics tools,” in Proc.
Int. Conf. Secur. Manage., 2012, p. 1.

H. Zuhair and A. Selamat, “RANDS: A machine learning-based
anti-ransomware tool for Windows platforms,” in Advancing Technology
Industrialization Through Intelligent Software Methodologies, Tools and
Techniques, vol. 318, 2019.

N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural anal-
ysis on Windows platforms,” J. Inf. Secur. Appl., vol. 40, pp. 44-51,
Jun. 2018.

M. Alam, S. Bhattacharya, S. Dutta, S. Sinha, D. Mukhopadhyay,
and A. Chattopadhyay, “RATAFIA: Ransomware analysis using time
and frequency informed autoencoders,” in Proc. IEEE Int. Symp.
Hardw. Oriented Secur. Trust (HOST), May 2019, pp. 218-227, doi:
10.1109/HST.2019.8740837.

S. K. Shaukat and V. J. Ribeiro, ‘“‘RansomWall: A layered defense system
against cryptographic ransomware attacks using machine learning,” in
Proc. 10th Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2018,
pp. 356-363.

G. Hill and X. Bellekens, “CryptoKnight: Generating and modelling
compiled cryptographic primitives,” Information, vol. 9, no. 9, p. 231,
Sep. 2018.

Z.-G. Chen, H.-S. Kang, S.-N. Yin, and S.-R. Kim, “Automatic ran-
somware detection and analysis based on dynamic API calls flow graph,”
in Proc. Int. Conf. Res. Adapt. Convergent Syst., Sep. 2017, pp. 196-201,
doi: 10.1145/3129676.3129704.

D. Sgandurra, L. Mufioz-Gonzdlez, R. Mohsen, and E. C. Lupu, “Auto-
mated dynamic analysis of ransomware: Benefits, limitations and use for
detection,” 2016, arXiv:1609.03020.

117609

http://dx.doi.org/10.3837/TIIS.2020.05.021
http://dx.doi.org/10.1109/HST.2019.8740837
http://dx.doi.org/10.1145/3129676.3129704

IEEE Access

D. Smith et al.: Machine Learning Algorithms and Frameworks in Ransomware Detection

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda,
“Cutting the gordian knot: A look under the hood of ransomware
attacks,” in Detection of Intrusions and Malware, and Vulnerability
Assessment. Cham, Switzerland: ~ Springer, 2015, pp. 3-24,
doi: 10.1007/978-3-319-20550-2_1.

J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious
executables in the wild,” J. Mach. Learn. Res., vol. 7, pp. 2721-2744,
Dec. 2006.

G. Cusack, O. Michel, and E. Keller, “Machine learning-based detection
of ransomware using SDN,” in Proc. ACM Int. Workshop Secur. Softw.
Defined Netw. Netw. Function Virtualization, Mar. 2018, pp. 1-6, doi:
10.1145/3180465.3180467.

S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi,
R. Khayami, K.-K.R.Choo, and D. E. Newton, “DRTHIS: Deep
ransomware threat hunting and intelligence system at the fog layer,”
Future Gener. Comput. Syst., vol. 90, pp. 94—104, Jan. 2019.
Quolntelligence. (Jan. 18, 2022). Ransomware is Here to Stay and
Other Cybersecurity Predictions for 2022. Accessed: Jan. 31, 2021.
[Online]. Available: https://quointelligence.eu/2022/01/ransomware-and-
other-cybersecurity-predictions-for-2022/

D. Golden and K. Norton. (2021). Defending Against Ransomware in an
Age of Emerging Technology. Deloitte. Accessed: Jan. 31, 2021. [Online].
Available: https://www?2.deloitte.com/us/en/pages/risk/articles/defending-
against-ransomware.html

L. Simonovich. (Jan. 15, 2020). Are Utilities Doing Enough to
Protect Themselves From Cyberattack?. World Economic Forum.
Accessed: Apr. 4, 2021. [Online]. Available: https://www.weforum.org/
agenda/2020/01/are-utilities-doing-enough-to-protect-themselves-from-
cyberattack/

APWG. (May 11, 2020). Phishing Activity Trends Report in QI
of 2020. Accessed: Apr. 4, 2021. [Online]. Available: https://docs.
apwg.org/reports/apwg_trends_report_q1_2020.pdf

Q. Chen and R. A. Bridges, “Automated behavioral analysis of mal-
ware: A case study of WannaCry ransomware,” in Proc. 16th IEEE
Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2017, pp. 454-460, doi:
10.1109/ICMLA.2017.0-119.

(May 22, 2017). WannaCry Ransomware Campaign Exploiting SMB
Vulnerability. Accessed: Apr. 4, 2021. [Online]. Available: https://cert.
europa.eu/static/Security Advisories/2017/CERT-EU-SA2017-012.pdf
M. Akbanov, V. G. Vassilakis, and M. D. Logothetis, ‘“WannaCry ran-
somware: Analysis of infection, persistence, recovery prevention and prop-
agation mechanisms,” J. Telecommun. Inf. Technol., vol. 1, no. 2019,
pp. 113-124, Apr. 2019.

L.J. Trautman and P. Ormerod, ‘“Wannacry, ransomware, and the emerging
threat to corporations,” SSRN Electron. J., vol. 86, p. 503, Jan. 2018, doi:
10.2139/ssrn.3238293.

S. Jones and T. Bradshaw. (May 14, 2017). Global Alert to Prepare
for Fresh Cyber Attacks. Accessed: Apr. 4, 2021. [Online]. Available:
https://www.ft.com/content/bb4dda38-389f-11e7-821a-6027b8a20£23

M. V. Liy. May 15, 2017). Putin Culpa a Los Servicios Secretos de
EE UU Por el Virus "WannaCry’ Que Desencaden? el Ciberataque
Mundial. Accessed: Apr. 4, 2021. [Online]. Available: https://elpais.
com/internacional/2017/05/15/actualidad/1494855826_022843.html

S. K. Sahi, “A study of wannacry ransomware attack,” Int. J. Eng. Res.
Comput. Sci. Eng., vol. 4, no. 9, pp. 5-7, 2017.

R. Collier, “NHS ransomware attack spreads worldwide,” Can. Med.
Assoc. J., vol. 189, no. 22, pp. E786-E787, 2017.

JavaScripttiMDN. (Feb. 18, 2022). JavaScript Language Resour
ces—JavaScript: MDN. Accessed: Apr. 4, 2021. [Online]. Available:
https://developer.mozilla.org/enUS/docs/Web/JavaScript/Langu
age_Resources

J. Gerend. (Mar. 3, 2021). Wscript. Microsoft Docs.
Accessed: Apr. 4, 2021. [Online]. Available: https://docs.microsoft.com/
en-us/windows-server/administration/windows-commands/wscript

T. Mclntosh, A. S. M. Kayes, Y.-P-P. Chen, A. Ng, and P. Watters,
“Ransomware mitigation in the modern era: A comprehensive review,
research challenges, and future directions,” ACM Comput. Surv., vol. 54,
no. 9, pp. 1-36, Dec. 2022, doi: 10.1145/3479393.

H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A survey on ransomware:
Evolution, taxonomy, and defense solutions,” ACM Comput. Surv., vol. 54,
no. 11s, pp. 1-37, Jan. 2022, doi: 10.1145/3514229.

CIS Security. (2019). Fall 2019 Threat of the Quarter: Ryuk Ransomware.
Accessed: Apr. 5, 2021. [Online]. Available: https://www.cisecurity.
org/white-papers/fall-2019-threat-ofthe-quarter-ryuk-ransomware/

117610

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

H. Ke, H. Wu, and D. Yang, “Towards evolving security requirements
of industrial internet: A layered security architecture solution based
on data transfer techniques,” in Proc. Int. Conf. Cyberspace Innov.
Adv. Technol., New York, NY, USA, Dec. 2020, pp.504-511, doi:
10.1145/3444370.3444620.

Trend Micro. What is Ryuk Ransomware. Accessed: Apr. 5,2021. [Online].
Available: https://www.trendmicro.com/en_us/what-is/ransomware/ryuk-
ransomware.html

WannaCry Ransomware. (May 15, 2017).
ware—LogRhythm. Accessed: Apr. 14, 2021.
https://logrhythm.com/blog/wannacry-ransomware/
A. Kujawa. (Jan. 8, 2019). Ryuk Ransomware Attacks Businesses Over the
Holidays. Malwarebytes Labs. Accessed: Apr. 14, 2021. [Online]. Avail-
able: https://blog.malwarebytes.com/cybercrime/malware/2019/01/ryuk-
ransomware-attacks-businesses-over-the-holidays/

R. Nimbalkar. (Jul. 13, 2021). Decision Tree Algorithms-Machine Learn-
ing. Accessed: Apr. 14, 2021. [Online]. Available: https://medium.com/
appengine-ai/decision-tree-algorithms-machine-learning-9e2e8cadfcae

S. India. (Jul. 4, 2020). Hands-on Training With Machine Learn-
ing Algorithms: Decision Tree and Random Forest. Springboard Blog.
Accessed: Apr. 14, 2021. [Online]. Available: https:/in.springboard.
com/blog/machine-learning-algorithms-decision-tree-random-forest/

G. Van Houdt, C. Mosquera, and G. Npoles, ““A review on the long short-
term memory model,” Artif. Intell. Rev., vol. 53, no. 8, pp. 5929-5955,
2020, doi: 10.1007/s10462-020-09838-1.

A. Kapoor, A. Gupta, R. Gupta, S. Tanwar, G. Sharma, and I. E. Davidson,
“Ransomware detection, avoidance, and mitigation scheme: A review and
future directions,” Sustainability, vol. 14, no. 1, p. 8, Dec. 2021.

0. Delgado-Mohatar, J. M. Sierra-Camara, and E. Anguiano, ““Blockchain-
based semi-autonomous ransomware,” Future Gener. Comput. Syst.,
vol. 112, pp. 589-603, Nov. 2020.

Ransom
Available:

WannaCry
[Online].

DARYLE SMITH was born in Lenoir, NC, USA,
in 1985. He received the B.S. and M.S. degrees
in computer science from Winston-Salem State
University. He is currently pursuing the Ph.D.
degree in computer science with North Carolina
A&T State University. Since 2010, he has been
starting his IT career as a Software Engineer and
has been involved in every aspect of e-commerce
since. He is currently an E-Commerce Architect
with the Peapod Digital Laboratories, Salisbury,
NC headquarters.

SAJAD KHORSANDROO received the Ph.D.
degree in computer science from The University
of Texas at San Antonio, in 2019. Currently, he is
an Assistant Professor of computer science at
North Carolina A&T State University, where he is
also an Associate Director of the Cyber Defense
and Al Laboratory. He has already secured $1.7M
in funds from NSF, DoD, Palo Alto Networks,
and Carolina Cyber Center. His current research
interests include the application of AI/ML in cyber

security, next-generation network infrastructures, cloud computing, and
secure cyber physical systems.

KAUSHIK ROY is currently a Professor and the
Interim Chair of the Department of Computer
Science, North Carolina A&T State University
(NCAT). He has over 140 publications, including
35 journal articles and a book. His current research
interests include cybersecurity, cyber identity, bio-
metrics, machine learning (deep learning), data
science, the IoT, cyber-physical systems, and big
data analytics. His research is funded by the
National Science Foundation (NSF), Department

of Defense (DoD), National Security Agency (NSA), and Department of
Energy (DoE). He is the Director of the Center for Cyber Defense (CCD).
He also directs the Cyber Defense and Al Laboratory.

VOLUME 10, 2022

http://dx.doi.org/10.1007/978-3-319-20550-2_1
http://dx.doi.org/10.1145/3180465.3180467
http://dx.doi.org/10.1109/ICMLA.2017.0-119
http://dx.doi.org/10.2139/ssrn.3238293
http://dx.doi.org/10.1145/3479393
http://dx.doi.org/10.1145/3514229
http://dx.doi.org/10.1145/3444370.3444620
http://dx.doi.org/10.1007/s10462-020-09838-1

